1 | !> @file production_e.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: production_e.f90 2233 2017-05-30 18:08:54Z witha $ |
---|
27 | ! |
---|
28 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
29 | ! Adjustments to new surface concept |
---|
30 | ! |
---|
31 | ! 2126 2017-01-20 15:54:21Z raasch |
---|
32 | ! density in ocean case replaced by potential density |
---|
33 | ! |
---|
34 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
35 | ! OpenACC version of subroutine removed |
---|
36 | ! |
---|
37 | ! 2031 2016-10-21 15:11:58Z knoop |
---|
38 | ! renamed variable rho to rho_ocean |
---|
39 | ! |
---|
40 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
41 | ! Forced header and separation lines into 80 columns |
---|
42 | ! |
---|
43 | ! 1873 2016-04-18 14:50:06Z maronga |
---|
44 | ! Module renamed (removed _mod) |
---|
45 | ! |
---|
46 | ! |
---|
47 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
48 | ! Module renamed |
---|
49 | ! |
---|
50 | ! |
---|
51 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
52 | ! Renamed prandtl_layer to constant_flux_layer. |
---|
53 | ! |
---|
54 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
55 | ! Code annotations made doxygen readable |
---|
56 | ! |
---|
57 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
58 | ! nzb_s_outer removed from acc-present-list |
---|
59 | ! |
---|
60 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
61 | ! REAL constants provided with KIND-attribute |
---|
62 | ! |
---|
63 | ! 1342 2014-03-26 17:04:47Z kanani |
---|
64 | ! REAL constants defined as wp-kind |
---|
65 | ! |
---|
66 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
67 | ! ONLY-attribute added to USE-statements, |
---|
68 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
69 | ! kinds are defined in new module kinds, |
---|
70 | ! old module precision_kind is removed, |
---|
71 | ! revision history before 2012 removed, |
---|
72 | ! comment fields (!:) to be used for variable explanations added to |
---|
73 | ! all variable declaration statements |
---|
74 | ! |
---|
75 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
76 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
77 | ! the FORTRAN declaration statement |
---|
78 | ! |
---|
79 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
80 | ! use_reference renamed use_single_reference_value |
---|
81 | ! |
---|
82 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
83 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
84 | ! j_north |
---|
85 | ! |
---|
86 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
87 | ! code put under GPL (PALM 3.9) |
---|
88 | ! |
---|
89 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
90 | ! accelerator version (*_acc) added |
---|
91 | ! |
---|
92 | ! 1007 2012-09-19 14:30:36Z franke |
---|
93 | ! Bugfix: calculation of buoyancy production has to consider the liquid water |
---|
94 | ! mixing ratio in case of cloud droplets |
---|
95 | ! |
---|
96 | ! 940 2012-07-09 14:31:00Z raasch |
---|
97 | ! TKE production by buoyancy can be switched off in case of runs with pure |
---|
98 | ! neutral stratification |
---|
99 | ! |
---|
100 | ! Revision 1.1 1997/09/19 07:45:35 raasch |
---|
101 | ! Initial revision |
---|
102 | ! |
---|
103 | ! |
---|
104 | ! Description: |
---|
105 | ! ------------ |
---|
106 | !> Production terms (shear + buoyancy) of the TKE. |
---|
107 | !> @warning The case with constant_flux_layer = F and use_surface_fluxes = T is |
---|
108 | !> not considered well! |
---|
109 | !------------------------------------------------------------------------------! |
---|
110 | MODULE production_e_mod |
---|
111 | |
---|
112 | USE kinds |
---|
113 | |
---|
114 | PRIVATE |
---|
115 | PUBLIC production_e, production_e_init |
---|
116 | |
---|
117 | INTERFACE production_e |
---|
118 | MODULE PROCEDURE production_e |
---|
119 | MODULE PROCEDURE production_e_ij |
---|
120 | END INTERFACE production_e |
---|
121 | |
---|
122 | INTERFACE production_e_init |
---|
123 | MODULE PROCEDURE production_e_init |
---|
124 | END INTERFACE production_e_init |
---|
125 | |
---|
126 | CONTAINS |
---|
127 | |
---|
128 | |
---|
129 | !------------------------------------------------------------------------------! |
---|
130 | ! Description: |
---|
131 | ! ------------ |
---|
132 | !> Call for all grid points |
---|
133 | !------------------------------------------------------------------------------! |
---|
134 | SUBROUTINE production_e |
---|
135 | |
---|
136 | USE arrays_3d, & |
---|
137 | ONLY: ddzw, dd2zu, kh, km, prho, pt, q, ql, tend, u, v, vpt, w |
---|
138 | |
---|
139 | USE cloud_parameters, & |
---|
140 | ONLY: l_d_cp, l_d_r, pt_d_t, t_d_pt |
---|
141 | |
---|
142 | USE control_parameters, & |
---|
143 | ONLY: cloud_droplets, cloud_physics, constant_flux_layer, g, & |
---|
144 | humidity, kappa, neutral, ocean, pt_reference, & |
---|
145 | rho_reference, use_single_reference_value, & |
---|
146 | use_surface_fluxes, use_top_fluxes |
---|
147 | |
---|
148 | USE grid_variables, & |
---|
149 | ONLY: ddx, dx, ddy, dy |
---|
150 | |
---|
151 | USE indices, & |
---|
152 | ONLY: nxl, nxr, nys, nyn, nzb, nzt, wall_flags_0 |
---|
153 | |
---|
154 | USE surface_mod, & |
---|
155 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
156 | surf_usm_v |
---|
157 | |
---|
158 | IMPLICIT NONE |
---|
159 | |
---|
160 | INTEGER(iwp) :: i !< running index x-direction |
---|
161 | INTEGER(iwp) :: j !< running index y-direction |
---|
162 | INTEGER(iwp) :: k !< running index z-direction |
---|
163 | INTEGER(iwp) :: l !< running index for different surface type orientation |
---|
164 | INTEGER(iwp) :: m !< running index surface elements |
---|
165 | INTEGER(iwp) :: surf_e !< end index of surface elements at given i-j position |
---|
166 | INTEGER(iwp) :: surf_s !< start index of surface elements at given i-j position |
---|
167 | |
---|
168 | REAL(wp) :: def !< |
---|
169 | REAL(wp) :: flag !< flag to mask topography |
---|
170 | REAL(wp) :: k1 !< |
---|
171 | REAL(wp) :: k2 !< |
---|
172 | REAL(wp) :: km_neutral !< diffusion coefficient assuming neutral conditions - used to compute shear production at surfaces |
---|
173 | REAL(wp) :: theta !< |
---|
174 | REAL(wp) :: temp !< |
---|
175 | REAL(wp) :: sign_dir !< sign of wall-tke flux, depending on wall orientation |
---|
176 | REAL(wp) :: usvs !< momentum flux u"v" |
---|
177 | REAL(wp) :: vsus !< momentum flux v"u" |
---|
178 | REAL(wp) :: wsus !< momentum flux w"u" |
---|
179 | REAL(wp) :: wsvs !< momentum flux w"v" |
---|
180 | |
---|
181 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: dudx !< Gradient of u-component in x-direction |
---|
182 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: dudy !< Gradient of u-component in y-direction |
---|
183 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: dudz !< Gradient of u-component in z-direction |
---|
184 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: dvdx !< Gradient of v-component in x-direction |
---|
185 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: dvdy !< Gradient of v-component in y-direction |
---|
186 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: dvdz !< Gradient of v-component in z-direction |
---|
187 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: dwdx !< Gradient of w-component in x-direction |
---|
188 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: dwdy !< Gradient of w-component in y-direction |
---|
189 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: dwdz !< Gradient of w-component in z-direction |
---|
190 | |
---|
191 | DO i = nxl, nxr |
---|
192 | |
---|
193 | IF ( constant_flux_layer ) THEN |
---|
194 | |
---|
195 | ! |
---|
196 | !-- Calculate TKE production by shear. Calculate gradients at all grid |
---|
197 | !-- points first, gradients at surface-bounded grid points will be |
---|
198 | !-- overwritten further below. |
---|
199 | DO j = nys, nyn |
---|
200 | DO k = nzb+1, nzt |
---|
201 | |
---|
202 | dudx(k,j) = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
203 | dudy(k,j) = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
204 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
205 | dudz(k,j) = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
206 | u(k-1,j,i) - u(k-1,j,i+1) ) * & |
---|
207 | dd2zu(k) |
---|
208 | |
---|
209 | dvdx(k,j) = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
210 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
211 | dvdy(k,j) = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
212 | dvdz(k,j) = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
213 | v(k-1,j,i) - v(k-1,j+1,i) ) * & |
---|
214 | dd2zu(k) |
---|
215 | |
---|
216 | dwdx(k,j) = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
217 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
218 | dwdy(k,j) = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
219 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
220 | dwdz(k,j) = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
