1 | !> @file production_e.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: production_e.f90 2032 2016-10-21 15:13:51Z gronemeier $ |
---|
27 | ! |
---|
28 | ! 2031 2016-10-21 15:11:58Z knoop |
---|
29 | ! renamed variable rho to rho_ocean |
---|
30 | ! |
---|
31 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
32 | ! Forced header and separation lines into 80 columns |
---|
33 | ! |
---|
34 | ! 1873 2016-04-18 14:50:06Z maronga |
---|
35 | ! Module renamed (removed _mod) |
---|
36 | ! |
---|
37 | ! |
---|
38 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
39 | ! Module renamed |
---|
40 | ! |
---|
41 | ! |
---|
42 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
43 | ! Renamed prandtl_layer to constant_flux_layer. |
---|
44 | ! |
---|
45 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
46 | ! Code annotations made doxygen readable |
---|
47 | ! |
---|
48 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
49 | ! nzb_s_outer removed from acc-present-list |
---|
50 | ! |
---|
51 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
52 | ! REAL constants provided with KIND-attribute |
---|
53 | ! |
---|
54 | ! 1342 2014-03-26 17:04:47Z kanani |
---|
55 | ! REAL constants defined as wp-kind |
---|
56 | ! |
---|
57 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
58 | ! ONLY-attribute added to USE-statements, |
---|
59 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
60 | ! kinds are defined in new module kinds, |
---|
61 | ! old module precision_kind is removed, |
---|
62 | ! revision history before 2012 removed, |
---|
63 | ! comment fields (!:) to be used for variable explanations added to |
---|
64 | ! all variable declaration statements |
---|
65 | ! |
---|
66 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
67 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
68 | ! the FORTRAN declaration statement |
---|
69 | ! |
---|
70 | ! 1179 2013-06-14 05:57:58Z raasch |
---|
71 | ! use_reference renamed use_single_reference_value |
---|
72 | ! |
---|
73 | ! 1128 2013-04-12 06:19:32Z raasch |
---|
74 | ! loop index bounds in accelerator version replaced by i_left, i_right, j_south, |
---|
75 | ! j_north |
---|
76 | ! |
---|
77 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
78 | ! code put under GPL (PALM 3.9) |
---|
79 | ! |
---|
80 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
81 | ! accelerator version (*_acc) added |
---|
82 | ! |
---|
83 | ! 1007 2012-09-19 14:30:36Z franke |
---|
84 | ! Bugfix: calculation of buoyancy production has to consider the liquid water |
---|
85 | ! mixing ratio in case of cloud droplets |
---|
86 | ! |
---|
87 | ! 940 2012-07-09 14:31:00Z raasch |
---|
88 | ! TKE production by buoyancy can be switched off in case of runs with pure |
---|
89 | ! neutral stratification |
---|
90 | ! |
---|
91 | ! Revision 1.1 1997/09/19 07:45:35 raasch |
---|
92 | ! Initial revision |
---|
93 | ! |
---|
94 | ! |
---|
95 | ! Description: |
---|
96 | ! ------------ |
---|
97 | !> Production terms (shear + buoyancy) of the TKE. |
---|
98 | !> @warning The case with constant_flux_layer = F and use_surface_fluxes = T is |
---|
99 | !> not considered well! |
---|
100 | !------------------------------------------------------------------------------! |
---|
101 | MODULE production_e_mod |
---|
102 | |
---|
103 | |
---|
104 | USE wall_fluxes_mod, & |
---|
105 | ONLY: wall_fluxes_e, wall_fluxes_e_acc |
---|
106 | |
---|
107 | USE kinds |
---|
108 | |
---|
109 | PRIVATE |
---|
110 | PUBLIC production_e, production_e_acc, production_e_init |
---|
111 | |
---|
112 | LOGICAL, SAVE :: first_call = .TRUE. !< |
---|
113 | |
---|
114 | REAL(wp), DIMENSION(:,:), ALLOCATABLE, SAVE :: u_0 !< |
---|
115 | REAL(wp), DIMENSION(:,:), ALLOCATABLE, SAVE :: v_0 !< |
---|
116 | |
---|
117 | INTERFACE production_e |
---|
118 | MODULE PROCEDURE production_e |
---|
119 | MODULE PROCEDURE production_e_ij |
---|
120 | END INTERFACE production_e |
---|
121 | |
---|
122 | INTERFACE production_e_acc |
---|
123 | MODULE PROCEDURE production_e_acc |
---|
124 | END INTERFACE production_e_acc |
---|
125 | |
---|
126 | INTERFACE production_e_init |
---|
127 | MODULE PROCEDURE production_e_init |
---|
128 | END INTERFACE production_e_init |
---|
129 | |
---|
130 | CONTAINS |
---|
131 | |
---|
132 | |
---|
133 | !------------------------------------------------------------------------------! |
---|
134 | ! Description: |
---|
135 | ! ------------ |
---|
136 | !> Call for all grid points |
---|
137 | !------------------------------------------------------------------------------! |
---|
138 | SUBROUTINE production_e |
---|
139 | |
---|
140 | USE arrays_3d, & |
---|
141 | ONLY: ddzw, dd2zu, kh, km, pt, q, ql, qsws, qswst, rho_ocean, shf, & |
---|
142 | tend, tswst, u, v, vpt, w |
---|
143 | |
---|
144 | USE cloud_parameters, & |
---|
145 | ONLY: l_d_cp, l_d_r, pt_d_t, t_d_pt |
---|
146 | |
---|
147 | USE control_parameters, & |
---|
148 | ONLY: cloud_droplets, cloud_physics, constant_flux_layer, g, & |
---|
149 | humidity, kappa, neutral, ocean, pt_reference, & |
---|
150 | rho_reference, use_single_reference_value, & |
---|
151 | use_surface_fluxes, use_top_fluxes |
---|
152 | |
---|
153 | USE grid_variables, & |
---|
154 | ONLY: ddx, dx, ddy, dy, wall_e_x, wall_e_y |
---|
155 | |
---|
156 | USE indices, & |
---|
157 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_diff_s_inner, & |
---|
158 | nzb_diff_s_outer, nzb_s_inner, nzt, nzt_diff |
---|
159 | |
---|
160 | IMPLICIT NONE |
---|
161 | |
---|
162 | INTEGER(iwp) :: i !< |
---|
163 | INTEGER(iwp) :: j !< |
---|
164 | INTEGER(iwp) :: k !< |
---|
165 | |
---|
166 | REAL(wp) :: def !< |
---|
167 | REAL(wp) :: dudx !< |
---|
168 | REAL(wp) :: dudy !< |
---|
169 | REAL(wp) :: dudz !< |
---|
170 | REAL(wp) :: dvdx !< |
---|
171 | REAL(wp) :: dvdy !< |
---|
172 | REAL(wp) :: dvdz !< |
---|
173 | REAL(wp) :: dwdx !< |
---|
174 | REAL(wp) :: dwdy !< |
---|
175 | REAL(wp) :: dwdz !< |
---|
176 | REAL(wp) :: k1 !< |
---|
177 | REAL(wp) :: k2 !< |
---|
178 | REAL(wp) :: km_neutral !< |
---|
179 | REAL(wp) :: theta !< |
---|
180 | REAL(wp) :: temp !< |
---|
181 | |
---|
182 | ! REAL(wp), DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: usvs, vsus, wsus, wsvs |
---|
183 | REAL(wp), DIMENSION(nzb:nzt+1) :: usvs !< |
---|
184 | REAL(wp), DIMENSION(nzb:nzt+1) :: vsus !< |
---|
185 | REAL(wp), DIMENSION(nzb:nzt+1) :: wsus !< |
---|
186 | REAL(wp), DIMENSION(nzb:nzt+1) :: wsvs !< |
---|
187 | |
---|
188 | ! |
---|
189 | !-- First calculate horizontal momentum flux u'v', w'v', v'u', w'u' at |
---|
190 | !-- vertical walls, if neccessary |
---|
191 | !-- So far, results are slightly different from the ij-Version. |
---|
192 | !-- Therefore, ij-Version is called further below within the ij-loops. |
---|
193 | ! IF ( topography /= 'flat' ) THEN |
---|
194 | ! CALL wall_fluxes_e( usvs, 1.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, wall_e_y ) |
---|
195 | ! CALL wall_fluxes_e( wsvs, 0.0_wp, 0.0_wp, 1.0_wp, 0.0_wp, wall_e_y ) |
---|
196 | ! CALL wall_fluxes_e( vsus, 0.0_wp, 1.0_wp, 0.0_wp, 0.0_wp, wall_e_x ) |
---|
197 | ! CALL wall_fluxes_e( wsus, 0.0_wp, 0.0_wp, 0.0_wp, 1.0_wp, wall_e_x ) |
---|
198 | ! ENDIF |
---|
199 | |
---|
200 | |
---|
201 | DO i = nxl, nxr |
---|
202 | |
---|
203 | ! |
---|
204 | !-- Calculate TKE production by shear |
---|
205 | DO j = nys, nyn |
---|
206 | DO k = nzb_diff_s_outer(j,i), nzt |
---|
207 | |
---|
208 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
209 | dudy = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
210 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
211 | dudz = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
212 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
213 | |
---|
214 | dvdx = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
215 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
216 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
217 | dvdz = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
218 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
219 | |
---|
220 | dwdx = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
221 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
222 | dwdy = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
223 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
224 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
225 | |
---|
226 | def = 2.0_wp * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
227 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
228 | dvdz**2 + 2.0_wp * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
229 | |
---|
230 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
231 | |
---|
232 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
233 | |
---|
234 | ENDDO |
---|
235 | ENDDO |
---|
236 | |
---|
237 | IF ( constant_flux_layer ) THEN |
---|
238 | |
---|
239 | ! |
---|
240 | !-- Position beneath wall |
---|
241 | !-- (2) - Will allways be executed. |
---|
242 | !-- 'bottom and wall: use u_0,v_0 and wall functions' |
---|
243 | DO j = nys, nyn |
---|
244 | |
---|
245 | IF ( ( wall_e_x(j,i) /= 0.0_wp ) .OR. ( wall_e_y(j,i) /= 0.0_wp ) ) & |
---|
246 | THEN |
---|
247 | |
---|
248 | k = nzb_diff_s_inner(j,i) - 1 |
---|
249 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
250 | dudz = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
251 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
252 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
253 | dvdz = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
254 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
255 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
256 | |
---|
257 | IF ( wall_e_y(j,i) /= 0.0_wp ) THEN |
---|
258 | ! |
---|
259 | !-- Inconsistency removed: as the thermal stratification is |
---|
260 | !-- not taken into account for the evaluation of the wall |
---|
261 | !-- fluxes at vertical walls, the eddy viscosity km must not |
---|
262 | !-- be used for the evaluation of the velocity gradients dudy |
---|
263 | !-- and dwdy |
---|
264 | !-- Note: The validity of the new method has not yet been |
---|
265 | !-- shown, as so far no suitable data for a validation |
---|
266 | !-- has been available |
---|
267 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
268 | usvs, 1.0_wp, 0.0_wp, 0.0_wp, 0.0_wp ) |
---|
269 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
270 | wsvs, 0.0_wp, 0.0_wp, 1.0_wp, 0.0_wp ) |
---|
