1 | MODULE production_e_mod |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Actual revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Log: production_e.f90,v $ |
---|
11 | ! Revision 1.21 2006/04/26 12:45:35 raasch |
---|
12 | ! OpenMP parallelization of production_e_init |
---|
13 | ! |
---|
14 | ! Revision 1.20 2006/02/23 12:51:25 raasch |
---|
15 | ! nzb_2d and nzb_diff_2d replaced by nzb_s_outer and nzb_diff_s_outer |
---|
16 | ! respectively, momentum flux calculation at vertical walls using profile |
---|
17 | ! functions, loop rearrangement for better vectorization |
---|
18 | ! |
---|
19 | ! Revision 1.19 2005/06/29 08:15:33 steinfeld |
---|
20 | ! Error in calculating u_0 and v_0 removed (multiplication instead of |
---|
21 | ! division by 2dz) |
---|
22 | ! |
---|
23 | ! Revision 1.18 2004/04/30 12:45:54 raasch |
---|
24 | ! dptdz eliminated |
---|
25 | ! |
---|
26 | ! Revision 1.17 2004/01/30 10:36:00 raasch |
---|
27 | ! Velocity gradients at the surface limited (see u_0, v_0), |
---|
28 | ! scalar lower k index nzb_diff replaced by 2d-array nzb_diff_2d |
---|
29 | ! |
---|
30 | ! Revision 1.16 2003/03/12 16:40:22 raasch |
---|
31 | ! Full code replaced in the call for all gridpoints instead of calling the |
---|
32 | ! _ij version (required by NEC, because otherwise no vectorization) |
---|
33 | ! |
---|
34 | ! Revision 1.15 2002/12/19 16:16:34 raasch |
---|
35 | ! Calculation of deformation tensor re-designed (most of the finite |
---|
36 | ! differences are now formed over two grid spacings, errors in derivatives |
---|
37 | ! along y removed) |
---|
38 | ! |
---|
39 | ! Revision 1.14 2002/09/12 13:09:44 raasch |
---|
40 | ! Error in calculating v_0 removed |
---|
41 | ! |
---|
42 | ! Revision 1.13 2002/06/11 13:19:04 raasch |
---|
43 | ! Former subroutine changed to a module which allows to be called for all grid |
---|
44 | ! points of a single vertical column with index i,j or for all grid points by |
---|
45 | ! using function overloading. |
---|
46 | ! Calculation of u_0 and v_0 moved to the new subroutine production_e_init |
---|
47 | ! due to the global communication necessary. These arrays are allocated only |
---|
48 | ! once during the first call. |
---|
49 | ! |
---|
50 | ! Revision 1.12 2001/08/21 09:59:47 raasch |
---|
51 | ! Special treatment at k=1 generally if surface fluxes are prescribed (not only |
---|
52 | ! in case of a Prandtl layer). In these cases, the boundary conditions are |
---|
53 | ! also included in the shear production term. |
---|
54 | ! |
---|
55 | ! Revision 1.11 2001/03/30 07:48:54 raasch |
---|
56 | ! Calculation of shear production and buoyancy production is split into |
---|
57 | ! two loops, arguments k1 and k2 are eliminated and now used as scalars, |
---|
58 | ! Translation of remaining German identifiers (variables, subroutines, etc.) |
---|
59 | ! |
---|
60 | ! Revision 1.10 2001/01/22 07:56:19 raasch |
---|
61 | ! Module test_variables removed |
---|
62 | ! |
---|
63 | ! Revision 1.9 2001/01/02 17:34:12 raasch |
---|
64 | ! -dpt_dz_d, dpt_dz_u |
---|
65 | ! |
---|
66 | ! Revision 1.8 2000/07/03 13:00:24 raasch |
---|
67 | ! Arguments k1 and k2 declared as pointers, |
---|
68 | ! all comments tranlated into English |
---|
69 | ! |
---|
70 | ! Revision 1.7 2000/04/18 08:13:00 schroeter |
---|
71 | ! Revision 1.5 rueckgaengig gemacht, Temperaturgrandient im |
---|
72 | ! Auftriebtrem wird wieder durch zentrale Differenzen gebildet |
---|
73 | ! |
---|
74 | ! Revision 1.6 2000/04/13 14:24:02 schroeter |
---|
75 | ! condsidering the influence of humidity to TKE-production |
---|
76 | ! |
---|
77 | ! Revision 1.5 99/02/17 09:29:18 09:29:18 raasch (Siegfried Raasch) |
---|
78 | ! Vertikalscherung des Windes exakter formuliert |
---|
79 | ! Temperaturgradient im Auftriebsterm enger gefasst, im stabilen Fall wird |
---|
80 | ! jetzt das Minimum vom oberen und unteren Differenzenquotienten verwendet |
---|
81 | ! |
---|
82 | ! Revision 1.4 1998/07/06 12:31:52 raasch |
---|
83 | ! + USE test_variables |
---|
84 | ! |
---|
85 | ! Revision 1.3 1998/04/15 11:23:49 raasch |
---|
86 | ! Im Fall einer Prandtl-Schicht wird die Energieproduktion bei nzb+1 |
---|
87 | ! jetzt immer mittels shf und sonst ueber dpt/dz berechnet (bisher nur bei |
---|
88 | ! vorgegebenem Waermestrom) |
---|
89 | ! |
---|
90 | ! Revision 1.2 1998/02/19 07:10:51 raasch |
---|
91 | ! vorgegebener Waermestrom wird gegebenenfalls im Auftriebsterm bei |
