[1] | 1 | MODULE production_e_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
[110] | 6 | ! |
---|
[941] | 7 | ! |
---|
[110] | 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
| 10 | ! $Id: production_e.f90 941 2012-07-09 14:50:21Z maronga $ |
---|
| 11 | ! |
---|
[941] | 12 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 13 | ! TKE production by buoyancy can be switched off in case of runs with pure |
---|
| 14 | ! neutral stratification |
---|
| 15 | ! |
---|
[760] | 16 | ! 759 2011-09-15 13:58:31Z raasch |
---|
| 17 | ! initialization of u_0, v_0 |
---|
| 18 | ! |
---|
[668] | 19 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 20 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng |
---|
| 21 | ! |
---|
[482] | 22 | ! 449 2010-02-02 11:23:59Z raasch |
---|
| 23 | ! test output from rev 410 removed |
---|
| 24 | ! |
---|
[392] | 25 | ! 388 2009-09-23 09:40:33Z raasch |
---|
| 26 | ! Bugfix: wrong sign in buoyancy production of ocean part in case of not using |
---|
| 27 | ! the reference density (only in 3D routine production_e) |
---|
| 28 | ! Bugfix to avoid zero division by km_neutral |
---|
| 29 | ! |
---|
[226] | 30 | ! 208 2008-10-20 06:02:59Z raasch |
---|
| 31 | ! Bugfix concerning the calculation of velocity gradients at vertical walls |
---|
| 32 | ! in case of diabatic conditions |
---|
| 33 | ! |
---|
[198] | 34 | ! 187 2008-08-06 16:25:09Z letzel |
---|
| 35 | ! Change: add 'minus' sign to fluxes obtained from subroutine wall_fluxes_e for |
---|
| 36 | ! consistency with subroutine wall_fluxes |
---|
| 37 | ! |
---|
[139] | 38 | ! 124 2007-10-19 15:47:46Z raasch |
---|
| 39 | ! Bugfix: calculation of density flux in the ocean now starts from nzb+1 |
---|
| 40 | ! |
---|
[110] | 41 | ! 108 2007-08-24 15:10:38Z letzel |
---|
[106] | 42 | ! Bugfix: wrong sign removed from the buoyancy production term in the case |
---|
| 43 | ! use_reference = .T., |
---|
| 44 | ! u_0 and v_0 are calculated for nxr+1, nyn+1 also (otherwise these values are |
---|
| 45 | ! not available in case of non-cyclic boundary conditions) |
---|
[108] | 46 | ! Bugfix for ocean density flux at bottom |
---|
[39] | 47 | ! |
---|
[98] | 48 | ! 97 2007-06-21 08:23:15Z raasch |
---|
| 49 | ! Energy production by density flux (in ocean) added |
---|
| 50 | ! use_pt_reference renamed use_reference |
---|
| 51 | ! |
---|
[77] | 52 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 53 | ! Wall functions now include diabatic conditions, call of routine wall_fluxes_e, |
---|
| 54 | ! reference temperature pt_reference can be used in buoyancy term, |
---|
| 55 | ! moisture renamed humidity |
---|
| 56 | ! |
---|
[39] | 57 | ! 37 2007-03-01 08:33:54Z raasch |
---|
[19] | 58 | ! Calculation extended for gridpoint nzt, extended for given temperature / |
---|
[37] | 59 | ! humidity fluxes at the top, wall-part is now executed in case that a |
---|
| 60 | ! Prandtl-layer is switched on (instead of surfaces fluxes switched on) |
---|
[1] | 61 | ! |
---|
[3] | 62 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 63 | ! |
---|
[1] | 64 | ! Revision 1.21 2006/04/26 12:45:35 raasch |
---|
| 65 | ! OpenMP parallelization of production_e_init |
---|
| 66 | ! |
---|
| 67 | ! Revision 1.1 1997/09/19 07:45:35 raasch |
---|
| 68 | ! Initial revision |
---|
| 69 | ! |
---|
| 70 | ! |
---|
| 71 | ! Description: |
---|
| 72 | ! ------------ |
---|
| 73 | ! Production terms (shear + buoyancy) of the TKE |
---|
[37] | 74 | ! WARNING: the case with prandtl_layer = F and use_surface_fluxes = T is |
---|
| 75 | ! not considered well! |
---|
[1] | 76 | !------------------------------------------------------------------------------! |
---|
| 77 | |
---|
[56] | 78 | USE wall_fluxes_mod |
---|
| 79 | |
---|
[1] | 80 | PRIVATE |
---|
| 81 | PUBLIC production_e, production_e_init |
---|
[56] | 82 | |
---|
[1] | 83 | LOGICAL, SAVE :: first_call = .TRUE. |
---|
| 84 | |
---|
| 85 | REAL, DIMENSION(:,:), ALLOCATABLE, SAVE :: u_0, v_0 |
---|
| 86 | |
---|
| 87 | INTERFACE production_e |
---|
| 88 | MODULE PROCEDURE production_e |
---|
| 89 | MODULE PROCEDURE production_e_ij |
---|
| 90 | END INTERFACE production_e |
---|
| 91 | |
---|
| 92 | INTERFACE production_e_init |
---|
| 93 | MODULE PROCEDURE production_e_init |
---|
| 94 | END INTERFACE production_e_init |
---|
| 95 | |
---|
| 96 | CONTAINS |
---|
| 97 | |
---|
| 98 | |
---|
| 99 | !------------------------------------------------------------------------------! |
---|
| 100 | ! Call for all grid points |
---|
| 101 | !------------------------------------------------------------------------------! |
---|
| 102 | SUBROUTINE production_e |
---|
| 103 | |
---|
| 104 | USE arrays_3d |
---|
| 105 | USE cloud_parameters |
---|
| 106 | USE control_parameters |
