1 | MODULE production_e_mod |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Current revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! Former revisions: |
---|
8 | ! ----------------- |
---|
9 | ! $Id: production_e.f90 668 2010-12-23 13:22:58Z suehring $ |
---|
10 | ! |
---|
11 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
12 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng |
---|
13 | ! |
---|
14 | ! 449 2010-02-02 11:23:59Z raasch |
---|
15 | ! test output from rev 410 removed |
---|
16 | ! |
---|
17 | ! 388 2009-09-23 09:40:33Z raasch |
---|
18 | ! Bugfix: wrong sign in buoyancy production of ocean part in case of not using |
---|
19 | ! the reference density (only in 3D routine production_e) |
---|
20 | ! Bugfix to avoid zero division by km_neutral |
---|
21 | ! |
---|
22 | ! 208 2008-10-20 06:02:59Z raasch |
---|
23 | ! Bugfix concerning the calculation of velocity gradients at vertical walls |
---|
24 | ! in case of diabatic conditions |
---|
25 | ! |
---|
26 | ! 187 2008-08-06 16:25:09Z letzel |
---|
27 | ! Change: add 'minus' sign to fluxes obtained from subroutine wall_fluxes_e for |
---|
28 | ! consistency with subroutine wall_fluxes |
---|
29 | ! |
---|
30 | ! 124 2007-10-19 15:47:46Z raasch |
---|
31 | ! Bugfix: calculation of density flux in the ocean now starts from nzb+1 |
---|
32 | ! |
---|
33 | ! 108 2007-08-24 15:10:38Z letzel |
---|
34 | ! Bugfix: wrong sign removed from the buoyancy production term in the case |
---|
35 | ! use_reference = .T., |
---|
36 | ! u_0 and v_0 are calculated for nxr+1, nyn+1 also (otherwise these values are |
---|
37 | ! not available in case of non-cyclic boundary conditions) |
---|
38 | ! Bugfix for ocean density flux at bottom |
---|
39 | ! |
---|
40 | ! 97 2007-06-21 08:23:15Z raasch |
---|
41 | ! Energy production by density flux (in ocean) added |
---|
42 | ! use_pt_reference renamed use_reference |
---|
43 | ! |
---|
44 | ! 75 2007-03-22 09:54:05Z raasch |
---|
45 | ! Wall functions now include diabatic conditions, call of routine wall_fluxes_e, |
---|
46 | ! reference temperature pt_reference can be used in buoyancy term, |
---|
47 | ! moisture renamed humidity |
---|
48 | ! |
---|
49 | ! 37 2007-03-01 08:33:54Z raasch |
---|
50 | ! Calculation extended for gridpoint nzt, extended for given temperature / |
---|
51 | ! humidity fluxes at the top, wall-part is now executed in case that a |
---|
52 | ! Prandtl-layer is switched on (instead of surfaces fluxes switched on) |
---|
53 | ! |
---|
54 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
55 | ! |
---|
56 | ! Revision 1.21 2006/04/26 12:45:35 raasch |
---|
57 | ! OpenMP parallelization of production_e_init |
---|
58 | ! |
---|
59 | ! Revision 1.1 1997/09/19 07:45:35 raasch |
---|
60 | ! Initial revision |
---|
61 | ! |
---|
62 | ! |
---|
63 | ! Description: |
---|
64 | ! ------------ |
---|
65 | ! Production terms (shear + buoyancy) of the TKE |
---|
66 | ! WARNING: the case with prandtl_layer = F and use_surface_fluxes = T is |
---|
67 | ! not considered well! |
---|
68 | !------------------------------------------------------------------------------! |
---|
69 | |
---|
70 | USE wall_fluxes_mod |
---|
71 | |
---|
72 | PRIVATE |
---|
73 | PUBLIC production_e, production_e_init |
---|
74 | |
---|
75 | LOGICAL, SAVE :: first_call = .TRUE. |
---|
76 | |
---|
77 | REAL, DIMENSION(:,:), ALLOCATABLE, SAVE :: u_0, v_0 |
---|
78 | |
---|
79 | INTERFACE production_e |
---|
80 | MODULE PROCEDURE production_e |
---|
81 | MODULE PROCEDURE production_e_ij |
---|
82 | END INTERFACE production_e |
---|
83 | |
---|
84 | INTERFACE production_e_init |
---|
85 | MODULE PROCEDURE production_e_init |
---|
86 | END INTERFACE production_e_init |
---|
87 | |
---|
88 | CONTAINS |
---|
89 | |
---|
90 | |
---|
91 | !------------------------------------------------------------------------------! |
---|
92 | ! Call for all grid points |
---|
93 | !------------------------------------------------------------------------------! |
---|
94 | SUBROUTINE production_e |
---|
95 | |
---|
96 | USE arrays_3d |
---|
97 | USE cloud_parameters |
---|
98 | USE control_parameters |
---|
99 | USE grid_variables |
---|
100 | USE indices |
---|
101 | USE statistics |
---|
102 | |
---|
103 | IMPLICIT NONE |
---|
104 | |
---|
105 | INTEGER :: i, j, k |
---|
106 | |
---|
107 | REAL :: def, dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz, & |
---|
108 | k1, k2, km_neutral, theta, temp |
---|
109 | |
---|
110 | ! REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: usvs, vsus, wsus, wsvs |
---|
111 | REAL, DIMENSION(nzb:nzt+1) :: usvs, vsus, wsus, wsvs |
---|
112 | |
---|
113 | ! |
---|
114 | !-- First calculate horizontal momentum flux u'v', w'v', v'u', w'u' at |
---|
115 | !-- vertical walls, if neccessary |
---|
116 | !-- So far, results are slightly different from the ij-Version. |
---|
117 | !-- Therefore, ij-Version is called further below within the ij-loops. |
---|
118 | ! IF ( topography /= 'flat' ) THEN |
---|
119 | ! CALL wall_fluxes_e( usvs, 1.0, 0.0, 0.0, 0.0, wall_e_y ) |
---|
120 | ! CALL wall_fluxes_e( wsvs, 0.0, 0.0, 1.0, 0.0, wall_e_y ) |
---|
121 | ! CALL wall_fluxes_e( vsus, 0.0, 1.0, 0.0, 0.0, wall_e_x ) |
---|
122 | ! CALL wall_fluxes_e( wsus, 0.0, 0.0, 0.0, 1.0, wall_e_x ) |
---|
123 | ! ENDIF |
---|
124 | |
---|
125 | ! |
---|
126 | !-- Calculate TKE production by shear |
---|
127 | DO i = nxl, nxr |
---|
128 | |
---|
129 | DO j = nys, nyn |
---|
130 | DO k = nzb_diff_s_outer(j,i), nzt |
---|
131 | |
---|
132 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
133 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
134 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
135 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
136 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
137 | |
---|
138 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
139 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
