1 | MODULE production_e_mod |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: production_e.f90 1132 2013-04-12 14:35:30Z gryschka $ |
---|
27 | ! |
---|
28 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
29 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
30 | ! j_north |
---|
31 | ! |
---|
32 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
33 | ! code put under GPL (PALM 3.9) |
---|
34 | ! |
---|
35 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
36 | ! accelerator version (*_acc) added |
---|
37 | ! |
---|
38 | ! 1007 2012-09-19 14:30:36Z franke |
---|
39 | ! Bugfix: calculation of buoyancy production has to consider the liquid water |
---|
40 | ! mixing ratio in case of cloud droplets |
---|
41 | ! |
---|
42 | ! 940 2012-07-09 14:31:00Z raasch |
---|
43 | ! TKE production by buoyancy can be switched off in case of runs with pure |
---|
44 | ! neutral stratification |
---|
45 | ! |
---|
46 | ! 759 2011-09-15 13:58:31Z raasch |
---|
47 | ! initialization of u_0, v_0 |
---|
48 | ! |
---|
49 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
50 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng |
---|
51 | ! |
---|
52 | ! 449 2010-02-02 11:23:59Z raasch |
---|
53 | ! test output from rev 410 removed |
---|
54 | ! |
---|
55 | ! 388 2009-09-23 09:40:33Z raasch |
---|
56 | ! Bugfix: wrong sign in buoyancy production of ocean part in case of not using |
---|
57 | ! the reference density (only in 3D routine production_e) |
---|
58 | ! Bugfix to avoid zero division by km_neutral |
---|
59 | ! |
---|
60 | ! 208 2008-10-20 06:02:59Z raasch |
---|
61 | ! Bugfix concerning the calculation of velocity gradients at vertical walls |
---|
62 | ! in case of diabatic conditions |
---|
63 | ! |
---|
64 | ! 187 2008-08-06 16:25:09Z letzel |
---|
65 | ! Change: add 'minus' sign to fluxes obtained from subroutine wall_fluxes_e for |
---|
66 | ! consistency with subroutine wall_fluxes |
---|
67 | ! |
---|
68 | ! 124 2007-10-19 15:47:46Z raasch |
---|
69 | ! Bugfix: calculation of density flux in the ocean now starts from nzb+1 |
---|
70 | ! |
---|
71 | ! 108 2007-08-24 15:10:38Z letzel |
---|
72 | ! Bugfix: wrong sign removed from the buoyancy production term in the case |
---|
73 | ! use_reference = .T., |
---|
74 | ! u_0 and v_0 are calculated for nxr+1, nyn+1 also (otherwise these values are |
---|
75 | ! not available in case of non-cyclic boundary conditions) |
---|
76 | ! Bugfix for ocean density flux at bottom |
---|
77 | ! |
---|
78 | ! 97 2007-06-21 08:23:15Z raasch |
---|
79 | ! Energy production by density flux (in ocean) added |
---|
80 | ! use_pt_reference renamed use_reference |
---|
81 | ! |
---|
82 | ! 75 2007-03-22 09:54:05Z raasch |
---|
83 | ! Wall functions now include diabatic conditions, call of routine wall_fluxes_e, |
---|
84 | ! reference temperature pt_reference can be used in buoyancy term, |
---|
85 | ! moisture renamed humidity |
---|
86 | ! |
---|
87 | ! 37 2007-03-01 08:33:54Z raasch |
---|
88 | ! Calculation extended for gridpoint nzt, extended for given temperature / |
---|
89 | ! humidity fluxes at the top, wall-part is now executed in case that a |
---|
90 | ! Prandtl-layer is switched on (instead of surfaces fluxes switched on) |
---|
91 | ! |
---|
92 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
93 | ! |
---|
94 | ! Revision 1.21 2006/04/26 12:45:35 raasch |
---|
95 | ! OpenMP parallelization of production_e_init |
---|
96 | ! |
---|
97 | ! Revision 1.1 1997/09/19 07:45:35 raasch |
---|
98 | ! Initial revision |
---|
99 | ! |
---|
100 | ! |
---|
101 | ! Description: |
---|
102 | ! ------------ |
---|
103 | ! Production terms (shear + buoyancy) of the TKE |
---|
104 | ! WARNING: the case with prandtl_layer = F and use_surface_fluxes = T is |
---|
105 | ! not considered well! |
---|
106 | !------------------------------------------------------------------------------! |
---|
107 | |
---|
108 | USE wall_fluxes_mod |
---|
109 | |
---|
110 | PRIVATE |
---|
111 | PUBLIC production_e, production_e_acc, production_e_init |
---|
112 | |
---|
113 | LOGICAL, SAVE :: first_call = .TRUE. |
---|
114 | |
---|
115 | REAL, DIMENSION(:,:), ALLOCATABLE, SAVE :: u_0, v_0 |
---|
116 | |
---|
117 | INTERFACE production_e |
---|
118 | MODULE PROCEDURE production_e |
---|
119 | MODULE PROCEDURE production_e_ij |
---|
120 | END INTERFACE production_e |
---|
121 | |
---|
122 | INTERFACE production_e_acc |
---|
123 | MODULE PROCEDURE production_e_acc |
---|
124 | END INTERFACE production_e_acc |
---|
125 | |
---|
126 | INTERFACE production_e_init |
---|
127 | MODULE PROCEDURE production_e_init |
---|
128 | END INTERFACE production_e_init |
---|
129 | |
---|
130 | CONTAINS |
---|
131 | |
---|
132 | |
---|
133 | !------------------------------------------------------------------------------! |
---|
134 | ! Call for all grid points |
---|
135 | !------------------------------------------------------------------------------! |
---|
136 | SUBROUTINE production_e |
---|
137 | |
---|
138 | USE arrays_3d |
---|
139 | USE cloud_parameters |
---|
140 | USE control_parameters |
---|
141 | USE grid_variables |
---|
142 | USE indices |
---|
143 | USE statistics |
---|
144 | |
---|
145 | IMPLICIT NONE |
---|
146 | |
---|
147 | INTEGER :: i, j, k |
---|
148 | |
---|
149 | REAL :: def, dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz, & |
---|
150 | k1, k2, km_neutral, theta, temp |
---|
151 | |
---|
152 | ! REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: usvs, vsus, wsus, wsvs |
---|
153 | REAL, DIMENSION(nzb:nzt+1) :: usvs, vsus, wsus, wsvs |
---|
154 | |
---|
155 | ! |
---|
156 | !-- First calculate horizontal momentum flux u'v', w'v', v'u', w'u' at |
---|
157 | !-- vertical walls, if neccessary |
---|
158 | !-- So far, results are slightly different from the ij-Version. |
---|
159 | !-- Therefore, ij-Version is called further below within the ij-loops. |
---|
160 | ! IF ( topography /= 'flat' ) THEN |
---|
161 | ! CALL wall_fluxes_e( usvs, 1.0, 0.0, 0.0, 0.0, wall_e_y ) |
---|
162 | ! CALL wall_fluxes_e( wsvs, 0.0, 0.0, 1.0, 0.0, wall_e_y ) |
---|
163 | ! CALL wall_fluxes_e( vsus, 0.0, 1.0, 0.0, 0.0, wall_e_x ) |
---|
164 | ! CALL wall_fluxes_e( wsus, 0.0, 0.0, 0.0, 1.0, wall_e_x ) |
---|
165 | ! ENDIF |
---|
166 | |
---|
167 | |
---|
168 | DO i = nxl, nxr |
---|
169 | |
---|
170 | ! |
---|
171 | !-- Calculate TKE production by shear |
---|
172 | DO j = nys, nyn |
---|
173 | DO k = nzb_diff_s_outer(j,i), nzt |
---|
174 | |
---|
175 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
176 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
177 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
178 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
179 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
180 | |
---|
181 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
182 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
183 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
184 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
185 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
186 | |
---|
187 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
188 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
189 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
190 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
191 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
192 | |
---|
193 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
194 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
195 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
196 | |
---|
197 | IF ( def < 0.0 ) def = 0.0 |
---|
198 | |
---|
199 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
200 | |
---|
201 | ENDDO |
---|
202 | ENDDO |
---|
203 | |
---|
204 | IF ( prandtl_layer ) THEN |
---|
205 | |
---|
206 | ! |
---|
207 | !-- Position beneath wall |
---|
208 | !-- (2) - Will allways be executed. |
---|
209 | !-- 'bottom and wall: use u_0,v_0 and wall functions' |
---|
210 | DO j = nys, nyn |
---|
211 | |
---|
212 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) & |
---|
213 | THEN |
---|
214 | |
---|
215 | k = nzb_diff_s_inner(j,i) - 1 |
---|
216 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
217 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
218 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
219 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
220 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
221 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
222 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
223 | |
---|
224 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
225 | ! |
---|
226 | !-- Inconsistency removed: as the thermal stratification is |
---|
227 | !-- not taken into account for the evaluation of the wall |
---|
228 | !-- fluxes at vertical walls, the eddy viscosity km must not |
---|
229 | !-- be used for the evaluation of the velocity gradients dudy |
---|
230 | !-- and dwdy |
---|
231 | !-- Note: The validity of the new method has not yet been |
---|
232 | !-- shown, as so far no suitable data for a validation |
---|
233 | !-- has been available |
---|
234 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
235 | usvs, 1.0, 0.0, 0.0, 0.0 ) |
---|
236 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
237 | wsvs, 0.0, 0.0, 1.0, 0.0 ) |
---|
238 | km_neutral = kappa * ( usvs(k)**2 + wsvs(k)**2 )**0.25 * & |
---|
239 | 0.5 * dy |
---|
240 | IF ( km_neutral > 0.0 ) THEN |
---|
241 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
242 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
243 | ELSE |
---|
244 | dudy = 0.0 |
---|
245 | dwdy = 0.0 |
---|
246 | ENDIF |