---|
| 107 | USE grid_variables |
---|
| 108 | USE indices |
---|
| 109 | USE statistics |
---|
| 110 | |
---|
| 111 | IMPLICIT NONE |
---|
| 112 | |
---|
| 113 | INTEGER :: i, j, k |
---|
| 114 | |
---|
| 115 | REAL :: def, dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz, & |
---|
[208] | 116 | k1, k2, km_neutral, theta, temp |
---|
[1] | 117 | |
---|
[56] | 118 | ! REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: usvs, vsus, wsus, wsvs |
---|
| 119 | REAL, DIMENSION(nzb:nzt+1) :: usvs, vsus, wsus, wsvs |
---|
[1] | 120 | |
---|
[56] | 121 | ! |
---|
| 122 | !-- First calculate horizontal momentum flux u'v', w'v', v'u', w'u' at |
---|
| 123 | !-- vertical walls, if neccessary |
---|
| 124 | !-- So far, results are slightly different from the ij-Version. |
---|
| 125 | !-- Therefore, ij-Version is called further below within the ij-loops. |
---|
| 126 | ! IF ( topography /= 'flat' ) THEN |
---|
| 127 | ! CALL wall_fluxes_e( usvs, 1.0, 0.0, 0.0, 0.0, wall_e_y ) |
---|
| 128 | ! CALL wall_fluxes_e( wsvs, 0.0, 0.0, 1.0, 0.0, wall_e_y ) |
---|
| 129 | ! CALL wall_fluxes_e( vsus, 0.0, 1.0, 0.0, 0.0, wall_e_x ) |
---|
| 130 | ! CALL wall_fluxes_e( wsus, 0.0, 0.0, 0.0, 1.0, wall_e_x ) |
---|
| 131 | ! ENDIF |
---|
[53] | 132 | |
---|
[940] | 133 | |
---|
[1] | 134 | DO i = nxl, nxr |
---|
| 135 | |
---|
[940] | 136 | ! |
---|
| 137 | !-- Calculate TKE production by shear |
---|
[1] | 138 | DO j = nys, nyn |
---|
[19] | 139 | DO k = nzb_diff_s_outer(j,i), nzt |
---|
[1] | 140 | |
---|
| 141 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 142 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 143 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 144 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 145 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 146 | |
---|
| 147 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 148 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 149 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 150 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 151 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 152 | |
---|
| 153 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 154 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 155 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 156 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 157 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 158 | |
---|
| 159 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 160 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 161 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 162 | |
---|
| 163 | IF ( def < 0.0 ) def = 0.0 |
---|
| 164 | |
---|
| 165 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 166 | |
---|
| 167 | ENDDO |
---|
| 168 | ENDDO |
---|
| 169 | |
---|
[37] | 170 | IF ( prandtl_layer ) THEN |
---|
[1] | 171 | |
---|
| 172 | ! |
---|
[55] | 173 | !-- Position beneath wall |
---|
| 174 | !-- (2) - Will allways be executed. |
---|
| 175 | !-- 'bottom and wall: use u_0,v_0 and wall functions' |
---|
[1] | 176 | DO j = nys, nyn |
---|
| 177 | |
---|
| 178 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) & |
---|
| 179 | THEN |
---|
| 180 | |
---|
| 181 | k = nzb_diff_s_inner(j,i) - 1 |
---|
| 182 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
[53] | 183 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 184 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
| 185 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 186 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 187 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
| 188 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 189 | |
---|
[1] | 190 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
[208] | 191 | ! |
---|
| 192 | !-- Inconsistency removed: as the thermal stratification is |
---|
| 193 | !-- not taken into account for the evaluation of the wall |
---|
| 194 | !-- fluxes at vertical walls, the eddy viscosity km must not |
---|
| 195 | !-- be used for the evaluation of the velocity gradients dudy |
---|
| 196 | !-- and dwdy |
---|
| 197 | !-- Note: The validity of the new method has not yet been |
---|
| 198 | !-- shown, as so far no suitable data for a validation |
---|
| 199 | !-- has been available |
---|
[53] | 200 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 201 | usvs, 1.0, 0.0, 0.0, 0.0 ) |
---|
| 202 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 203 | wsvs, 0.0, 0.0, 1.0, 0.0 ) |
---|
[208] | 204 | km_neutral = kappa * ( usvs(k)**2 + wsvs(k)**2 )**0.25 * & |
---|
| 205 | 0.5 * dy |
---|
[364] | 206 | IF ( km_neutral > 0.0 ) THEN |
---|
| 207 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
| 208 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