140 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
141 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
142 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
143 | |
---|
144 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
145 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
146 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
147 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
148 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
149 | |
---|
150 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
151 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
152 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
153 | |
---|
154 | IF ( def < 0.0 ) def = 0.0 |
---|
155 | |
---|
156 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
157 | |
---|
158 | ENDDO |
---|
159 | ENDDO |
---|
160 | |
---|
161 | IF ( prandtl_layer ) THEN |
---|
162 | |
---|
163 | ! |
---|
164 | !-- Position beneath wall |
---|
165 | !-- (2) - Will allways be executed. |
---|
166 | !-- 'bottom and wall: use u_0,v_0 and wall functions' |
---|
167 | DO j = nys, nyn |
---|
168 | |
---|
169 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) & |
---|
170 | THEN |
---|
171 | |
---|
172 | k = nzb_diff_s_inner(j,i) - 1 |
---|
173 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
174 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
175 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
176 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
177 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
178 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
179 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
180 | |
---|
181 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
182 | ! |
---|
183 | !-- Inconsistency removed: as the thermal stratification is |
---|
184 | !-- not taken into account for the evaluation of the wall |
---|
185 | !-- fluxes at vertical walls, the eddy viscosity km must not |
---|
186 | !-- be used for the evaluation of the velocity gradients dudy |
---|
187 | !-- and dwdy |
---|
188 | !-- Note: The validity of the new method has not yet been |
---|
189 | !-- shown, as so far no suitable data for a validation |
---|
190 | !-- has been available |
---|
191 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
192 | usvs, 1.0, 0.0, 0.0, 0.0 ) |
---|
193 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
194 | wsvs, 0.0, 0.0, 1.0, 0.0 ) |
---|
195 | km_neutral = kappa * ( usvs(k)**2 + wsvs(k)**2 )**0.25 * & |
---|
196 | 0.5 * dy |
---|
197 | IF ( km_neutral > 0.0 ) THEN |
---|
198 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
199 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
200 | ELSE |
---|
201 | dudy = 0.0 |
---|
202 | dwdy = 0.0 |
---|
203 | ENDIF |
---|
204 | ELSE |
---|
205 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
206 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
207 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
208 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
209 | ENDIF |
---|
210 | |
---|
211 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
212 | ! |
---|
213 | !-- Inconsistency removed: as the thermal stratification is |
---|
214 | !-- not taken into account for the evaluation of the wall |
---|
215 | !-- fluxes at vertical walls, the eddy viscosity km must not |
---|
216 | !-- be used for the evaluation of the velocity gradients dvdx |
---|
217 | !-- and dwdx |
---|
218 | !-- Note: The validity of the new method has not yet been |
---|
219 | !-- shown, as so far no suitable data for a validation |
---|
220 | !-- has been available |
---|
221 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
222 | vsus, 0.0, 1.0, 0.0, 0.0 ) |
---|
223 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
224 | wsus, 0.0, 0.0, 0.0, 1.0 ) |
---|
225 | km_neutral = kappa * ( vsus(k)**2 + wsus(k)**2 )**0.25 * & |
---|
226 | 0.5 * dx |
---|
227 | IF ( km_neutral > 0.0 ) THEN |
---|
228 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
229 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
230 | ELSE |
---|
231 | dvdx = 0.0 |
---|
232 | dwdx = 0.0 |
---|
233 | ENDIF |
---|
234 | ELSE |
---|
235 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
236 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
237 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
238 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
239 | ENDIF |
---|
240 | |
---|
241 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
242 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
243 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
244 | |
---|
245 | IF ( def < 0.0 ) def = 0.0 |
---|
246 | |
---|
247 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
248 | |
---|
249 | |
---|
250 | ! |
---|
251 | !-- (3) - will be executed only, if there is at least one level |
---|
252 | !-- between (2) and (4), i.e. the topography must have a |
---|
253 | !-- minimum height of 2 dz. Wall fluxes for this case have |
---|
254 | !-- already been calculated for (2). |
---|
255 | !-- 'wall only: use wall functions' |
---|
256 | |
---|
257 | DO k = nzb_diff_s_inner(j,i), nzb_diff_s_outer(j,i)-2 |
---|
258 | |
---|
259 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
260 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
261 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
262 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
263 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
264 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
265 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
266 | |
---|
267 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
268 | ! |
---|
269 | !-- Inconsistency removed: as the thermal stratification |
---|
270 | !-- is not taken into account for the evaluation of the |
---|
271 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