271 | km_neutral = kappa * ( usvs(k)**2 + wsvs(k)**2 )**0.25_wp * & |
---|
272 | 0.5_wp * dy |
---|
273 | IF ( km_neutral > 0.0_wp ) THEN |
---|
274 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
275 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
276 | ELSE |
---|
277 | dudy = 0.0_wp |
---|
278 | dwdy = 0.0_wp |
---|
279 | ENDIF |
---|
280 | ELSE |
---|
281 | dudy = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
282 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
283 | dwdy = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
284 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
285 | ENDIF |
---|
286 | |
---|
287 | IF ( wall_e_x(j,i) /= 0.0_wp ) THEN |
---|
288 | ! |
---|
289 | !-- Inconsistency removed: as the thermal stratification is |
---|
290 | !-- not taken into account for the evaluation of the wall |
---|
291 | !-- fluxes at vertical walls, the eddy viscosity km must not |
---|
292 | !-- be used for the evaluation of the velocity gradients dvdx |
---|
293 | !-- and dwdx |
---|
294 | !-- Note: The validity of the new method has not yet been |
---|
295 | !-- shown, as so far no suitable data for a validation |
---|
296 | !-- has been available |
---|
297 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
298 | vsus, 0.0_wp, 1.0_wp, 0.0_wp, 0.0_wp ) |
---|
299 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
300 | wsus, 0.0_wp, 0.0_wp, 0.0_wp, 1.0_wp ) |
---|
301 | km_neutral = kappa * ( vsus(k)**2 + wsus(k)**2 )**0.25_wp * & |
---|
302 | 0.5_wp * dx |
---|
303 | IF ( km_neutral > 0.0_wp ) THEN |
---|
304 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
305 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
306 | ELSE |
---|
307 | dvdx = 0.0_wp |
---|
308 | dwdx = 0.0_wp |
---|
309 | ENDIF |
---|
310 | ELSE |
---|
311 | dvdx = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
312 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
313 | dwdx = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
314 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
315 | ENDIF |
---|
316 | |
---|
317 | def = 2.0_wp * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
318 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
319 | dvdz**2 + 2.0_wp * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
320 | |
---|
321 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
322 | |
---|
323 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
324 | |
---|
325 | |
---|
326 | ! |
---|
327 | !-- (3) - will be executed only, if there is at least one level |
---|
328 | !-- between (2) and (4), i.e. the topography must have a |
---|
329 | !-- minimum height of 2 dz. Wall fluxes for this case have |
---|
330 | !-- already been calculated for (2). |
---|
331 | !-- 'wall only: use wall functions' |
---|
332 | |
---|
333 | DO k = nzb_diff_s_inner(j,i), nzb_diff_s_outer(j,i)-2 |
---|
334 | |
---|
335 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
336 | dudz = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
337 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
338 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
339 | dvdz = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
340 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
341 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
342 | |
---|
343 | IF ( wall_e_y(j,i) /= 0.0_wp ) THEN |
---|
344 | ! |
---|
345 | !-- Inconsistency removed: as the thermal stratification |
---|
346 | !-- is not taken into account for the evaluation of the |
---|
347 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
348 | !-- must not be used for the evaluation of the velocity |
---|
349 | !-- gradients dudy and dwdy |
---|
350 | !-- Note: The validity of the new method has not yet |
---|
351 | !-- been shown, as so far no suitable data for a |
---|
352 | !-- validation has been available |
---|
353 | km_neutral = kappa * ( usvs(k)**2 + & |
---|
354 | wsvs(k)**2 )**0.25_wp * 0.5_wp * dy |
---|
355 | IF ( km_neutral > 0.0_wp ) THEN |
---|
356 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
357 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
358 | ELSE |
---|
359 | dudy = 0.0_wp |
---|
360 | dwdy = 0.0_wp |
---|
361 | ENDIF |
---|
362 | ELSE |
---|
363 | dudy = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
364 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
365 | dwdy = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
366 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
367 | ENDIF |
---|
368 | |
---|
369 | IF ( wall_e_x(j,i) /= 0.0_wp ) THEN |
---|
370 | ! |
---|
371 | !-- Inconsistency removed: as the thermal stratification |
---|
372 | !-- is not taken into account for the evaluation of the |
---|
373 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
374 | !-- must not be used for the evaluation of the velocity |
---|
375 | !-- gradients dvdx and dwdx |
---|
376 | !-- Note: The validity of the new method has not yet |
---|
377 | !-- been shown, as so far no suitable data for a |
---|
378 | !-- validation has been available |
---|
379 | km_neutral = kappa * ( vsus(k)**2 + & |
---|
380 | wsus(k)**2 )**0.25_wp * 0.5_wp * dx |
---|
381 | IF ( km_neutral > 0.0_wp ) THEN |
---|
382 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
383 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
384 | ELSE |
---|
385 | dvdx = 0.0_wp |
---|
386 | dwdx = 0.0_wp |
---|
387 | ENDIF |
---|
388 | ELSE |
---|
389 | dvdx = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
390 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
391 | dwdx = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
392 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
393 | ENDIF |
---|
394 | |
---|
395 | def = 2.0_wp * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
396 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
397 | dvdz**2 + 2.0_wp * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
398 | |
---|
399 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
400 | |
---|
401 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
402 | |
---|
403 | ENDDO |
---|
404 | |
---|
405 | ENDIF |
---|
406 | |
---|
407 | ENDDO |
---|
408 | |
---|
409 | ! |
---|
410 | !-- (4) - will allways be executed. |
---|
411 | !-- 'special case: free atmosphere' (as for case (0)) |
---|
412 | DO j = nys, nyn |
---|
413 | |
---|
414 | IF ( ( wall_e_x(j,i) /= 0.0_wp ) .OR. ( wall_e_y(j,i) /= 0.0_wp ) ) & |
---|
415 | THEN |
---|
416 | |
---|
417 | k = nzb_diff_s_outer(j,i)-1 |
---|
418 | |
---|
419 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
420 | dudy = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
421 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
422 | dudz = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
423 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
424 | |
---|
425 | dvdx = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
426 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
427 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
428 | dvdz = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
429 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
430 | |
---|
431 | dwdx = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
432 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
433 | dwdy = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
434 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
435 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
436 | |
---|
437 | def = 2.0_wp * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
438 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
439 | dvdz**2 + 2.0_wp * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
440 | |
---|
441 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
442 | |
---|
443 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
444 | |
---|
445 | ENDIF |
---|
446 | |
---|
447 | ENDDO |
---|
448 | |
---|
449 | ! |
---|
450 | !-- Position without adjacent wall |
---|
451 | !-- (1) - will allways be executed. |
---|
452 | !-- 'bottom only: use u_0,v_0' |
---|
453 | DO j = nys, nyn |
---|
454 | |
---|
455 | IF ( ( wall_e_x(j,i) == 0.0_wp ) .AND. ( wall_e_y(j,i) == 0.0_wp ) ) & |
---|
456 | THEN |
---|
457 | |
---|
458 | k = nzb_diff_s_inner(j,i)-1 |
---|
459 | |
---|
460 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
461 | dudy = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
462 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
463 | dudz = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
464 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
465 | |
---|
466 | dvdx = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
467 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
468 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
469 | dvdz = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
470 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
471 | |
---|
472 | dwdx = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
473 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
474 | dwdy = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
475 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
476 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
477 | |
---|
478 | def = 2.0_wp * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
479 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
480 | dvdz**2 + 2.0_wp * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
481 | |
---|
482 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
483 | |
---|
484 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
485 | |
---|
486 | ENDIF |
---|
487 | |
---|
488 | ENDDO |
---|
489 | |
---|
490 | ELSEIF ( use_surface_fluxes ) THEN |
---|
491 | |
---|
492 | DO j = nys, nyn |
---|
493 | |
---|
494 | k = nzb_diff_s_outer(j,i)-1 |
---|
495 | |
---|
496 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
497 | dudy = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
498 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
499 | dudz = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
500 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
501 | |
---|
502 | dvdx = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
503 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
504 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
505 | dvdz = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
506 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
507 | |
---|
508 | dwdx = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