| 209 | ELSE |
---|
| 210 | dudy = 0.0 |
---|
| 211 | dwdy = 0.0 |
---|
| 212 | ENDIF |
---|
[1] | 213 | ELSE |
---|
| 214 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 215 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
[53] | 216 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 217 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
[1] | 218 | ENDIF |
---|
| 219 | |
---|
| 220 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
[208] | 221 | ! |
---|
| 222 | !-- Inconsistency removed: as the thermal stratification is |
---|
| 223 | !-- not taken into account for the evaluation of the wall |
---|
| 224 | !-- fluxes at vertical walls, the eddy viscosity km must not |
---|
| 225 | !-- be used for the evaluation of the velocity gradients dvdx |
---|
| 226 | !-- and dwdx |
---|
| 227 | !-- Note: The validity of the new method has not yet been |
---|
| 228 | !-- shown, as so far no suitable data for a validation |
---|
| 229 | !-- has been available |
---|
[53] | 230 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 231 | vsus, 0.0, 1.0, 0.0, 0.0 ) |
---|
| 232 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 233 | wsus, 0.0, 0.0, 0.0, 1.0 ) |
---|
[208] | 234 | km_neutral = kappa * ( vsus(k)**2 + wsus(k)**2 )**0.25 * & |
---|
| 235 | 0.5 * dx |
---|
[364] | 236 | IF ( km_neutral > 0.0 ) THEN |
---|
| 237 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
| 238 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
| 239 | ELSE |
---|
| 240 | dvdx = 0.0 |
---|
| 241 | dwdx = 0.0 |
---|
| 242 | ENDIF |
---|
[1] | 243 | ELSE |
---|
| 244 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 245 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 246 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 247 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 248 | ENDIF |
---|
| 249 | |
---|
| 250 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 251 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 252 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 253 | |
---|
| 254 | IF ( def < 0.0 ) def = 0.0 |
---|
| 255 | |
---|
| 256 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 257 | |
---|
| 258 | |
---|
| 259 | ! |
---|
[55] | 260 | !-- (3) - will be executed only, if there is at least one level |
---|
| 261 | !-- between (2) and (4), i.e. the topography must have a |
---|
| 262 | !-- minimum height of 2 dz. Wall fluxes for this case have |
---|
| 263 | !-- already been calculated for (2). |
---|
| 264 | !-- 'wall only: use wall functions' |
---|
[1] | 265 | |
---|
| 266 | DO k = nzb_diff_s_inner(j,i), nzb_diff_s_outer(j,i)-2 |
---|
| 267 | |
---|
| 268 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
[53] | 269 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 270 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 271 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 272 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 273 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 274 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 275 | |
---|
[1] | 276 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
[208] | 277 | ! |
---|
| 278 | !-- Inconsistency removed: as the thermal stratification |
---|
| 279 | !-- is not taken into account for the evaluation of the |
---|
| 280 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
| 281 | !-- must not be used for the evaluation of the velocity |
---|
| 282 | !-- gradients dudy and dwdy |
---|
| 283 | !-- Note: The validity of the new method has not yet |
---|
| 284 | !-- been shown, as so far no suitable data for a |
---|
| 285 | !-- validation has been available |
---|
| 286 | km_neutral = kappa * ( usvs(k)**2 + & |
---|
| 287 | wsvs(k)**2 )**0.25 * 0.5 * dy |
---|
[364] | 288 | IF ( km_neutral > 0.0 ) THEN |
---|
| 289 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
| 290 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
| 291 | ELSE |
---|
| 292 | dudy = 0.0 |
---|
| 293 | dwdy = 0.0 |
---|
| 294 | ENDIF |
---|
[1] | 295 | ELSE |
---|
| 296 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 297 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
[53] | 298 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 299 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
[1] | 300 | ENDIF |
---|
| 301 | |
---|
| 302 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
[208] | 303 | ! |
---|
| 304 | !-- Inconsistency removed: as the thermal stratification |
---|
| 305 | !-- is not taken into account for the evaluation of the |
---|
| 306 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
| 307 | !-- must not be used for the evaluation of the velocity |
---|
| 308 | !-- gradients dvdx and dwdx |
---|
| 309 | !-- Note: The validity of the new method has not yet |