272 | !-- must not be used for the evaluation of the velocity |
---|
273 | !-- gradients dudy and dwdy |
---|
274 | !-- Note: The validity of the new method has not yet |
---|
275 | !-- been shown, as so far no suitable data for a |
---|
276 | !-- validation has been available |
---|
277 | km_neutral = kappa * ( usvs(k)**2 + & |
---|
278 | wsvs(k)**2 )**0.25 * 0.5 * dy |
---|
279 | IF ( km_neutral > 0.0 ) THEN |
---|
280 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
281 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
282 | ELSE |
---|
283 | dudy = 0.0 |
---|
284 | dwdy = 0.0 |
---|
285 | ENDIF |
---|
286 | ELSE |
---|
287 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
288 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
289 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
290 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
291 | ENDIF |
---|
292 | |
---|
293 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
294 | ! |
---|
295 | !-- Inconsistency removed: as the thermal stratification |
---|
296 | !-- is not taken into account for the evaluation of the |
---|
297 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
298 | !-- must not be used for the evaluation of the velocity |
---|
299 | !-- gradients dvdx and dwdx |
---|
300 | !-- Note: The validity of the new method has not yet |
---|
301 | !-- been shown, as so far no suitable data for a |
---|
302 | !-- validation has been available |
---|
303 | km_neutral = kappa * ( vsus(k)**2 + & |
---|
304 | wsus(k)**2 )**0.25 * 0.5 * dx |
---|
305 | IF ( km_neutral > 0.0 ) THEN |
---|
306 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
307 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
308 | ELSE |
---|
309 | dvdx = 0.0 |
---|
310 | dwdx = 0.0 |
---|
311 | ENDIF |
---|
312 | ELSE |
---|
313 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
314 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
315 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
316 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
317 | ENDIF |
---|
318 | |
---|
319 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
320 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
321 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
322 | |
---|
323 | IF ( def < 0.0 ) def = 0.0 |
---|
324 | |
---|
325 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
326 | |
---|
327 | ENDDO |
---|
328 | |
---|
329 | ENDIF |
---|
330 | |
---|
331 | ENDDO |
---|
332 | |
---|
333 | ! |
---|
334 | !-- (4) - will allways be executed. |
---|
335 | !-- 'special case: free atmosphere' (as for case (0)) |
---|
336 | DO j = nys, nyn |
---|
337 | |
---|
338 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) & |
---|
339 | THEN |
---|
340 | |
---|
341 | k = nzb_diff_s_outer(j,i)-1 |
---|
342 | |
---|
343 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
344 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
345 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
346 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
347 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
348 | |
---|
349 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
350 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
351 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
352 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
353 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
354 | |
---|
355 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
356 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
357 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
358 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
359 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
360 | |
---|
361 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
362 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
363 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
364 | |
---|
365 | IF ( def < 0.0 ) def = 0.0 |
---|
366 | |
---|
367 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
368 | |
---|
369 | ENDIF |
---|
370 | |
---|
371 | ENDDO |
---|
372 | |
---|
373 | ! |
---|
374 | !-- Position without adjacent wall |
---|
375 | !-- (1) - will allways be executed. |
---|
376 | !-- 'bottom only: use u_0,v_0' |
---|
377 | DO j = nys, nyn |
---|
378 | |
---|
379 | IF ( ( wall_e_x(j,i) == 0.0 ) .AND. ( wall_e_y(j,i) == 0.0 ) ) & |
---|
380 | THEN |
---|
381 | |
---|
382 | k = nzb_diff_s_inner(j,i)-1 |
---|
383 | |
---|
384 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
385 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
386 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
387 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
388 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
389 | |
---|
390 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
391 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
392 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
393 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
394 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
395 | |
---|
396 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
397 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
398 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
399 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
400 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
401 | |
---|
402 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
403 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
404 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
405 | |
---|
406 | IF ( def < 0.0 ) def = 0.0 |
---|
407 | |
---|
408 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
409 | |
---|
410 | ENDIF |
---|
411 | |
---|
412 | ENDDO |
---|
413 | |
---|
414 | ELSEIF ( use_surface_fluxes ) THEN |
---|
415 | |
---|
416 | DO j = nys, nyn |
---|
417 | |
---|
418 | k = nzb_diff_s_outer(j,i)-1 |
---|
419 | |
---|
420 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