---|
247 | ELSE |
---|
248 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
249 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
250 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
251 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
252 | ENDIF |
---|
253 | |
---|
254 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
255 | ! |
---|
256 | !-- Inconsistency removed: as the thermal stratification is |
---|
257 | !-- not taken into account for the evaluation of the wall |
---|
258 | !-- fluxes at vertical walls, the eddy viscosity km must not |
---|
259 | !-- be used for the evaluation of the velocity gradients dvdx |
---|
260 | !-- and dwdx |
---|
261 | !-- Note: The validity of the new method has not yet been |
---|
262 | !-- shown, as so far no suitable data for a validation |
---|
263 | !-- has been available |
---|
264 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
265 | vsus, 0.0, 1.0, 0.0, 0.0 ) |
---|
266 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
267 | wsus, 0.0, 0.0, 0.0, 1.0 ) |
---|
268 | km_neutral = kappa * ( vsus(k)**2 + wsus(k)**2 )**0.25 * & |
---|
269 | 0.5 * dx |
---|
270 | IF ( km_neutral > 0.0 ) THEN |
---|
271 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
272 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
273 | ELSE |
---|
274 | dvdx = 0.0 |
---|
275 | dwdx = 0.0 |
---|
276 | ENDIF |
---|
277 | ELSE |
---|
278 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
279 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
280 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
281 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
282 | ENDIF |
---|
283 | |
---|
284 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
285 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
286 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
287 | |
---|
288 | IF ( def < 0.0 ) def = 0.0 |
---|
289 | |
---|
290 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
291 | |
---|
292 | |
---|
293 | ! |
---|
294 | !-- (3) - will be executed only, if there is at least one level |
---|
295 | !-- between (2) and (4), i.e. the topography must have a |
---|
296 | !-- minimum height of 2 dz. Wall fluxes for this case have |
---|
297 | !-- already been calculated for (2). |
---|
298 | !-- 'wall only: use wall functions' |
---|
299 | |
---|
300 | DO k = nzb_diff_s_inner(j,i), nzb_diff_s_outer(j,i)-2 |
---|
301 | |
---|
302 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
303 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
304 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
305 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
306 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
307 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
308 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
309 | |
---|
310 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
311 | ! |
---|
312 | !-- Inconsistency removed: as the thermal stratification |
---|
313 | !-- is not taken into account for the evaluation of the |
---|
314 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
315 | !-- must not be used for the evaluation of the velocity |
---|
316 | !-- gradients dudy and dwdy |
---|
317 | !-- Note: The validity of the new method has not yet |
---|
318 | !-- been shown, as so far no suitable data for a |
---|
319 | !-- validation has been available |
---|
320 | km_neutral = kappa * ( usvs(k)**2 + & |
---|
321 | wsvs(k)**2 )**0.25 * 0.5 * dy |
---|
322 | IF ( km_neutral > 0.0 ) THEN |
---|
323 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
324 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
325 | ELSE |
---|
326 | dudy = 0.0 |
---|
327 | dwdy = 0.0 |
---|
328 | ENDIF |
---|
329 | ELSE |
---|
330 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
331 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
332 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
333 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
334 | ENDIF |
---|
335 | |
---|
336 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
337 | ! |
---|
338 | !-- Inconsistency removed: as the thermal stratification |
---|
339 | !-- is not taken into account for the evaluation of the |
---|
340 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
341 | !-- must not be used for the evaluation of the velocity |
---|
342 | !-- gradients dvdx and dwdx |
---|
343 | !-- Note: The validity of the new method has not yet |
---|
344 | !-- been shown, as so far no suitable data for a |
---|
345 | !-- validation has been available |
---|
346 | km_neutral = kappa * ( vsus(k)**2 + & |
---|
347 | wsus(k)**2 )**0.25 * 0.5 * dx |
---|
348 | IF ( km_neutral > 0.0 ) THEN |
---|
349 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
350 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
351 | ELSE |
---|
352 | dvdx = 0.0 |
---|
353 | dwdx = 0.0 |
---|
354 | ENDIF |
---|
355 | ELSE |
---|
356 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
357 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
358 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
359 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
360 | ENDIF |
---|
361 | |
---|
362 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
363 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
364 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
365 | |
---|
366 | IF ( def < 0.0 ) def = 0.0 |
---|
367 | |
---|
368 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
369 | |
---|
370 | ENDDO |
---|
371 | |
---|
372 | ENDIF |
---|
373 | |
---|
374 | ENDDO |
---|
375 | |
---|
376 | ! |
---|
377 | !-- (4) - will allways be executed. |
---|
378 | !-- 'special case: free atmosphere' (as for case (0)) |
---|
379 | DO j = nys, nyn |
---|
380 | |
---|
381 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) & |
---|
382 | THEN |
---|
383 | |
---|
384 | k = nzb_diff_s_outer(j,i)-1 |
---|
385 | |
---|
386 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
387 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
388 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
389 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
390 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
391 | |
---|
392 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
393 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
394 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
395 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
396 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
397 | |
---|
398 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
399 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
400 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
401 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
402 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
403 | |
---|
404 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
405 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
406 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
407 | |
---|
408 | IF ( def < 0.0 ) def = 0.0 |
---|
409 | |
---|
410 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
411 | |
---|
412 | ENDIF |
---|
413 | |
---|
414 | ENDDO |
---|
415 | |
---|
416 | ! |
---|
417 | !-- Position without adjacent wall |
---|
418 | !-- (1) - will allways be executed. |
---|
419 | !-- 'bottom only: use u_0,v_0' |
---|
420 | DO j = nys, nyn |
---|
421 | |
---|
422 | IF ( ( wall_e_x(j,i) == 0.0 ) .AND. ( wall_e_y(j,i) == 0.0 ) ) & |
---|
423 | THEN |
---|
424 | |
---|
425 | k = nzb_diff_s_inner(j,i)-1 |
---|
426 | |
---|
427 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
428 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
429 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
430 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
431 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
432 | |
---|
433 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
434 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
435 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
436 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
437 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
438 | |
---|
439 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
440 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
441 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
442 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
443 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
444 | |
---|
445 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
446 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
447 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
448 | |
---|
449 | IF ( def < 0.0 ) def = 0.0 |
---|
450 | |
---|
451 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
452 | |
---|
453 | ENDIF |
---|
454 | |
---|
455 | ENDDO |
---|
456 | |
---|
457 | ELSEIF ( use_surface_fluxes ) THEN |
---|
458 | |
---|
459 | DO j = nys, nyn |
---|
460 | |
---|
461 | k = nzb_diff_s_outer(j,i)-1 |
---|
462 | |
---|
463 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
464 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
465 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
466 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
467 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
468 | |
---|
469 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
470 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
471 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
472 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
473 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
474 | |
---|
475 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