---|
| 310 | !-- been shown, as so far no suitable data for a |
---|
| 311 | !-- validation has been available |
---|
| 312 | km_neutral = kappa * ( vsus(k)**2 + & |
---|
| 313 | wsus(k)**2 )**0.25 * 0.5 * dx |
---|
[364] | 314 | IF ( km_neutral > 0.0 ) THEN |
---|
| 315 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
| 316 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
| 317 | ELSE |
---|
| 318 | dvdx = 0.0 |
---|
| 319 | dwdx = 0.0 |
---|
| 320 | ENDIF |
---|
[1] | 321 | ELSE |
---|
| 322 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 323 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 324 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 325 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 326 | ENDIF |
---|
| 327 | |
---|
| 328 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 329 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 330 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 331 | |
---|
| 332 | IF ( def < 0.0 ) def = 0.0 |
---|
| 333 | |
---|
| 334 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 335 | |
---|
| 336 | ENDDO |
---|
| 337 | |
---|
| 338 | ENDIF |
---|
| 339 | |
---|
| 340 | ENDDO |
---|
| 341 | |
---|
| 342 | ! |
---|
[55] | 343 | !-- (4) - will allways be executed. |
---|
| 344 | !-- 'special case: free atmosphere' (as for case (0)) |
---|
[1] | 345 | DO j = nys, nyn |
---|
| 346 | |
---|
| 347 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) & |
---|
| 348 | THEN |
---|
| 349 | |
---|
| 350 | k = nzb_diff_s_outer(j,i)-1 |
---|
| 351 | |
---|
| 352 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 353 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 354 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 355 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 356 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 357 | |
---|
| 358 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 359 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 360 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 361 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 362 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 363 | |
---|
| 364 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 365 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 366 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 367 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 368 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 369 | |
---|
| 370 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 371 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 372 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 373 | |
---|
| 374 | IF ( def < 0.0 ) def = 0.0 |
---|
| 375 | |
---|
| 376 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 377 | |
---|
| 378 | ENDIF |
---|
| 379 | |
---|
| 380 | ENDDO |
---|
| 381 | |
---|
| 382 | ! |
---|
[55] | 383 | !-- Position without adjacent wall |
---|
| 384 | !-- (1) - will allways be executed. |
---|
| 385 | !-- 'bottom only: use u_0,v_0' |
---|
[1] | 386 | DO j = nys, nyn |
---|
| 387 | |
---|
| 388 | IF ( ( wall_e_x(j,i) == 0.0 ) .AND. ( wall_e_y(j,i) == 0.0 ) ) & |
---|
| 389 | THEN |
---|
| 390 | |
---|
| 391 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 392 | |
---|
| 393 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 394 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 395 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 396 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 397 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
| 398 | |
---|
| 399 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 400 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 401 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 402 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 403 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
| 404 | |
---|
| 405 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 406 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 407 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 408 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 409 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 410 | |
---|
| 411 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 412 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 413 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 414 | |
---|
| 415 | IF ( def < 0.0 ) def = 0.0 |
---|
| 416 | |
---|
| 417 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 418 | |
---|
| 419 | ENDIF |
---|
| 420 | |
---|
| 421 | ENDDO |
---|
| 422 | |
---|
[37] | 423 | ELSEIF ( use_surface_fluxes ) THEN |
---|
| 424 | |
---|
| 425 | DO j = nys, nyn |
---|
| 426 | |
---|
| 427 | k = nzb_diff_s_outer(j,i)-1 |
---|