421 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
422 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
423 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
424 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
425 | |
---|
426 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
427 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
428 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
429 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
430 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
431 | |
---|
432 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
433 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
434 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
435 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
436 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
437 | |
---|
438 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
439 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
440 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
441 | |
---|
442 | IF ( def < 0.0 ) def = 0.0 |
---|
443 | |
---|
444 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
445 | |
---|
446 | ENDDO |
---|
447 | |
---|
448 | ENDIF |
---|
449 | |
---|
450 | ! |
---|
451 | !-- Calculate TKE production by buoyancy |
---|
452 | IF ( .NOT. humidity ) THEN |
---|
453 | |
---|
454 | IF ( use_reference ) THEN |
---|
455 | |
---|
456 | IF ( ocean ) THEN |
---|
457 | ! |
---|
458 | !-- So far in the ocean no special treatment of density flux in |
---|
459 | !-- the bottom and top surface layer |
---|
460 | DO j = nys, nyn |
---|
461 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
462 | tend(k,j,i) = tend(k,j,i) + & |
---|
463 | kh(k,j,i) * g / rho_reference * & |
---|
464 | ( rho(k+1,j,i)-rho(k-1,j,i) ) * dd2zu(k) |
---|
465 | ENDDO |
---|
466 | ENDDO |
---|
467 | |
---|
468 | ELSE |
---|
469 | |
---|
470 | DO j = nys, nyn |
---|
471 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
472 | tend(k,j,i) = tend(k,j,i) - & |
---|
473 | kh(k,j,i) * g / pt_reference * & |
---|
474 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
475 | ENDDO |
---|
476 | |
---|
477 | IF ( use_surface_fluxes ) THEN |
---|
478 | k = nzb_diff_s_inner(j,i)-1 |
---|
479 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * shf(j,i) |
---|
480 | ENDIF |
---|
481 | |
---|
482 | IF ( use_top_fluxes ) THEN |
---|
483 | k = nzt |
---|
484 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
485 | tswst(j,i) |
---|
486 | ENDIF |
---|
487 | ENDDO |
---|
488 | |
---|
489 | ENDIF |
---|
490 | |
---|
491 | ELSE |
---|
492 | |
---|
493 | IF ( ocean ) THEN |
---|
494 | ! |
---|
495 | !-- So far in the ocean no special treatment of density flux in |
---|
496 | !-- the bottom and top surface layer |
---|
497 | DO j = nys, nyn |
---|
498 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
499 | tend(k,j,i) = tend(k,j,i) + & |
---|
500 | kh(k,j,i) * g / rho(k,j,i) * & |
---|
501 | ( rho(k+1,j,i)-rho(k-1,j,i) ) * dd2zu(k) |
---|
502 | ENDDO |
---|
503 | ENDDO |
---|
504 | |
---|
505 | ELSE |
---|
506 | |
---|
507 | DO j = nys, nyn |
---|
508 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
509 | tend(k,j,i) = tend(k,j,i) - & |
---|
510 | kh(k,j,i) * g / pt(k,j,i) * & |
---|
511 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
512 | ENDDO |
---|
513 | |
---|
514 | IF ( use_surface_fluxes ) THEN |
---|
515 | k = nzb_diff_s_inner(j,i)-1 |
---|
516 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * shf(j,i) |
---|
517 | ENDIF |
---|
518 | |
---|
519 | IF ( use_top_fluxes ) THEN |
---|
520 | k = nzt |
---|
521 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * tswst(j,i) |
---|
522 | ENDIF |
---|
523 | ENDDO |
---|
524 | |
---|
525 | ENDIF |
---|
526 | |
---|
527 | ENDIF |
---|
528 | |
---|
529 | ELSE |
---|
530 | |
---|
531 | DO j = nys, nyn |
---|
532 | |
---|
533 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
534 | |
---|
535 | IF ( .NOT. cloud_physics ) THEN |
---|
536 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
537 | k2 = 0.61 * pt(k,j,i) |
---|
538 | ELSE |
---|
539 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
540 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
541 | k2 = 0.61 * pt(k,j,i) |
---|
542 | ELSE |
---|
543 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
544 | temp = theta * t_d_pt(k) |
---|
545 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
546 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
547 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
548 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
549 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
550 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
551 | ENDIF |
---|
552 | ENDIF |
---|
553 | |
---|
554 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
555 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
556 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
557 | ) * dd2zu(k) |
---|
558 | ENDDO |
---|
559 | |
---|
560 | ENDDO |
---|
561 | |
---|
562 | IF ( use_surface_fluxes ) THEN |
---|
563 | |
---|
564 | DO j = nys, nyn |
---|
565 | |
---|
566 | k = nzb_diff_s_inner(j,i)-1 |
---|
567 | |
---|
568 | IF ( .NOT. cloud_physics ) THEN |
---|
569 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
570 | k2 = 0.61 * pt(k,j,i) |
---|
571 | ELSE |
---|
572 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
573 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
574 | k2 = 0.61 * pt(k,j,i) |
---|
575 | ELSE |
---|
576 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
577 | temp = theta * t_d_pt(k) |
---|
578 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
579 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
580 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
581 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
582 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
583 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