221 | |
---|
222 | ENDDO |
---|
223 | ENDDO |
---|
224 | |
---|
225 | ! |
---|
226 | !-- Position beneath wall |
---|
227 | !-- (2) - Will allways be executed. |
---|
228 | !-- 'bottom and wall: use u_0,v_0 and wall functions' |
---|
229 | DO j = nys, nyn |
---|
230 | ! |
---|
231 | !-- Compute gradients at north- and south-facing surfaces. |
---|
232 | !-- First, for default surfaces, then for urban surfaces. |
---|
233 | !-- Note, so far no natural vertical surfaces implemented |
---|
234 | DO l = 0, 1 |
---|
235 | surf_s = surf_def_v(l)%start_index(j,i) |
---|
236 | surf_e = surf_def_v(l)%end_index(j,i) |
---|
237 | DO m = surf_s, surf_e |
---|
238 | k = surf_def_v(l)%k(m) |
---|
239 | usvs = surf_def_v(l)%mom_flux_tke(0,m) |
---|
240 | wsvs = surf_def_v(l)%mom_flux_tke(1,m) |
---|
241 | |
---|
242 | km_neutral = kappa * ( usvs**2 + wsvs**2 )**0.25_wp & |
---|
243 | * 0.5_wp * dy |
---|
244 | ! |
---|
245 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
246 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
247 | BTEST( wall_flags_0(k,j-1,i), 0 ) ) |
---|
248 | dudy(k,j) = sign_dir * usvs / ( km_neutral + 1E-10_wp ) |
---|
249 | dwdy(k,j) = sign_dir * wsvs / ( km_neutral + 1E-10_wp ) |
---|
250 | ENDDO |
---|
251 | ! |
---|
252 | !-- Natural surfaces |
---|
253 | surf_s = surf_lsm_v(l)%start_index(j,i) |
---|
254 | surf_e = surf_lsm_v(l)%end_index(j,i) |
---|
255 | DO m = surf_s, surf_e |
---|
256 | k = surf_lsm_v(l)%k(m) |
---|
257 | usvs = surf_lsm_v(l)%mom_flux_tke(0,m) |
---|
258 | wsvs = surf_lsm_v(l)%mom_flux_tke(1,m) |
---|
259 | |
---|
260 | km_neutral = kappa * ( usvs**2 + wsvs**2 )**0.25_wp & |
---|
261 | * 0.5_wp * dy |
---|
262 | ! |
---|
263 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
264 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
265 | BTEST( wall_flags_0(k,j-1,i), 0 ) ) |
---|
266 | dudy(k,j) = sign_dir * usvs / ( km_neutral + 1E-10_wp ) |
---|
267 | dwdy(k,j) = sign_dir * wsvs / ( km_neutral + 1E-10_wp ) |
---|
268 | ENDDO |
---|
269 | ! |
---|
270 | !-- Urban surfaces |
---|
271 | surf_s = surf_usm_v(l)%start_index(j,i) |
---|
272 | surf_e = surf_usm_v(l)%end_index(j,i) |
---|
273 | DO m = surf_s, surf_e |
---|
274 | k = surf_usm_v(l)%k(m) |
---|
275 | usvs = surf_usm_v(l)%mom_flux_tke(0,m) |
---|
276 | wsvs = surf_usm_v(l)%mom_flux_tke(1,m) |
---|
277 | |
---|
278 | km_neutral = kappa * ( usvs**2 + wsvs**2 )**0.25_wp & |
---|
279 | * 0.5_wp * dy |
---|
280 | ! |
---|
281 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
282 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
283 | BTEST( wall_flags_0(k,j-1,i), 0 ) ) |
---|
284 | dudy(k,j) = sign_dir * usvs / ( km_neutral + 1E-10_wp ) |
---|
285 | dwdy(k,j) = sign_dir * wsvs / ( km_neutral + 1E-10_wp ) |
---|
286 | ENDDO |
---|
287 | ENDDO |
---|
288 | ! |
---|
289 | !-- Compute gradients at east- and west-facing walls |
---|
290 | DO l = 2, 3 |
---|
291 | surf_s = surf_def_v(l)%start_index(j,i) |
---|
292 | surf_e = surf_def_v(l)%end_index(j,i) |
---|
293 | DO m = surf_s, surf_e |
---|
294 | k = surf_def_v(l)%k(m) |
---|
295 | vsus = surf_def_v(l)%mom_flux_tke(0,m) |
---|
296 | wsus = surf_def_v(l)%mom_flux_tke(1,m) |
---|
297 | |
---|
298 | km_neutral = kappa * ( vsus**2 + wsus**2 )**0.25_wp & |
---|
299 | * 0.5_wp * dx |
---|
300 | ! |
---|
301 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
302 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
303 | BTEST( wall_flags_0(k,j,i-1), 0 ) ) |
---|
304 | dvdx(k,j) = sign_dir * vsus / ( km_neutral + 1E-10_wp ) |
---|
305 | dwdx(k,j) = sign_dir * wsus / ( km_neutral + 1E-10_wp ) |
---|
306 | ENDDO |
---|
307 | ! |
---|
308 | !-- Natural surfaces |
---|
309 | surf_s = surf_lsm_v(l)%start_index(j,i) |
---|
310 | surf_e = surf_lsm_v(l)%end_index(j,i) |
---|
311 | DO m = surf_s, surf_e |
---|
312 | k = surf_lsm_v(l)%k(m) |
---|
313 | vsus = surf_lsm_v(l)%mom_flux_tke(0,m) |
---|
314 | wsus = surf_lsm_v(l)%mom_flux_tke(1,m) |
---|
315 | |
---|
316 | km_neutral = kappa * ( vsus**2 + wsus**2 )**0.25_wp & |
---|
317 | * 0.5_wp * dx |
---|
318 | ! |
---|
319 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
320 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
321 | BTEST( wall_flags_0(k,j,i-1), 0 ) ) |
---|
322 | dvdx(k,j) = sign_dir * vsus / ( km_neutral + 1E-10_wp ) |
---|
323 | dwdx(k,j) = sign_dir * wsus / ( km_neutral + 1E-10_wp ) |
---|
324 | ENDDO |
---|
325 | ! |
---|
326 | !-- Urban surfaces |
---|
327 | surf_s = surf_usm_v(l)%start_index(j,i) |
---|
328 | surf_e = surf_usm_v(l)%end_index(j,i) |
---|
329 | DO m = surf_s, surf_e |
---|
330 | k = surf_usm_v(l)%k(m) |
---|
331 | vsus = surf_usm_v(l)%mom_flux_tke(0,m) |
---|
332 | wsus = surf_usm_v(l)%mom_flux_tke(1,m) |
---|
333 | |
---|
334 | km_neutral = kappa * ( vsus**2 + wsus**2 )**0.25_wp & |
---|
335 | * 0.5_wp * dx |
---|
336 | ! |
---|
337 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
338 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
339 | BTEST( wall_flags_0(k,j,i-1), 0 ) ) |
---|
340 | dvdx(k,j) = sign_dir * vsus / ( km_neutral + 1E-10_wp ) |
---|
341 | dwdx(k,j) = sign_dir * wsus / ( km_neutral + 1E-10_wp ) |
---|
342 | ENDDO |
---|
343 | ENDDO |
---|
344 | ! |
---|
345 | !-- Compute gradients at upward-facing surfaces |
---|
346 | surf_s = surf_def_h(0)%start_index(j,i) |
---|
347 | surf_e = surf_def_h(0)%end_index(j,i) |
---|
348 | DO m = surf_s, surf_e |
---|
349 | k = surf_def_h(0)%k(m) |
---|
350 | ! |
---|
351 | !-- Please note, actually, an interpolation of u_0 and v_0 |
---|
352 | !-- onto the grid center would be required. However, this |
---|
353 | !-- would require several data transfers between 2D-grid and |
---|
354 | !-- wall type. The effect of this missing interpolation is |
---|
355 | !-- negligible. (See also production_e_init). |
---|
356 | dudz(k,j) = ( u(k+1,j,i) - surf_def_h(0)%u_0(m) ) * dd2zu(k) |
---|
357 | dvdz(k,j) = ( v(k+1,j,i) - surf_def_h(0)%v_0(m) ) * dd2zu(k) |
---|
358 | |
---|
359 | ENDDO |
---|
360 | ! |
---|
361 | !-- Natural surfaces |
---|
362 | surf_s = surf_lsm_h%start_index(j,i) |
---|
363 | surf_e = surf_lsm_h%end_index(j,i) |
---|
364 | DO m = surf_s, surf_e |
---|
365 | k = surf_lsm_h%k(m) |
---|
366 | ! |
---|
367 | !-- Please note, actually, an interpolation of u_0 and v_0 |
---|
368 | !-- onto the grid center would be required. However, this |
---|
369 | !-- would require several data transfers between 2D-grid and |
---|
370 | !-- wall type. The effect of this missing interpolation is |
---|
371 | !-- negligible. (See also production_e_init). |
---|
372 | dudz(k,j) = ( u(k+1,j,i) - surf_lsm_h%u_0(m) ) * dd2zu(k) |
---|
373 | dvdz(k,j) = ( v(k+1,j,i) - surf_lsm_h%v_0(m) ) * dd2zu(k) |
---|
374 | |
---|
375 | ENDDO |
---|
376 | ! |
---|
377 | !-- Urban surfaces |
---|
378 | surf_s = surf_usm_h%start_index(j,i) |
---|
379 | surf_e = surf_usm_h%end_index(j,i) |
---|
380 | DO m = surf_s, surf_e |
---|
381 | k = surf_usm_h%k(m) |
---|
382 | ! |
---|
383 | !-- Please note, actually, an interpolation of u_0 and v_0 |
---|
384 | !-- onto the grid center would be required. However, this |
---|
385 | !-- would require several data transfers between 2D-grid and |
---|
386 | !-- wall type. The effect of this missing interpolation is |
---|
387 | !-- negligible. (See also production_e_init). |
---|
388 | dudz(k,j) = ( u(k+1,j,i) - surf_usm_h%u_0(m) ) * dd2zu(k) |
---|
389 | dvdz(k,j) = ( v(k+1,j,i) - surf_usm_h%v_0(m) ) * dd2zu(k) |
---|
390 | |
---|
391 | ENDDO |
---|
392 | ! |
---|
393 | !-- Compute gradients at downward-facing walls, only for |
---|
394 | !-- non-natural default surfaces |
---|
395 | surf_s = surf_def_h(1)%start_index(j,i) |
---|
396 | surf_e = surf_def_h(1)%end_index(j,i) |
---|
397 | DO m = surf_s, surf_e |
---|
398 | k = surf_def_h(1)%k(m) |
---|
399 | ! |
---|
400 | !-- Please note, actually, an interpolation of u_0 and v_0 |
---|
401 | !-- onto the grid center would be required. However, this |
---|
402 | !-- would require several data transfers between 2D-grid and |
---|
403 | !-- wall type. The effect of this missing interpolation is |
---|
404 | !-- negligible. (See also production_e_init). |
---|
405 | dudz(k,j) = ( surf_def_h(1)%u_0(m) - u(k-1,j,i) ) * dd2zu(k) |
---|
406 | dvdz(k,j) = ( surf_def_h(1)%v_0(m) - v(k-1,j,i) ) * dd2zu(k) |
---|
407 | |
---|
408 | ENDDO |
---|
409 | |
---|
410 | ENDDO |
---|
411 | |
---|
412 | DO j = nys, nyn |
---|
413 | DO k = nzb+1, nzt |
---|
414 | |
---|
415 | def = 2.0_wp * ( dudx(k,j)**2 + dvdy(k,j)**2 + dwdz(k,j)**2 ) + & |
---|
416 | dudy(k,j)**2 + dvdx(k,j)**2 + dwdx(k,j)**2 + & |
---|
417 | dwdy(k,j)**2 + dudz(k,j)**2 + dvdz(k,j)**2 + & |
---|
418 | 2.0_wp * ( dvdx(k,j)*dudy(k,j) + dwdx(k,j)*dudz(k,j) + & |
---|
419 | dwdy(k,j)*dvdz(k,j) ) |
---|
420 | |
---|
421 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
422 | |
---|
423 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
424 | |
---|
425 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def * flag |