---|
92 | ! k=nzb+1 direkt angegeben |
---|
93 | ! |
---|
94 | ! Revision 1.1 1997/09/19 07:45:35 raasch |
---|
95 | ! Initial revision |
---|
96 | ! |
---|
97 | ! |
---|
98 | ! Description: |
---|
99 | ! ------------ |
---|
100 | ! Production terms (shear + buoyancy) of the TKE |
---|
101 | !------------------------------------------------------------------------------! |
---|
102 | |
---|
103 | PRIVATE |
---|
104 | PUBLIC production_e, production_e_init |
---|
105 | |
---|
106 | LOGICAL, SAVE :: first_call = .TRUE. |
---|
107 | |
---|
108 | REAL, DIMENSION(:,:), ALLOCATABLE, SAVE :: u_0, v_0 |
---|
109 | |
---|
110 | INTERFACE production_e |
---|
111 | MODULE PROCEDURE production_e |
---|
112 | MODULE PROCEDURE production_e_ij |
---|
113 | END INTERFACE production_e |
---|
114 | |
---|
115 | INTERFACE production_e_init |
---|
116 | MODULE PROCEDURE production_e_init |
---|
117 | END INTERFACE production_e_init |
---|
118 | |
---|
119 | CONTAINS |
---|
120 | |
---|
121 | |
---|
122 | !------------------------------------------------------------------------------! |
---|
123 | ! Call for all grid points |
---|
124 | !------------------------------------------------------------------------------! |
---|
125 | SUBROUTINE production_e |
---|
126 | |
---|
127 | USE arrays_3d |
---|
128 | USE cloud_parameters |
---|
129 | USE control_parameters |
---|
130 | USE grid_variables |
---|
131 | USE indices |
---|
132 | USE statistics |
---|
133 | |
---|
134 | IMPLICIT NONE |
---|
135 | |
---|
136 | INTEGER :: i, j, k |
---|
137 | |
---|
138 | REAL :: def, dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz, & |
---|
139 | k1, k2, theta, temp, usvs, vsus, wsus, wsvs |
---|
140 | |
---|
141 | |
---|
142 | ! |
---|
143 | !-- Calculate TKE production by shear |
---|
144 | DO i = nxl, nxr |
---|
145 | |
---|
146 | DO j = nys, nyn |
---|
147 | DO k = nzb_diff_s_outer(j,i), nzt-1 |
---|
148 | |
---|
149 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
150 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
151 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
152 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
153 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
154 | |
---|
155 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
156 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
157 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
158 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
159 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
160 | |
---|
161 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
162 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
163 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
164 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
165 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
166 | |
---|
167 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
168 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
169 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
170 | |
---|
171 | IF ( def < 0.0 ) def = 0.0 |
---|
172 | |
---|
173 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
174 | |
---|
175 | ENDDO |
---|
176 | ENDDO |
---|
177 | |
---|
178 | IF ( use_surface_fluxes ) THEN |
---|
179 | |
---|
180 | ! |
---|
181 | !-- Position neben Gebaeudewand |
---|
182 | !-- 2 - Wird immer ausgefuehrt. 'Boden und Wand: |
---|
183 | !-- u_0,v_0 und Wall functions' |
---|
184 | DO j = nys, nyn |
---|
185 | |
---|
186 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) & |
---|
187 | THEN |
---|
188 | |
---|
189 | k = nzb_diff_s_inner(j,i) - 1 |
---|
190 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
191 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
192 | usvs = kappa * 0.5 * ( u(k,j,i) + u(k,j,i+1) ) & |
---|
193 | / LOG( 0.5 * dy / z0(j,i) ) |
---|
194 | usvs = usvs * ABS( usvs ) |
---|
195 | dudy = wall_e_y(j,i) * usvs / km(k,j,i) |
---|
196 | ELSE |
---|
197 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
198 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
199 | ENDIF |
---|
200 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
201 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
202 | |
---|
203 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
204 | vsus = kappa * 0.5 * ( v(k,j,i) + v(k,j+1,i) ) & |
---|
205 | / LOG( 0.5 * dx / z0(j,i)) |
---|
206 | vsus = vsus * ABS( vsus ) |
---|
207 | dvdx = wall_e_x(j,i) * vsus / km(k,j,i) |
---|