584 | ENDIF |
---|
585 | ENDIF |
---|
586 | |
---|
587 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
588 | ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
589 | ENDDO |
---|
590 | |
---|
591 | ENDIF |
---|
592 | |
---|
593 | IF ( use_top_fluxes ) THEN |
---|
594 | |
---|
595 | DO j = nys, nyn |
---|
596 | |
---|
597 | k = nzt |
---|
598 | |
---|
599 | IF ( .NOT. cloud_physics ) THEN |
---|
600 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
601 | k2 = 0.61 * pt(k,j,i) |
---|
602 | ELSE |
---|
603 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
604 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
605 | k2 = 0.61 * pt(k,j,i) |
---|
606 | ELSE |
---|
607 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
608 | temp = theta * t_d_pt(k) |
---|
609 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
610 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
611 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
612 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
613 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
614 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
615 | ENDIF |
---|
616 | ENDIF |
---|
617 | |
---|
618 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
619 | ( k1* tswst(j,i) + k2 * qswst(j,i) ) |
---|
620 | ENDDO |
---|
621 | |
---|
622 | ENDIF |
---|
623 | |
---|
624 | ENDIF |
---|
625 | |
---|
626 | ENDDO |
---|
627 | |
---|
628 | END SUBROUTINE production_e |
---|
629 | |
---|
630 | |
---|
631 | !------------------------------------------------------------------------------! |
---|
632 | ! Call for grid point i,j |
---|
633 | !------------------------------------------------------------------------------! |
---|
634 | SUBROUTINE production_e_ij( i, j ) |
---|
635 | |
---|
636 | USE arrays_3d |
---|
637 | USE cloud_parameters |
---|
638 | USE control_parameters |
---|
639 | USE grid_variables |
---|
640 | USE indices |
---|
641 | USE statistics |
---|
642 | |
---|
643 | IMPLICIT NONE |
---|
644 | |
---|
645 | INTEGER :: i, j, k |
---|
646 | |
---|
647 | REAL :: def, dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz, & |
---|
648 | k1, k2, km_neutral, theta, temp |
---|
649 | |
---|
650 | REAL, DIMENSION(nzb:nzt+1) :: usvs, vsus, wsus, wsvs |
---|
651 | |
---|
652 | ! |
---|
653 | !-- Calculate TKE production by shear |
---|
654 | DO k = nzb_diff_s_outer(j,i), nzt |
---|
655 | |
---|
656 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
657 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
658 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
659 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
660 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
661 | |
---|
662 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
663 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
664 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
665 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
666 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
667 | |
---|
668 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
669 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
670 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
671 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
672 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
673 | |
---|
674 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) & |
---|
675 | + dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + dvdz**2 & |
---|
676 | + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
677 | |
---|
678 | IF ( def < 0.0 ) def = 0.0 |
---|
679 | |
---|
680 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
681 | |
---|
682 | ENDDO |
---|
683 | |
---|
684 | IF ( prandtl_layer ) THEN |
---|
685 | |
---|
686 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) THEN |
---|
687 | |
---|
688 | ! |
---|
689 | !-- Position beneath wall |
---|
690 | !-- (2) - Will allways be executed. |
---|
691 | !-- 'bottom and wall: use u_0,v_0 and wall functions' |
---|
692 | k = nzb_diff_s_inner(j,i)-1 |
---|
693 | |
---|
694 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
695 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
696 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
697 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
698 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
699 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
700 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
701 | |
---|
702 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
703 | ! |
---|
704 | !-- Inconsistency removed: as the thermal stratification |
---|
705 | !-- is not taken into account for the evaluation of the |
---|
706 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
707 | !-- must not be used for the evaluation of the velocity |
---|
708 | !-- gradients dudy and dwdy |
---|
709 | !-- Note: The validity of the new method has not yet |
---|
710 | !-- been shown, as so far no suitable data for a |
---|
711 | !-- validation has been available |
---|
712 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
713 | usvs, 1.0, 0.0, 0.0, 0.0 ) |
---|
714 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
715 | wsvs, 0.0, 0.0, 1.0, 0.0 ) |
---|
716 | km_neutral = kappa * ( usvs(k)**2 + wsvs(k)**2 )**0.25 * & |
---|
717 | 0.5 * dy |
---|
718 | IF ( km_neutral > 0.0 ) THEN |
---|
719 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
720 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
721 | ELSE |
---|
722 | dudy = 0.0 |
---|
723 | dwdy = 0.0 |
---|
724 | ENDIF |
---|
725 | ELSE |
---|
726 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
727 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
728 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
729 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
730 | ENDIF |
---|
731 | |
---|
732 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
733 | ! |
---|