---|
426 | |
---|
427 | ENDDO |
---|
428 | ENDDO |
---|
429 | |
---|
430 | ELSEIF ( use_surface_fluxes ) THEN |
---|
431 | |
---|
432 | DO j = nys, nyn |
---|
433 | ! |
---|
434 | !-- Calculate TKE production by shear. Here, no additional |
---|
435 | !-- wall-bounded code is considered. |
---|
436 | !-- Why? |
---|
437 | DO k = nzb+1, nzt |
---|
438 | |
---|
439 | dudx(k,j) = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
440 | dudy(k,j) = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
441 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
442 | dudz(k,j) = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
443 | u(k-1,j,i) - u(k-1,j,i+1) ) * & |
---|
444 | dd2zu(k) |
---|
445 | |
---|
446 | dvdx(k,j) = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
447 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
448 | dvdy(k,j) = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
449 | dvdz(k,j) = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
450 | v(k-1,j,i) - v(k-1,j+1,i) ) * & |
---|
451 | dd2zu(k) |
---|
452 | |
---|
453 | dwdx(k,j) = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
454 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
455 | dwdy(k,j) = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
456 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
457 | dwdz(k,j) = ( w(k,j,i) - w(k-1,j,i) ) * & |
---|
458 | ddzw(k) |
---|
459 | |
---|
460 | def = 2.0_wp * ( & |
---|
461 | dudx(k,j)**2 + dvdy(k,j)**2 + dwdz(k,j)**2 & |
---|
462 | ) + & |
---|
463 | dudy(k,j)**2 + dvdx(k,j)**2 + dwdx(k,j)**2 + & |
---|
464 | dwdy(k,j)**2 + dudz(k,j)**2 + dvdz(k,j)**2 + & |
---|
465 | 2.0_wp * ( & |
---|
466 | dvdx(k,j)*dudy(k,j) + dwdx(k,j)*dudz(k,j) + & |
---|
467 | dwdy(k,j)*dvdz(k,j) & |
---|
468 | ) |
---|
469 | |
---|
470 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
471 | |
---|
472 | flag = MERGE( 1.0_wp, 0.0_wp, & |
---|
473 | BTEST( wall_flags_0(k,j,i), 29 ) ) |
---|
474 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def * flag |
---|
475 | |
---|
476 | ENDDO |
---|
477 | ENDDO |
---|
478 | |
---|
479 | ENDIF |
---|
480 | |
---|
481 | ! |
---|
482 | !-- If required, calculate TKE production by buoyancy |
---|
483 | IF ( .NOT. neutral ) THEN |
---|
484 | |
---|
485 | IF ( .NOT. humidity ) THEN |
---|
486 | |
---|
487 | IF ( use_single_reference_value ) THEN |
---|
488 | |
---|
489 | IF ( ocean ) THEN |
---|
490 | ! |
---|
491 | !-- So far in the ocean no special treatment of density flux |
---|
492 | !-- in the bottom and top surface layer |
---|
493 | DO j = nys, nyn |
---|
494 | DO k = nzb+1, nzt |
---|
495 | tend(k,j,i) = tend(k,j,i) + & |
---|
496 | kh(k,j,i) * g / rho_reference * & |
---|
497 | ( prho(k+1,j,i) - prho(k-1,j,i) ) * & |
---|
498 | dd2zu(k) * & |
---|
499 | MERGE( 1.0_wp, 0.0_wp, & |
---|
500 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
501 | ) |
---|
502 | ENDDO |
---|
503 | ENDDO |
---|
504 | |
---|
505 | ELSE |
---|
506 | |
---|
507 | DO j = nys, nyn |
---|
508 | DO k = nzb+1, nzt |
---|
509 | ! |
---|
510 | !-- Flag 9 is used to mask top fluxes, flag 30 to mask |
---|
511 | !-- surface fluxes |
---|
512 | tend(k,j,i) = tend(k,j,i) - & |
---|
513 | kh(k,j,i) * g / pt_reference * & |
---|
514 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * & |
---|
515 | dd2zu(k) * & |
---|
516 | MERGE( 1.0_wp, 0.0_wp, & |
---|
517 | BTEST( wall_flags_0(k,j,i), 30 ) & |
---|
518 | ) * & |
---|
519 | MERGE( 1.0_wp, 0.0_wp, & |
---|
520 | BTEST( wall_flags_0(k,j,i), 9 ) & |
---|
521 | ) |
---|
522 | ENDDO |
---|
523 | |
---|
524 | IF ( use_surface_fluxes ) THEN |
---|
525 | ! |
---|
526 | !-- Default surfaces, up- and downward-facing |
---|
527 | DO l = 0, 1 |
---|
528 | surf_s = surf_def_h(l)%start_index(j,i) |
---|
529 | surf_e = surf_def_h(l)%end_index(j,i) |
---|
530 | DO m = surf_s, surf_e |
---|
531 | k = surf_def_h(l)%k(m) |
---|
532 | tend(k,j,i) = tend(k,j,i) + g / pt_reference & |
---|
533 | * surf_def_h(l)%shf(m) |
---|
534 | ENDDO |
---|
535 | ENDDO |
---|
536 | ! |
---|
537 | !-- Natural surfaces |
---|
538 | surf_s = surf_lsm_h%start_index(j,i) |
---|
539 | surf_e = surf_lsm_h%end_index(j,i) |
---|
540 | DO m = surf_s, surf_e |
---|
541 | k = surf_lsm_h%k(m) |
---|
542 | tend(k,j,i) = tend(k,j,i) + g / pt_reference & |
---|
543 | * surf_lsm_h%shf(m) |
---|
544 | ENDDO |
---|
545 | ! |
---|
546 | !-- Urban surfaces |
---|
547 | surf_s = surf_usm_h%start_index(j,i) |
---|
548 | surf_e = surf_usm_h%end_index(j,i) |
---|
549 | DO m = surf_s, surf_e |
---|
550 | k = surf_usm_h%k(m) |
---|
551 | tend(k,j,i) = tend(k,j,i) + g / pt_reference & |
---|
552 | * surf_usm_h%shf(m) |
---|
553 | ENDDO |
---|
554 | ENDIF |
---|
555 | |
---|
556 | IF ( use_top_fluxes ) THEN |
---|
557 | surf_s = surf_def_h(2)%start_index(j,i) |
---|
558 | surf_e = surf_def_h(2)%end_index(j,i) |
---|
559 | DO m = surf_s, surf_e |
---|
560 | k = surf_def_h(2)%k(m) |
---|
561 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
562 | surf_def_h(2)%shf(m) |
---|
563 | ENDDO |
---|
564 | ENDIF |
---|
565 | ENDDO |
---|
566 | |
---|
567 | ENDIF |
---|
568 | |
---|
569 | ELSE |
---|
570 | |
---|
571 | IF ( ocean ) THEN |
---|
572 | ! |
---|
573 | !-- So far in the ocean no special treatment of density flux |
---|
574 | !-- in the bottom and top surface layer |
---|
575 | DO j = nys, nyn |
---|
576 | DO k = nzb+1, nzt |
---|
577 | tend(k,j,i) = tend(k,j,i) + & |
---|
578 | kh(k,j,i) * g / prho(k,j,i) * & |
---|
579 | ( prho(k+1,j,i) - prho(k-1,j,i) ) * & |
---|
580 | dd2zu(k) * & |
---|
581 | MERGE( 1.0_wp, 0.0_wp, & |
---|
582 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
583 | ) |
---|
584 | ENDDO |
---|
585 | ENDDO |
---|
586 | |
---|
587 | ELSE |
---|
588 | |
---|
589 | DO j = nys, nyn |
---|
590 | DO k = nzb+1, nzt |
---|
591 | ! |
---|
592 | !-- Flag 9 is used to mask top fluxes, flag 30 to mask |
---|
593 | !-- surface fluxes |
---|
594 | tend(k,j,i) = tend(k,j,i) - & |
---|
595 | kh(k,j,i) * g / pt(k,j,i) * & |
---|
596 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * & |
---|
597 | dd2zu(k) * & |
---|
598 | MERGE( 1.0_wp, 0.0_wp, & |
---|
599 | BTEST( wall_flags_0(k,j,i), 30 ) & |
---|
600 | ) * & |
---|
601 | MERGE( 1.0_wp, 0.0_wp, & |
---|
602 | BTEST( wall_flags_0(k,j,i), 9 ) & |
---|
603 | ) |
---|
604 | ENDDO |
---|
605 | |
---|
606 | IF ( use_surface_fluxes ) THEN |
---|
607 | ! |
---|
608 | !-- Default surfaces, up- and downwrd-facing |
---|
609 | DO l = 0, 1 |
---|
610 | surf_s = surf_def_h(l)%start_index(j,i) |
---|
611 | surf_e = surf_def_h(l)%end_index(j,i) |
---|
612 | DO m = surf_s, surf_e |
---|
613 | k = surf_def_h(l)%k(m) |
---|
614 | tend(k,j,i) = tend(k,j,i) + g / pt_reference & |
---|
615 | * surf_def_h(l)%shf(m) |
---|
616 | ENDDO |
---|
617 | ENDDO |
---|
618 | ! |
---|
619 | !-- Natural surfaces |
---|
620 | surf_s = surf_lsm_h%start_index(j,i) |
---|
621 | surf_e = surf_lsm_h%end_index(j,i) |
---|
622 | DO m = surf_s, surf_e |
---|
623 | k = surf_lsm_h%k(m) |
---|
624 | tend(k,j,i) = tend(k,j,i) + g / pt_reference & |
---|
625 | * surf_lsm_h%shf(m) |
---|
626 | ENDDO |
---|
627 | ! |
---|
628 | !-- Urban surfaces |
---|
629 | surf_s = surf_usm_h%start_index(j,i) |
---|
630 | surf_e = surf_usm_h%end_index(j,i) |
---|
631 | DO m = surf_s, surf_e |
---|
632 | k = surf_usm_h%k(m) |
---|
633 | tend(k,j,i) = tend(k,j,i) + g / pt_reference & |
---|
634 | * surf_usm_h%shf(m) |
---|
635 | ENDDO |
---|
636 | ENDIF |
---|
637 | |
---|
638 | IF ( use_top_fluxes ) THEN |
---|
639 | surf_s = surf_def_h(2)%start_index(j,i) |
---|
640 | surf_e = surf_def_h(2)%end_index(j,i) |
---|
641 | DO m = surf_s, surf_e |
---|
642 | k = surf_def_h(2)%k(m) |
---|
643 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
644 | surf_def_h(2)%shf(m) |
---|
645 | ENDDO |
---|
646 | ENDIF |
---|
647 | ENDDO |
---|
648 | |
---|
649 | ENDIF |
---|
650 | |
---|
651 | ENDIF |
---|
652 | |
---|
653 | ELSE |
---|
654 | |
---|
655 | DO j = nys, nyn |
---|
656 | |
---|
657 | DO k = nzb+1, nzt |
---|
658 | ! |
---|
659 | !-- Flag 9 is used to mask top fluxes, flag 30 to mask |
---|
660 | !-- surface fluxes |
---|
661 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
662 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
663 | k2 = 0.61_wp * pt(k,j,i) |
---|
664 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * & |
---|
665 | g / vpt(k,j,i) * & |
---|
666 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
667 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
668 | ) * dd2zu(k) * & |
---|
669 | MERGE( 1.0_wp, 0.0_wp, & |
---|
670 | BTEST( wall_flags_0(k,j,i), 30 ) & |
---|
671 | ) * & |
---|
672 | MERGE( 1.0_wp, 0.0_wp, & |
---|
673 | BTEST( wall_flags_0(k,j,i), 9 ) & |
---|
674 | ) |
---|
675 | ELSE IF ( cloud_physics ) THEN |
---|
676 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
677 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
678 | k2 = 0.61_wp * pt(k,j,i) |
---|
679 | ELSE |
---|
680 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