476 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
477 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
478 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
479 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
480 | |
---|
481 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
482 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
483 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
484 | |
---|
485 | IF ( def < 0.0 ) def = 0.0 |
---|
486 | |
---|
487 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
488 | |
---|
489 | ENDDO |
---|
490 | |
---|
491 | ENDIF |
---|
492 | |
---|
493 | ! |
---|
494 | !-- If required, calculate TKE production by buoyancy |
---|
495 | IF ( .NOT. neutral ) THEN |
---|
496 | |
---|
497 | IF ( .NOT. humidity ) THEN |
---|
498 | |
---|
499 | IF ( use_reference ) THEN |
---|
500 | |
---|
501 | IF ( ocean ) THEN |
---|
502 | ! |
---|
503 | !-- So far in the ocean no special treatment of density flux |
---|
504 | !-- in the bottom and top surface layer |
---|
505 | DO j = nys, nyn |
---|
506 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
507 | tend(k,j,i) = tend(k,j,i) + & |
---|
508 | kh(k,j,i) * g / rho_reference * & |
---|
509 | ( rho(k+1,j,i) - rho(k-1,j,i) ) * & |
---|
510 | dd2zu(k) |
---|
511 | ENDDO |
---|
512 | ENDDO |
---|
513 | |
---|
514 | ELSE |
---|
515 | |
---|
516 | DO j = nys, nyn |
---|
517 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
518 | tend(k,j,i) = tend(k,j,i) - & |
---|
519 | kh(k,j,i) * g / pt_reference * & |
---|
520 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * & |
---|
521 | dd2zu(k) |
---|
522 | ENDDO |
---|
523 | |
---|
524 | IF ( use_surface_fluxes ) THEN |
---|
525 | k = nzb_diff_s_inner(j,i)-1 |
---|
526 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
527 | shf(j,i) |
---|
528 | ENDIF |
---|
529 | |
---|
530 | IF ( use_top_fluxes ) THEN |
---|
531 | k = nzt |
---|
532 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
533 | tswst(j,i) |
---|
534 | ENDIF |
---|
535 | ENDDO |
---|
536 | |
---|
537 | ENDIF |
---|
538 | |
---|
539 | ELSE |
---|
540 | |
---|
541 | IF ( ocean ) THEN |
---|
542 | ! |
---|
543 | !-- So far in the ocean no special treatment of density flux |
---|
544 | !-- in the bottom and top surface layer |
---|
545 | DO j = nys, nyn |
---|
546 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
547 | tend(k,j,i) = tend(k,j,i) + & |
---|
548 | kh(k,j,i) * g / rho(k,j,i) * & |
---|
549 | ( rho(k+1,j,i) - rho(k-1,j,i) ) * & |
---|
550 | dd2zu(k) |
---|
551 | ENDDO |
---|
552 | ENDDO |
---|
553 | |
---|
554 | ELSE |
---|
555 | |
---|
556 | DO j = nys, nyn |
---|
557 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
558 | tend(k,j,i) = tend(k,j,i) - & |
---|
559 | kh(k,j,i) * g / pt(k,j,i) * & |
---|
560 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * & |
---|
561 | dd2zu(k) |
---|
562 | ENDDO |
---|
563 | |
---|
564 | IF ( use_surface_fluxes ) THEN |
---|
565 | k = nzb_diff_s_inner(j,i)-1 |
---|
566 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * & |
---|
567 | shf(j,i) |
---|
568 | ENDIF |
---|
569 | |
---|
570 | IF ( use_top_fluxes ) THEN |
---|
571 | k = nzt |
---|
572 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * & |
---|
573 | tswst(j,i) |
---|
574 | ENDIF |
---|
575 | ENDDO |
---|
576 | |
---|
577 | ENDIF |
---|
578 | |
---|
579 | ENDIF |
---|
580 | |
---|
581 | ELSE |
---|
582 | |
---|
583 | DO j = nys, nyn |
---|
584 | |
---|
585 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
586 | |
---|
587 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
588 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
589 | k2 = 0.61 * pt(k,j,i) |
---|
590 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * & |
---|
591 | g / vpt(k,j,i) * & |
---|
592 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
593 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
594 | ) * dd2zu(k) |
---|
595 | ELSE IF ( cloud_physics ) THEN |
---|
596 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
597 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
598 | k2 = 0.61 * pt(k,j,i) |
---|
599 | ELSE |
---|
600 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
601 | temp = theta * t_d_pt(k) |
---|
602 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
603 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
604 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
605 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
606 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
607 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
608 | ENDIF |
---|
609 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * & |
---|
610 | g / vpt(k,j,i) * & |
---|
611 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
612 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
613 | ) * dd2zu(k) |
---|
614 | ELSE IF ( cloud_droplets ) THEN |
---|
615 | k1 = 1.0 + 0.61 * q(k,j,i) - ql(k,j,i) |
---|
616 | k2 = 0.61 * pt(k,j,i) |
---|
617 | tend(k,j,i) = tend(k,j,i) - & |
---|
618 | kh(k,j,i) * g / vpt(k,j,i) * & |
---|
619 | ( k1 * ( pt(k+1,j,i)- pt(k-1,j,i) ) + & |
---|
620 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) - & |
---|
621 | pt(k,j,i) * ( ql(k+1,j,i) - & |
---|
622 | ql(k-1,j,i) ) ) * dd2zu(k) |
---|
623 | ENDIF |
---|
624 | |
---|
625 | ENDDO |
---|
626 | |
---|
627 | ENDDO |
---|
628 | |
---|
629 | IF ( use_surface_fluxes ) THEN |
---|
630 | |
---|
631 | DO j = nys, nyn |
---|
632 | |
---|
633 | k = nzb_diff_s_inner(j,i)-1 |
---|
634 | |
---|
635 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
636 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
637 | k2 = 0.61 * pt(k,j,i) |
---|
638 | ELSE IF ( cloud_physics ) THEN |
---|
639 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
640 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
641 | k2 = 0.61 * pt(k,j,i) |
---|
642 | ELSE |
---|
643 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
644 | temp = theta * t_d_pt(k) |
---|
645 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
646 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
647 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
648 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
649 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
650 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
651 | ENDIF |
---|
652 | ELSE IF ( cloud_droplets ) THEN |
---|
653 | k1 = 1.0 + 0.61 * q(k,j,i) - ql(k,j,i) |
---|
654 | k2 = 0.61 * pt(k,j,i) |
---|
655 | ENDIF |
---|
656 | |
---|
657 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
658 | ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
659 | ENDDO |
---|
660 | |
---|
661 | ENDIF |
---|
662 | |
---|
663 | IF ( use_top_fluxes ) THEN |
---|
664 | |
---|
665 | DO j = nys, nyn |
---|
666 | |
---|
667 | k = nzt |
---|
668 | |
---|
669 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
670 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
671 | k2 = 0.61 * pt(k,j,i) |
---|
672 | ELSE IF ( cloud_physics ) THEN |
---|
673 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
674 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
675 | k2 = 0.61 * pt(k,j,i) |
---|
676 | ELSE |
---|
677 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
678 | temp = theta * t_d_pt(k) |
---|
679 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
680 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
681 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
682 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
683 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
684 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
685 | ENDIF |
---|
686 | ELSE IF ( cloud_droplets ) THEN |
---|
687 | k1 = 1.0 + 0.61 * q(k,j,i) - ql(k,j,i) |
---|
688 | k2 = 0.61 * pt(k,j,i) |
---|
689 | ENDIF |
---|
690 | |
---|
691 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
692 | ( k1* tswst(j,i) + k2 * qswst(j,i) ) |
---|
693 | ENDDO |
---|
694 | |
---|
695 | ENDIF |
---|
696 | |
---|
697 | ENDIF |
---|
698 | |
---|
699 | ENDIF |
---|
700 | |
---|
701 | ENDDO |
---|
702 | |
---|
703 | END SUBROUTINE production_e |
---|
704 | |
---|
705 | |
---|
706 | !------------------------------------------------------------------------------! |
---|
707 | ! Call for all grid points - accelerator version |
---|
708 | !------------------------------------------------------------------------------! |
---|
709 | SUBROUTINE production_e_acc |
---|
710 | |
---|
711 | USE arrays_3d |
---|
712 | USE cloud_parameters |
---|
713 | USE control_parameters |
---|
714 | USE grid_variables |
---|
715 | USE indices |
---|
716 | USE statistics |
---|
717 | |
---|
718 | IMPLICIT NONE |
---|
719 | |
---|
720 | INTEGER :: i, j, k |
---|
721 | |
---|
722 | REAL :: def, dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz, & |
---|
723 | k1, k2, km_neutral, theta, temp |
---|
724 | |
---|
725 | !$acc declare create ( usvs, vsus, wsus, wsvs ) |
---|
726 | REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: usvs, vsus, wsus, wsvs |
---|
727 | ! REAL, DIMENSION(nzb:nzt+1) :: usvs, vsus, wsus, wsvs |
---|
728 | |
---|
729 | ! |
---|
730 | !-- First calculate horizontal momentum flux u'v', w'v', v'u', w'u' at |
---|
731 | !-- vertical walls, if neccessary |
---|
732 | !-- CAUTION: results are slightly different from the ij-version!! |
---|
733 | !-- ij-version should be called further below within the ij-loops!! |
---|
734 | IF ( topography /= 'flat' ) THEN |
---|
735 | CALL wall_fluxes_e_acc( usvs, 1.0, 0.0, 0.0, 0.0, wall_e_y ) |
---|
736 | CALL wall_fluxes_e_acc( wsvs, 0.0, 0.0, 1.0, 0.0, wall_e_y ) |
---|
737 | CALL wall_fluxes_e_acc( vsus, 0.0, 1.0, 0.0, 0.0, wall_e_x ) |