734 | !-- Inconsistency removed: as the thermal stratification |
---|
735 | !-- is not taken into account for the evaluation of the |
---|
736 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
737 | !-- must not be used for the evaluation of the velocity |
---|
738 | !-- gradients dvdx and dwdx |
---|
739 | !-- Note: The validity of the new method has not yet |
---|
740 | !-- been shown, as so far no suitable data for a |
---|
741 | !-- validation has been available |
---|
742 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
743 | vsus, 0.0, 1.0, 0.0, 0.0 ) |
---|
744 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
745 | wsus, 0.0, 0.0, 0.0, 1.0 ) |
---|
746 | km_neutral = kappa * ( vsus(k)**2 + wsus(k)**2 )**0.25 * & |
---|
747 | 0.5 * dx |
---|
748 | IF ( km_neutral > 0.0 ) THEN |
---|
749 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
750 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
751 | ELSE |
---|
752 | dvdx = 0.0 |
---|
753 | dwdx = 0.0 |
---|
754 | ENDIF |
---|
755 | ELSE |
---|
756 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
757 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
758 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
759 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
760 | ENDIF |
---|
761 | |
---|
762 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
763 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
764 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
765 | |
---|
766 | IF ( def < 0.0 ) def = 0.0 |
---|
767 | |
---|
768 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
769 | |
---|
770 | ! |
---|
771 | !-- (3) - will be executed only, if there is at least one level |
---|
772 | !-- between (2) and (4), i.e. the topography must have a |
---|
773 | !-- minimum height of 2 dz. Wall fluxes for this case have |
---|
774 | !-- already been calculated for (2). |
---|
775 | !-- 'wall only: use wall functions' |
---|
776 | DO k = nzb_diff_s_inner(j,i), nzb_diff_s_outer(j,i)-2 |
---|
777 | |
---|
778 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
779 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
780 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
781 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
782 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
783 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
784 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
785 | |
---|
786 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
787 | ! |
---|
788 | !-- Inconsistency removed: as the thermal stratification |
---|
789 | !-- is not taken into account for the evaluation of the |
---|
790 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
791 | !-- must not be used for the evaluation of the velocity |
---|
792 | !-- gradients dudy and dwdy |
---|
793 | !-- Note: The validity of the new method has not yet |
---|
794 | !-- been shown, as so far no suitable data for a |
---|
795 | !-- validation has been available |
---|
796 | km_neutral = kappa * ( usvs(k)**2 + & |
---|
797 | wsvs(k)**2 )**0.25 * 0.5 * dy |
---|
798 | IF ( km_neutral > 0.0 ) THEN |
---|
799 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
800 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
801 | ELSE |
---|
802 | dudy = 0.0 |
---|
803 | dwdy = 0.0 |
---|
804 | ENDIF |
---|
805 | ELSE |
---|
806 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
807 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
808 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
809 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
810 | ENDIF |
---|
811 | |
---|
812 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
813 | ! |
---|
814 | !-- Inconsistency removed: as the thermal stratification |
---|
815 | !-- is not taken into account for the evaluation of the |
---|
816 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
817 | !-- must not be used for the evaluation of the velocity |
---|
818 | !-- gradients dvdx and dwdx |
---|
819 | !-- Note: The validity of the new method has not yet |
---|
820 | !-- been shown, as so far no suitable data for a |
---|
821 | !-- validation has been available |
---|
822 | km_neutral = kappa * ( vsus(k)**2 + & |
---|
823 | wsus(k)**2 )**0.25 * 0.5 * dx |
---|
824 | IF ( km_neutral > 0.0 ) THEN |
---|
825 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
826 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
827 | ELSE |
---|
828 | dvdx = 0.0 |
---|
829 | dwdx = 0.0 |
---|
830 | ENDIF |
---|
831 | ELSE |
---|
832 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
833 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
834 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
835 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
836 | ENDIF |
---|
837 | |
---|
838 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
839 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
840 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
841 | |
---|
842 | IF ( def < 0.0 ) def = 0.0 |
---|
843 | |
---|
844 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
845 | |
---|
846 | ENDDO |
---|
847 | |
---|
848 | ! |
---|
849 | !-- (4) - will allways be executed. |
---|
850 | !-- 'special case: free atmosphere' (as for case (0)) |
---|
851 | k = nzb_diff_s_outer(j,i)-1 |
---|
852 | |
---|
853 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
854 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
855 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
856 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
857 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
858 | |
---|
859 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
860 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
861 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
862 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
863 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
864 | |
---|