681 | temp = theta * t_d_pt(k) |
---|
682 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
683 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
684 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
685 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
686 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
687 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
688 | ENDIF |
---|
689 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * & |
---|
690 | g / vpt(k,j,i) * & |
---|
691 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
692 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
693 | ) * dd2zu(k) * & |
---|
694 | MERGE( 1.0_wp, 0.0_wp, & |
---|
695 | BTEST( wall_flags_0(k,j,i), 30 ) & |
---|
696 | ) * & |
---|
697 | MERGE( 1.0_wp, 0.0_wp, & |
---|
698 | BTEST( wall_flags_0(k,j,i), 9 ) & |
---|
699 | ) |
---|
700 | ELSE IF ( cloud_droplets ) THEN |
---|
701 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
702 | k2 = 0.61_wp * pt(k,j,i) |
---|
703 | tend(k,j,i) = tend(k,j,i) - & |
---|
704 | kh(k,j,i) * g / vpt(k,j,i) * & |
---|
705 | ( k1 * ( pt(k+1,j,i)- pt(k-1,j,i) ) + & |
---|
706 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) - & |
---|
707 | pt(k,j,i) * ( ql(k+1,j,i) - & |
---|
708 | ql(k-1,j,i) ) ) * dd2zu(k) * & |
---|
709 | MERGE( 1.0_wp, 0.0_wp, & |
---|
710 | BTEST( wall_flags_0(k,j,i), 30 ) & |
---|
711 | ) * & |
---|
712 | MERGE( 1.0_wp, 0.0_wp, & |
---|
713 | BTEST( wall_flags_0(k,j,i), 9 ) & |
---|
714 | ) |
---|
715 | ENDIF |
---|
716 | |
---|
717 | ENDDO |
---|
718 | |
---|
719 | ENDDO |
---|
720 | |
---|
721 | IF ( use_surface_fluxes ) THEN |
---|
722 | |
---|
723 | DO j = nys, nyn |
---|
724 | ! |
---|
725 | !-- Treat horizontal default surfaces, up- and downward-facing |
---|
726 | DO l = 0, 1 |
---|
727 | surf_s = surf_def_h(l)%start_index(j,i) |
---|
728 | surf_e = surf_def_h(l)%end_index(j,i) |
---|
729 | DO m = surf_s, surf_e |
---|
730 | k = surf_def_h(l)%k(m) |
---|
731 | |
---|
732 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
733 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
734 | k2 = 0.61_wp * pt(k,j,i) |
---|
735 | ELSE IF ( cloud_physics ) THEN |
---|
736 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
737 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
738 | k2 = 0.61_wp * pt(k,j,i) |
---|
739 | ELSE |
---|
740 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
741 | temp = theta * t_d_pt(k) |
---|
742 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
743 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
744 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
745 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
746 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
747 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
748 | ENDIF |
---|
749 | ELSE IF ( cloud_droplets ) THEN |
---|
750 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
751 | k2 = 0.61_wp * pt(k,j,i) |
---|
752 | ENDIF |
---|
753 | |
---|
754 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
755 | ( k1 * surf_def_h(l)%shf(m) + & |
---|
756 | k2 * surf_def_h(l)%qsws(m) ) |
---|
757 | ENDDO |
---|
758 | ENDDO |
---|
759 | ! |
---|
760 | !-- Treat horizontal natural surfaces |
---|
761 | surf_s = surf_lsm_h%start_index(j,i) |
---|
762 | surf_e = surf_lsm_h%end_index(j,i) |
---|
763 | DO m = surf_s, surf_e |
---|
764 | k = surf_lsm_h%k(m) |
---|
765 | |
---|
766 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
767 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
768 | k2 = 0.61_wp * pt(k,j,i) |
---|
769 | ELSE IF ( cloud_physics ) THEN |
---|
770 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
771 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
772 | k2 = 0.61_wp * pt(k,j,i) |
---|
773 | ELSE |
---|
774 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
775 | temp = theta * t_d_pt(k) |
---|
776 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
777 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
778 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
779 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
780 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
781 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
782 | ENDIF |
---|
783 | ELSE IF ( cloud_droplets ) THEN |
---|
784 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
785 | k2 = 0.61_wp * pt(k,j,i) |
---|
786 | ENDIF |
---|
787 | |
---|
788 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
789 | ( k1 * surf_lsm_h%shf(m) + & |
---|
790 | k2 * surf_lsm_h%qsws(m) ) |
---|
791 | ENDDO |
---|
792 | ! |
---|
793 | !-- Treat horizontal urban surfaces |
---|
794 | surf_s = surf_usm_h%start_index(j,i) |
---|
795 | surf_e = surf_usm_h%end_index(j,i) |
---|
796 | DO m = surf_s, surf_e |
---|
797 | k = surf_lsm_h%k(m) |
---|
798 | |
---|
799 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
800 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
801 | k2 = 0.61_wp * pt(k,j,i) |
---|
802 | ELSE IF ( cloud_physics ) THEN |
---|
803 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
804 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
805 | k2 = 0.61_wp * pt(k,j,i) |
---|
806 | ELSE |
---|
807 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
808 | temp = theta * t_d_pt(k) |
---|
809 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
810 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
811 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
812 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
813 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
814 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
815 | ENDIF |
---|
816 | ELSE IF ( cloud_droplets ) THEN |
---|
817 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
818 | k2 = 0.61_wp * pt(k,j,i) |
---|
819 | ENDIF |
---|
820 | |
---|
821 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
822 | ( k1 * surf_usm_h%shf(m) + & |
---|
823 | k2 * surf_usm_h%qsws(m) ) |
---|
824 | ENDDO |
---|
825 | |
---|
826 | ENDDO |
---|
827 | |
---|
828 | ENDIF |
---|
829 | |
---|
830 | IF ( use_top_fluxes ) THEN |
---|
831 | |
---|
832 | DO j = nys, nyn |
---|
833 | |
---|
834 | surf_s = surf_def_h(2)%start_index(j,i) |
---|
835 | surf_e = surf_def_h(2)%end_index(j,i) |
---|
836 | DO m = surf_s, surf_e |
---|
837 | k = surf_def_h(2)%k(m) |
---|
838 | |
---|
839 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
840 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
841 | k2 = 0.61_wp * pt(k,j,i) |
---|
842 | ELSE IF ( cloud_physics ) THEN |
---|
843 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
844 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
845 | k2 = 0.61_wp * pt(k,j,i) |
---|
846 | ELSE |
---|
847 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
848 | temp = theta * t_d_pt(k) |
---|
849 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
850 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
851 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
852 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
853 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
854 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
855 | ENDIF |
---|
856 | ELSE IF ( cloud_droplets ) THEN |
---|
857 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
858 | k2 = 0.61_wp * pt(k,j,i) |
---|
859 | ENDIF |
---|
860 | |
---|
861 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
862 | ( k1 * surf_def_h(2)%shf(m) + & |
---|
863 | k2 * surf_def_h(2)%qsws(m) ) |
---|
864 | |
---|
865 | ENDDO |
---|
866 | |
---|
867 | ENDDO |
---|
868 | |
---|
869 | ENDIF |
---|
870 | |
---|
871 | ENDIF |
---|
872 | |
---|
873 | ENDIF |
---|
874 | |
---|
875 | ENDDO |
---|
876 | |
---|
877 | END SUBROUTINE production_e |
---|
878 | |
---|
879 | |
---|
880 | !------------------------------------------------------------------------------! |
---|
881 | ! Description: |
---|
882 | ! ------------ |
---|
883 | !> Call for grid point i,j |
---|
884 | !------------------------------------------------------------------------------! |
---|
885 | SUBROUTINE production_e_ij( i, j ) |
---|
886 | |
---|
887 | USE arrays_3d, & |
---|
888 | ONLY: ddzw, dd2zu, kh, km, prho, pt, q, ql, tend, u, v, vpt, w |
---|
889 | |
---|
890 | USE cloud_parameters, & |
---|
891 | ONLY: l_d_cp, l_d_r, pt_d_t, t_d_pt |
---|
892 | |
---|
893 | USE control_parameters, & |
---|
894 | ONLY: cloud_droplets, cloud_physics, constant_flux_layer, g, & |
---|
895 | humidity, kappa, neutral, ocean, pt_reference, & |
---|
896 | rho_reference, use_single_reference_value, & |
---|
897 | use_surface_fluxes, use_top_fluxes |
---|
898 | |
---|
899 | USE grid_variables, & |
---|
900 | ONLY: ddx, dx, ddy, dy |
---|
901 | |
---|
902 | USE indices, & |
---|
903 | ONLY: nxl, nxr, nys, nyn, nzb, nzb, nzt, wall_flags_0 |
---|
904 | |
---|
905 | USE surface_mod, & |
---|
906 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
907 | surf_usm_v |
---|
908 | |
---|
909 | IMPLICIT NONE |
---|
910 | |
---|