---|
738 | CALL wall_fluxes_e_acc( wsus, 0.0, 0.0, 0.0, 1.0, wall_e_x ) |
---|
739 | ENDIF |
---|
740 | |
---|
741 | |
---|
742 | ! |
---|
743 | !-- Calculate TKE production by shear |
---|
744 | !$acc kernels present( ddzw, dd2zu, kh, km, nzb_diff_s_inner, nzb_diff_s_outer ) & |
---|
745 | !$acc present( nzb_s_inner, nzb_s_outer, pt, q, ql, qsws, qswst, rho ) & |
---|
746 | !$acc present( shf, tend, tswst, u, v, vpt, w, wall_e_x, wall_e_y ) & |
---|
747 | !$acc copyin( u_0, v_0 ) |
---|
748 | !$acc loop |
---|
749 | DO i = i_left, i_right |
---|
750 | DO j = j_south, j_north |
---|
751 | !$acc loop vector( 32 ) |
---|
752 | DO k = 1, nzt |
---|
753 | |
---|
754 | IF ( k >= nzb_diff_s_outer(j,i) ) THEN |
---|
755 | |
---|
756 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
757 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
758 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
759 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
760 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
761 | |
---|
762 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
763 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
764 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
765 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
766 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
767 | |
---|
768 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
769 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
770 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
771 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
772 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
773 | |
---|
774 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
775 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
776 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
777 | |
---|
778 | IF ( def < 0.0 ) def = 0.0 |
---|
779 | |
---|
780 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
781 | |
---|
782 | ENDIF |
---|
783 | |
---|
784 | ENDDO |
---|
785 | ENDDO |
---|
786 | ENDDO |
---|
787 | |
---|
788 | IF ( prandtl_layer ) THEN |
---|
789 | |
---|
790 | ! |
---|
791 | !-- Position beneath wall |
---|
792 | !-- (2) - Will allways be executed. |
---|
793 | !-- 'bottom and wall: use u_0,v_0 and wall functions' |
---|
794 | !$acc loop |
---|
795 | DO i = i_left, i_right |
---|
796 | DO j = j_south, j_north |
---|
797 | !$acc loop vector( 32 ) |
---|
798 | DO k = 1, nzt |
---|
799 | |
---|
800 | IF ( ( wall_e_x(j,i) /= 0.0 ).OR.( wall_e_y(j,i) /= 0.0 ) ) & |
---|
801 | THEN |
---|
802 | |
---|
803 | IF ( k == nzb_diff_s_inner(j,i) - 1 ) THEN |
---|
804 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
805 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
806 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
807 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
808 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
809 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
810 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
811 | |
---|
812 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
813 | ! |
---|
814 | !-- Inconsistency removed: as the thermal stratification is |
---|
815 | !-- not taken into account for the evaluation of the wall |
---|
816 | !-- fluxes at vertical walls, the eddy viscosity km must not |
---|
817 | !-- be used for the evaluation of the velocity gradients dudy |
---|
818 | !-- and dwdy |
---|
819 | !-- Note: The validity of the new method has not yet been |
---|
820 | !-- shown, as so far no suitable data for a validation |
---|
821 | !-- has been available |
---|
822 | ! CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
823 | ! usvs, 1.0, 0.0, 0.0, 0.0 ) |
---|
824 | ! CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
825 | ! wsvs, 0.0, 0.0, 1.0, 0.0 ) |
---|
826 | km_neutral = kappa * & |
---|
827 | ( usvs(k,j,i)**2 + wsvs(k,j,i)**2 )**0.25 * & |
---|
828 | 0.5 * dy |
---|
829 | IF ( km_neutral > 0.0 ) THEN |
---|
830 | dudy = - wall_e_y(j,i) * usvs(k,j,i) / km_neutral |
---|
831 | dwdy = - wall_e_y(j,i) * wsvs(k,j,i) / km_neutral |
---|
832 | ELSE |
---|
833 | dudy = 0.0 |
---|
834 | dwdy = 0.0 |
---|
835 | ENDIF |
---|
836 | ELSE |
---|
837 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
838 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
839 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
840 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
841 | ENDIF |
---|
842 | |
---|
843 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
844 | ! |
---|
845 | !-- Inconsistency removed: as the thermal stratification is |
---|
846 | !-- not taken into account for the evaluation of the wall |
---|
847 | !-- fluxes at vertical walls, the eddy viscosity km must not |
---|
848 | !-- be used for the evaluation of the velocity gradients dvdx |
---|
849 | !-- and dwdx |
---|
850 | !-- Note: The validity of the new method has not yet been |
---|
851 | !-- shown, as so far no suitable data for a validation |
---|
852 | !-- has been available |
---|
853 | ! CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
854 | ! vsus, 0.0, 1.0, 0.0, 0.0 ) |
---|
855 | ! CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
856 | ! wsus, 0.0, 0.0, 0.0, 1.0 ) |
---|
857 | km_neutral = kappa * & |
---|
858 | ( vsus(k,j,i)**2 + wsus(k,j,i)**2 )**0.25 * & |
---|
859 | 0.5 * dx |
---|
860 | IF ( km_neutral > 0.0 ) THEN |
---|
861 | dvdx = - wall_e_x(j,i) * vsus(k,j,i) / km_neutral |
---|
862 | dwdx = - wall_e_x(j,i) * wsus(k,j,i) / km_neutral |
---|
863 | ELSE |
---|
864 | dvdx = 0.0 |
---|
865 | dwdx = 0.0 |
---|
866 | ENDIF |
---|
867 | ELSE |
---|
868 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
869 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
870 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
871 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
872 | ENDIF |
---|
873 | |
---|
874 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
875 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
876 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
877 | |
---|
878 | IF ( def < 0.0 ) def = 0.0 |
---|
879 | |
---|
880 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
881 | |
---|
882 | ENDIF |
---|
883 | ! |
---|
884 | !-- (3) - will be executed only, if there is at least one level |
---|
885 | !-- between (2) and (4), i.e. the topography must have a |
---|
886 | !-- minimum height of 2 dz. Wall fluxes for this case have |
---|
887 | !-- already been calculated for (2). |
---|
888 | !-- 'wall only: use wall functions' |
---|
889 | |
---|
890 | IF ( k >= nzb_diff_s_inner(j,i) .AND. & |
---|
891 | k <= nzb_diff_s_outer(j,i)-2 ) THEN |
---|
892 | |
---|
893 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
894 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
895 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
896 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
897 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
898 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
899 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
900 | |
---|
901 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
902 | ! |
---|
903 | !-- Inconsistency removed: as the thermal stratification |
---|
904 | !-- is not taken into account for the evaluation of the |
---|
905 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
906 | !-- must not be used for the evaluation of the velocity |
---|
907 | !-- gradients dudy and dwdy |
---|
908 | !-- Note: The validity of the new method has not yet |
---|
909 | !-- been shown, as so far no suitable data for a |
---|
910 | !-- validation has been available |
---|
911 | km_neutral = kappa * ( usvs(k,j,i)**2 + & |
---|
912 | wsvs(k,j,i)**2 )**0.25 * 0.5 * dy |
---|
913 | IF ( km_neutral > 0.0 ) THEN |
---|
914 | dudy = - wall_e_y(j,i) * usvs(k,j,i) / km_neutral |
---|
915 | dwdy = - wall_e_y(j,i) * wsvs(k,j,i) / km_neutral |
---|
916 | ELSE |
---|
917 | dudy = 0.0 |
---|
918 | dwdy = 0.0 |
---|
919 | ENDIF |
---|
920 | ELSE |
---|
921 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
922 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
923 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
924 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
925 | ENDIF |
---|
926 | |
---|
927 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
928 | ! |
---|
929 | !-- Inconsistency removed: as the thermal stratification |
---|
930 | !-- is not taken into account for the evaluation of the |
---|
931 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
932 | !-- must not be used for the evaluation of the velocity |
---|
933 | !-- gradients dvdx and dwdx |
---|
934 | !-- Note: The validity of the new method has not yet |
---|
935 | !-- been shown, as so far no suitable data for a |
---|
936 | !-- validation has been available |
---|
937 | km_neutral = kappa * ( vsus(k,j,i)**2 + & |
---|
938 | wsus(k,j,i)**2 )**0.25 * 0.5 * dx |
---|
939 | IF ( km_neutral > 0.0 ) THEN |
---|
940 | dvdx = - wall_e_x(j,i) * vsus(k,j,i) / km_neutral |
---|
941 | dwdx = - wall_e_x(j,i) * wsus(k,j,i) / km_neutral |
---|
942 | ELSE |
---|
943 | dvdx = 0.0 |
---|
944 | dwdx = 0.0 |
---|
945 | ENDIF |
---|
946 | ELSE |
---|
947 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
948 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
949 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
950 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
951 | ENDIF |
---|
952 | |
---|
953 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
954 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
955 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
956 | |