865 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
866 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
867 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
868 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
869 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
870 | |
---|
871 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
872 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
873 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
874 | |
---|
875 | IF ( def < 0.0 ) def = 0.0 |
---|
876 | |
---|
877 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
878 | |
---|
879 | ELSE |
---|
880 | |
---|
881 | ! |
---|
882 | !-- Position without adjacent wall |
---|
883 | !-- (1) - will allways be executed. |
---|
884 | !-- 'bottom only: use u_0,v_0' |
---|
885 | k = nzb_diff_s_inner(j,i)-1 |
---|
886 | |
---|
887 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
888 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
889 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
890 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
891 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
892 | |
---|
893 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
894 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
895 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
896 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
897 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
898 | |
---|
899 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
900 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
901 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
902 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
903 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
904 | |
---|
905 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) & |
---|
906 | + dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + dvdz**2 & |
---|
907 | + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
908 | |
---|
909 | IF ( def < 0.0 ) def = 0.0 |
---|
910 | |
---|
911 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
912 | |
---|
913 | ENDIF |
---|
914 | |
---|
915 | ELSEIF ( use_surface_fluxes ) THEN |
---|
916 | |
---|
917 | k = nzb_diff_s_outer(j,i)-1 |
---|
918 | |
---|
919 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
920 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
921 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
922 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
923 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
924 | |
---|
925 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
926 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
927 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
928 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
929 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
930 | |
---|
931 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
932 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
933 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
934 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
935 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
936 | |
---|
937 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
938 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
939 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
940 | |
---|
941 | IF ( def < 0.0 ) def = 0.0 |
---|
942 | |
---|
943 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
944 | |
---|
945 | ENDIF |
---|
946 | |
---|
947 | ! |
---|
948 | !-- Calculate TKE production by buoyancy |
---|
949 | IF ( .NOT. humidity ) THEN |
---|
950 | |
---|
951 | IF ( use_reference ) THEN |
---|
952 | |
---|
953 | IF ( ocean ) THEN |
---|
954 | ! |
---|
955 | !-- So far in the ocean no special treatment of density flux in the |
---|
956 | !-- bottom and top surface layer |
---|
957 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
958 | tend(k,j,i) = tend(k,j,i) + kh(k,j,i) * g / rho_reference * & |
---|
959 | ( rho(k+1,j,i) - rho(k-1,j,i) ) * dd2zu(k) |
---|
960 | ENDDO |
---|
961 | |
---|
962 | ELSE |
---|
963 | |
---|
964 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
965 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / pt_reference * & |
---|
966 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
967 | ENDDO |
---|
968 | |
---|
969 | IF ( use_surface_fluxes ) THEN |
---|
970 | k = nzb_diff_s_inner(j,i)-1 |
---|
971 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * shf(j,i) |
---|
972 | ENDIF |
---|
973 | |
---|
974 | IF ( use_top_fluxes ) THEN |
---|
975 | k = nzt |
---|
976 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * tswst(j,i) |
---|
977 | ENDIF |
---|
978 | |
---|
979 | ENDIF |
---|
980 | |
---|
981 | ELSE |
---|
982 | |
---|
983 | IF ( ocean ) THEN |
---|
984 | ! |
---|
985 | !-- So far in the ocean no special treatment of density flux in the |
---|
986 | !-- bottom and top surface layer |
---|
987 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
988 | tend(k,j,i) = tend(k,j,i) + kh(k,j,i) * g / rho(k,j,i) * & |
---|
989 | ( rho(k+1,j,i) - rho(k-1,j,i) ) * dd2zu(k) |
---|
990 | ENDDO |
---|
991 | |
---|
992 | ELSE |
---|
993 | |
---|
994 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
995 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / pt(k,j,i) * & |
---|
996 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
997 | ENDDO |
---|
998 | |
---|
999 | IF ( use_surface_fluxes ) THEN |
---|
1000 | k = nzb_diff_s_inner(j,i)-1 |
---|
1001 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * shf(j,i) |
---|
1002 | ENDIF |
---|
1003 | |
---|
1004 | IF ( use_top_fluxes ) THEN |
---|
1005 | k = nzt |
---|
1006 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * tswst(j,i) |
---|
1007 | ENDIF |
---|
1008 | |
---|
1009 | ENDIF |
---|
1010 | |
---|
1011 | ENDIF |
---|
1012 | |
---|
1013 | ELSE |
---|
1014 | |
---|
1015 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