911 | INTEGER(iwp) :: i !< running index x-direction |
---|
912 | INTEGER(iwp) :: j !< running index y-direction |
---|
913 | INTEGER(iwp) :: k !< running index z-direction |
---|
914 | INTEGER(iwp) :: l !< running index for different surface type orientation |
---|
915 | INTEGER(iwp) :: m !< running index surface elements |
---|
916 | INTEGER(iwp) :: surf_e !< end index of surface elements at given i-j position |
---|
917 | INTEGER(iwp) :: surf_s !< start index of surface elements at given i-j position |
---|
918 | |
---|
919 | REAL(wp) :: def !< |
---|
920 | REAL(wp) :: flag !< flag to mask topography |
---|
921 | REAL(wp) :: k1 !< |
---|
922 | REAL(wp) :: k2 !< |
---|
923 | REAL(wp) :: km_neutral !< diffusion coefficient assuming neutral conditions - used to compute shear production at surfaces |
---|
924 | REAL(wp) :: theta !< |
---|
925 | REAL(wp) :: temp !< |
---|
926 | REAL(wp) :: sign_dir !< sign of wall-tke flux, depending on wall orientation |
---|
927 | REAL(wp) :: usvs !< momentum flux u"v" |
---|
928 | REAL(wp) :: vsus !< momentum flux v"u" |
---|
929 | REAL(wp) :: wsus !< momentum flux w"u" |
---|
930 | REAL(wp) :: wsvs !< momentum flux w"v" |
---|
931 | |
---|
932 | |
---|
933 | REAL(wp), DIMENSION(nzb+1:nzt) :: dudx !< Gradient of u-component in x-direction |
---|
934 | REAL(wp), DIMENSION(nzb+1:nzt) :: dudy !< Gradient of u-component in y-direction |
---|
935 | REAL(wp), DIMENSION(nzb+1:nzt) :: dudz !< Gradient of u-component in z-direction |
---|
936 | REAL(wp), DIMENSION(nzb+1:nzt) :: dvdx !< Gradient of v-component in x-direction |
---|
937 | REAL(wp), DIMENSION(nzb+1:nzt) :: dvdy !< Gradient of v-component in y-direction |
---|
938 | REAL(wp), DIMENSION(nzb+1:nzt) :: dvdz !< Gradient of v-component in z-direction |
---|
939 | REAL(wp), DIMENSION(nzb+1:nzt) :: dwdx !< Gradient of w-component in x-direction |
---|
940 | REAL(wp), DIMENSION(nzb+1:nzt) :: dwdy !< Gradient of w-component in y-direction |
---|
941 | REAL(wp), DIMENSION(nzb+1:nzt) :: dwdz !< Gradient of w-component in z-direction |
---|
942 | |
---|
943 | |
---|
944 | IF ( constant_flux_layer ) THEN |
---|
945 | ! |
---|
946 | !-- Calculate TKE production by shear. Calculate gradients at all grid |
---|
947 | !-- points first, gradients at surface-bounded grid points will be |
---|
948 | !-- overwritten further below. |
---|
949 | DO k = nzb+1, nzt |
---|
950 | |
---|
951 | dudx(k) = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
952 | dudy(k) = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
953 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
954 | dudz(k) = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
955 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
956 | |
---|
957 | dvdx(k) = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
958 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
959 | dvdy(k) = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
960 | dvdz(k) = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
961 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
962 | |
---|
963 | dwdx(k) = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
964 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
965 | dwdy(k) = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
966 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
967 | dwdz(k) = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
968 | |
---|
969 | ENDDO |
---|
970 | ! |
---|
971 | !-- Compute gradients at north- and south-facing surfaces. |
---|
972 | !-- Note, no vertical natural surfaces so far. |
---|
973 | DO l = 0, 1 |
---|
974 | ! |
---|
975 | !-- Default surfaces |
---|
976 | surf_s = surf_def_v(l)%start_index(j,i) |
---|
977 | surf_e = surf_def_v(l)%end_index(j,i) |
---|
978 | DO m = surf_s, surf_e |
---|
979 | k = surf_def_v(l)%k(m) |
---|
980 | usvs = surf_def_v(l)%mom_flux_tke(0,m) |
---|
981 | wsvs = surf_def_v(l)%mom_flux_tke(1,m) |
---|
982 | |
---|
983 | km_neutral = kappa * ( usvs**2 + wsvs**2 )**0.25_wp & |
---|
984 | * 0.5_wp * dy |
---|
985 | ! |
---|
986 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
987 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
988 | BTEST( wall_flags_0(k,j-1,i), 0 ) ) |
---|
989 | dudy(k) = sign_dir * usvs / ( km_neutral + 1E-10_wp ) |
---|
990 | dwdy(k) = sign_dir * wsvs / ( km_neutral + 1E-10_wp ) |
---|
991 | ENDDO |
---|
992 | ! |
---|
993 | !-- Natural surfaces |
---|
994 | surf_s = surf_lsm_v(l)%start_index(j,i) |
---|
995 | surf_e = surf_lsm_v(l)%end_index(j,i) |
---|
996 | DO m = surf_s, surf_e |
---|
997 | k = surf_lsm_v(l)%k(m) |
---|
998 | usvs = surf_lsm_v(l)%mom_flux_tke(0,m) |
---|
999 | wsvs = surf_lsm_v(l)%mom_flux_tke(1,m) |
---|
1000 | |
---|
1001 | km_neutral = kappa * ( usvs**2 + wsvs**2 )**0.25_wp & |
---|
1002 | * 0.5_wp * dy |
---|
1003 | ! |
---|
1004 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
1005 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
1006 | BTEST( wall_flags_0(k,j-1,i), 0 ) ) |
---|
1007 | dudy(k) = sign_dir * usvs / ( km_neutral + 1E-10_wp ) |
---|
1008 | dwdy(k) = sign_dir * wsvs / ( km_neutral + 1E-10_wp ) |
---|
1009 | ENDDO |
---|
1010 | ! |
---|
1011 | !-- Urban surfaces |
---|
1012 | surf_s = surf_usm_v(l)%start_index(j,i) |
---|
1013 | surf_e = surf_usm_v(l)%end_index(j,i) |
---|
1014 | DO m = surf_s, surf_e |
---|
1015 | k = surf_usm_v(l)%k(m) |
---|
1016 | usvs = surf_usm_v(l)%mom_flux_tke(0,m) |
---|
1017 | wsvs = surf_usm_v(l)%mom_flux_tke(1,m) |
---|
1018 | |
---|
1019 | km_neutral = kappa * ( usvs**2 + wsvs**2 )**0.25_wp & |
---|
1020 | * 0.5_wp * dy |
---|
1021 | ! |
---|
1022 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
1023 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
1024 | BTEST( wall_flags_0(k,j-1,i), 0 ) ) |
---|
1025 | dudy(k) = sign_dir * usvs / ( km_neutral + 1E-10_wp ) |
---|
1026 | dwdy(k) = sign_dir * wsvs / ( km_neutral + 1E-10_wp ) |
---|
1027 | ENDDO |
---|
1028 | ENDDO |
---|
1029 | ! |
---|
1030 | !-- Compute gradients at east- and west-facing walls |
---|
1031 | DO l = 2, 3 |
---|
1032 | ! |
---|
1033 | !-- Default surfaces |
---|
1034 | surf_s = surf_def_v(l)%start_index(j,i) |
---|
1035 | surf_e = surf_def_v(l)%end_index(j,i) |
---|
1036 | DO m = surf_s, surf_e |
---|
1037 | k = surf_def_v(l)%k(m) |
---|
1038 | vsus = surf_def_v(l)%mom_flux_tke(0,m) |
---|
1039 | wsus = surf_def_v(l)%mom_flux_tke(1,m) |
---|
1040 | |
---|
1041 | km_neutral = kappa * ( vsus**2 + wsus**2 )**0.25_wp & |
---|
1042 | * 0.5_wp * dx |
---|
1043 | ! |
---|
1044 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
1045 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
1046 | BTEST( wall_flags_0(k,j,i-1), 0 ) ) |
---|
1047 | dvdx(k) = sign_dir * vsus / ( km_neutral + 1E-10_wp ) |
---|
1048 | dwdx(k) = sign_dir * wsus / ( km_neutral + 1E-10_wp ) |
---|
1049 | ENDDO |
---|
1050 | ! |
---|
1051 | !-- Natural surfaces |
---|
1052 | surf_s = surf_lsm_v(l)%start_index(j,i) |
---|
1053 | surf_e = surf_lsm_v(l)%end_index(j,i) |
---|
1054 | DO m = surf_s, surf_e |
---|
1055 | k = surf_lsm_v(l)%k(m) |
---|
1056 | vsus = surf_lsm_v(l)%mom_flux_tke(0,m) |
---|
1057 | wsus = surf_lsm_v(l)%mom_flux_tke(1,m) |
---|
1058 | |
---|
1059 | km_neutral = kappa * ( vsus**2 + wsus**2 )**0.25_wp & |
---|
1060 | * 0.5_wp * dx |
---|
1061 | ! |
---|
1062 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
1063 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
1064 | BTEST( wall_flags_0(k,j,i-1), 0 ) ) |
---|
1065 | dvdx(k) = sign_dir * vsus / ( km_neutral + 1E-10_wp ) |
---|
1066 | dwdx(k) = sign_dir * wsus / ( km_neutral + 1E-10_wp ) |
---|
1067 | ENDDO |
---|
1068 | ! |
---|
1069 | !-- Urban surfaces |
---|
1070 | surf_s = surf_usm_v(l)%start_index(j,i) |
---|
1071 | surf_e = surf_usm_v(l)%end_index(j,i) |
---|
1072 | DO m = surf_s, surf_e |
---|
1073 | k = surf_usm_v(l)%k(m) |
---|
1074 | vsus = surf_usm_v(l)%mom_flux_tke(0,m) |
---|
1075 | wsus = surf_usm_v(l)%mom_flux_tke(1,m) |
---|
1076 | |
---|
1077 | km_neutral = kappa * ( vsus**2 + wsus**2 )**0.25_wp & |
---|
1078 | * 0.5_wp * dx |
---|
1079 | ! |
---|
1080 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
1081 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
1082 | BTEST( wall_flags_0(k,j,i-1), 0 ) ) |
---|
1083 | dvdx(k) = sign_dir * vsus / ( km_neutral + 1E-10_wp ) |
---|
1084 | dwdx(k) = sign_dir * wsus / ( km_neutral + 1E-10_wp ) |
---|
1085 | ENDDO |
---|
1086 | ENDDO |
---|
1087 | ! |
---|
1088 | !-- Compute gradients at upward-facing walls, first for |
---|
1089 | !-- non-natural default surfaces |
---|
1090 | surf_s = surf_def_h(0)%start_index(j,i) |
---|
1091 | surf_e = surf_def_h(0)%end_index(j,i) |
---|
1092 | DO m = surf_s, surf_e |
---|
1093 | k = surf_def_h(0)%k(m) |
---|
1094 | ! |
---|
1095 | !-- Please note, actually, an interpolation of u_0 and v_0 |
---|
1096 | !-- onto the grid center would be required. However, this |
---|
1097 | !-- would require several data transfers between 2D-grid and |
---|
1098 | !-- wall type. The effect of this missing interpolation is |