208 | ELSE |
---|
209 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
210 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
211 | ENDIF |
---|
212 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
213 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
214 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
215 | |
---|
216 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
217 | wsus = kappa * 0.5 * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
218 | / LOG( 0.5 * dx / z0(j,i)) |
---|
219 | wsus = wsus * ABS( wsus ) |
---|
220 | dwdx = wall_e_x(j,i) * wsus / km(k,j,i) |
---|
221 | ELSE |
---|
222 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
223 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
224 | ENDIF |
---|
225 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
226 | wsvs = kappa * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
227 | / LOG( 0.5 * dy / z0(j,i)) |
---|
228 | wsvs = wsvs * ABS( wsvs ) |
---|
229 | dwdy = wall_e_y(j,i) * wsvs / km(k,j,i) |
---|
230 | ELSE |
---|
231 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
232 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
233 | ENDIF |
---|
234 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
235 | |
---|
236 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
237 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
238 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
239 | |
---|
240 | IF ( def < 0.0 ) def = 0.0 |
---|
241 | |
---|
242 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
243 | |
---|
244 | ENDIF |
---|
245 | |
---|
246 | ENDDO |
---|
247 | |
---|
248 | ! |
---|
249 | !-- 3 - Wird nur ausgefuehrt, wenn mindestens ein Niveau |
---|
250 | !-- zwischen 2 und 4 liegt, d.h. ab einer Gebaeudemindest- |
---|
251 | !-- hoehe von 2 dz. 'Nur Wand: Wall functions' |
---|
252 | DO j = nys, nyn |
---|
253 | |
---|
254 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) & |
---|
255 | THEN |
---|
256 | |
---|
257 | DO k = nzb_diff_s_inner(j,i), nzb_diff_s_outer(j,i)-2 |
---|
258 | |
---|
259 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
260 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
261 | usvs = kappa * 0.5 * ( u(k,j,i) + u(k,j,i+1) ) & |
---|
262 | / LOG( 0.5 * dy / z0(j,i) ) |
---|
263 | usvs = usvs * ABS( usvs ) |
---|
264 | dudy = wall_e_y(j,i) * usvs / km(k,j,i) |
---|
265 | ELSE |
---|
266 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
267 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
268 | ENDIF |
---|
269 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
270 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
271 | |
---|
272 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
273 | vsus = kappa * 0.5 * ( v(k,j,i) + v(k,j+1,i) ) & |
---|
274 | / LOG( 0.5 * dx / z0(j,i)) |
---|
275 | vsus = vsus * ABS( vsus ) |
---|
276 | dvdx = wall_e_x(j,i) * vsus / km(k,j,i) |
---|
277 | ELSE |
---|
278 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
279 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
280 | ENDIF |
---|
281 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
282 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
283 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
284 | |
---|
285 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
286 | wsus = kappa * 0.5 * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
287 | / LOG( 0.5 * dx / z0(j,i)) |
---|
288 | wsus = wsus * ABS( wsus ) |
---|
289 | dwdx = wall_e_x(j,i) * wsus / km(k,j,i) |
---|
290 | ELSE |
---|
291 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
292 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
293 | ENDIF |
---|
294 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
295 | wsvs = kappa * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
296 | / LOG( 0.5 * dy / z0(j,i)) |
---|
297 | wsvs = wsvs * ABS( wsvs ) |
---|
298 | dwdy = wall_e_y(j,i) * wsvs / km(k,j,i) |
---|
299 | ELSE |
---|
300 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
301 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
302 | ENDIF |
---|
303 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
304 | |
---|
305 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
306 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
307 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
308 | |
---|
309 | IF ( def < 0.0 ) def = 0.0 |
---|
310 | |
---|
311 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