509 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
510 | dwdy = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
511 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
512 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
513 | |
---|
514 | def = 2.0_wp * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
515 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
516 | dvdz**2 + 2.0_wp * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
517 | |
---|
518 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
519 | |
---|
520 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
521 | |
---|
522 | ENDDO |
---|
523 | |
---|
524 | ENDIF |
---|
525 | |
---|
526 | ! |
---|
527 | !-- If required, calculate TKE production by buoyancy |
---|
528 | IF ( .NOT. neutral ) THEN |
---|
529 | |
---|
530 | IF ( .NOT. humidity ) THEN |
---|
531 | |
---|
532 | IF ( use_single_reference_value ) THEN |
---|
533 | |
---|
534 | IF ( ocean ) THEN |
---|
535 | ! |
---|
536 | !-- So far in the ocean no special treatment of density flux |
---|
537 | !-- in the bottom and top surface layer |
---|
538 | DO j = nys, nyn |
---|
539 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
540 | tend(k,j,i) = tend(k,j,i) + & |
---|
541 | kh(k,j,i) * g / rho_reference * & |
---|
542 | ( rho_ocean(k+1,j,i) - rho_ocean(k-1,j,i) ) * & |
---|
543 | dd2zu(k) |
---|
544 | ENDDO |
---|
545 | ENDDO |
---|
546 | |
---|
547 | ELSE |
---|
548 | |
---|
549 | DO j = nys, nyn |
---|
550 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
551 | tend(k,j,i) = tend(k,j,i) - & |
---|
552 | kh(k,j,i) * g / pt_reference * & |
---|
553 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * & |
---|
554 | dd2zu(k) |
---|
555 | ENDDO |
---|
556 | |
---|
557 | IF ( use_surface_fluxes ) THEN |
---|
558 | k = nzb_diff_s_inner(j,i)-1 |
---|
559 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
560 | shf(j,i) |
---|
561 | ENDIF |
---|
562 | |
---|
563 | IF ( use_top_fluxes ) THEN |
---|
564 | k = nzt |
---|
565 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
566 | tswst(j,i) |
---|
567 | ENDIF |
---|
568 | ENDDO |
---|
569 | |
---|
570 | ENDIF |
---|
571 | |
---|
572 | ELSE |
---|
573 | |
---|
574 | IF ( ocean ) THEN |
---|
575 | ! |
---|
576 | !-- So far in the ocean no special treatment of density flux |
---|
577 | !-- in the bottom and top surface layer |
---|
578 | DO j = nys, nyn |
---|
579 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
580 | tend(k,j,i) = tend(k,j,i) + & |
---|
581 | kh(k,j,i) * g / rho_ocean(k,j,i) * & |
---|
582 | ( rho_ocean(k+1,j,i) - rho_ocean(k-1,j,i) ) * & |
---|
583 | dd2zu(k) |
---|
584 | ENDDO |
---|
585 | ENDDO |
---|
586 | |
---|
587 | ELSE |
---|
588 | |
---|
589 | DO j = nys, nyn |
---|
590 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
591 | tend(k,j,i) = tend(k,j,i) - & |
---|
592 | kh(k,j,i) * g / pt(k,j,i) * & |
---|
593 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * & |
---|
594 | dd2zu(k) |
---|
595 | ENDDO |
---|
596 | |
---|
597 | IF ( use_surface_fluxes ) THEN |
---|
598 | k = nzb_diff_s_inner(j,i)-1 |
---|
599 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * & |
---|
600 | shf(j,i) |
---|
601 | ENDIF |
---|
602 | |
---|
603 | IF ( use_top_fluxes ) THEN |
---|
604 | k = nzt |
---|
605 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * & |
---|
606 | tswst(j,i) |
---|
607 | ENDIF |
---|
608 | ENDDO |
---|
609 | |
---|
610 | ENDIF |
---|
611 | |
---|
612 | ENDIF |
---|
613 | |
---|
614 | ELSE |
---|
615 | |
---|
616 | DO j = nys, nyn |
---|
617 | |
---|
618 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
619 | |
---|
620 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
621 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
622 | k2 = 0.61_wp * pt(k,j,i) |
---|
623 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * & |
---|
624 | g / vpt(k,j,i) * & |
---|
625 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
626 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
627 | ) * dd2zu(k) |
---|
628 | ELSE IF ( cloud_physics ) THEN |
---|
629 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
630 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
631 | k2 = 0.61_wp * pt(k,j,i) |
---|
632 | ELSE |
---|
633 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
634 | temp = theta * t_d_pt(k) |
---|
635 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
636 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
637 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
638 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
639 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
640 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
641 | ENDIF |
---|
642 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * & |
---|
643 | g / vpt(k,j,i) * & |
---|
644 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
645 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
646 | ) * dd2zu(k) |
---|
647 | ELSE IF ( cloud_droplets ) THEN |
---|
648 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
649 | k2 = 0.61_wp * pt(k,j,i) |
---|
650 | tend(k,j,i) = tend(k,j,i) - & |
---|
651 | kh(k,j,i) * g / vpt(k,j,i) * & |
---|
652 | ( k1 * ( pt(k+1,j,i)- pt(k-1,j,i) ) + & |
---|
653 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) - & |
---|
654 | pt(k,j,i) * ( ql(k+1,j,i) - & |
---|
655 | ql(k-1,j,i) ) ) * dd2zu(k) |
---|
656 | ENDIF |
---|
657 | |
---|
658 | ENDDO |
---|
659 | |
---|
660 | ENDDO |
---|
661 | |
---|
662 | IF ( use_surface_fluxes ) THEN |
---|
663 | |
---|
664 | DO j = nys, nyn |
---|
665 | |
---|
666 | k = nzb_diff_s_inner(j,i)-1 |
---|
667 | |
---|
668 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
669 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
670 | k2 = 0.61_wp * pt(k,j,i) |
---|
671 | ELSE IF ( cloud_physics ) THEN |
---|
672 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
673 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
674 | k2 = 0.61_wp * pt(k,j,i) |
---|
675 | ELSE |
---|
676 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
677 | temp = theta * t_d_pt(k) |
---|
678 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
679 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
680 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
681 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
682 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
683 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
684 | ENDIF |
---|
685 | ELSE IF ( cloud_droplets ) THEN |
---|
686 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
687 | k2 = 0.61_wp * pt(k,j,i) |
---|
688 | ENDIF |
---|
689 | |
---|
690 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
691 | ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
692 | ENDDO |
---|
693 | |
---|
694 | ENDIF |
---|
695 | |
---|
696 | IF ( use_top_fluxes ) THEN |
---|
697 | |
---|
698 | DO j = nys, nyn |
---|
699 | |
---|
700 | k = nzt |
---|
701 | |
---|
702 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
703 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
704 | k2 = 0.61_wp * pt(k,j,i) |
---|
705 | ELSE IF ( cloud_physics ) THEN |
---|
706 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
707 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
708 | k2 = 0.61_wp * pt(k,j,i) |
---|
709 | ELSE |
---|
710 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
711 | temp = theta * t_d_pt(k) |
---|
712 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
713 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
714 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
715 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
716 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
717 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
718 | ENDIF |
---|
719 | ELSE IF ( cloud_droplets ) THEN |
---|
720 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
721 | k2 = 0.61_wp * pt(k,j,i) |
---|
722 | ENDIF |
---|
723 | |
---|
724 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
725 | ( k1* tswst(j,i) + k2 * qswst(j,i) ) |
---|
726 | ENDDO |
---|
727 | |
---|
728 | ENDIF |
---|
729 | |
---|
730 | ENDIF |
---|
731 | |
---|
732 | ENDIF |
---|
733 | |
---|
734 | ENDDO |
---|
735 | |
---|
736 | END SUBROUTINE production_e |
---|
737 | |
---|
738 | |
---|
739 | !------------------------------------------------------------------------------! |
---|
740 | ! Description: |
---|
741 | ! ------------ |
---|
742 | !> Call for all grid points - accelerator version |
---|
743 | !------------------------------------------------------------------------------! |
---|
744 | SUBROUTINE production_e_acc |
---|
745 | |
---|
746 | USE arrays_3d, & |
---|
747 | ONLY: ddzw, dd2zu, kh, km, pt, q, ql, qsws, qswst, rho_ocean, shf, & |
---|
748 | tend, tswst, u, v, vpt, w |
---|
749 | |
---|
750 | USE cloud_parameters, & |
---|
751 | ONLY: l_d_cp, l_d_r, pt_d_t, t_d_pt |
---|
752 | |
---|
753 | USE control_parameters, & |
---|
754 | ONLY: cloud_droplets, cloud_physics, constant_flux_layer, g, & |
---|
755 | humidity, kappa, neutral, ocean, pt_reference, & |
---|
756 | rho_reference, topography, use_single_reference_value, & |
---|
757 | use_surface_fluxes, use_top_fluxes |
---|
758 | |
---|
759 | USE grid_variables, & |
---|
760 | ONLY: ddx, dx, ddy, dy, wall_e_x, wall_e_y |
---|
761 | |
---|
762 | USE indices, & |
---|
763 | ONLY: i_left, i_right, j_north, j_south, nxl, nxr, nys, nyn, nzb, & |
---|
764 | nzb_diff_s_inner, nzb_diff_s_outer, nzb_s_inner, nzt, & |
---|
765 | nzt_diff |
---|
766 | |
---|
767 | IMPLICIT NONE |
---|
768 | |
---|
769 | INTEGER(iwp) :: i !< |
---|
770 | INTEGER(iwp) :: j !< |
---|
771 | INTEGER(iwp) :: k !< |
---|
772 | |
---|
773 | REAL(wp) :: def !< |
---|
774 | REAL(wp) :: dudx !< |
---|
775 | REAL(wp) :: dudy !< |
---|
776 | REAL(wp) :: dudz !< |
---|
777 | REAL(wp) :: dvdx !< |
---|
778 | REAL(wp) :: dvdy !< |
---|
779 | REAL(wp) :: dvdz !< |
---|
780 | REAL(wp) :: dwdx !< |
---|
781 | REAL(wp) :: dwdy !< |
---|
782 | REAL(wp) :: dwdz !< |
---|
783 | REAL(wp) :: k1 !< |
---|
784 | REAL(wp) :: k2 !< |
---|
785 | REAL(wp) :: km_neutral !< |
---|
786 | REAL(wp) :: theta !< |
---|
787 | REAL(wp) :: temp !< |
---|
788 | |
---|
789 | REAL(wp), DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: usvs !< |
---|
790 | REAL(wp), DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: vsus !< |
---|
791 | REAL(wp), DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: wsus !< |