---|
1099 | !-- negligible. (See also production_e_init). |
---|
1100 | dudz(k) = ( u(k+1,j,i) - surf_def_h(0)%u_0(m) ) * dd2zu(k) |
---|
1101 | dvdz(k) = ( v(k+1,j,i) - surf_def_h(0)%v_0(m) ) * dd2zu(k) |
---|
1102 | |
---|
1103 | ENDDO |
---|
1104 | ! |
---|
1105 | !-- Natural surfaces |
---|
1106 | surf_s = surf_lsm_h%start_index(j,i) |
---|
1107 | surf_e = surf_lsm_h%end_index(j,i) |
---|
1108 | DO m = surf_s, surf_e |
---|
1109 | k = surf_lsm_h%k(m) |
---|
1110 | ! |
---|
1111 | !-- Please note, actually, an interpolation of u_0 and v_0 |
---|
1112 | !-- onto the grid center would be required. However, this |
---|
1113 | !-- would require several data transfers between 2D-grid and |
---|
1114 | !-- wall type. The effect of this missing interpolation is |
---|
1115 | !-- negligible. (See also production_e_init). |
---|
1116 | dudz(k) = ( u(k+1,j,i) - surf_lsm_h%u_0(m) ) * dd2zu(k) |
---|
1117 | dvdz(k) = ( v(k+1,j,i) - surf_lsm_h%v_0(m) ) * dd2zu(k) |
---|
1118 | ENDDO |
---|
1119 | ! |
---|
1120 | !-- Urban surfaces |
---|
1121 | surf_s = surf_usm_h%start_index(j,i) |
---|
1122 | surf_e = surf_usm_h%end_index(j,i) |
---|
1123 | DO m = surf_s, surf_e |
---|
1124 | k = surf_usm_h%k(m) |
---|
1125 | ! |
---|
1126 | !-- Please note, actually, an interpolation of u_0 and v_0 |
---|
1127 | !-- onto the grid center would be required. However, this |
---|
1128 | !-- would require several data transfers between 2D-grid and |
---|
1129 | !-- wall type. The effect of this missing interpolation is |
---|
1130 | !-- negligible. (See also production_e_init). |
---|
1131 | dudz(k) = ( u(k+1,j,i) - surf_usm_h%u_0(m) ) * dd2zu(k) |
---|
1132 | dvdz(k) = ( v(k+1,j,i) - surf_usm_h%v_0(m) ) * dd2zu(k) |
---|
1133 | ENDDO |
---|
1134 | ! |
---|
1135 | !-- Compute gradients at downward-facing walls, only for |
---|
1136 | !-- non-natural default surfaces |
---|
1137 | surf_s = surf_def_h(1)%start_index(j,i) |
---|
1138 | surf_e = surf_def_h(1)%end_index(j,i) |
---|
1139 | DO m = surf_s, surf_e |
---|
1140 | k = surf_def_h(1)%k(m) |
---|
1141 | ! |
---|
1142 | !-- Please note, actually, an interpolation of u_0 and v_0 |
---|
1143 | !-- onto the grid center would be required. However, this |
---|
1144 | !-- would require several data transfers between 2D-grid and |
---|
1145 | !-- wall type. The effect of this missing interpolation is |
---|
1146 | !-- negligible. (See also production_e_init). |
---|
1147 | dudz(k) = ( surf_def_h(1)%u_0(m) - u(k-1,j,i) ) * dd2zu(k) |
---|
1148 | dvdz(k) = ( surf_def_h(1)%v_0(m) - v(k-1,j,i) ) * dd2zu(k) |
---|
1149 | |
---|
1150 | ENDDO |
---|
1151 | |
---|
1152 | DO k = nzb+1, nzt |
---|
1153 | |
---|
1154 | def = 2.0_wp * ( dudx(k)**2 + dvdy(k)**2 + dwdz(k)**2 ) + & |
---|
1155 | dudy(k)**2 + dvdx(k)**2 + dwdx(k)**2 + & |
---|
1156 | dwdy(k)**2 + dudz(k)**2 + dvdz(k)**2 + & |
---|
1157 | 2.0_wp * ( dvdx(k)*dudy(k) + dwdx(k)*dudz(k) + dwdy(k)*dvdz(k) ) |
---|
1158 | |
---|
1159 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
1160 | |
---|
1161 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1162 | |
---|
1163 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def * flag |
---|
1164 | |
---|
1165 | ENDDO |
---|
1166 | |
---|
1167 | ELSEIF ( use_surface_fluxes ) THEN |
---|
1168 | ! |
---|
1169 | !-- Calculate TKE production by shear. Here, no additional |
---|
1170 | !-- wall-bounded code is considered. |
---|
1171 | !-- Why? |
---|
1172 | DO k = nzb+1, nzt |
---|
1173 | |
---|
1174 | dudx(k) = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
1175 | dudy(k) = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
1176 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
1177 | dudz(k) = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
1178 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
1179 | |
---|
1180 | dvdx(k) = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
1181 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
1182 | dvdy(k) = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
1183 | dvdz(k) = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
1184 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
1185 | |
---|
1186 | dwdx(k) = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
1187 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
1188 | dwdy(k) = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
1189 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
1190 | dwdz(k) = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
1191 | |
---|
1192 | def = 2.0_wp * ( dudx(k)**2 + dvdy(k)**2 + dwdz(k)**2 ) + & |
---|
1193 | dudy(k)**2 + dvdx(k)**2 + dwdx(k)**2 + & |
---|
1194 | dwdy(k)**2 + dudz(k)**2 + dvdz(k)**2 + & |
---|
1195 | 2.0_wp * ( dvdx(k)*dudy(k) + dwdx(k)*dudz(k) + dwdy(k)*dvdz(k) ) |
---|
1196 | |
---|
1197 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
1198 | |
---|
1199 | flag = MERGE( 1.0_wp, 0.0_wp, & |
---|
1200 | BTEST( wall_flags_0(k,j,i), 29 ) ) |
---|
1201 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def * flag |
---|
1202 | |
---|
1203 | ENDDO |
---|
1204 | |
---|
1205 | ENDIF |
---|
1206 | |
---|
1207 | ! |
---|
1208 | !-- If required, calculate TKE production by buoyancy |
---|
1209 | IF ( .NOT. neutral ) THEN |
---|
1210 | |
---|
1211 | IF ( .NOT. humidity ) THEN |
---|
1212 | |
---|
1213 | IF ( use_single_reference_value ) THEN |
---|
1214 | |
---|
1215 | IF ( ocean ) THEN |
---|
1216 | ! |
---|
1217 | !-- So far in the ocean no special treatment of density flux in |
---|
1218 | !-- the bottom and top surface layer |
---|
1219 | DO k = nzb+1, nzt |
---|
1220 | tend(k,j,i) = tend(k,j,i) + & |
---|
1221 | kh(k,j,i) * g / rho_reference * & |
---|
1222 | ( prho(k+1,j,i) - prho(k-1,j,i) ) * & |
---|
1223 | dd2zu(k) * & |
---|
1224 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1225 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
1226 | ) |
---|
1227 | ENDDO |
---|
1228 | |
---|
1229 | ELSE |
---|
1230 | |
---|
1231 | DO k = nzb+1, nzt |
---|
1232 | ! |
---|
1233 | !-- Flag 9 is used to mask top fluxes, flag 30 to mask |
---|
1234 | !-- surface fluxes |
---|
1235 | tend(k,j,i) = tend(k,j,i) - & |
---|
1236 | kh(k,j,i) * g / pt_reference * & |
---|
1237 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) * & |
---|
1238 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1239 | BTEST( wall_flags_0(k,j,i), 30 ) & |
---|
1240 | ) * & |
---|
1241 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1242 | BTEST( wall_flags_0(k,j,i), 9 ) & |
---|
1243 | ) |
---|
1244 | |
---|
1245 | ENDDO |
---|
1246 | |
---|
1247 | IF ( use_surface_fluxes ) THEN |
---|
1248 | ! |
---|
1249 | !-- Default surfaces, up- and downward-facing |
---|
1250 | DO l = 0, 1 |
---|
1251 | surf_s = surf_def_h(l)%start_index(j,i) |
---|
1252 | surf_e = surf_def_h(l)%end_index(j,i) |
---|
1253 | DO m = surf_s, surf_e |
---|
1254 | k = surf_def_h(l)%k(m) |
---|
1255 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
1256 | surf_def_h(l)%shf(m) |
---|
1257 | ENDDO |
---|
1258 | ENDDO |
---|
1259 | ! |
---|
1260 | !-- Natural surfaces |
---|
1261 | surf_s = surf_lsm_h%start_index(j,i) |
---|
1262 | surf_e = surf_lsm_h%end_index(j,i) |
---|
1263 | DO m = surf_s, surf_e |
---|
1264 | k = surf_lsm_h%k(m) |
---|
1265 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
1266 | surf_lsm_h%shf(m) |
---|
1267 | ENDDO |
---|
1268 | ! |
---|
1269 | !-- Urban surfaces |
---|
1270 | surf_s = surf_usm_h%start_index(j,i) |
---|
1271 | surf_e = surf_usm_h%end_index(j,i) |
---|
1272 | DO m = surf_s, surf_e |
---|
1273 | k = surf_usm_h%k(m) |
---|
1274 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
1275 | surf_usm_h%shf(m) |
---|
1276 | ENDDO |
---|
1277 | ENDIF |
---|
1278 | |
---|
1279 | IF ( use_top_fluxes ) THEN |
---|
1280 | surf_s = surf_def_h(2)%start_index(j,i) |
---|
1281 | surf_e = surf_def_h(2)%end_index(j,i) |
---|
1282 | DO m = surf_s, surf_e |
---|
1283 | k = surf_def_h(2)%k(m) |
---|
1284 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
1285 | surf_def_h(2)%shf(m) |
---|
1286 | ENDDO |
---|
1287 | ENDIF |
---|
1288 | |
---|
1289 | ENDIF |
---|
1290 | |
---|
1291 | ELSE |
---|
1292 | |
---|
1293 | IF ( ocean ) THEN |
---|
1294 | ! |
---|
1295 | !-- So far in the ocean no special treatment of density flux in |
---|
1296 | !-- the bottom and top surface layer |
---|
1297 | DO k = nzb+1, nzt |
---|
1298 | tend(k,j,i) = tend(k,j,i) + & |
---|
1299 | kh(k,j,i) * g / prho(k,j,i) * & |
---|
1300 | ( prho(k+1,j,i) - prho(k-1,j,i) ) * & |
---|
1301 | dd2zu(k) * & |
---|
1302 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1303 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
1304 | ) |
---|
1305 | ENDDO |
---|
1306 | |
---|
1307 | ELSE |
---|
1308 | |
---|
1309 | DO k = nzb+1, nzt |
---|
1310 | ! |
---|
1311 | !-- Flag 9 is used to mask top fluxes, flag 30 to mask |
---|
1312 | !-- surface fluxes |
---|
1313 | tend(k,j,i) = tend(k,j,i) - & |
---|
1314 | kh(k,j,i) * g / pt(k,j,i) * & |
---|
1315 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) * & |