---|
957 | IF ( def < 0.0 ) def = 0.0 |
---|
958 | |
---|
959 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
960 | |
---|
961 | ENDIF |
---|
962 | |
---|
963 | ! |
---|
964 | !-- (4) - will allways be executed. |
---|
965 | !-- 'special case: free atmosphere' (as for case (0)) |
---|
966 | IF ( k == nzb_diff_s_outer(j,i)-1 ) THEN |
---|
967 | |
---|
968 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
969 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
970 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
971 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
972 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
973 | |
---|
974 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
975 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
976 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
977 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
978 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
979 | |
---|
980 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
981 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
982 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
983 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
984 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
985 | |
---|
986 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
987 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
988 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
989 | |
---|
990 | IF ( def < 0.0 ) def = 0.0 |
---|
991 | |
---|
992 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
993 | |
---|
994 | ENDIF |
---|
995 | |
---|
996 | ENDIF |
---|
997 | |
---|
998 | ENDDO |
---|
999 | ENDDO |
---|
1000 | ENDDO |
---|
1001 | |
---|
1002 | ! |
---|
1003 | !-- Position without adjacent wall |
---|
1004 | !-- (1) - will allways be executed. |
---|
1005 | !-- 'bottom only: use u_0,v_0' |
---|
1006 | !$acc loop |
---|
1007 | DO i = i_left, i_right |
---|
1008 | DO j = j_south, j_north |
---|
1009 | !$acc loop vector( 32 ) |
---|
1010 | DO k = 1, nzt |
---|
1011 | |
---|
1012 | IF ( ( wall_e_x(j,i) == 0.0 ) .AND. ( wall_e_y(j,i) == 0.0 ) ) & |
---|
1013 | THEN |
---|
1014 | |
---|
1015 | IF ( k == nzb_diff_s_inner(j,i)-1 ) THEN |
---|
1016 | |
---|
1017 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
1018 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
1019 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
1020 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
1021 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
1022 | |
---|
1023 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
1024 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
1025 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
1026 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
1027 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
1028 | |
---|
1029 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
1030 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
1031 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
1032 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
1033 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
1034 | |
---|
1035 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
1036 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
1037 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
1038 | |
---|
1039 | IF ( def < 0.0 ) def = 0.0 |
---|
1040 | |
---|
1041 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
1042 | |
---|
1043 | ENDIF |
---|
1044 | |
---|
1045 | ENDIF |
---|
1046 | |
---|
1047 | ENDDO |
---|
1048 | ENDDO |
---|
1049 | ENDDO |
---|
1050 | |
---|
1051 | ELSEIF ( use_surface_fluxes ) THEN |
---|
1052 | |
---|
1053 | !$acc loop |
---|
1054 | DO i = i_left, i_right |
---|
1055 | DO j = j_south, j_north |
---|
1056 | !$acc loop vector(32) |
---|
1057 | DO k = 1, nzt |
---|
1058 | |
---|
1059 | IF ( k == nzb_diff_s_outer(j,i)-1 ) THEN |
---|
1060 | |
---|
1061 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
1062 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
1063 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
1064 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
1065 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
1066 | |
---|
1067 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
1068 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
1069 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
1070 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
1071 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
1072 | |
---|
1073 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
1074 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
1075 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
1076 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
1077 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
1078 | |
---|
1079 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
1080 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
1081 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
1082 | |
---|
1083 | IF ( def < 0.0 ) def = 0.0 |
---|
1084 | |
---|
1085 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
1086 | |
---|
1087 | ENDIF |
---|
1088 | |
---|
1089 | ENDDO |
---|
1090 | ENDDO |
---|
1091 | ENDDO |
---|
1092 | |
---|
1093 | ENDIF |
---|
1094 | |
---|
1095 | ! |
---|
1096 | !-- If required, calculate TKE production by buoyancy |
---|
1097 | IF ( .NOT. neutral ) THEN |
---|
1098 | |
---|
1099 | IF ( .NOT. humidity ) THEN |
---|
1100 | |
---|
1101 | IF ( use_reference ) THEN |
---|
1102 | |
---|
1103 | IF ( ocean ) THEN |
---|
1104 | ! |
---|
1105 | !-- So far in the ocean no special treatment of density flux |
---|
1106 | !-- in the bottom and top surface layer |
---|
1107 | !$acc loop |
---|
1108 | DO i = i_left, i_right |
---|
1109 | DO j = j_south, j_north |
---|
1110 | !$acc loop vector( 32 ) |
---|
1111 | DO k = 1, nzt |
---|
1112 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
1113 | tend(k,j,i) = tend(k,j,i) + & |
---|
1114 | kh(k,j,i) * g / rho_reference * & |
---|
1115 | ( rho(k+1,j,i) - rho(k-1,j,i) ) * & |
---|
1116 | dd2zu(k) |
---|
1117 | ENDIF |
---|
1118 | ENDDO |
---|
1119 | ENDDO |
---|
1120 | ENDDO |
---|
1121 | |
---|
1122 | ELSE |
---|
1123 | |
---|
1124 | !$acc loop |
---|
1125 | DO i = i_left, i_right |
---|
1126 | DO j = j_south, j_north |
---|
1127 | !$acc loop vector( 32 ) |
---|
1128 | DO k = 1, nzt_diff |
---|
1129 | IF ( k >= nzb_diff_s_inner(j,i) ) THEN |
---|
1130 | tend(k,j,i) = tend(k,j,i) - & |
---|
1131 | kh(k,j,i) * g / pt_reference * & |
---|
1132 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * & |
---|
1133 | dd2zu(k) |
---|
1134 | ENDIF |
---|
1135 | |
---|
1136 | IF ( k == nzb_diff_s_inner(j,i)-1 .AND. & |
---|
1137 | use_surface_fluxes ) THEN |
---|
1138 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
1139 | shf(j,i) |
---|
1140 | ENDIF |
---|
1141 | |
---|
1142 | IF ( k == nzt .AND. use_top_fluxes ) THEN |
---|
1143 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
1144 | tswst(j,i) |
---|
1145 | ENDIF |
---|
1146 | ENDDO |
---|
1147 | ENDDO |
---|
1148 | ENDDO |
---|
1149 | |
---|
1150 | ENDIF |
---|
1151 | |
---|
1152 | ELSE |
---|
1153 | |
---|
1154 | IF ( ocean ) THEN |
---|
1155 | ! |
---|
1156 | !-- So far in the ocean no special treatment of density flux |
---|
1157 | !-- in the bottom and top surface layer |
---|
1158 | !$acc loop |
---|
1159 | DO i = i_left, i_right |
---|
1160 | DO j = j_south, j_north |
---|
1161 | !$acc loop vector( 32 ) |
---|
1162 | DO k = 1, nzt |
---|
1163 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
1164 | tend(k,j,i) = tend(k,j,i) + & |
---|
1165 | kh(k,j,i) * g / rho(k,j,i) * & |
---|
1166 | ( rho(k+1,j,i) - rho(k-1,j,i) ) * & |
---|
1167 | dd2zu(k) |
---|
1168 | ENDIF |
---|
1169 | ENDDO |
---|
1170 | ENDDO |
---|
1171 | ENDDO |
---|
1172 | |
---|
1173 | ELSE |
---|
1174 | |
---|
1175 | !$acc loop |
---|
1176 | DO i = i_left, i_right |
---|
1177 | DO j = j_south, j_north |
---|
1178 | !$acc loop vector( 32 ) |
---|
1179 | DO k = 1, nzt_diff |
---|
1180 | IF( k >= nzb_diff_s_inner(j,i) ) THEN |
---|
1181 | tend(k,j,i) = tend(k,j,i) - & |
---|
1182 | kh(k,j,i) * g / pt(k,j,i) * & |
---|
1183 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * & |
---|
1184 | dd2zu(k) |
---|
1185 | ENDIF |
---|
1186 | |
---|
1187 | IF ( k == nzb_diff_s_inner(j,i)-1 .AND. & |
---|
1188 | use_surface_fluxes ) THEN |
---|
1189 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * & |
---|
1190 | shf(j,i) |
---|
1191 | ENDIF |
---|
1192 | |
---|
1193 | IF ( k == nzt .AND. use_top_fluxes ) THEN |
---|
1194 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * & |
---|
1195 | tswst(j,i) |
---|
1196 | ENDIF |
---|
1197 | ENDDO |
---|
1198 | ENDDO |
---|
1199 | ENDDO |
---|
1200 | |
---|
1201 | ENDIF |
---|
1202 | |
---|
1203 | ENDIF |
---|
1204 | |
---|
1205 | ELSE |
---|
1206 | ! |
---|
1207 | !++ This part gives the PGI compiler problems in the previous loop |
---|
1208 | !++ even without any acc statements???? |
---|
1209 | ! STOP '+++ production_e problems with acc-directives' |
---|
1210 | ! !acc loop |
---|
1211 | ! DO i = nxl, nxr |
---|
1212 | ! DO j = nys, nyn |
---|
1213 | ! !acc loop vector( 32 ) |
---|
1214 | ! DO k = 1, nzt_diff |
---|
1215 | ! |
---|
1216 | ! IF ( k >= nzb_diff_s_inner(j,i) ) THEN |
---|
1217 | ! |
---|
1218 | ! IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
1219 | ! k1 = 1.0 + 0.61 * q(k,j,i) |
---|
1220 | ! k2 = 0.61 * pt(k,j,i) |
---|
1221 | ! tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * & |
---|
1222 | ! g / vpt(k,j,i) * & |
---|
1223 | ! ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