---|
792 | REAL(wp), DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: wsvs !< |
---|
793 | !$acc declare create ( usvs, vsus, wsus, wsvs ) |
---|
794 | |
---|
795 | ! |
---|
796 | !-- First calculate horizontal momentum flux u'v', w'v', v'u', w'u' at |
---|
797 | !-- vertical walls, if neccessary |
---|
798 | !-- CAUTION: results are slightly different from the ij-version!! |
---|
799 | !-- ij-version should be called further below within the ij-loops!! |
---|
800 | IF ( topography /= 'flat' ) THEN |
---|
801 | CALL wall_fluxes_e_acc( usvs, 1.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, wall_e_y ) |
---|
802 | CALL wall_fluxes_e_acc( wsvs, 0.0_wp, 0.0_wp, 1.0_wp, 0.0_wp, wall_e_y ) |
---|
803 | CALL wall_fluxes_e_acc( vsus, 0.0_wp, 1.0_wp, 0.0_wp, 0.0_wp, wall_e_x ) |
---|
804 | CALL wall_fluxes_e_acc( wsus, 0.0_wp, 0.0_wp, 0.0_wp, 1.0_wp, wall_e_x ) |
---|
805 | ENDIF |
---|
806 | |
---|
807 | |
---|
808 | ! |
---|
809 | !-- Calculate TKE production by shear |
---|
810 | !$acc kernels present( ddzw, dd2zu, kh, km, nzb_diff_s_inner, nzb_diff_s_outer ) & |
---|
811 | !$acc present( nzb_s_inner, pt, q, ql, qsws, qswst, rho_ocean ) & |
---|
812 | !$acc present( shf, tend, tswst, u, v, vpt, w, wall_e_x, wall_e_y ) & |
---|
813 | !$acc copyin( u_0, v_0 ) |
---|
814 | DO i = i_left, i_right |
---|
815 | DO j = j_south, j_north |
---|
816 | DO k = 1, nzt |
---|
817 | |
---|
818 | IF ( k >= nzb_diff_s_outer(j,i) ) THEN |
---|
819 | |
---|
820 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
821 | dudy = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
822 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
823 | dudz = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
824 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
825 | |
---|
826 | dvdx = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
827 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
828 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
829 | dvdz = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
830 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
831 | |
---|
832 | dwdx = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
833 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
834 | dwdy = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
835 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
836 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
837 | |
---|
838 | def = 2.0_wp * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
839 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
840 | dvdz**2 + 2.0_wp * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
841 | |
---|
842 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
843 | |
---|
844 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
845 | |
---|
846 | ENDIF |
---|
847 | |
---|
848 | ENDDO |
---|
849 | ENDDO |
---|
850 | ENDDO |
---|
851 | |
---|
852 | IF ( constant_flux_layer ) THEN |
---|
853 | |
---|
854 | ! |
---|
855 | !-- Position beneath wall |
---|
856 | !-- (2) - Will allways be executed. |
---|
857 | !-- 'bottom and wall: use u_0,v_0 and wall functions' |
---|
858 | DO i = i_left, i_right |
---|
859 | DO j = j_south, j_north |
---|
860 | DO k = 1, nzt |
---|
861 | |
---|
862 | IF ( ( wall_e_x(j,i) /= 0.0_wp ).OR.( wall_e_y(j,i) /= 0.0_wp ) ) & |
---|
863 | THEN |
---|
864 | |
---|
865 | IF ( k == nzb_diff_s_inner(j,i) - 1 ) THEN |
---|
866 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
867 | dudz = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
868 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
869 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
870 | dvdz = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
871 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
872 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
873 | |
---|
874 | IF ( wall_e_y(j,i) /= 0.0_wp ) THEN |
---|
875 | ! |
---|
876 | !-- Inconsistency removed: as the thermal stratification is |
---|
877 | !-- not taken into account for the evaluation of the wall |
---|
878 | !-- fluxes at vertical walls, the eddy viscosity km must not |
---|
879 | !-- be used for the evaluation of the velocity gradients dudy |
---|
880 | !-- and dwdy |
---|
881 | !-- Note: The validity of the new method has not yet been |
---|
882 | !-- shown, as so far no suitable data for a validation |
---|
883 | !-- has been available |
---|
884 | ! CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
885 | ! usvs, 1.0_wp, 0.0_wp, 0.0_wp, 0.0_wp ) |
---|
886 | ! CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
887 | ! wsvs, 0.0_wp, 0.0_wp, 1.0_wp, 0.0_wp ) |
---|
888 | km_neutral = kappa * & |
---|
889 | ( usvs(k,j,i)**2 + wsvs(k,j,i)**2 )**0.25_wp * & |
---|
890 | 0.5_wp * dy |
---|
891 | IF ( km_neutral > 0.0_wp ) THEN |
---|
892 | dudy = - wall_e_y(j,i) * usvs(k,j,i) / km_neutral |
---|
893 | dwdy = - wall_e_y(j,i) * wsvs(k,j,i) / km_neutral |
---|
894 | ELSE |
---|
895 | dudy = 0.0_wp |
---|
896 | dwdy = 0.0_wp |
---|
897 | ENDIF |
---|
898 | ELSE |
---|
899 | dudy = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
900 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
901 | dwdy = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
902 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
903 | ENDIF |
---|
904 | |
---|
905 | IF ( wall_e_x(j,i) /= 0.0_wp ) THEN |
---|
906 | ! |
---|
907 | !-- Inconsistency removed: as the thermal stratification is |
---|
908 | !-- not taken into account for the evaluation of the wall |
---|
909 | !-- fluxes at vertical walls, the eddy viscosity km must not |
---|
910 | !-- be used for the evaluation of the velocity gradients dvdx |
---|
911 | !-- and dwdx |
---|
912 | !-- Note: The validity of the new method has not yet been |
---|
913 | !-- shown, as so far no suitable data for a validation |
---|
914 | !-- has been available |
---|
915 | ! CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
916 | ! vsus, 0.0_wp, 1.0_wp, 0.0_wp, 0.0_wp ) |
---|
917 | ! CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
918 | ! wsus, 0.0_wp, 0.0_wp, 0.0_wp, 1.0_wp ) |
---|
919 | km_neutral = kappa * & |
---|
920 | ( vsus(k,j,i)**2 + wsus(k,j,i)**2 )**0.25_wp * & |
---|
921 | 0.5_wp * dx |
---|
922 | IF ( km_neutral > 0.0_wp ) THEN |
---|
923 | dvdx = - wall_e_x(j,i) * vsus(k,j,i) / km_neutral |
---|
924 | dwdx = - wall_e_x(j,i) * wsus(k,j,i) / km_neutral |
---|
925 | ELSE |
---|
926 | dvdx = 0.0_wp |
---|
927 | dwdx = 0.0_wp |
---|
928 | ENDIF |
---|
929 | ELSE |
---|
930 | dvdx = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
931 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
932 | dwdx = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
933 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
934 | ENDIF |
---|
935 | |
---|
936 | def = 2.0_wp * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
937 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
938 | dvdz**2 + 2.0_wp * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
939 | |
---|
940 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
941 | |
---|
942 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
943 | |
---|
944 | ENDIF |
---|
945 | ! |
---|
946 | !-- (3) - will be executed only, if there is at least one level |
---|
947 | !-- between (2) and (4), i.e. the topography must have a |
---|
948 | !-- minimum height of 2 dz. Wall fluxes for this case have |
---|
949 | !-- already been calculated for (2). |
---|
950 | !-- 'wall only: use wall functions' |
---|
951 | |
---|
952 | IF ( k >= nzb_diff_s_inner(j,i) .AND. & |
---|
953 | k <= nzb_diff_s_outer(j,i)-2 ) THEN |
---|
954 | |
---|
955 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
956 | dudz = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
957 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
958 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
959 | dvdz = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
960 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
961 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
962 | |
---|
963 | IF ( wall_e_y(j,i) /= 0.0_wp ) THEN |
---|
964 | ! |
---|
965 | !-- Inconsistency removed: as the thermal stratification |
---|
966 | !-- is not taken into account for the evaluation of the |
---|
967 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
968 | !-- must not be used for the evaluation of the velocity |
---|
969 | !-- gradients dudy and dwdy |
---|
970 | !-- Note: The validity of the new method has not yet |
---|
971 | !-- been shown, as so far no suitable data for a |
---|
972 | !-- validation has been available |
---|
973 | km_neutral = kappa * ( usvs(k,j,i)**2 + & |
---|
974 | wsvs(k,j,i)**2 )**0.25_wp * 0.5_wp * dy |
---|
975 | IF ( km_neutral > 0.0_wp ) THEN |
---|
976 | dudy = - wall_e_y(j,i) * usvs(k,j,i) / km_neutral |
---|
977 | dwdy = - wall_e_y(j,i) * wsvs(k,j,i) / km_neutral |
---|
978 | ELSE |
---|
979 | dudy = 0.0_wp |
---|
980 | dwdy = 0.0_wp |
---|
981 | ENDIF |
---|
982 | ELSE |
---|
983 | dudy = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
984 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
985 | dwdy = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
986 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
987 | ENDIF |
---|
988 | |
---|
989 | IF ( wall_e_x(j,i) /= 0.0_wp ) THEN |
---|
990 | ! |
---|
991 | !-- Inconsistency removed: as the thermal stratification |
---|
992 | !-- is not taken into account for the evaluation of the |
---|
993 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
994 | !-- must not be used for the evaluation of the velocity |
---|
995 | !-- gradients dvdx and dwdx |
---|
996 | !-- Note: The validity of the new method has not yet |
---|
997 | !-- been shown, as so far no suitable data for a |
---|
998 | !-- validation has been available |
---|
999 | km_neutral = kappa * ( vsus(k,j,i)**2 + & |
---|
1000 | wsus(k,j,i)**2 )**0.25_wp * 0.5_wp * dx |
---|
1001 | IF ( km_neutral > 0.0_wp ) THEN |
---|
1002 | dvdx = - wall_e_x(j,i) * vsus(k,j,i) / km_neutral |
---|
1003 | dwdx = - wall_e_x(j,i) * wsus(k,j,i) / km_neutral |
---|
1004 | ELSE |
---|
1005 | dvdx = 0.0_wp |
---|
1006 | dwdx = 0.0_wp |
---|
1007 | ENDIF |
---|
1008 | ELSE |
---|
1009 | dvdx = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
1010 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
1011 | dwdx = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
1012 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