| 428 | |
---|
| 429 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 430 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 431 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 432 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 433 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 434 | |
---|
| 435 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 436 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 437 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 438 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 439 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 440 | |
---|
| 441 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 442 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 443 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 444 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 445 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 446 | |
---|
| 447 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 448 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 449 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 450 | |
---|
| 451 | IF ( def < 0.0 ) def = 0.0 |
---|
| 452 | |
---|
| 453 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 454 | |
---|
| 455 | ENDDO |
---|
| 456 | |
---|
[1] | 457 | ENDIF |
---|
| 458 | |
---|
| 459 | ! |
---|
[940] | 460 | !-- If required, calculate TKE production by buoyancy |
---|
| 461 | IF ( .NOT. neutral ) THEN |
---|
[1] | 462 | |
---|
[940] | 463 | IF ( .NOT. humidity ) THEN |
---|
[1] | 464 | |
---|
[940] | 465 | IF ( use_reference ) THEN |
---|
| 466 | |
---|
| 467 | IF ( ocean ) THEN |
---|
[97] | 468 | ! |
---|
[940] | 469 | !-- So far in the ocean no special treatment of density flux |
---|
| 470 | !-- in the bottom and top surface layer |
---|
| 471 | DO j = nys, nyn |
---|
| 472 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 473 | tend(k,j,i) = tend(k,j,i) + & |
---|
| 474 | kh(k,j,i) * g / rho_reference * & |
---|
| 475 | ( rho(k+1,j,i) - rho(k-1,j,i) ) * & |
---|
| 476 | dd2zu(k) |
---|
| 477 | ENDDO |
---|
[97] | 478 | ENDDO |
---|
| 479 | |
---|
[940] | 480 | ELSE |
---|
[97] | 481 | |
---|
[940] | 482 | DO j = nys, nyn |
---|
| 483 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
| 484 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 485 | kh(k,j,i) * g / pt_reference * & |
---|
| 486 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * & |
---|
| 487 | dd2zu(k) |
---|
| 488 | ENDDO |
---|
[97] | 489 | |
---|
[940] | 490 | IF ( use_surface_fluxes ) THEN |
---|
| 491 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 492 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
| 493 | shf(j,i) |
---|
| 494 | ENDIF |
---|
[97] | 495 | |
---|
[940] | 496 | IF ( use_top_fluxes ) THEN |
---|
| 497 | k = nzt |
---|
| 498 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
| 499 | tswst(j,i) |
---|
| 500 | ENDIF |
---|
| 501 | ENDDO |
---|
[57] | 502 | |
---|
[940] | 503 | ENDIF |
---|
[57] | 504 | |
---|
[940] | 505 | ELSE |
---|
[1] | 506 | |
---|
[940] | 507 | IF ( ocean ) THEN |
---|
[97] | 508 | ! |
---|
[940] | 509 | !-- So far in the ocean no special treatment of density flux |
---|
| 510 | !-- in the bottom and top surface layer |
---|
| 511 | DO j = nys, nyn |
---|
| 512 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 513 | tend(k,j,i) = tend(k,j,i) + & |
---|
| 514 | kh(k,j,i) * g / rho(k,j,i) * & |
---|
| 515 | ( rho(k+1,j,i) - rho(k-1,j,i) ) * & |
---|
| 516 | dd2zu(k) |
---|
| 517 | ENDDO |
---|
[97] | 518 | ENDDO |
---|
| 519 | |
---|
[940] | 520 | ELSE |
---|
[97] | 521 | |
---|
[940] | 522 | DO j = nys, nyn |
---|
| 523 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
| 524 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 525 | kh(k,j,i) * g / pt(k,j,i) * & |
---|
| 526 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * & |
---|
| 527 | dd2zu(k) |
---|
| 528 | ENDDO |
---|
| 529 | |
---|
| 530 | IF ( use_surface_fluxes ) THEN |
---|
| 531 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 532 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * & |
---|
| 533 | shf(j,i) |
---|
| 534 | ENDIF |
---|
| 535 | |
---|
| 536 | IF ( use_top_fluxes ) THEN |
---|
| 537 | k = nzt |
---|
| 538 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * & |
---|
| 539 | tswst(j,i) |
---|
| 540 | ENDIF |
---|
[97] | 541 | ENDDO |
---|
| 542 | |
---|
[940] | 543 | ENDIF |
---|
[97] | 544 | |
---|
| 545 | ENDIF |
---|
[1] | 546 | |
---|
[940] | 547 | ELSE |
---|
[57] | 548 | |
---|
[940] | 549 | DO j = nys, nyn |
---|
[1] | 550 | |
---|
[940] | 551 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
[1] | 552 | |
---|
[940] | 553 | IF ( .NOT. cloud_physics ) THEN |
---|