---|
1316 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1317 | BTEST( wall_flags_0(k,j,i), 30 ) & |
---|
1318 | ) * & |
---|
1319 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1320 | BTEST( wall_flags_0(k,j,i), 9 ) & |
---|
1321 | ) |
---|
1322 | ENDDO |
---|
1323 | |
---|
1324 | IF ( use_surface_fluxes ) THEN |
---|
1325 | ! |
---|
1326 | !-- Default surfaces, up- and downward-facing |
---|
1327 | DO l = 0, 1 |
---|
1328 | surf_s = surf_def_h(l)%start_index(j,i) |
---|
1329 | surf_e = surf_def_h(l)%end_index(j,i) |
---|
1330 | DO m = surf_s, surf_e |
---|
1331 | k = surf_def_h(l)%k(m) |
---|
1332 | tend(k,j,i) = tend(k,j,i) + g / pt_reference & |
---|
1333 | * surf_def_h(l)%shf(m) |
---|
1334 | ENDDO |
---|
1335 | ENDDO |
---|
1336 | ! |
---|
1337 | !-- Natural surfaces |
---|
1338 | surf_s = surf_lsm_h%start_index(j,i) |
---|
1339 | surf_e = surf_lsm_h%end_index(j,i) |
---|
1340 | DO m = surf_s, surf_e |
---|
1341 | k = surf_lsm_h%k(m) |
---|
1342 | tend(k,j,i) = tend(k,j,i) + g / pt_reference & |
---|
1343 | * surf_lsm_h%shf(m) |
---|
1344 | ENDDO |
---|
1345 | ! |
---|
1346 | !-- Urban surfaces |
---|
1347 | surf_s = surf_usm_h%start_index(j,i) |
---|
1348 | surf_e = surf_usm_h%end_index(j,i) |
---|
1349 | DO m = surf_s, surf_e |
---|
1350 | k = surf_usm_h%k(m) |
---|
1351 | tend(k,j,i) = tend(k,j,i) + g / pt_reference & |
---|
1352 | * surf_usm_h%shf(m) |
---|
1353 | ENDDO |
---|
1354 | ENDIF |
---|
1355 | |
---|
1356 | IF ( use_top_fluxes ) THEN |
---|
1357 | surf_s = surf_def_h(2)%start_index(j,i) |
---|
1358 | surf_e = surf_def_h(2)%end_index(j,i) |
---|
1359 | DO m = surf_s, surf_e |
---|
1360 | k = surf_def_h(2)%k(m) |
---|
1361 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
1362 | surf_def_h(2)%shf(m) |
---|
1363 | ENDDO |
---|
1364 | ENDIF |
---|
1365 | |
---|
1366 | ENDIF |
---|
1367 | |
---|
1368 | ENDIF |
---|
1369 | |
---|
1370 | ELSE |
---|
1371 | |
---|
1372 | DO k = nzb+1, nzt |
---|
1373 | ! |
---|
1374 | !-- Flag 9 is used to mask top fluxes, flag 30 to mask surface fluxes |
---|
1375 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
1376 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1377 | k2 = 0.61_wp * pt(k,j,i) |
---|
1378 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
1379 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
1380 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
1381 | ) * dd2zu(k) * & |
---|
1382 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1383 | BTEST( wall_flags_0(k,j,i), 30 ) & |
---|
1384 | ) * & |
---|
1385 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1386 | BTEST( wall_flags_0(k,j,i), 9 ) & |
---|
1387 | ) |
---|
1388 | |
---|
1389 | ELSE IF ( cloud_physics ) THEN |
---|
1390 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
1391 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1392 | k2 = 0.61_wp * pt(k,j,i) |
---|
1393 | ELSE |
---|
1394 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1395 | temp = theta * t_d_pt(k) |
---|
1396 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
1397 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1398 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
1399 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
1400 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1401 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
1402 | ENDIF |
---|
1403 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
1404 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
1405 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
1406 | ) * dd2zu(k) * & |
---|
1407 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1408 | BTEST( wall_flags_0(k,j,i), 30 ) & |
---|
1409 | ) * & |
---|
1410 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1411 | BTEST( wall_flags_0(k,j,i), 9 ) & |
---|
1412 | ) |
---|
1413 | ELSE IF ( cloud_droplets ) THEN |
---|
1414 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
1415 | k2 = 0.61_wp * pt(k,j,i) |
---|
1416 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
1417 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
1418 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) - & |
---|
1419 | pt(k,j,i) * ( ql(k+1,j,i) - & |
---|
1420 | ql(k-1,j,i) ) ) * dd2zu(k)& |
---|
1421 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1422 | BTEST( wall_flags_0(k,j,i), 30 ) & |
---|
1423 | ) & |
---|
1424 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1425 | BTEST( wall_flags_0(k,j,i), 9 ) & |
---|
1426 | ) |
---|
1427 | ENDIF |
---|
1428 | ENDDO |
---|
1429 | |
---|
1430 | IF ( use_surface_fluxes ) THEN |
---|
1431 | ! |
---|
1432 | !-- Treat horizontal default surfaces, up- and downward-facing |
---|
1433 | DO l = 0, 1 |
---|
1434 | surf_s = surf_def_h(l)%start_index(j,i) |
---|
1435 | surf_e = surf_def_h(l)%end_index(j,i) |
---|
1436 | DO m = surf_s, surf_e |
---|
1437 | k = surf_def_h(l)%k(m) |
---|
1438 | |
---|
1439 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
1440 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1441 | k2 = 0.61_wp * pt(k,j,i) |
---|
1442 | ELSE IF ( cloud_physics ) THEN |
---|
1443 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
1444 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1445 | k2 = 0.61_wp * pt(k,j,i) |
---|
1446 | ELSE |
---|
1447 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1448 | temp = theta * t_d_pt(k) |
---|
1449 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
1450 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1451 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
1452 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
1453 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1454 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
1455 | ENDIF |
---|
1456 | ELSE IF ( cloud_droplets ) THEN |
---|
1457 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
1458 | k2 = 0.61_wp * pt(k,j,i) |
---|
1459 | ENDIF |
---|
1460 | |
---|
1461 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
1462 | ( k1 * surf_def_h(l)%shf(m) + & |
---|
1463 | k2 * surf_def_h(l)%qsws(m) ) |
---|
1464 | ENDDO |
---|
1465 | ENDDO |
---|
1466 | ! |
---|
1467 | !-- Treat horizontal natural surfaces |
---|
1468 | surf_s = surf_lsm_h%start_index(j,i) |
---|
1469 | surf_e = surf_lsm_h%end_index(j,i) |
---|
1470 | DO m = surf_s, surf_e |
---|
1471 | k = surf_lsm_h%k(m) |
---|
1472 | |
---|
1473 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
1474 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1475 | k2 = 0.61_wp * pt(k,j,i) |
---|
1476 | ELSE IF ( cloud_physics ) THEN |
---|
1477 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
1478 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1479 | k2 = 0.61_wp * pt(k,j,i) |
---|
1480 | ELSE |
---|
1481 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1482 | temp = theta * t_d_pt(k) |
---|
1483 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
1484 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1485 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
1486 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
1487 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1488 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
1489 | ENDIF |
---|
1490 | ELSE IF ( cloud_droplets ) THEN |
---|
1491 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
1492 | k2 = 0.61_wp * pt(k,j,i) |
---|
1493 | ENDIF |
---|
1494 | |
---|
1495 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
1496 | ( k1 * surf_lsm_h%shf(m) + & |
---|
1497 | k2 * surf_lsm_h%qsws(m) ) |
---|
1498 | ENDDO |
---|
1499 | ! |
---|
1500 | !-- Treat horizontal urban surfaces |
---|
1501 | surf_s = surf_usm_h%start_index(j,i) |
---|
1502 | surf_e = surf_usm_h%end_index(j,i) |
---|
1503 | DO m = surf_s, surf_e |
---|
1504 | k = surf_usm_h%k(m) |
---|
1505 | |
---|
1506 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
1507 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1508 | k2 = 0.61_wp * pt(k,j,i) |
---|
1509 | ELSE IF ( cloud_physics ) THEN |
---|
1510 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
1511 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1512 | k2 = 0.61_wp * pt(k,j,i) |
---|
1513 | ELSE |
---|
1514 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1515 | temp = theta * t_d_pt(k) |
---|
1516 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
1517 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1518 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
1519 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
1520 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1521 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
1522 | ENDIF |
---|
1523 | ELSE IF ( cloud_droplets ) THEN |
---|
1524 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
1525 | k2 = 0.61_wp * pt(k,j,i) |
---|
1526 | ENDIF |
---|
1527 | |
---|
1528 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
1529 | ( k1 * surf_usm_h%shf(m) + & |
---|
1530 | k2 * surf_usm_h%qsws(m) ) |
---|
1531 | ENDDO |
---|