1224 | ! k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
1225 | ! ) * dd2zu(k) |
---|
1226 | ! ELSE IF ( cloud_physics ) THEN |
---|
1227 | ! IF ( ql(k,j,i) == 0.0 ) THEN |
---|
1228 | ! k1 = 1.0 + 0.61 * q(k,j,i) |
---|
1229 | ! k2 = 0.61 * pt(k,j,i) |
---|
1230 | ! ELSE |
---|
1231 | ! theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1232 | ! temp = theta * t_d_pt(k) |
---|
1233 | ! k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
1234 | ! ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1235 | ! ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
1236 | ! ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
1237 | ! ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1238 | ! k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
1239 | ! ENDIF |
---|
1240 | ! tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * & |
---|
1241 | ! g / vpt(k,j,i) * & |
---|
1242 | ! ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
1243 | ! k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
1244 | ! ) * dd2zu(k) |
---|
1245 | ! ELSE IF ( cloud_droplets ) THEN |
---|
1246 | ! k1 = 1.0 + 0.61 * q(k,j,i) - ql(k,j,i) |
---|
1247 | ! k2 = 0.61 * pt(k,j,i) |
---|
1248 | ! tend(k,j,i) = tend(k,j,i) - & |
---|
1249 | ! kh(k,j,i) * g / vpt(k,j,i) * & |
---|
1250 | ! ( k1 * ( pt(k+1,j,i)- pt(k-1,j,i) ) + & |
---|
1251 | ! k2 * ( q(k+1,j,i) - q(k-1,j,i) ) - & |
---|
1252 | ! pt(k,j,i) * ( ql(k+1,j,i) - & |
---|
1253 | ! ql(k-1,j,i) ) ) * dd2zu(k) |
---|
1254 | ! ENDIF |
---|
1255 | ! |
---|
1256 | ! ENDIF |
---|
1257 | ! |
---|
1258 | ! ENDDO |
---|
1259 | ! ENDDO |
---|
1260 | ! ENDDO |
---|
1261 | ! |
---|
1262 | |
---|
1263 | !!++ Next two loops are probably very inefficiently parallellized |
---|
1264 | !!++ and will require better optimization |
---|
1265 | ! IF ( use_surface_fluxes ) THEN |
---|
1266 | ! |
---|
1267 | ! !acc loop |
---|
1268 | ! DO i = nxl, nxr |
---|
1269 | ! DO j = nys, nyn |
---|
1270 | ! !acc loop vector( 32 ) |
---|
1271 | ! DO k = 1, nzt_diff |
---|
1272 | ! |
---|
1273 | ! IF ( k == nzb_diff_s_inner(j,i)-1 ) THEN |
---|
1274 | ! |
---|
1275 | ! IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
1276 | ! k1 = 1.0 + 0.61 * q(k,j,i) |
---|
1277 | ! k2 = 0.61 * pt(k,j,i) |
---|
1278 | ! ELSE IF ( cloud_physics ) THEN |
---|
1279 | ! IF ( ql(k,j,i) == 0.0 ) THEN |
---|
1280 | ! k1 = 1.0 + 0.61 * q(k,j,i) |
---|
1281 | ! k2 = 0.61 * pt(k,j,i) |
---|
1282 | ! ELSE |
---|
1283 | ! theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1284 | ! temp = theta * t_d_pt(k) |
---|
1285 | ! k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
1286 | ! ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1287 | ! ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
1288 | ! ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
1289 | ! ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1290 | ! k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
1291 | ! ENDIF |
---|
1292 | ! ELSE IF ( cloud_droplets ) THEN |
---|
1293 | ! k1 = 1.0 + 0.61 * q(k,j,i) - ql(k,j,i) |
---|
1294 | ! k2 = 0.61 * pt(k,j,i) |
---|
1295 | ! ENDIF |
---|
1296 | ! |
---|
1297 | ! tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
1298 | ! ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
1299 | ! ENDIF |
---|
1300 | ! |
---|
1301 | ! ENDDO |
---|
1302 | ! ENDDO |
---|
1303 | ! ENDDO |
---|
1304 | ! |
---|
1305 | ! ENDIF |
---|
1306 | ! |
---|
1307 | ! IF ( use_top_fluxes ) THEN |
---|
1308 | ! |
---|
1309 | ! !acc loop |
---|
1310 | ! DO i = nxl, nxr |
---|
1311 | ! DO j = nys, nyn |
---|
1312 | ! !acc loop vector( 32 ) |
---|
1313 | ! DO k = 1, nzt |
---|
1314 | ! IF ( k == nzt ) THEN |
---|
1315 | ! |
---|
1316 | ! IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
1317 | ! k1 = 1.0 + 0.61 * q(k,j,i) |
---|
1318 | ! k2 = 0.61 * pt(k,j,i) |
---|
1319 | ! ELSE IF ( cloud_physics ) THEN |
---|
1320 | ! IF ( ql(k,j,i) == 0.0 ) THEN |
---|
1321 | ! k1 = 1.0 + 0.61 * q(k,j,i) |
---|
1322 | ! k2 = 0.61 * pt(k,j,i) |
---|
1323 | ! ELSE |
---|
1324 | ! theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1325 | ! temp = theta * t_d_pt(k) |
---|
1326 | ! k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
1327 | ! ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1328 | ! ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
1329 | ! ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
1330 | ! ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1331 | ! k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
1332 | ! ENDIF |
---|
1333 | ! ELSE IF ( cloud_droplets ) THEN |
---|
1334 | ! k1 = 1.0 + 0.61 * q(k,j,i) - ql(k,j,i) |
---|
1335 | ! k2 = 0.61 * pt(k,j,i) |
---|
1336 | ! ENDIF |
---|
1337 | ! |
---|
1338 | ! tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
1339 | ! ( k1* tswst(j,i) + k2 * qswst(j,i) ) |
---|
1340 | ! |
---|
1341 | ! ENDIF |
---|
1342 | ! |
---|
1343 | ! ENDDO |
---|
1344 | ! ENDDO |
---|
1345 | ! ENDDO |
---|
1346 | ! |
---|
1347 | ! ENDIF |
---|
1348 | |
---|
1349 | ENDIF |
---|
1350 | |
---|
1351 | ENDIF |
---|
1352 | !$acc end kernels |
---|
1353 | |
---|
1354 | END SUBROUTINE production_e_acc |
---|
1355 | |
---|
1356 | |
---|
1357 | !------------------------------------------------------------------------------! |
---|
1358 | ! Call for grid point i,j |
---|
1359 | !------------------------------------------------------------------------------! |
---|
1360 | SUBROUTINE production_e_ij( i, j ) |
---|
1361 | |
---|
1362 | USE arrays_3d |
---|
1363 | USE cloud_parameters |
---|
1364 | USE control_parameters |
---|
1365 | USE grid_variables |
---|
1366 | USE indices |
---|
1367 | USE statistics |
---|
1368 | |
---|
1369 | IMPLICIT NONE |
---|
1370 | |
---|
1371 | INTEGER :: i, j, k |
---|
1372 | |
---|
1373 | REAL :: def, dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz, & |
---|
1374 | k1, k2, km_neutral, theta, temp |
---|
1375 | |
---|
1376 | REAL, DIMENSION(nzb:nzt+1) :: usvs, vsus, wsus, wsvs |
---|
1377 | |
---|
1378 | ! |
---|
1379 | !-- Calculate TKE production by shear |
---|
1380 | DO k = nzb_diff_s_outer(j,i), nzt |
---|
1381 | |
---|
1382 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
1383 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
1384 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
1385 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
1386 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
1387 | |
---|
1388 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
1389 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
1390 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
1391 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
1392 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
1393 | |
---|
1394 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
1395 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
1396 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
1397 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
1398 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
1399 | |
---|
1400 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) & |
---|
1401 | + dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + dvdz**2 & |
---|
1402 | + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
1403 | |
---|
1404 | IF ( def < 0.0 ) def = 0.0 |
---|
1405 | |
---|
1406 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
1407 | |
---|
1408 | ENDDO |
---|
1409 | |
---|
1410 | IF ( prandtl_layer ) THEN |
---|
1411 | |
---|
1412 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) THEN |
---|
1413 | |
---|
1414 | ! |
---|
1415 | !-- Position beneath wall |
---|
1416 | !-- (2) - Will allways be executed. |
---|
1417 | !-- 'bottom and wall: use u_0,v_0 and wall functions' |
---|
1418 | k = nzb_diff_s_inner(j,i)-1 |
---|
1419 | |
---|
1420 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
1421 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
1422 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
1423 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
1424 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
1425 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
1426 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
1427 | |
---|
1428 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
1429 | ! |
---|
1430 | !-- Inconsistency removed: as the thermal stratification |
---|
1431 | !-- is not taken into account for the evaluation of the |
---|
1432 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
1433 | !-- must not be used for the evaluation of the velocity |
---|
1434 | !-- gradients dudy and dwdy |
---|
1435 | !-- Note: The validity of the new method has not yet |
---|
1436 | !-- been shown, as so far no suitable data for a |
---|
1437 | !-- validation has been available |
---|
1438 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
1439 | usvs, 1.0, 0.0, 0.0, 0.0 ) |
---|
1440 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
1441 | wsvs, 0.0, 0.0, 1.0, 0.0 ) |
---|
1442 | km_neutral = kappa * ( usvs(k)**2 + wsvs(k)**2 )**0.25 * & |
---|
1443 | 0.5 * dy |
---|
1444 | IF ( km_neutral > 0.0 ) THEN |
---|
1445 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
1446 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
1447 | ELSE |
---|
1448 | dudy = 0.0 |
---|
1449 | dwdy = 0.0 |
---|
1450 | ENDIF |
---|
1451 | ELSE |
---|
1452 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
1453 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
1454 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
1455 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
1456 | ENDIF |
---|
1457 | |
---|