1013 | ENDIF |
---|
1014 | |
---|
1015 | def = 2.0_wp * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
1016 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
1017 | dvdz**2 + 2.0_wp * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
1018 | |
---|
1019 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
1020 | |
---|
1021 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
1022 | |
---|
1023 | ENDIF |
---|
1024 | |
---|
1025 | ! |
---|
1026 | !-- (4) - will allways be executed. |
---|
1027 | !-- 'special case: free atmosphere' (as for case (0)) |
---|
1028 | IF ( k == nzb_diff_s_outer(j,i)-1 ) THEN |
---|
1029 | |
---|
1030 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
1031 | dudy = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
1032 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
1033 | dudz = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
1034 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
1035 | |
---|
1036 | dvdx = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
1037 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
1038 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
1039 | dvdz = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
1040 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
1041 | |
---|
1042 | dwdx = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
1043 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
1044 | dwdy = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
1045 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
1046 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
1047 | |
---|
1048 | def = 2.0_wp * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
1049 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
1050 | dvdz**2 + 2.0_wp * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
1051 | |
---|
1052 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
1053 | |
---|
1054 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
1055 | |
---|
1056 | ENDIF |
---|
1057 | |
---|
1058 | ENDIF |
---|
1059 | |
---|
1060 | ENDDO |
---|
1061 | ENDDO |
---|
1062 | ENDDO |
---|
1063 | |
---|
1064 | ! |
---|
1065 | !-- Position without adjacent wall |
---|
1066 | !-- (1) - will allways be executed. |
---|
1067 | !-- 'bottom only: use u_0,v_0' |
---|
1068 | DO i = i_left, i_right |
---|
1069 | DO j = j_south, j_north |
---|
1070 | DO k = 1, nzt |
---|
1071 | |
---|
1072 | IF ( ( wall_e_x(j,i) == 0.0_wp ) .AND. ( wall_e_y(j,i) == 0.0_wp ) ) & |
---|
1073 | THEN |
---|
1074 | |
---|
1075 | IF ( k == nzb_diff_s_inner(j,i)-1 ) THEN |
---|
1076 | |
---|
1077 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
1078 | dudy = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
1079 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
1080 | dudz = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
1081 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
1082 | |
---|
1083 | dvdx = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
1084 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
1085 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
1086 | dvdz = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
1087 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
1088 | |
---|
1089 | dwdx = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
1090 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
1091 | dwdy = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
1092 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
1093 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
1094 | |
---|
1095 | def = 2.0_wp * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
1096 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
1097 | dvdz**2 + 2.0_wp * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
1098 | |
---|
1099 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
1100 | |
---|
1101 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
1102 | |
---|
1103 | ENDIF |
---|
1104 | |
---|
1105 | ENDIF |
---|
1106 | |
---|
1107 | ENDDO |
---|
1108 | ENDDO |
---|
1109 | ENDDO |
---|
1110 | |
---|
1111 | ELSEIF ( use_surface_fluxes ) THEN |
---|
1112 | |
---|
1113 | DO i = i_left, i_right |
---|
1114 | DO j = j_south, j_north |
---|
1115 | DO k = 1, nzt |
---|
1116 | |
---|
1117 | IF ( k == nzb_diff_s_outer(j,i)-1 ) THEN |
---|
1118 | |
---|
1119 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
1120 | dudy = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
1121 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
1122 | dudz = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
1123 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
1124 | |
---|
1125 | dvdx = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
1126 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
1127 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
1128 | dvdz = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
1129 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
1130 | |
---|
1131 | dwdx = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
1132 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
1133 | dwdy = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
1134 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
1135 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
1136 | |
---|
1137 | def = 2.0_wp * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
1138 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
1139 | dvdz**2 + 2.0_wp * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
1140 | |
---|
1141 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
1142 | |
---|
1143 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
1144 | |
---|
1145 | ENDIF |
---|
1146 | |
---|
1147 | ENDDO |
---|
1148 | ENDDO |
---|
1149 | ENDDO |
---|
1150 | |
---|
1151 | ENDIF |
---|
1152 | |
---|
1153 | ! |
---|
1154 | !-- If required, calculate TKE production by buoyancy |
---|
1155 | IF ( .NOT. neutral ) THEN |
---|
1156 | |
---|
1157 | IF ( .NOT. humidity ) THEN |
---|
1158 | |
---|
1159 | IF ( use_single_reference_value ) THEN |
---|
1160 | |
---|
1161 | IF ( ocean ) THEN |
---|
1162 | ! |
---|
1163 | !-- So far in the ocean no special treatment of density flux |
---|
1164 | !-- in the bottom and top surface layer |
---|
1165 | DO i = i_left, i_right |
---|
1166 | DO j = j_south, j_north |
---|
1167 | DO k = 1, nzt |
---|
1168 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
1169 | tend(k,j,i) = tend(k,j,i) + & |
---|
1170 | kh(k,j,i) * g / rho_reference * & |
---|
1171 | ( rho_ocean(k+1,j,i) - rho_ocean(k-1,j,i) ) * & |
---|
1172 | dd2zu(k) |
---|
1173 | ENDIF |
---|
1174 | ENDDO |
---|
1175 | ENDDO |
---|
1176 | ENDDO |
---|
1177 | |
---|
1178 | ELSE |
---|
1179 | |
---|
1180 | DO i = i_left, i_right |
---|
1181 | DO j = j_south, j_north |
---|
1182 | DO k = 1, nzt_diff |
---|
1183 | IF ( k >= nzb_diff_s_inner(j,i) ) THEN |
---|
1184 | tend(k,j,i) = tend(k,j,i) - & |
---|
1185 | kh(k,j,i) * g / pt_reference * & |
---|
1186 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * & |
---|
1187 | dd2zu(k) |
---|
1188 | ENDIF |
---|
1189 | |
---|
1190 | IF ( k == nzb_diff_s_inner(j,i)-1 .AND. & |
---|
1191 | use_surface_fluxes ) THEN |
---|
1192 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
1193 | shf(j,i) |
---|
1194 | ENDIF |
---|
1195 | |
---|
1196 | IF ( k == nzt .AND. use_top_fluxes ) THEN |
---|
1197 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
1198 | tswst(j,i) |
---|
1199 | ENDIF |
---|
1200 | ENDDO |
---|
1201 | ENDDO |
---|
1202 | ENDDO |
---|
1203 | |
---|
1204 | ENDIF |
---|
1205 | |
---|
1206 | ELSE |
---|
1207 | |
---|
1208 | IF ( ocean ) THEN |
---|
1209 | ! |
---|
1210 | !-- So far in the ocean no special treatment of density flux |
---|
1211 | !-- in the bottom and top surface layer |
---|
1212 | DO i = i_left, i_right |
---|
1213 | DO j = j_south, j_north |
---|
1214 | DO k = 1, nzt |
---|
1215 | IF ( k > nzb_s_inner(j,i) ) THEN |
---|
1216 | tend(k,j,i) = tend(k,j,i) + & |
---|
1217 | kh(k,j,i) * g / rho_ocean(k,j,i) * & |
---|
1218 | ( rho_ocean(k+1,j,i) - rho_ocean(k-1,j,i) ) * & |
---|
1219 | dd2zu(k) |
---|
1220 | ENDIF |
---|
1221 | ENDDO |
---|
1222 | ENDDO |
---|
1223 | ENDDO |
---|
1224 | |
---|
1225 | ELSE |
---|
1226 | |
---|
1227 | DO i = i_left, i_right |
---|
1228 | DO j = j_south, j_north |
---|
1229 | DO k = 1, nzt_diff |
---|
1230 | IF( k >= nzb_diff_s_inner(j,i) ) THEN |
---|
1231 | tend(k,j,i) = tend(k,j,i) - & |
---|
1232 | kh(k,j,i) * g / pt(k,j,i) * & |
---|
1233 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * & |
---|
1234 | dd2zu(k) |
---|
1235 | ENDIF |
---|
1236 | |
---|
1237 | IF ( k == nzb_diff_s_inner(j,i)-1 .AND. & |
---|
1238 | use_surface_fluxes ) THEN |
---|
1239 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * & |
---|
1240 | shf(j,i) |
---|
1241 | ENDIF |
---|
1242 | |
---|
1243 | IF ( k == nzt .AND. use_top_fluxes ) THEN |
---|
1244 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * & |
---|
1245 | tswst(j,i) |
---|
1246 | ENDIF |
---|
1247 | ENDDO |
---|
1248 | ENDDO |
---|
1249 | ENDDO |
---|
1250 | |
---|
1251 | ENDIF |
---|
1252 | |
---|
1253 | ENDIF |
---|
1254 | |
---|
1255 | ELSE |
---|
1256 | ! |
---|
1257 | !++ This part gives the PGI compiler problems in the previous loop |
---|
1258 | !++ even without any acc statements???? |
---|
1259 | ! STOP '+++ production_e problems with acc-directives' |
---|
1260 | ! !acc loop |
---|
1261 | ! DO i = nxl, nxr |
---|
1262 | ! DO j = nys, nyn |
---|
1263 | ! !acc loop vector |
---|
1264 | ! DO k = 1, nzt_diff |
---|
1265 | ! |
---|
1266 | ! IF ( k >= nzb_diff_s_inner(j,i) ) THEN |
---|
1267 | ! |
---|
1268 | ! IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
1269 | ! k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1270 | ! k2 = 0.61_wp * pt(k,j,i) |
---|
1271 | ! tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * & |
---|
1272 | ! g / vpt(k,j,i) * & |
---|
1273 | ! ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
1274 | ! k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
1275 | ! ) * dd2zu(k) |
---|
1276 | ! ELSE IF ( cloud_physics ) THEN |
---|
1277 | ! IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
1278 | ! k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1279 | ! k2 = 0.61_wp * pt(k,j,i) |
---|
1280 | ! ELSE |
---|
1281 | ! theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1282 | ! temp = theta * t_d_pt(k) |
---|
1283 | ! k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