[1] | 554 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 555 | k2 = 0.61 * pt(k,j,i) |
---|
| 556 | ELSE |
---|
[940] | 557 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 558 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 559 | k2 = 0.61 * pt(k,j,i) |
---|
| 560 | ELSE |
---|
| 561 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 562 | temp = theta * t_d_pt(k) |
---|
| 563 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 564 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 565 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 566 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 567 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 568 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 569 | ENDIF |
---|
[1] | 570 | ENDIF |
---|
| 571 | |
---|
[940] | 572 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
| 573 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
| 574 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
| 575 | ) * dd2zu(k) |
---|
| 576 | ENDDO |
---|
| 577 | |
---|
[1] | 578 | ENDDO |
---|
| 579 | |
---|
[940] | 580 | IF ( use_surface_fluxes ) THEN |
---|
[1] | 581 | |
---|
[940] | 582 | DO j = nys, nyn |
---|
[1] | 583 | |
---|
[940] | 584 | k = nzb_diff_s_inner(j,i)-1 |
---|
[1] | 585 | |
---|
[940] | 586 | IF ( .NOT. cloud_physics ) THEN |
---|
[1] | 587 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 588 | k2 = 0.61 * pt(k,j,i) |
---|
| 589 | ELSE |
---|
[940] | 590 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 591 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 592 | k2 = 0.61 * pt(k,j,i) |
---|
| 593 | ELSE |
---|
| 594 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 595 | temp = theta * t_d_pt(k) |
---|
| 596 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 597 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 598 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 599 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 600 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 601 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 602 | ENDIF |
---|
[1] | 603 | ENDIF |
---|
| 604 | |
---|
[940] | 605 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
| 606 | ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
| 607 | ENDDO |
---|
[1] | 608 | |
---|
[940] | 609 | ENDIF |
---|
[1] | 610 | |
---|
[940] | 611 | IF ( use_top_fluxes ) THEN |
---|
[19] | 612 | |
---|
[940] | 613 | DO j = nys, nyn |
---|
[19] | 614 | |
---|
[940] | 615 | k = nzt |
---|
[19] | 616 | |
---|
[940] | 617 | IF ( .NOT. cloud_physics ) THEN |
---|
[19] | 618 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 619 | k2 = 0.61 * pt(k,j,i) |
---|
| 620 | ELSE |
---|
[940] | 621 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 622 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 623 | k2 = 0.61 * pt(k,j,i) |
---|
| 624 | ELSE |
---|
| 625 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 626 | temp = theta * t_d_pt(k) |
---|
| 627 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 628 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 629 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 630 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 631 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 632 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 633 | ENDIF |
---|
[19] | 634 | ENDIF |
---|
| 635 | |
---|
[940] | 636 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
| 637 | ( k1* tswst(j,i) + k2 * qswst(j,i) ) |
---|
| 638 | ENDDO |
---|
[19] | 639 | |
---|
[940] | 640 | ENDIF |
---|
| 641 | |
---|
[19] | 642 | ENDIF |
---|
| 643 | |
---|
[1] | 644 | ENDIF |
---|
| 645 | |
---|
| 646 | ENDDO |
---|
| 647 | |
---|
| 648 | END SUBROUTINE production_e |
---|
| 649 | |
---|
| 650 | |
---|
| 651 | !------------------------------------------------------------------------------! |
---|
| 652 | ! Call for grid point i,j |
---|
| 653 | !------------------------------------------------------------------------------! |
---|
| 654 | SUBROUTINE production_e_ij( i, j ) |
---|
| 655 | |
---|
| 656 | USE arrays_3d |
---|
| 657 | USE cloud_parameters |
---|
| 658 | USE control_parameters |
---|
| 659 | USE grid_variables |
---|
| 660 | USE indices |
---|
| 661 | USE statistics |
---|
[449] | 662 | |
---|
[1] | 663 | IMPLICIT NONE |
---|
| 664 | |
---|
| 665 | INTEGER :: i, j, k |
---|
| 666 | |
---|
| 667 | REAL :: def, dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz, & |
---|
[208] | 668 | k1, k2, km_neutral, theta, temp |
---|
[1] | 669 | |
---|
[56] | 670 | REAL, DIMENSION(nzb:nzt+1) :: usvs, vsus, wsus, wsvs |
---|
[53] | 671 | |
---|
[1] | 672 | ! |
---|
| 673 | !-- Calculate TKE production by shear |
---|
[19] | 674 | DO k = nzb_diff_s_outer(j,i), nzt |
---|
[1] | 675 | |
---|