312 | |
---|
313 | ENDDO |
---|
314 | |
---|
315 | ENDIF |
---|
316 | |
---|
317 | ENDDO |
---|
318 | |
---|
319 | ! |
---|
320 | !-- 4 - Wird immer ausgefuehrt. |
---|
321 | !-- 'Sonderfall: Freie Atmosphaere' (wie bei 0) |
---|
322 | DO j = nys, nyn |
---|
323 | |
---|
324 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) & |
---|
325 | THEN |
---|
326 | |
---|
327 | k = nzb_diff_s_outer(j,i)-1 |
---|
328 | |
---|
329 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
330 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
331 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
332 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
333 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
334 | |
---|
335 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
336 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
337 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
338 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
339 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
340 | |
---|
341 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
342 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
343 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
344 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
345 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
346 | |
---|
347 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
348 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
349 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
350 | |
---|
351 | IF ( def < 0.0 ) def = 0.0 |
---|
352 | |
---|
353 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
354 | |
---|
355 | ENDIF |
---|
356 | |
---|
357 | ENDDO |
---|
358 | |
---|
359 | ! |
---|
360 | !-- Position ohne angrenzende Gebaeudewand |
---|
361 | !-- 1 - Wird immer ausgefuehrt. 'Nur Boden: u_0,v_0' |
---|
362 | DO j = nys, nyn |
---|
363 | |
---|
364 | IF ( ( wall_e_x(j,i) == 0.0 ) .AND. ( wall_e_y(j,i) == 0.0 ) ) & |
---|
365 | THEN |
---|
366 | |
---|
367 | k = nzb_diff_s_inner(j,i)-1 |
---|
368 | |
---|
369 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
370 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
371 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
372 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
373 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
374 | |
---|
375 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
376 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
377 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
378 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
379 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
380 | |
---|
381 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
382 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
383 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
384 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
385 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
386 | |
---|
387 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
388 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
389 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
390 | |
---|
391 | IF ( def < 0.0 ) def = 0.0 |
---|
392 | |
---|
393 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
394 | |
---|
395 | ENDIF |
---|
396 | |
---|
397 | ENDDO |
---|
398 | |
---|
399 | ENDIF |
---|
400 | |
---|
401 | ! |
---|
402 | !-- Calculate TKE production by buoyancy |
---|
403 | IF ( .NOT. moisture ) THEN |
---|
404 | |
---|
405 | DO j = nys, nyn |
---|
406 | |
---|
407 | DO k = nzb_diff_s_inner(j,i), nzt-1 |
---|
408 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / pt(k,j,i) * & |
---|
409 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
410 | ENDDO |
---|
411 | IF ( use_surface_fluxes ) THEN |
---|
412 | k = nzb_diff_s_inner(j,i)-1 |
---|
413 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * shf(j,i) |
---|
414 | ENDIF |
---|
415 | |
---|
416 | ENDDO |
---|
417 | |
---|
418 | ELSE |
---|
419 | |
---|
420 | DO j = nys, nyn |
---|
421 | |
---|
422 | DO k = nzb_diff_s_inner(j,i), nzt-1 |
---|
423 | |
---|
424 | IF ( .NOT. cloud_physics ) THEN |
---|
425 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
426 | k2 = 0.61 * pt(k,j,i) |
---|
427 | ELSE |
---|
428 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
429 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
430 | k2 = 0.61 * pt(k,j,i) |
---|
431 | ELSE |
---|