1284 | ! ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1285 | ! ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
1286 | ! ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
1287 | ! ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1288 | ! k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
1289 | ! ENDIF |
---|
1290 | ! tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * & |
---|
1291 | ! g / vpt(k,j,i) * & |
---|
1292 | ! ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
1293 | ! k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
1294 | ! ) * dd2zu(k) |
---|
1295 | ! ELSE IF ( cloud_droplets ) THEN |
---|
1296 | ! k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
1297 | ! k2 = 0.61_wp * pt(k,j,i) |
---|
1298 | ! tend(k,j,i) = tend(k,j,i) - & |
---|
1299 | ! kh(k,j,i) * g / vpt(k,j,i) * & |
---|
1300 | ! ( k1 * ( pt(k+1,j,i)- pt(k-1,j,i) ) + & |
---|
1301 | ! k2 * ( q(k+1,j,i) - q(k-1,j,i) ) - & |
---|
1302 | ! pt(k,j,i) * ( ql(k+1,j,i) - & |
---|
1303 | ! ql(k-1,j,i) ) ) * dd2zu(k) |
---|
1304 | ! ENDIF |
---|
1305 | ! |
---|
1306 | ! ENDIF |
---|
1307 | ! |
---|
1308 | ! ENDDO |
---|
1309 | ! ENDDO |
---|
1310 | ! ENDDO |
---|
1311 | ! |
---|
1312 | |
---|
1313 | !!++ Next two loops are probably very inefficiently parallellized |
---|
1314 | !!++ and will require better optimization |
---|
1315 | ! IF ( use_surface_fluxes ) THEN |
---|
1316 | ! |
---|
1317 | ! !acc loop |
---|
1318 | ! DO i = nxl, nxr |
---|
1319 | ! DO j = nys, nyn |
---|
1320 | ! !acc loop vector |
---|
1321 | ! DO k = 1, nzt_diff |
---|
1322 | ! |
---|
1323 | ! IF ( k == nzb_diff_s_inner(j,i)-1 ) THEN |
---|
1324 | ! |
---|
1325 | ! IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
1326 | ! k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1327 | ! k2 = 0.61_wp * pt(k,j,i) |
---|
1328 | ! ELSE IF ( cloud_physics ) THEN |
---|
1329 | ! IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
1330 | ! k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1331 | ! k2 = 0.61_wp * pt(k,j,i) |
---|
1332 | ! ELSE |
---|
1333 | ! theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1334 | ! temp = theta * t_d_pt(k) |
---|
1335 | ! k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
1336 | ! ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1337 | ! ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) /& |
---|
1338 | ! ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
1339 | ! ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1340 | ! k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
1341 | ! ENDIF |
---|
1342 | ! ELSE IF ( cloud_droplets ) THEN |
---|
1343 | ! k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
1344 | ! k2 = 0.61_wp * pt(k,j,i) |
---|
1345 | ! ENDIF |
---|
1346 | ! |
---|
1347 | ! tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
1348 | ! ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
1349 | ! ENDIF |
---|
1350 | ! |
---|
1351 | ! ENDDO |
---|
1352 | ! ENDDO |
---|
1353 | ! ENDDO |
---|
1354 | ! |
---|
1355 | ! ENDIF |
---|
1356 | ! |
---|
1357 | ! IF ( use_top_fluxes ) THEN |
---|
1358 | ! |
---|
1359 | ! !acc loop |
---|
1360 | ! DO i = nxl, nxr |
---|
1361 | ! DO j = nys, nyn |
---|
1362 | ! !acc loop vector |
---|
1363 | ! DO k = 1, nzt |
---|
1364 | ! IF ( k == nzt ) THEN |
---|
1365 | ! |
---|
1366 | ! IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
1367 | ! k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1368 | ! k2 = 0.61_wp * pt(k,j,i) |
---|
1369 | ! ELSE IF ( cloud_physics ) THEN |
---|
1370 | ! IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
1371 | ! k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1372 | ! k2 = 0.61_wp * pt(k,j,i) |
---|
1373 | ! ELSE |
---|
1374 | ! theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1375 | ! temp = theta * t_d_pt(k) |
---|
1376 | ! k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
1377 | ! ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1378 | ! ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) /& |
---|
1379 | ! ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
1380 | ! ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1381 | ! k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
1382 | ! ENDIF |
---|
1383 | ! ELSE IF ( cloud_droplets ) THEN |
---|
1384 | ! k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
1385 | ! k2 = 0.61_wp * pt(k,j,i) |
---|
1386 | ! ENDIF |
---|
1387 | ! |
---|
1388 | ! tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
1389 | ! ( k1* tswst(j,i) + k2 * qswst(j,i) ) |
---|
1390 | ! |
---|
1391 | ! ENDIF |
---|
1392 | ! |
---|
1393 | ! ENDDO |
---|
1394 | ! ENDDO |
---|
1395 | ! ENDDO |
---|
1396 | ! |
---|
1397 | ! ENDIF |
---|
1398 | |
---|
1399 | ENDIF |
---|
1400 | |
---|
1401 | ENDIF |
---|
1402 | !$acc end kernels |
---|
1403 | |
---|
1404 | END SUBROUTINE production_e_acc |
---|
1405 | |
---|
1406 | |
---|
1407 | !------------------------------------------------------------------------------! |
---|
1408 | ! Description: |
---|
1409 | ! ------------ |
---|
1410 | !> Call for grid point i,j |
---|
1411 | !------------------------------------------------------------------------------! |
---|
1412 | SUBROUTINE production_e_ij( i, j ) |
---|
1413 | |
---|
1414 | USE arrays_3d, & |
---|
1415 | ONLY: ddzw, dd2zu, kh, km, pt, q, ql, qsws, qswst, rho_ocean, shf, & |
---|
1416 | tend, tswst, u, v, vpt, w |
---|
1417 | |
---|
1418 | USE cloud_parameters, & |
---|
1419 | ONLY: l_d_cp, l_d_r, pt_d_t, t_d_pt |
---|
1420 | |
---|
1421 | USE control_parameters, & |
---|
1422 | ONLY: cloud_droplets, cloud_physics, constant_flux_layer, g, & |
---|
1423 | humidity, kappa, neutral, ocean, pt_reference, & |
---|
1424 | rho_reference, use_single_reference_value, & |
---|
1425 | use_surface_fluxes, use_top_fluxes |
---|
1426 | |
---|
1427 | USE grid_variables, & |
---|
1428 | ONLY: ddx, dx, ddy, dy, wall_e_x, wall_e_y |
---|
1429 | |
---|
1430 | USE indices, & |
---|
1431 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_diff_s_inner, & |
---|
1432 | nzb_diff_s_outer, nzb_s_inner, nzt, nzt_diff |
---|
1433 | |
---|
1434 | IMPLICIT NONE |
---|
1435 | |
---|
1436 | INTEGER(iwp) :: i !< |
---|
1437 | INTEGER(iwp) :: j !< |
---|
1438 | INTEGER(iwp) :: k !< |
---|
1439 | |
---|
1440 | REAL(wp) :: def !< |
---|
1441 | REAL(wp) :: dudx !< |
---|
1442 | REAL(wp) :: dudy !< |
---|
1443 | REAL(wp) :: dudz !< |
---|
1444 | REAL(wp) :: dvdx !< |
---|
1445 | REAL(wp) :: dvdy !< |
---|
1446 | REAL(wp) :: dvdz !< |
---|
1447 | REAL(wp) :: dwdx !< |
---|
1448 | REAL(wp) :: dwdy !< |
---|
1449 | REAL(wp) :: dwdz !< |
---|
1450 | REAL(wp) :: k1 !< |
---|
1451 | REAL(wp) :: k2 !< |
---|
1452 | REAL(wp) :: km_neutral !< |
---|
1453 | REAL(wp) :: theta !< |
---|
1454 | REAL(wp) :: temp !< |
---|
1455 | |
---|
1456 | REAL(wp), DIMENSION(nzb:nzt+1) :: usvs !< |
---|
1457 | REAL(wp), DIMENSION(nzb:nzt+1) :: vsus !< |
---|
1458 | REAL(wp), DIMENSION(nzb:nzt+1) :: wsus !< |
---|
1459 | REAL(wp), DIMENSION(nzb:nzt+1) :: wsvs !< |
---|
1460 | |
---|
1461 | ! |
---|
1462 | !-- Calculate TKE production by shear |
---|
1463 | DO k = nzb_diff_s_outer(j,i), nzt |
---|
1464 | |
---|
1465 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
1466 | dudy = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
1467 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
1468 | dudz = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
1469 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
1470 | |
---|
1471 | dvdx = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
1472 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
1473 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
1474 | dvdz = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
1475 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
1476 | |
---|
1477 | dwdx = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
1478 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
1479 | dwdy = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
1480 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
1481 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
1482 | |
---|
1483 | def = 2.0_wp * ( dudx**2 + dvdy**2 + dwdz**2 ) & |
---|
1484 | + dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + dvdz**2 & |
---|
1485 | + 2.0_wp * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
1486 | |
---|
1487 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
1488 | |
---|
1489 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
1490 | |
---|
1491 | ENDDO |
---|
1492 | |
---|
1493 | IF ( constant_flux_layer ) THEN |
---|
1494 | |
---|
1495 | IF ( ( wall_e_x(j,i) /= 0.0_wp ) .OR. ( wall_e_y(j,i) /= 0.0_wp ) ) THEN |
---|
1496 | |
---|
1497 | ! |
---|
1498 | !-- Position beneath wall |
---|
1499 | !-- (2) - Will allways be executed. |
---|
1500 | !-- 'bottom and wall: use u_0,v_0 and wall functions' |
---|
1501 | k = nzb_diff_s_inner(j,i)-1 |
---|
1502 | |
---|
1503 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
1504 | dudz = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
1505 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
1506 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
1507 | dvdz = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
1508 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
1509 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
1510 | |
---|
1511 | IF ( wall_e_y(j,i) /= 0.0_wp ) THEN |
---|
1512 | ! |
---|
1513 | !-- Inconsistency removed: as the thermal stratification |
---|
1514 | !-- is not taken into account for the evaluation of the |
---|
1515 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
1516 | !-- must not be used for the evaluation of the velocity |
---|
1517 | !-- gradients dudy and dwdy |
---|
1518 | !-- Note: The validity of the new method has not yet |
---|
1519 | !-- been shown, as so far no suitable data for a |
---|
1520 | !-- validation has been available |
---|
1521 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
1522 | usvs, 1.0_wp, 0.0_wp, 0.0_wp, 0.0_wp ) |
---|
1523 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
1524 | wsvs, 0.0_wp, 0.0_wp, 1.0_wp, 0.0_wp ) |
---|
1525 | km_neutral = kappa * ( usvs(k)**2 + wsvs(k)**2 )**0.25_wp * & |
---|
1526 | 0.5_wp * dy |
---|
1527 | IF ( km_neutral > 0.0_wp ) THEN |
---|
1528 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
1529 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
1530 | ELSE |
---|