| 676 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 677 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 678 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 679 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 680 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 681 | |
---|
| 682 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 683 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 684 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 685 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 686 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 687 | |
---|
| 688 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 689 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 690 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 691 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 692 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 693 | |
---|
| 694 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) & |
---|
| 695 | + dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + dvdz**2 & |
---|
| 696 | + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 697 | |
---|
| 698 | IF ( def < 0.0 ) def = 0.0 |
---|
| 699 | |
---|
| 700 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 701 | |
---|
| 702 | ENDDO |
---|
| 703 | |
---|
[37] | 704 | IF ( prandtl_layer ) THEN |
---|
[1] | 705 | |
---|
| 706 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) THEN |
---|
[55] | 707 | |
---|
[1] | 708 | ! |
---|
[55] | 709 | !-- Position beneath wall |
---|
| 710 | !-- (2) - Will allways be executed. |
---|
| 711 | !-- 'bottom and wall: use u_0,v_0 and wall functions' |
---|
[1] | 712 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 713 | |
---|
| 714 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
[53] | 715 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 716 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
| 717 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 718 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 719 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
| 720 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 721 | |
---|
[1] | 722 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
[208] | 723 | ! |
---|
| 724 | !-- Inconsistency removed: as the thermal stratification |
---|
| 725 | !-- is not taken into account for the evaluation of the |
---|
| 726 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
| 727 | !-- must not be used for the evaluation of the velocity |
---|
| 728 | !-- gradients dudy and dwdy |
---|
| 729 | !-- Note: The validity of the new method has not yet |
---|
| 730 | !-- been shown, as so far no suitable data for a |
---|
| 731 | !-- validation has been available |
---|
[53] | 732 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 733 | usvs, 1.0, 0.0, 0.0, 0.0 ) |
---|
| 734 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 735 | wsvs, 0.0, 0.0, 1.0, 0.0 ) |
---|
[208] | 736 | km_neutral = kappa * ( usvs(k)**2 + wsvs(k)**2 )**0.25 * & |
---|
| 737 | 0.5 * dy |
---|
[364] | 738 | IF ( km_neutral > 0.0 ) THEN |
---|
| 739 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
| 740 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
| 741 | ELSE |
---|
| 742 | dudy = 0.0 |
---|
| 743 | dwdy = 0.0 |
---|
| 744 | ENDIF |
---|
[1] | 745 | ELSE |
---|
| 746 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 747 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
[53] | 748 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 749 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
[1] | 750 | ENDIF |
---|
| 751 | |
---|
| 752 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
[208] | 753 | ! |
---|
| 754 | !-- Inconsistency removed: as the thermal stratification |
---|
| 755 | !-- is not taken into account for the evaluation of the |
---|
| 756 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
| 757 | !-- must not be used for the evaluation of the velocity |
---|
| 758 | !-- gradients dvdx and dwdx |
---|
| 759 | !-- Note: The validity of the new method has not yet |
---|
| 760 | !-- been shown, as so far no suitable data for a |
---|
| 761 | !-- validation has been available |
---|
[53] | 762 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 763 | vsus, 0.0, 1.0, 0.0, 0.0 ) |
---|
| 764 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 765 | wsus, 0.0, 0.0, 0.0, 1.0 ) |
---|
[208] | 766 | km_neutral = kappa * ( vsus(k)**2 + wsus(k)**2 )**0.25 * & |
---|
| 767 | 0.5 * dx |
---|
[364] | 768 | IF ( km_neutral > 0.0 ) THEN |
---|
| 769 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
| 770 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
| 771 | ELSE |
---|
| 772 | dvdx = 0.0 |
---|
| 773 | dwdx = 0.0 |
---|
| 774 | ENDIF |