432 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
433 | temp = theta * t_d_pt(k) |
---|
434 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
435 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
436 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
437 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
438 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
439 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
440 | ENDIF |
---|
441 | ENDIF |
---|
442 | |
---|
443 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
444 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
445 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
446 | ) * dd2zu(k) |
---|
447 | ENDDO |
---|
448 | |
---|
449 | ENDDO |
---|
450 | |
---|
451 | IF ( use_surface_fluxes ) THEN |
---|
452 | |
---|
453 | DO j = nys, nyn |
---|
454 | |
---|
455 | k = nzb_diff_s_inner(j,i)-1 |
---|
456 | |
---|
457 | IF ( .NOT. cloud_physics ) THEN |
---|
458 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
459 | k2 = 0.61 * pt(k,j,i) |
---|
460 | ELSE |
---|
461 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
462 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
463 | k2 = 0.61 * pt(k,j,i) |
---|
464 | ELSE |
---|
465 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
466 | temp = theta * t_d_pt(k) |
---|
467 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
468 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
469 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
470 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
471 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
472 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
473 | ENDIF |
---|
474 | ENDIF |
---|
475 | |
---|
476 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
477 | ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
478 | ENDDO |
---|
479 | |
---|
480 | ENDIF |
---|
481 | |
---|
482 | ENDIF |
---|
483 | |
---|
484 | ENDDO |
---|
485 | |
---|
486 | END SUBROUTINE production_e |
---|
487 | |
---|
488 | |
---|
489 | !------------------------------------------------------------------------------! |
---|
490 | ! Call for grid point i,j |
---|
491 | !------------------------------------------------------------------------------! |
---|
492 | SUBROUTINE production_e_ij( i, j ) |
---|
493 | |
---|
494 | USE arrays_3d |
---|
495 | USE cloud_parameters |
---|
496 | USE control_parameters |
---|
497 | USE grid_variables |
---|
498 | USE indices |
---|
499 | USE statistics |
---|
500 | |
---|
501 | IMPLICIT NONE |
---|
502 | |
---|
503 | INTEGER :: i, j, k |
---|
504 | |
---|
505 | REAL :: def, dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz, & |
---|
506 | k1, k2, theta, temp, usvs, vsus, wsus,wsvs |
---|
507 | |
---|
508 | ! |
---|
509 | !-- Calculate TKE production by shear |
---|
510 | DO k = nzb_diff_s_outer(j,i), nzt-1 |
---|
511 | |
---|
512 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
513 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
514 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
515 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
516 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
517 | |
---|
518 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
519 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
520 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
521 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
522 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
523 | |
---|
524 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
525 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
526 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
527 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
528 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
529 | |
---|
530 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) & |
---|
531 | + dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + dvdz**2 & |
---|
532 | + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
533 | |
---|
534 | IF ( def < 0.0 ) def = 0.0 |
---|
535 | |
---|
536 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
537 | |
---|
538 | ENDDO |
---|
539 | |
---|
540 | IF ( use_surface_fluxes ) THEN |
---|
541 | |
---|
542 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) THEN |
---|
543 | ! |
---|
544 | !-- Position neben Gebaeudewand |
---|
545 | !-- 2 - Wird immer ausgefuehrt. 'Boden und Wand: |
---|
546 | !-- u_0,v_0 und Wall functions' |
---|