1531 | dudy = 0.0_wp |
---|
1532 | dwdy = 0.0_wp |
---|
1533 | ENDIF |
---|
1534 | ELSE |
---|
1535 | dudy = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
1536 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
1537 | dwdy = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
1538 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
1539 | ENDIF |
---|
1540 | |
---|
1541 | IF ( wall_e_x(j,i) /= 0.0_wp ) THEN |
---|
1542 | ! |
---|
1543 | !-- Inconsistency removed: as the thermal stratification |
---|
1544 | !-- is not taken into account for the evaluation of the |
---|
1545 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
1546 | !-- must not be used for the evaluation of the velocity |
---|
1547 | !-- gradients dvdx and dwdx |
---|
1548 | !-- Note: The validity of the new method has not yet |
---|
1549 | !-- been shown, as so far no suitable data for a |
---|
1550 | !-- validation has been available |
---|
1551 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
1552 | vsus, 0.0_wp, 1.0_wp, 0.0_wp, 0.0_wp ) |
---|
1553 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
1554 | wsus, 0.0_wp, 0.0_wp, 0.0_wp, 1.0_wp ) |
---|
1555 | km_neutral = kappa * ( vsus(k)**2 + wsus(k)**2 )**0.25_wp * & |
---|
1556 | 0.5_wp * dx |
---|
1557 | IF ( km_neutral > 0.0_wp ) THEN |
---|
1558 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
1559 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
1560 | ELSE |
---|
1561 | dvdx = 0.0_wp |
---|
1562 | dwdx = 0.0_wp |
---|
1563 | ENDIF |
---|
1564 | ELSE |
---|
1565 | dvdx = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
1566 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
1567 | dwdx = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
1568 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
1569 | ENDIF |
---|
1570 | |
---|
1571 | def = 2.0_wp * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
1572 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
1573 | dvdz**2 + 2.0_wp * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
1574 | |
---|
1575 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
1576 | |
---|
1577 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
1578 | |
---|
1579 | ! |
---|
1580 | !-- (3) - will be executed only, if there is at least one level |
---|
1581 | !-- between (2) and (4), i.e. the topography must have a |
---|
1582 | !-- minimum height of 2 dz. Wall fluxes for this case have |
---|
1583 | !-- already been calculated for (2). |
---|
1584 | !-- 'wall only: use wall functions' |
---|
1585 | DO k = nzb_diff_s_inner(j,i), nzb_diff_s_outer(j,i)-2 |
---|
1586 | |
---|
1587 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
1588 | dudz = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
1589 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
1590 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
1591 | dvdz = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
1592 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
1593 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
1594 | |
---|
1595 | IF ( wall_e_y(j,i) /= 0.0_wp ) THEN |
---|
1596 | ! |
---|
1597 | !-- Inconsistency removed: as the thermal stratification |
---|
1598 | !-- is not taken into account for the evaluation of the |
---|
1599 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
1600 | !-- must not be used for the evaluation of the velocity |
---|
1601 | !-- gradients dudy and dwdy |
---|
1602 | !-- Note: The validity of the new method has not yet |
---|
1603 | !-- been shown, as so far no suitable data for a |
---|
1604 | !-- validation has been available |
---|
1605 | km_neutral = kappa * ( usvs(k)**2 + & |
---|
1606 | wsvs(k)**2 )**0.25_wp * 0.5_wp * dy |
---|
1607 | IF ( km_neutral > 0.0_wp ) THEN |
---|
1608 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
1609 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
1610 | ELSE |
---|
1611 | dudy = 0.0_wp |
---|
1612 | dwdy = 0.0_wp |
---|
1613 | ENDIF |
---|
1614 | ELSE |
---|
1615 | dudy = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
1616 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
1617 | dwdy = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
1618 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
1619 | ENDIF |
---|
1620 | |
---|
1621 | IF ( wall_e_x(j,i) /= 0.0_wp ) THEN |
---|
1622 | ! |
---|
1623 | !-- Inconsistency removed: as the thermal stratification |
---|
1624 | !-- is not taken into account for the evaluation of the |
---|
1625 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
1626 | !-- must not be used for the evaluation of the velocity |
---|
1627 | !-- gradients dvdx and dwdx |
---|
1628 | !-- Note: The validity of the new method has not yet |
---|
1629 | !-- been shown, as so far no suitable data for a |
---|
1630 | !-- validation has been available |
---|
1631 | km_neutral = kappa * ( vsus(k)**2 + & |
---|
1632 | wsus(k)**2 )**0.25_wp * 0.5_wp * dx |
---|
1633 | IF ( km_neutral > 0.0_wp ) THEN |
---|
1634 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
1635 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
1636 | ELSE |
---|
1637 | dvdx = 0.0_wp |
---|
1638 | dwdx = 0.0_wp |
---|
1639 | ENDIF |
---|
1640 | ELSE |
---|
1641 | dvdx = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
1642 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
1643 | dwdx = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
1644 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
1645 | ENDIF |
---|
1646 | |
---|
1647 | def = 2.0_wp * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
1648 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
1649 | dvdz**2 + 2.0_wp * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
1650 | |
---|
1651 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
1652 | |
---|
1653 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
1654 | |
---|
1655 | ENDDO |
---|
1656 | |
---|
1657 | ! |
---|
1658 | !-- (4) - will allways be executed. |
---|
1659 | !-- 'special case: free atmosphere' (as for case (0)) |
---|
1660 | k = nzb_diff_s_outer(j,i)-1 |
---|
1661 | |
---|
1662 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
1663 | dudy = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
1664 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
1665 | dudz = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
1666 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
1667 | |
---|
1668 | dvdx = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
1669 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
1670 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
1671 | dvdz = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
1672 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
1673 | |
---|
1674 | dwdx = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
1675 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
1676 | dwdy = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
1677 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
1678 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
1679 | |
---|
1680 | def = 2.0_wp * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
1681 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
1682 | dvdz**2 + 2.0_wp * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
1683 | |
---|
1684 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
1685 | |
---|
1686 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
1687 | |
---|
1688 | ELSE |
---|
1689 | |
---|
1690 | ! |
---|
1691 | !-- Position without adjacent wall |
---|
1692 | !-- (1) - will allways be executed. |
---|
1693 | !-- 'bottom only: use u_0,v_0' |
---|
1694 | k = nzb_diff_s_inner(j,i)-1 |
---|
1695 | |
---|
1696 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
1697 | dudy = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
1698 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
1699 | dudz = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
1700 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
1701 | |
---|
1702 | dvdx = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
1703 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
1704 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
1705 | dvdz = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
1706 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
1707 | |
---|
1708 | dwdx = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
1709 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
1710 | dwdy = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
1711 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
1712 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
1713 | |
---|
1714 | def = 2.0_wp * ( dudx**2 + dvdy**2 + dwdz**2 ) & |
---|
1715 | + dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + dvdz**2 & |
---|
1716 | + 2.0_wp * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
1717 | |
---|
1718 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
1719 | |
---|
1720 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
1721 | |
---|
1722 | ENDIF |
---|
1723 | |
---|
1724 | ELSEIF ( use_surface_fluxes ) THEN |
---|
1725 | |
---|
1726 | k = nzb_diff_s_outer(j,i)-1 |
---|
1727 | |
---|
1728 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
1729 | dudy = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
1730 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
1731 | dudz = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
1732 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
1733 | |
---|
1734 | dvdx = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
1735 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
1736 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
1737 | dvdz = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
1738 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
1739 | |
---|
1740 | dwdx = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
1741 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
1742 | dwdy = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
1743 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
1744 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
1745 | |
---|
1746 | def = 2.0_wp * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
1747 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
1748 | dvdz**2 + 2.0_wp * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
1749 | |
---|
1750 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
1751 | |
---|