1458 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
1459 | ! |
---|
1460 | !-- Inconsistency removed: as the thermal stratification |
---|
1461 | !-- is not taken into account for the evaluation of the |
---|
1462 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
1463 | !-- must not be used for the evaluation of the velocity |
---|
1464 | !-- gradients dvdx and dwdx |
---|
1465 | !-- Note: The validity of the new method has not yet |
---|
1466 | !-- been shown, as so far no suitable data for a |
---|
1467 | !-- validation has been available |
---|
1468 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
1469 | vsus, 0.0, 1.0, 0.0, 0.0 ) |
---|
1470 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
1471 | wsus, 0.0, 0.0, 0.0, 1.0 ) |
---|
1472 | km_neutral = kappa * ( vsus(k)**2 + wsus(k)**2 )**0.25 * & |
---|
1473 | 0.5 * dx |
---|
1474 | IF ( km_neutral > 0.0 ) THEN |
---|
1475 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
1476 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
1477 | ELSE |
---|
1478 | dvdx = 0.0 |
---|
1479 | dwdx = 0.0 |
---|
1480 | ENDIF |
---|
1481 | ELSE |
---|
1482 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
1483 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
1484 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
1485 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
1486 | ENDIF |
---|
1487 | |
---|
1488 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
1489 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
1490 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
1491 | |
---|
1492 | IF ( def < 0.0 ) def = 0.0 |
---|
1493 | |
---|
1494 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
1495 | |
---|
1496 | ! |
---|
1497 | !-- (3) - will be executed only, if there is at least one level |
---|
1498 | !-- between (2) and (4), i.e. the topography must have a |
---|
1499 | !-- minimum height of 2 dz. Wall fluxes for this case have |
---|
1500 | !-- already been calculated for (2). |
---|
1501 | !-- 'wall only: use wall functions' |
---|
1502 | DO k = nzb_diff_s_inner(j,i), nzb_diff_s_outer(j,i)-2 |
---|
1503 | |
---|
1504 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
1505 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
1506 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
1507 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
1508 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
1509 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
1510 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
1511 | |
---|
1512 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
1513 | ! |
---|
1514 | !-- Inconsistency removed: as the thermal stratification |
---|
1515 | !-- is not taken into account for the evaluation of the |
---|
1516 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
1517 | !-- must not be used for the evaluation of the velocity |
---|
1518 | !-- gradients dudy and dwdy |
---|
1519 | !-- Note: The validity of the new method has not yet |
---|
1520 | !-- been shown, as so far no suitable data for a |
---|
1521 | !-- validation has been available |
---|
1522 | km_neutral = kappa * ( usvs(k)**2 + & |
---|
1523 | wsvs(k)**2 )**0.25 * 0.5 * dy |
---|
1524 | IF ( km_neutral > 0.0 ) THEN |
---|
1525 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
1526 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
1527 | ELSE |
---|
1528 | dudy = 0.0 |
---|
1529 | dwdy = 0.0 |
---|
1530 | ENDIF |
---|
1531 | ELSE |
---|
1532 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
1533 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
1534 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
1535 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
1536 | ENDIF |
---|
1537 | |
---|
1538 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
1539 | ! |
---|
1540 | !-- Inconsistency removed: as the thermal stratification |
---|
1541 | !-- is not taken into account for the evaluation of the |
---|
1542 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
1543 | !-- must not be used for the evaluation of the velocity |
---|
1544 | !-- gradients dvdx and dwdx |
---|
1545 | !-- Note: The validity of the new method has not yet |
---|
1546 | !-- been shown, as so far no suitable data for a |
---|
1547 | !-- validation has been available |
---|
1548 | km_neutral = kappa * ( vsus(k)**2 + & |
---|
1549 | wsus(k)**2 )**0.25 * 0.5 * dx |
---|
1550 | IF ( km_neutral > 0.0 ) THEN |
---|
1551 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
1552 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
1553 | ELSE |
---|
1554 | dvdx = 0.0 |
---|
1555 | dwdx = 0.0 |
---|
1556 | ENDIF |
---|
1557 | ELSE |
---|
1558 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
1559 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
1560 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
1561 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
1562 | ENDIF |
---|
1563 | |
---|
1564 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
1565 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
1566 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
1567 | |
---|
1568 | IF ( def < 0.0 ) def = 0.0 |
---|
1569 | |
---|
1570 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
1571 | |
---|
1572 | ENDDO |
---|
1573 | |
---|
1574 | ! |
---|
1575 | !-- (4) - will allways be executed. |
---|
1576 | !-- 'special case: free atmosphere' (as for case (0)) |
---|
1577 | k = nzb_diff_s_outer(j,i)-1 |
---|
1578 | |
---|
1579 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
1580 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
1581 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
1582 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
1583 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
1584 | |
---|
1585 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
1586 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
1587 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
1588 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
1589 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
1590 | |
---|
1591 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
1592 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
1593 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
1594 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
1595 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
1596 | |
---|
1597 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
1598 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
1599 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
1600 | |
---|
1601 | IF ( def < 0.0 ) def = 0.0 |
---|
1602 | |
---|
1603 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
1604 | |
---|
1605 | ELSE |
---|
1606 | |
---|
1607 | ! |
---|
1608 | !-- Position without adjacent wall |
---|
1609 | !-- (1) - will allways be executed. |
---|
1610 | !-- 'bottom only: use u_0,v_0' |
---|
1611 | k = nzb_diff_s_inner(j,i)-1 |
---|
1612 | |
---|
1613 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
1614 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
1615 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
1616 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
1617 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
1618 | |
---|
1619 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
1620 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
1621 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
1622 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
1623 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
1624 | |
---|
1625 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
1626 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
1627 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
1628 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
1629 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
1630 | |
---|
1631 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) & |
---|
1632 | + dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + dvdz**2 & |
---|
1633 | + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
1634 | |
---|
1635 | IF ( def < 0.0 ) def = 0.0 |
---|
1636 | |
---|
1637 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
1638 | |
---|
1639 | ENDIF |
---|
1640 | |
---|
1641 | ELSEIF ( use_surface_fluxes ) THEN |
---|
1642 | |
---|
1643 | k = nzb_diff_s_outer(j,i)-1 |
---|
1644 | |
---|
1645 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
1646 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
1647 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
1648 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
1649 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
1650 | |
---|
1651 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
1652 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
1653 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
1654 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
1655 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
1656 | |
---|
1657 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
1658 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
1659 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
1660 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
1661 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
1662 | |
---|
1663 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
1664 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
1665 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
1666 | |
---|
1667 | IF ( def < 0.0 ) def = 0.0 |
---|
1668 | |
---|
1669 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
1670 | |
---|
1671 | ENDIF |