547 | k = nzb_diff_s_inner(j,i)-1 |
---|
548 | |
---|
549 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
550 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
551 | usvs = kappa * 0.5 * ( u(k,j,i) + u(k,j,i+1) ) & |
---|
552 | / LOG( 0.5 * dy / z0(j,i) ) |
---|
553 | usvs = usvs * ABS( usvs ) |
---|
554 | dudy = wall_e_y(j,i) * usvs / km(k,j,i) |
---|
555 | ELSE |
---|
556 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
557 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
558 | ENDIF |
---|
559 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
560 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
561 | |
---|
562 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
563 | vsus = kappa * 0.5 * ( v(k,j,i) + v(k,j+1,i) ) & |
---|
564 | / LOG( 0.5 * dx / z0(j,i)) |
---|
565 | vsus = vsus * ABS( vsus ) |
---|
566 | dvdx = wall_e_x(j,i) * vsus / km(k,j,i) |
---|
567 | ELSE |
---|
568 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
569 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
570 | ENDIF |
---|
571 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
572 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
573 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
574 | |
---|
575 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
576 | wsus = kappa * 0.5 * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
577 | / LOG( 0.5 * dx / z0(j,i)) |
---|
578 | wsus = wsus * ABS( wsus ) |
---|
579 | dwdx = wall_e_x(j,i) * wsus / km(k,j,i) |
---|
580 | ELSE |
---|
581 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
582 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
583 | ENDIF |
---|
584 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
585 | wsvs = kappa * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
586 | / LOG( 0.5 * dy / z0(j,i)) |
---|
587 | wsvs = wsvs * ABS( wsvs ) |
---|
588 | dwdy = wall_e_y(j,i) * wsvs / km(k,j,i) |
---|
589 | ELSE |
---|
590 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
591 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
592 | ENDIF |
---|
593 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
594 | |
---|
595 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
596 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
597 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
598 | |
---|
599 | IF ( def < 0.0 ) def = 0.0 |
---|
600 | |
---|
601 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
602 | |
---|
603 | ! |
---|
604 | !-- 3 - Wird nur ausgefuehrt, wenn mindestens ein Niveau |
---|
605 | !-- zwischen 2 und 4 liegt, d.h. ab einer Gebaeudemindest- |
---|
606 | !-- hoehe von 2 dz. 'Nur Wand: Wall functions' |
---|
607 | DO k = nzb_diff_s_inner(j,i), nzb_diff_s_outer(j,i)-2 |
---|
608 | |
---|
609 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
610 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
611 | usvs = kappa * 0.5 * ( u(k,j,i) + u(k,j,i+1) ) & |
---|
612 | / LOG( 0.5 * dy / z0(j,i) ) |
---|
613 | usvs = usvs * ABS( usvs ) |
---|
614 | dudy = wall_e_y(j,i) * usvs / km(k,j,i) |
---|
615 | ELSE |
---|
616 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
617 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
618 | ENDIF |
---|
619 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
620 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
621 | |
---|
622 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
623 | vsus = kappa * 0.5 * ( v(k,j,i) + v(k,j+1,i) ) & |
---|
624 | / LOG( 0.5 * dx / z0(j,i)) |
---|
625 | vsus = vsus * ABS( vsus ) |
---|
626 | dvdx = wall_e_x(j,i) * vsus / km(k,j,i) |
---|
627 | ELSE |
---|
628 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
629 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
630 | ENDIF |
---|
631 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
632 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
633 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
634 | |
---|
635 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
636 | wsus = kappa * 0.5 * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
637 | / LOG( 0.5 * dx / z0(j,i)) |
---|
638 | wsus = wsus * ABS( wsus ) |
---|
639 | dwdx = wall_e_x(j,i) * wsus / km(k,j,i) |
---|
640 | ELSE |
---|
641 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
642 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
643 | ENDIF |
---|
644 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