1752 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
1753 | |
---|
1754 | ENDIF |
---|
1755 | |
---|
1756 | ! |
---|
1757 | !-- If required, calculate TKE production by buoyancy |
---|
1758 | IF ( .NOT. neutral ) THEN |
---|
1759 | |
---|
1760 | IF ( .NOT. humidity ) THEN |
---|
1761 | |
---|
1762 | IF ( use_single_reference_value ) THEN |
---|
1763 | |
---|
1764 | IF ( ocean ) THEN |
---|
1765 | ! |
---|
1766 | !-- So far in the ocean no special treatment of density flux in |
---|
1767 | !-- the bottom and top surface layer |
---|
1768 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1769 | tend(k,j,i) = tend(k,j,i) + & |
---|
1770 | kh(k,j,i) * g / rho_reference * & |
---|
1771 | ( rho_ocean(k+1,j,i) - rho_ocean(k-1,j,i) ) * dd2zu(k) |
---|
1772 | ENDDO |
---|
1773 | |
---|
1774 | ELSE |
---|
1775 | |
---|
1776 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
1777 | tend(k,j,i) = tend(k,j,i) - & |
---|
1778 | kh(k,j,i) * g / pt_reference * & |
---|
1779 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
1780 | ENDDO |
---|
1781 | |
---|
1782 | IF ( use_surface_fluxes ) THEN |
---|
1783 | k = nzb_diff_s_inner(j,i)-1 |
---|
1784 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * shf(j,i) |
---|
1785 | ENDIF |
---|
1786 | |
---|
1787 | IF ( use_top_fluxes ) THEN |
---|
1788 | k = nzt |
---|
1789 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * tswst(j,i) |
---|
1790 | ENDIF |
---|
1791 | |
---|
1792 | ENDIF |
---|
1793 | |
---|
1794 | ELSE |
---|
1795 | |
---|
1796 | IF ( ocean ) THEN |
---|
1797 | ! |
---|
1798 | !-- So far in the ocean no special treatment of density flux in |
---|
1799 | !-- the bottom and top surface layer |
---|
1800 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1801 | tend(k,j,i) = tend(k,j,i) + & |
---|
1802 | kh(k,j,i) * g / rho_ocean(k,j,i) * & |
---|
1803 | ( rho_ocean(k+1,j,i) - rho_ocean(k-1,j,i) ) * dd2zu(k) |
---|
1804 | ENDDO |
---|
1805 | |
---|
1806 | ELSE |
---|
1807 | |
---|
1808 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
1809 | tend(k,j,i) = tend(k,j,i) - & |
---|
1810 | kh(k,j,i) * g / pt(k,j,i) * & |
---|
1811 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
1812 | ENDDO |
---|
1813 | |
---|
1814 | IF ( use_surface_fluxes ) THEN |
---|
1815 | k = nzb_diff_s_inner(j,i)-1 |
---|
1816 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * shf(j,i) |
---|
1817 | ENDIF |
---|
1818 | |
---|
1819 | IF ( use_top_fluxes ) THEN |
---|
1820 | k = nzt |
---|
1821 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * tswst(j,i) |
---|
1822 | ENDIF |
---|
1823 | |
---|
1824 | ENDIF |
---|
1825 | |
---|
1826 | ENDIF |
---|
1827 | |
---|
1828 | ELSE |
---|
1829 | |
---|
1830 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
1831 | |
---|
1832 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
1833 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1834 | k2 = 0.61_wp * pt(k,j,i) |
---|
1835 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
1836 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
1837 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
1838 | ) * dd2zu(k) |
---|
1839 | ELSE IF ( cloud_physics ) THEN |
---|
1840 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
1841 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1842 | k2 = 0.61_wp * pt(k,j,i) |
---|
1843 | ELSE |
---|
1844 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1845 | temp = theta * t_d_pt(k) |
---|
1846 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
1847 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1848 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
1849 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
1850 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1851 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
1852 | ENDIF |
---|
1853 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
1854 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
1855 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
1856 | ) * dd2zu(k) |
---|
1857 | ELSE IF ( cloud_droplets ) THEN |
---|
1858 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
1859 | k2 = 0.61_wp * pt(k,j,i) |
---|
1860 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
1861 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
1862 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) - & |
---|
1863 | pt(k,j,i) * ( ql(k+1,j,i) - & |
---|
1864 | ql(k-1,j,i) ) ) * dd2zu(k) |
---|
1865 | ENDIF |
---|
1866 | ENDDO |
---|
1867 | |
---|
1868 | IF ( use_surface_fluxes ) THEN |
---|
1869 | k = nzb_diff_s_inner(j,i)-1 |
---|
1870 | |
---|
1871 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
1872 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1873 | k2 = 0.61_wp * pt(k,j,i) |
---|
1874 | ELSE IF ( cloud_physics ) THEN |
---|
1875 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
1876 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1877 | k2 = 0.61_wp * pt(k,j,i) |
---|
1878 | ELSE |
---|
1879 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1880 | temp = theta * t_d_pt(k) |
---|
1881 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
1882 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1883 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
1884 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
1885 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1886 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
1887 | ENDIF |
---|
1888 | ELSE IF ( cloud_droplets ) THEN |
---|
1889 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
1890 | k2 = 0.61_wp * pt(k,j,i) |
---|
1891 | ENDIF |
---|
1892 | |
---|
1893 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
1894 | ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
1895 | ENDIF |
---|
1896 | |
---|
1897 | IF ( use_top_fluxes ) THEN |
---|
1898 | k = nzt |
---|
1899 | |
---|
1900 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
1901 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1902 | k2 = 0.61_wp * pt(k,j,i) |
---|
1903 | ELSE IF ( cloud_physics ) THEN |
---|
1904 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
1905 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
1906 | k2 = 0.61_wp * pt(k,j,i) |
---|
1907 | ELSE |
---|
1908 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
1909 | temp = theta * t_d_pt(k) |
---|
1910 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
1911 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
1912 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
1913 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
1914 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
1915 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
1916 | ENDIF |
---|
1917 | ELSE IF ( cloud_droplets ) THEN |
---|
1918 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
1919 | k2 = 0.61_wp * pt(k,j,i) |
---|
1920 | ENDIF |
---|
1921 | |
---|
1922 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
1923 | ( k1* tswst(j,i) + k2 * qswst(j,i) ) |
---|
1924 | ENDIF |
---|
1925 | |
---|
1926 | ENDIF |
---|
1927 | |
---|
1928 | ENDIF |
---|
1929 | |
---|
1930 | END SUBROUTINE production_e_ij |
---|
1931 | |
---|
1932 | |
---|
1933 | !------------------------------------------------------------------------------! |
---|
1934 | ! Description: |
---|
1935 | ! ------------ |
---|
1936 | !> @todo Missing subroutine description. |
---|
1937 | !------------------------------------------------------------------------------! |
---|
1938 | SUBROUTINE production_e_init |
---|
1939 | |
---|
1940 | USE arrays_3d, & |
---|
1941 | ONLY: kh, km, u, us, usws, v, vsws, zu |
---|
1942 | |
---|
1943 | USE control_parameters, & |
---|
1944 | ONLY: constant_flux_layer, kappa |
---|
1945 | |
---|
1946 | USE indices, & |
---|
1947 | ONLY: nxl, nxlg, nxr, nxrg, nys, nysg, nyn, nyng, nzb_u_inner, & |
---|
1948 | nzb_v_inner |
---|
1949 | |
---|
1950 | IMPLICIT NONE |
---|
1951 | |
---|
1952 | INTEGER(iwp) :: i !< |
---|
1953 | INTEGER(iwp) :: j !< |
---|
1954 | INTEGER(iwp) :: ku !< |
---|
1955 | INTEGER(iwp) :: kv !< |
---|
1956 | |
---|
1957 | IF ( constant_flux_layer ) THEN |
---|
1958 | |
---|
1959 | IF ( first_call ) THEN |
---|
1960 | ALLOCATE( u_0(nysg:nyng,nxlg:nxrg), v_0(nysg:nyng,nxlg:nxrg) ) |
---|
1961 | u_0 = 0.0_wp ! just to avoid access of uninitialized memory |
---|
1962 | v_0 = 0.0_wp ! within exchange_horiz_2d |
---|
1963 | first_call = .FALSE. |
---|
1964 | ENDIF |
---|
1965 | |
---|
1966 | ! |
---|
1967 | !-- Calculate a virtual velocity at the surface in a way that the |
---|
1968 | !-- vertical velocity gradient at k = 1 (u(k+1)-u_0) matches the |
---|
1969 | !-- Prandtl law (-w'u'/km). This gradient is used in the TKE shear |
---|
1970 | !-- production term at k=1 (see production_e_ij). |
---|
1971 | !-- The velocity gradient has to be limited in case of too small km |
---|
1972 | !-- (otherwise the timestep may be significantly reduced by large |
---|
1973 | !-- surface winds). |
---|
1974 | !-- Upper bounds are nxr+1 and nyn+1 because otherwise these values are |
---|
1975 | !-- not available in case of non-cyclic boundary conditions. |
---|
1976 | !-- WARNING: the exact analytical solution would require the determination |
---|
1977 | !-- of the eddy diffusivity by km = u* * kappa * zp / phi_m. |
---|
1978 | !$OMP PARALLEL DO PRIVATE( ku, kv ) |
---|
1979 | DO i = nxl, nxr+1 |
---|
1980 | DO j = nys, nyn+1 |
---|
1981 | |
---|
1982 | ku = nzb_u_inner(j,i)+1 |
---|
1983 | kv = nzb_v_inner(j,i)+1 |
---|
1984 | |
---|
1985 | u_0(j,i) = u(ku+1,j,i) + usws(j,i) * ( zu(ku+1) - zu(ku-1) ) / & |
---|
1986 | ( 0.5_wp * ( km(ku,j,i) + km(ku,j,i-1) ) + & |
---|
1987 | 1.0E-20_wp ) |
---|
1988 | ! ( us(j,i) * kappa * zu(1) ) |
---|
1989 | v_0(j,i) = v(kv+1,j,i) + vsws(j,i) * ( zu(kv+1) - zu(kv-1) ) / & |
---|
1990 | ( 0.5_wp * ( km(kv,j,i) + km(kv,j-1,i) ) + & |
---|
1991 | 1.0E-20_wp ) |
---|
1992 | ! ( us(j,i) * kappa * zu(1) ) |
---|
1993 | |
---|
1994 | IF ( ABS( u(ku+1,j,i) - u_0(j,i) ) > & |
---|
1995 | ABS( u(ku+1,j,i) - u(ku-1,j,i) ) ) u_0(j,i) = u(ku-1,j,i) |
---|
1996 | IF ( ABS( v(kv+1,j,i) - v_0(j,i) ) > & |
---|
1997 | ABS( v(kv+1,j,i) - v(kv-1,j,i) ) ) v_0(j,i) = v(kv-1,j,i) |
---|
1998 | |
---|
1999 | ENDDO |
---|
2000 | ENDDO |
---|
2001 | |
---|
2002 | CALL exchange_horiz_2d( u_0 ) |
---|
2003 | CALL exchange_horiz_2d( v_0 ) |
---|
2004 | |
---|
2005 | ENDIF |
---|
2006 | |
---|
2007 | END SUBROUTINE production_e_init |
---|
2008 | |
---|
2009 | END MODULE production_e_mod |
---|