---|
1672 | |
---|
1673 | ! |
---|
1674 | !-- If required, calculate TKE production by buoyancy |
---|
1675 | IF ( .NOT. neutral ) THEN |
---|
1676 | |
---|
1677 | IF ( .NOT. humidity ) THEN |
---|
1678 | |
---|
1679 | IF ( use_reference ) THEN |
---|
1680 | |
---|
1681 | IF ( ocean ) THEN |
---|
1682 | ! |
---|
1683 | !-- So far in the ocean no special treatment of density flux in |
---|
1684 | !-- the bottom and top surface layer |
---|
1685 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1686 | tend(k,j,i) = tend(k,j,i) + & |
---|
1687 | kh(k,j,i) * g / rho_reference * & |
---|
1688 | ( rho(k+1,j,i) - rho(k-1,j,i) ) * dd2zu(k) |
---|
1689 | ENDDO |
---|
1690 | |
---|
1691 | ELSE |
---|
1692 | |
---|
1693 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
1694 | tend(k,j,i) = tend(k,j,i) - & |
---|
1695 | kh(k,j,i) * g / pt_reference * & |
---|
1696 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
1697 | ENDDO |
---|
1698 | |
---|
1699 | IF ( use_surface_fluxes ) THEN |
---|
1700 | k = nzb_diff_s_inner(j,i)-1 |
---|
1701 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * shf(j,i) |
---|
1702 | ENDIF |
---|
1703 | |
---|
1704 | IF ( use_top_fluxes ) THEN |
---|
1705 | k = nzt |
---|
1706 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * tswst(j,i) |
---|
1707 | ENDIF |
---|
1708 | |
---|
1709 | ENDIF |
---|
1710 | |
---|
1711 | ELSE |
---|
1712 | |
---|
1713 | IF ( ocean ) THEN |
---|
1714 | ! |
---|
1715 | !-- So far in the ocean no special treatment of density flux in |
---|
1716 | !-- the bottom and top surface layer |
---|
1717 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1718 | tend(k,j,i) = tend(k,j,i) + & |
---|
1719 | kh(k,j,i) * g / rho(k,j,i) * & |
---|
1720 | ( rho(k+1,j,i) - rho(k-1,j,i) ) * dd2zu(k) |
---|
1721 | ENDDO |
---|
1722 | |
---|
1723 | ELSE |
---|
1724 | |
---|
1725 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
1726 | tend(k,j,i) = tend(k,j,i) - & |
---|
1727 | kh(k,j,i) * g / pt(k,j,i) * & |
---|
1728 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
1729 | ENDDO |
---|
1730 | |
---|
1731 | IF ( use_surface_fluxes ) THEN |
---|
1732 | k = nzb_diff_s_inner(j,i)-1 |
---|
1733 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * shf(j,i) |
---|
1734 | ENDIF |
---|
1735 | |
---|
1736 | IF ( use_top_fluxes ) THEN |
---|
1737 | k = nzt |
---|
1738 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * tswst(j,i) |
---|
1739 | ENDIF |
---|
1740 | |
---|
1741 | ENDIF |
---|
1742 | |
---|
1743 | ENDIF |
---|
1744 | |
---|
1745 | ELSE |
---|
1746 | |
---|
1747 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
1748 | |
---|
1749 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
1750 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
1751 | k2 = 0.61 * pt(k,j,i) |
---|
1752 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
1753 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
1754 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
1755 | ) * dd2zu(k) |
---|
1756 | ELSE IF ( cloud_physics ) THEN |
---|
1757 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
1758 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
1759 | k2 = 0.61 * pt(k,j,i) |
---|
1760 | ELSE |
---|
1761 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1762 | temp = theta * t_d_pt(k) |
---|
1763 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
1764 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1765 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
1766 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
1767 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1768 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
1769 | ENDIF |
---|
1770 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
1771 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
1772 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
1773 | ) * dd2zu(k) |
---|
1774 | ELSE IF ( cloud_droplets ) THEN |
---|
1775 | k1 = 1.0 + 0.61 * q(k,j,i) - ql(k,j,i) |
---|
1776 | k2 = 0.61 * pt(k,j,i) |
---|
1777 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
1778 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
1779 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) - & |
---|
1780 | pt(k,j,i) * ( ql(k+1,j,i) - & |
---|
1781 | ql(k-1,j,i) ) ) * dd2zu(k) |
---|
1782 | ENDIF |
---|
1783 | ENDDO |
---|
1784 | |
---|
1785 | IF ( use_surface_fluxes ) THEN |
---|
1786 | k = nzb_diff_s_inner(j,i)-1 |
---|
1787 | |
---|
1788 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
1789 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
1790 | k2 = 0.61 * pt(k,j,i) |
---|
1791 | ELSE IF ( cloud_physics ) THEN |
---|
1792 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
1793 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
1794 | k2 = 0.61 * pt(k,j,i) |
---|
1795 | ELSE |
---|
1796 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1797 | temp = theta * t_d_pt(k) |
---|
1798 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
1799 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1800 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
1801 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
1802 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1803 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
1804 | ENDIF |
---|
1805 | ELSE IF ( cloud_droplets ) THEN |
---|
1806 | k1 = 1.0 + 0.61 * q(k,j,i) - ql(k,j,i) |
---|
1807 | k2 = 0.61 * pt(k,j,i) |
---|
1808 | ENDIF |
---|
1809 | |
---|
1810 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
1811 | ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
1812 | ENDIF |
---|
1813 | |
---|
1814 | IF ( use_top_fluxes ) THEN |
---|
1815 | k = nzt |
---|
1816 | |
---|
1817 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
1818 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
1819 | k2 = 0.61 * pt(k,j,i) |
---|
1820 | ELSE IF ( cloud_physics ) THEN |
---|
1821 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
1822 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
1823 | k2 = 0.61 * pt(k,j,i) |
---|
1824 | ELSE |
---|
1825 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1826 | temp = theta * t_d_pt(k) |
---|
1827 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
1828 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1829 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
1830 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
1831 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1832 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
1833 | ENDIF |
---|
1834 | ELSE IF ( cloud_droplets ) THEN |
---|
1835 | k1 = 1.0 + 0.61 * q(k,j,i) - ql(k,j,i) |
---|
1836 | k2 = 0.61 * pt(k,j,i) |
---|
1837 | ENDIF |
---|
1838 | |
---|
1839 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
1840 | ( k1* tswst(j,i) + k2 * qswst(j,i) ) |
---|
1841 | ENDIF |
---|
1842 | |
---|
1843 | ENDIF |
---|
1844 | |
---|
1845 | ENDIF |
---|
1846 | |
---|
1847 | END SUBROUTINE production_e_ij |
---|
1848 | |
---|
1849 | |
---|
1850 | SUBROUTINE production_e_init |
---|
1851 | |
---|
1852 | USE arrays_3d |
---|
1853 | USE control_parameters |
---|
1854 | USE grid_variables |
---|
1855 | USE indices |
---|
1856 | |
---|
1857 | IMPLICIT NONE |
---|
1858 | |
---|
1859 | INTEGER :: i, j, ku, kv |
---|
1860 | |
---|
1861 | IF ( prandtl_layer ) THEN |
---|
1862 | |
---|
1863 | IF ( first_call ) THEN |
---|
1864 | ALLOCATE( u_0(nysg:nyng,nxlg:nxrg), v_0(nysg:nyng,nxlg:nxrg) ) |
---|
1865 | u_0 = 0.0 ! just to avoid access of uninitialized memory |
---|
1866 | v_0 = 0.0 ! within exchange_horiz_2d |
---|
1867 | first_call = .FALSE. |
---|
1868 | ENDIF |
---|
1869 | |
---|
1870 | ! |
---|
1871 | !-- Calculate a virtual velocity at the surface in a way that the |
---|
1872 | !-- vertical velocity gradient at k = 1 (u(k+1)-u_0) matches the |
---|
1873 | !-- Prandtl law (-w'u'/km). This gradient is used in the TKE shear |
---|
1874 | !-- production term at k=1 (see production_e_ij). |
---|
1875 | !-- The velocity gradient has to be limited in case of too small km |
---|
1876 | !-- (otherwise the timestep may be significantly reduced by large |
---|
1877 | !-- surface winds). |
---|
1878 | !-- Upper bounds are nxr+1 and nyn+1 because otherwise these values are |
---|
1879 | !-- not available in case of non-cyclic boundary conditions. |
---|
1880 | !-- WARNING: the exact analytical solution would require the determination |
---|
1881 | !-- of the eddy diffusivity by km = u* * kappa * zp / phi_m. |
---|
1882 | !$OMP PARALLEL DO PRIVATE( ku, kv ) |
---|
1883 | DO i = nxl, nxr+1 |
---|
1884 | DO j = nys, nyn+1 |
---|
1885 | |
---|
1886 | ku = nzb_u_inner(j,i)+1 |
---|
1887 | kv = nzb_v_inner(j,i)+1 |
---|
1888 | |
---|
1889 | u_0(j,i) = u(ku+1,j,i) + usws(j,i) * ( zu(ku+1) - zu(ku-1) ) / & |
---|
1890 | ( 0.5 * ( km(ku,j,i) + km(ku,j,i-1) ) + & |
---|
1891 | 1.0E-20 ) |
---|
1892 | ! ( us(j,i) * kappa * zu(1) ) |
---|
1893 | v_0(j,i) = v(kv+1,j,i) + vsws(j,i) * ( zu(kv+1) - zu(kv-1) ) / & |
---|
1894 | ( 0.5 * ( km(kv,j,i) + km(kv,j-1,i) ) + & |
---|
1895 | 1.0E-20 ) |
---|
1896 | ! ( us(j,i) * kappa * zu(1) ) |
---|
1897 | |
---|
1898 | IF ( ABS( u(ku+1,j,i) - u_0(j,i) ) > & |
---|
1899 | ABS( u(ku+1,j,i) - u(ku-1,j,i) ) ) u_0(j,i) = u(ku-1,j,i) |
---|
1900 | IF ( ABS( v(kv+1,j,i) - v_0(j,i) ) > & |
---|
1901 | ABS( v(kv+1,j,i) - v(kv-1,j,i) ) ) v_0(j,i) = v(kv-1,j,i) |
---|
1902 | |
---|
1903 | ENDDO |
---|
1904 | ENDDO |
---|
1905 | |
---|
1906 | CALL exchange_horiz_2d( u_0 ) |
---|
1907 | CALL exchange_horiz_2d( v_0 ) |
---|
1908 | |
---|
1909 | ENDIF |
---|
1910 | |
---|
1911 | END SUBROUTINE production_e_init |
---|
1912 | |
---|
1913 | END MODULE production_e_mod |
---|