1016 | |
---|
1017 | IF ( .NOT. cloud_physics ) THEN |
---|
1018 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
1019 | k2 = 0.61 * pt(k,j,i) |
---|
1020 | ELSE |
---|
1021 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
1022 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
1023 | k2 = 0.61 * pt(k,j,i) |
---|
1024 | ELSE |
---|
1025 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1026 | temp = theta * t_d_pt(k) |
---|
1027 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
1028 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1029 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
1030 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
1031 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1032 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
1033 | ENDIF |
---|
1034 | ENDIF |
---|
1035 | |
---|
1036 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
1037 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
1038 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
1039 | ) * dd2zu(k) |
---|
1040 | ENDDO |
---|
1041 | |
---|
1042 | IF ( use_surface_fluxes ) THEN |
---|
1043 | k = nzb_diff_s_inner(j,i)-1 |
---|
1044 | |
---|
1045 | IF ( .NOT. cloud_physics ) THEN |
---|
1046 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
1047 | k2 = 0.61 * pt(k,j,i) |
---|
1048 | ELSE |
---|
1049 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
1050 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
1051 | k2 = 0.61 * pt(k,j,i) |
---|
1052 | ELSE |
---|
1053 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1054 | temp = theta * t_d_pt(k) |
---|
1055 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
1056 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1057 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
1058 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
1059 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1060 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
1061 | ENDIF |
---|
1062 | ENDIF |
---|
1063 | |
---|
1064 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
1065 | ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
1066 | ENDIF |
---|
1067 | |
---|
1068 | IF ( use_top_fluxes ) THEN |
---|
1069 | k = nzt |
---|
1070 | |
---|
1071 | IF ( .NOT. cloud_physics ) THEN |
---|
1072 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
1073 | k2 = 0.61 * pt(k,j,i) |
---|
1074 | ELSE |
---|
1075 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
1076 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
1077 | k2 = 0.61 * pt(k,j,i) |
---|
1078 | ELSE |
---|
1079 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1080 | temp = theta * t_d_pt(k) |
---|
1081 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
1082 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1083 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
1084 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
1085 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1086 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
1087 | ENDIF |
---|
1088 | ENDIF |
---|
1089 | |
---|
1090 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
1091 | ( k1* tswst(j,i) + k2 * qswst(j,i) ) |
---|
1092 | ENDIF |
---|
1093 | |
---|
1094 | ENDIF |
---|
1095 | |
---|
1096 | END SUBROUTINE production_e_ij |
---|
1097 | |
---|
1098 | |
---|
1099 | SUBROUTINE production_e_init |
---|
1100 | |
---|
1101 | USE arrays_3d |
---|
1102 | USE control_parameters |
---|
1103 | USE grid_variables |
---|
1104 | USE indices |
---|
1105 | |
---|
1106 | IMPLICIT NONE |
---|
1107 | |
---|
1108 | INTEGER :: i, j, ku, kv |
---|
1109 | |
---|
1110 | IF ( prandtl_layer ) THEN |
---|
1111 | |
---|
1112 | IF ( first_call ) THEN |
---|
1113 | ALLOCATE( u_0(nysg:nyng,nxlg:nxrg), & |
---|
1114 | v_0(nysg:nyng,nxlg:nxrg) ) |
---|
1115 | first_call = .FALSE. |
---|
1116 | ENDIF |
---|
1117 | |
---|
1118 | ! |
---|
1119 | !-- Calculate a virtual velocity at the surface in a way that the |
---|
1120 | !-- vertical velocity gradient at k = 1 (u(k+1)-u_0) matches the |
---|
1121 | !-- Prandtl law (-w'u'/km). This gradient is used in the TKE shear |
---|
1122 | !-- production term at k=1 (see production_e_ij). |
---|
1123 | !-- The velocity gradient has to be limited in case of too small km |
---|
1124 | !-- (otherwise the timestep may be significantly reduced by large |
---|
1125 | !-- surface winds). |
---|
1126 | !-- Upper bounds are nxr+1 and nyn+1 because otherwise these values are |
---|
1127 | !-- not available in case of non-cyclic boundary conditions. |
---|
1128 | !-- WARNING: the exact analytical solution would require the determination |
---|
1129 | !-- of the eddy diffusivity by km = u* * kappa * zp / phi_m. |
---|
1130 | !$OMP PARALLEL DO PRIVATE( ku, kv ) |
---|
1131 | DO i = nxl, nxr+1 |
---|
1132 | DO j = nys, nyn+1 |
---|
1133 | |
---|
1134 | ku = nzb_u_inner(j,i)+1 |
---|
1135 | kv = nzb_v_inner(j,i)+1 |
---|
1136 | |
---|
1137 | u_0(j,i) = u(ku+1,j,i) + usws(j,i) * ( zu(ku+1) - zu(ku-1) ) / & |
---|
1138 | ( 0.5 * ( km(ku,j,i) + km(ku,j,i-1) ) + & |
---|
1139 | 1.0E-20 ) |
---|
1140 | ! ( us(j,i) * kappa * zu(1) ) |
---|
1141 | v_0(j,i) = v(kv+1,j,i) + vsws(j,i) * ( zu(kv+1) - zu(kv-1) ) / & |
---|
1142 | ( 0.5 * ( km(kv,j,i) + km(kv,j-1,i) ) + & |
---|
1143 | 1.0E-20 ) |
---|
1144 | ! ( us(j,i) * kappa * zu(1) ) |
---|
1145 | |
---|
1146 | IF ( ABS( u(ku+1,j,i) - u_0(j,i) ) > & |
---|
1147 | ABS( u(ku+1,j,i) - u(ku-1,j,i) ) ) u_0(j,i) = u(ku-1,j,i) |
---|
1148 | IF ( ABS( v(kv+1,j,i) - v_0(j,i) ) > & |
---|
1149 | ABS( v(kv+1,j,i) - v(kv-1,j,i) ) ) v_0(j,i) = v(kv-1,j,i) |
---|
1150 | |
---|
1151 | ENDDO |
---|
1152 | ENDDO |
---|
1153 | |
---|
1154 | CALL exchange_horiz_2d( u_0 ) |
---|
1155 | CALL exchange_horiz_2d( v_0 ) |
---|
1156 | |
---|
1157 | ENDIF |
---|
1158 | |
---|
1159 | END SUBROUTINE production_e_init |
---|
1160 | |
---|
1161 | END MODULE production_e_mod |
---|