645 | wsvs = kappa * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
646 | / LOG( 0.5 * dy / z0(j,i)) |
---|
647 | wsvs = wsvs * ABS( wsvs ) |
---|
648 | dwdy = wall_e_y(j,i) * wsvs / km(k,j,i) |
---|
649 | ELSE |
---|
650 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
651 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
652 | ENDIF |
---|
653 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
654 | |
---|
655 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
656 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
657 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
658 | |
---|
659 | IF ( def < 0.0 ) def = 0.0 |
---|
660 | |
---|
661 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
662 | |
---|
663 | ENDDO |
---|
664 | |
---|
665 | ! |
---|
666 | !-- 4 - Wird immer ausgefuehrt. |
---|
667 | !-- 'Sonderfall: Freie Atmosphaere' (wie bei 0) |
---|
668 | k = nzb_diff_s_outer(j,i)-1 |
---|
669 | |
---|
670 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
671 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
672 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
673 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
674 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
675 | |
---|
676 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
677 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
678 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
679 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
680 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
681 | |
---|
682 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
683 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
684 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
685 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
686 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
687 | |
---|
688 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
689 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
690 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
691 | |
---|
692 | IF ( def < 0.0 ) def = 0.0 |
---|
693 | |
---|
694 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
695 | |
---|
696 | ELSE |
---|
697 | |
---|
698 | ! |
---|
699 | !-- Position ohne angrenzende Gebaeudewand |
---|
700 | !-- 1 - Wird immer ausgefuehrt. 'Nur Boden: u_0,v_0' |
---|
701 | k = nzb_diff_s_inner(j,i)-1 |
---|
702 | |
---|
703 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
704 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
705 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
706 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
707 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
708 | |
---|
709 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
710 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
711 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
712 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
713 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
714 | |
---|
715 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
716 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
717 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
718 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
719 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
720 | |
---|
721 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) & |
---|
722 | + dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + dvdz**2 & |
---|
723 | + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
724 | |
---|
725 | IF ( def < 0.0 ) def = 0.0 |
---|
726 | |
---|
727 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
728 | |
---|
729 | ENDIF |
---|
730 | |
---|
731 | ENDIF |
---|
732 | |
---|
733 | ! |
---|
734 | !-- Calculate TKE production by buoyancy |
---|
735 | IF ( .NOT. moisture ) THEN |
---|
736 | |
---|
737 | DO k = nzb_diff_s_inner(j,i), nzt-1 |
---|
738 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / pt(k,j,i) * & |
---|
739 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
740 | ENDDO |
---|
741 | IF ( use_surface_fluxes ) THEN |
---|
742 | k = nzb_diff_s_inner(j,i)-1 |
---|
743 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * shf(j,i) |
---|
744 | ENDIF |
---|
745 | |
---|
746 | ELSE |
---|
747 | |
---|
748 | DO k = nzb_diff_s_inner(j,i), nzt-1 |
---|
749 | |
---|
750 | IF ( .NOT. cloud_physics ) THEN |
---|
751 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
752 | k2 = 0.61 * pt(k,j,i) |
---|
753 | ELSE |
---|