1532 | |
---|
1533 | ENDIF |
---|
1534 | |
---|
1535 | IF ( use_top_fluxes ) THEN |
---|
1536 | surf_s = surf_def_h(2)%start_index(j,i) |
---|
1537 | surf_e = surf_def_h(2)%end_index(j,i) |
---|
1538 | DO m = surf_s, surf_e |
---|
1539 | k = surf_def_h(2)%k(m) |
---|
1540 | |
---|
1541 | |
---|
1542 | |
---|
1543 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
1544 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1545 | k2 = 0.61_wp * pt(k,j,i) |
---|
1546 | ELSE IF ( cloud_physics ) THEN |
---|
1547 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
1548 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1549 | k2 = 0.61_wp * pt(k,j,i) |
---|
1550 | ELSE |
---|
1551 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1552 | temp = theta * t_d_pt(k) |
---|
1553 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
1554 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1555 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
1556 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
1557 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1558 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
1559 | ENDIF |
---|
1560 | ELSE IF ( cloud_droplets ) THEN |
---|
1561 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
1562 | k2 = 0.61_wp * pt(k,j,i) |
---|
1563 | ENDIF |
---|
1564 | |
---|
1565 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
1566 | ( k1* surf_def_h(2)%shf(m) + & |
---|
1567 | k2 * surf_def_h(2)%qsws(m) ) |
---|
1568 | ENDDO |
---|
1569 | |
---|
1570 | ENDIF |
---|
1571 | |
---|
1572 | ENDIF |
---|
1573 | |
---|
1574 | ENDIF |
---|
1575 | |
---|
1576 | END SUBROUTINE production_e_ij |
---|
1577 | |
---|
1578 | |
---|
1579 | !------------------------------------------------------------------------------! |
---|
1580 | ! Description: |
---|
1581 | ! ------------ |
---|
1582 | !> @todo Missing subroutine description. |
---|
1583 | !------------------------------------------------------------------------------! |
---|
1584 | SUBROUTINE production_e_init |
---|
1585 | |
---|
1586 | USE arrays_3d, & |
---|
1587 | ONLY: kh, km, u, v, zu |
---|
1588 | |
---|
1589 | USE control_parameters, & |
---|
1590 | ONLY: constant_flux_layer, kappa |
---|
1591 | |
---|
1592 | USE indices, & |
---|
1593 | ONLY: nxl, nxlg, nxr, nxrg, nys, nysg, nyn, nyng, nzb_u_inner, & |
---|
1594 | nzb_v_inner |
---|
1595 | |
---|
1596 | USE surface_mod, & |
---|
1597 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_usm_h |
---|
1598 | |
---|
1599 | IMPLICIT NONE |
---|
1600 | |
---|
1601 | INTEGER(iwp) :: i !< grid index x-direction |
---|
1602 | INTEGER(iwp) :: j !< grid index y-direction |
---|
1603 | INTEGER(iwp) :: k !< grid index z-direction |
---|
1604 | INTEGER(iwp) :: l !< running index surface type (up- or downward-facing) |
---|
1605 | INTEGER(iwp) :: m !< running index surface elements |
---|
1606 | |
---|
1607 | IF ( constant_flux_layer ) THEN |
---|
1608 | ! |
---|
1609 | !-- Calculate a virtual velocity at the surface in a way that the |
---|
1610 | !-- vertical velocity gradient at k = 1 (u(k+1)-u_0) matches the |
---|
1611 | !-- Prandtl law (-w'u'/km). This gradient is used in the TKE shear |
---|
1612 | !-- production term at k=1 (see production_e_ij). |
---|
1613 | !-- The velocity gradient has to be limited in case of too small km |
---|
1614 | !-- (otherwise the timestep may be significantly reduced by large |
---|
1615 | !-- surface winds). |
---|
1616 | !-- not available in case of non-cyclic boundary conditions. |
---|
1617 | !-- WARNING: the exact analytical solution would require the determination |
---|
1618 | !-- of the eddy diffusivity by km = u* * kappa * zp / phi_m. |
---|
1619 | !-- Default surfaces, upward-facing |
---|
1620 | !$OMP PARALLEL DO PRIVATE(i,j,k,m) |
---|
1621 | DO m = 1, surf_def_h(0)%ns |
---|
1622 | |
---|
1623 | i = surf_def_h(0)%i(m) |
---|
1624 | j = surf_def_h(0)%j(m) |
---|
1625 | k = surf_def_h(0)%k(m) |
---|
1626 | ! |
---|
1627 | !-- Note, calculatione of u_0 and v_0 is not fully accurate, as u/v |
---|
1628 | !-- and km are not on the same grid. Actually, a further |
---|
1629 | !-- interpolation of km onto the u/v-grid is necessary. However, the |
---|
1630 | !-- effect of this error is negligible. |
---|
1631 | surf_def_h(0)%u_0(m) = u(k+1,j,i) + surf_def_h(0)%usws(m) * & |
---|
1632 | ( zu(k+1) - zu(k-1) ) / & |
---|
1633 | ( km(k,j,i) + 1.0E-20_wp ) |
---|
1634 | surf_def_h(0)%v_0(m) = v(k+1,j,i) + surf_def_h(0)%vsws(m) * & |
---|
1635 | ( zu(k+1) - zu(k-1) ) / & |
---|
1636 | ( km(k,j,i) + 1.0E-20_wp ) |
---|
1637 | |
---|
1638 | IF ( ABS( u(k+1,j,i) - surf_def_h(0)%u_0(m) ) > & |
---|
1639 | ABS( u(k+1,j,i) - u(k-1,j,i) ) & |
---|
1640 | ) surf_def_h(0)%u_0(m) = u(k-1,j,i) |
---|
1641 | |
---|
1642 | IF ( ABS( v(k+1,j,i) - surf_def_h(0)%v_0(m) ) > & |
---|
1643 | ABS( v(k+1,j,i) - v(k-1,j,i) ) & |
---|
1644 | ) surf_def_h(0)%v_0(m) = v(k-1,j,i) |
---|
1645 | |
---|
1646 | ENDDO |
---|
1647 | ! |
---|
1648 | !-- Default surfaces, downward-facing |
---|
1649 | !$OMP PARALLEL DO PRIVATE(i,j,k,m) |
---|
1650 | DO m = 1, surf_def_h(1)%ns |
---|
1651 | |
---|
1652 | i = surf_def_h(1)%i(m) |
---|
1653 | j = surf_def_h(1)%j(m) |
---|
1654 | k = surf_def_h(1)%k(m) |
---|
1655 | ! |
---|
1656 | !-- Note, calculatione of u_0 and v_0 is not fully accurate, as u/v |
---|
1657 | !-- and km are not on the same grid. Actually, a further |
---|
1658 | !-- interpolation of km onto the u/v-grid is necessary. However, the |
---|
1659 | !-- effect of this error is negligible. |
---|
1660 | !-- In case of downward-facing surfaces, gradient is calculated |
---|
1661 | !-- between u_0 and u(k-1). |
---|
1662 | surf_def_h(1)%u_0(m) = u(k-1,j,i) - surf_def_h(1)%usws(m) * & |
---|
1663 | ( zu(k+1) - zu(k-1) ) / & |
---|
1664 | ( km(k,j,i) + 1.0E-20_wp ) |
---|
1665 | surf_def_h(1)%v_0(m) = v(k-1,j,i) - surf_def_h(1)%vsws(m) * & |
---|
1666 | ( zu(k+1) - zu(k-1) ) / & |
---|
1667 | ( km(k,j,i) + 1.0E-20_wp ) |
---|
1668 | |
---|
1669 | IF ( ABS( surf_def_h(1)%u_0(m) - u(k-1,j,i) ) > & |
---|
1670 | ABS( u(k+1,j,i) - u(k-1,j,i) ) & |
---|
1671 | ) surf_def_h(1)%u_0(m) = u(k+1,j,i) |
---|
1672 | |
---|
1673 | IF ( ABS( surf_def_h(1)%v_0(m) - v(k-1,j,i) ) > & |
---|
1674 | ABS( v(k+1,j,i) - v(k-1,j,i) ) & |
---|
1675 | ) surf_def_h(1)%v_0(m) = v(k+1,j,i) |
---|
1676 | |
---|
1677 | ENDDO |
---|
1678 | ! |
---|
1679 | !-- Natural surfaces, upward-facing |
---|
1680 | !$OMP PARALLEL DO PRIVATE(i,j,k,m) |
---|
1681 | DO m = 1, surf_lsm_h%ns |
---|
1682 | |
---|
1683 | i = surf_lsm_h%i(m) |
---|
1684 | j = surf_lsm_h%j(m) |
---|
1685 | k = surf_lsm_h%k(m) |
---|
1686 | ! |
---|
1687 | !-- Note, calculatione of u_0 and v_0 is not fully accurate, as u/v |
---|
1688 | !-- and km are not on the same grid. Actually, a further |
---|
1689 | !-- interpolation of km onto the u/v-grid is necessary. However, the |
---|
1690 | !-- effect of this error is negligible. |
---|
1691 | surf_lsm_h%u_0(m) = u(k+1,j,i) + surf_lsm_h%usws(m) * & |
---|
1692 | ( zu(k+1) - zu(k-1) ) / & |
---|
1693 | ( km(k,j,i) + 1.0E-20_wp ) |
---|
1694 | surf_lsm_h%v_0(m) = v(k+1,j,i) + surf_lsm_h%vsws(m) * & |
---|
1695 | ( zu(k+1) - zu(k-1) ) / & |
---|
1696 | ( km(k,j,i) + 1.0E-20_wp ) |
---|
1697 | |
---|
1698 | IF ( ABS( u(k+1,j,i) - surf_lsm_h%u_0(m) ) > & |
---|
1699 | ABS( u(k+1,j,i) - u(k-1,j,i) ) & |
---|
1700 | ) surf_lsm_h%u_0(m) = u(k-1,j,i) |
---|
1701 | |
---|
1702 | IF ( ABS( v(k+1,j,i) - surf_lsm_h%v_0(m) ) > & |
---|
1703 | ABS( v(k+1,j,i) - v(k-1,j,i) ) & |
---|
1704 | ) surf_lsm_h%v_0(m) = v(k-1,j,i) |
---|
1705 | |
---|
1706 | ENDDO |
---|
1707 | ! |
---|
1708 | !-- Urban surfaces, upward-facing |
---|
1709 | !$OMP PARALLEL DO PRIVATE(i,j,k,m) |
---|
1710 | DO m = 1, surf_usm_h%ns |
---|
1711 | |
---|
1712 | i = surf_usm_h%i(m) |
---|
1713 | j = surf_usm_h%j(m) |
---|
1714 | k = surf_usm_h%k(m) |
---|
1715 | ! |
---|
1716 | !-- Note, calculatione of u_0 and v_0 is not fully accurate, as u/v |
---|
1717 | !-- and km are not on the same grid. Actually, a further |
---|
1718 | !-- interpolation of km onto the u/v-grid is necessary. However, the |
---|
1719 | !-- effect of this error is negligible. |
---|
1720 | surf_usm_h%u_0(m) = u(k+1,j,i) + surf_usm_h%usws(m) * & |
---|
1721 | ( zu(k+1) - zu(k-1) ) / & |
---|
1722 | ( km(k,j,i) + 1.0E-20_wp ) |
---|
1723 | surf_usm_h%v_0(m) = v(k+1,j,i) + surf_usm_h%vsws(m) * & |
---|
1724 | ( zu(k+1) - zu(k-1) ) / & |
---|
1725 | ( km(k,j,i) + 1.0E-20_wp ) |
---|
1726 | |
---|
1727 | IF ( ABS( u(k+1,j,i) - surf_usm_h%u_0(m) ) > & |
---|
1728 | ABS( u(k+1,j,i) - u(k-1,j,i) ) & |
---|
1729 | ) surf_usm_h%u_0(m) = u(k-1,j,i) |
---|
1730 | |
---|
1731 | IF ( ABS( v(k+1,j,i) - surf_usm_h%v_0(m) ) > & |
---|
1732 | ABS( v(k+1,j,i) - v(k-1,j,i) ) & |
---|
1733 | ) surf_usm_h%v_0(m) = v(k-1,j,i) |
---|
1734 | |
---|
1735 | ENDDO |
---|
1736 | |
---|
1737 | ENDIF |
---|
1738 | |
---|
1739 | END SUBROUTINE production_e_init |
---|
1740 | |
---|
1741 | END MODULE production_e_mod |
---|