754 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
755 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
756 | k2 = 0.61 * pt(k,j,i) |
---|
757 | ELSE |
---|
758 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
759 | temp = theta * t_d_pt(k) |
---|
760 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
761 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
762 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
763 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
764 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
765 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
766 | ENDIF |
---|
767 | ENDIF |
---|
768 | |
---|
769 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
770 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
771 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
772 | ) * dd2zu(k) |
---|
773 | ENDDO |
---|
774 | IF ( use_surface_fluxes ) THEN |
---|
775 | k = nzb_diff_s_inner(j,i)-1 |
---|
776 | |
---|
777 | IF ( .NOT. cloud_physics ) THEN |
---|
778 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
779 | k2 = 0.61 * pt(k,j,i) |
---|
780 | ELSE |
---|
781 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
782 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
783 | k2 = 0.61 * pt(k,j,i) |
---|
784 | ELSE |
---|
785 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
786 | temp = theta * t_d_pt(k) |
---|
787 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
788 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
789 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
790 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
791 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
792 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
793 | ENDIF |
---|
794 | ENDIF |
---|
795 | |
---|
796 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
797 | ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
798 | ENDIF |
---|
799 | |
---|
800 | ENDIF |
---|
801 | |
---|
802 | END SUBROUTINE production_e_ij |
---|
803 | |
---|
804 | |
---|
805 | SUBROUTINE production_e_init |
---|
806 | |
---|
807 | USE arrays_3d |
---|
808 | USE control_parameters |
---|
809 | USE grid_variables |
---|
810 | USE indices |
---|
811 | |
---|
812 | IMPLICIT NONE |
---|
813 | |
---|
814 | INTEGER :: i, j, ku, kv |
---|
815 | |
---|
816 | IF ( use_surface_fluxes ) THEN |
---|
817 | |
---|
818 | IF ( first_call ) THEN |
---|
819 | ALLOCATE( u_0(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
820 | v_0(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
821 | first_call = .FALSE. |
---|
822 | ENDIF |
---|
823 | |
---|
824 | ! |
---|
825 | !-- Calculate a virtual velocity at the surface in a way that the |
---|
826 | !-- vertical velocity gradient at k = 1 (u(k+1)-u_0) matches the |
---|
827 | !-- Prandtl law (-w'u'/km). This gradient is used in the TKE shear |
---|
828 | !-- production term at k=1 (see production_e_ij). |
---|
829 | !-- The velocity gradient has to be limited in case of too small km |
---|
830 | !-- (otherwise the timestep may be significantly reduced by large |
---|
831 | !-- surface winds). |
---|
832 | !-- WARNING: the exact analytical solution would require the determination |
---|
833 | !-- of the eddy diffusivity by km = u* * kappa * zp / phi_m. |
---|
834 | !$OMP PARALLEL DO PRIVATE( ku, kv ) |
---|
835 | DO i = nxl, nxr |
---|
836 | DO j = nys, nyn |
---|
837 | |
---|
838 | ku = nzb_u_inner(j,i)+1 |
---|
839 | kv = nzb_v_inner(j,i)+1 |
---|
840 | |
---|
841 | u_0(j,i) = u(ku+1,j,i) + usws(j,i) * ( zu(ku+1) - zu(ku-1) ) / & |
---|
842 | ( 0.5 * ( km(ku,j,i) + km(ku,j,i-1) ) + & |
---|
843 | 1.0E-20 ) |
---|
844 | ! ( us(j,i) * kappa * zu(1) ) |
---|
845 | v_0(j,i) = v(kv+1,j,i) + vsws(j,i) * ( zu(kv+1) - zu(kv-1) ) / & |
---|
846 | ( 0.5 * ( km(kv,j,i) + km(kv,j-1,i) ) + & |
---|
847 | 1.0E-20 ) |
---|
848 | ! ( us(j,i) * kappa * zu(1) ) |
---|
849 | |
---|
850 | IF ( ABS( u(ku+1,j,i) - u_0(j,i) ) > & |
---|
851 | ABS( u(ku+1,j,i) - u(ku-1,j,i) ) ) u_0(j,i) = u(ku-1,j,i) |
---|
852 | IF ( ABS( v(kv+1,j,i) - v_0(j,i) ) > & |
---|
853 | ABS( v(kv+1,j,i) - v(kv-1,j,i) ) ) v_0(j,i) = v(kv-1,j,i) |
---|
854 | |
---|
855 | ENDDO |
---|
856 | ENDDO |
---|
857 | |
---|
858 | CALL exchange_horiz_2d( u_0 ) |
---|
859 | CALL exchange_horiz_2d( v_0 ) |
---|
860 | |
---|
861 | ENDIF |
---|
862 | |
---|
863 | END SUBROUTINE production_e_init |
---|
864 | |
---|
865 | END MODULE production_e_mod |
---|