---|
[1] | 775 | ELSE |
---|
| 776 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 777 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 778 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 779 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 780 | ENDIF |
---|
| 781 | |
---|
| 782 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 783 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 784 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 785 | |
---|
| 786 | IF ( def < 0.0 ) def = 0.0 |
---|
| 787 | |
---|
| 788 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 789 | |
---|
| 790 | ! |
---|
[55] | 791 | !-- (3) - will be executed only, if there is at least one level |
---|
| 792 | !-- between (2) and (4), i.e. the topography must have a |
---|
| 793 | !-- minimum height of 2 dz. Wall fluxes for this case have |
---|
| 794 | !-- already been calculated for (2). |
---|
| 795 | !-- 'wall only: use wall functions' |
---|
[1] | 796 | DO k = nzb_diff_s_inner(j,i), nzb_diff_s_outer(j,i)-2 |
---|
| 797 | |
---|
| 798 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
[53] | 799 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 800 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 801 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 802 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 803 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 804 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 805 | |
---|
[1] | 806 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
[208] | 807 | ! |
---|
| 808 | !-- Inconsistency removed: as the thermal stratification |
---|
| 809 | !-- is not taken into account for the evaluation of the |
---|
| 810 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
| 811 | !-- must not be used for the evaluation of the velocity |
---|
| 812 | !-- gradients dudy and dwdy |
---|
| 813 | !-- Note: The validity of the new method has not yet |
---|
| 814 | !-- been shown, as so far no suitable data for a |
---|
| 815 | !-- validation has been available |
---|
| 816 | km_neutral = kappa * ( usvs(k)**2 + & |
---|
| 817 | wsvs(k)**2 )**0.25 * 0.5 * dy |
---|
[364] | 818 | IF ( km_neutral > 0.0 ) THEN |
---|
| 819 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
| 820 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
| 821 | ELSE |
---|
| 822 | dudy = 0.0 |
---|
| 823 | dwdy = 0.0 |
---|
| 824 | ENDIF |
---|
[1] | 825 | ELSE |
---|
| 826 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 827 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
[53] | 828 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 829 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
[1] | 830 | ENDIF |
---|
| 831 | |
---|
| 832 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
[208] | 833 | ! |
---|
| 834 | !-- Inconsistency removed: as the thermal stratification |
---|
| 835 | !-- is not taken into account for the evaluation of the |
---|
| 836 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
| 837 | !-- must not be used for the evaluation of the velocity |
---|
| 838 | !-- gradients dvdx and dwdx |
---|
| 839 | !-- Note: The validity of the new method has not yet |
---|
| 840 | !-- been shown, as so far no suitable data for a |
---|
| 841 | !-- validation has been available |
---|
| 842 | km_neutral = kappa * ( vsus(k)**2 + & |
---|
| 843 | wsus(k)**2 )**0.25 * 0.5 * dx |
---|
[364] | 844 | IF ( km_neutral > 0.0 ) THEN |
---|
| 845 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
| 846 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
| 847 | ELSE |
---|
| 848 | dvdx = 0.0 |
---|
| 849 | dwdx = 0.0 |
---|
| 850 | ENDIF |
---|
[1] | 851 | ELSE |
---|
| 852 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 853 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 854 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 855 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 856 | ENDIF |
---|
| 857 | |
---|
| 858 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 859 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 860 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 861 | |
---|
| 862 | IF ( def < 0.0 ) def = 0.0 |
---|
| 863 | |
---|
| 864 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 865 | |
---|
| 866 | ENDDO |
---|
| 867 | |
---|
| 868 | ! |
---|
[55] | 869 | !-- (4) - will allways be executed. |
---|
| 870 | !-- 'special case: free atmosphere' (as for case (0)) |
---|
[1] | 871 | k = nzb_diff_s_outer(j,i)-1 |
---|
| 872 | |
---|
| 873 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 874 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 875 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 876 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 877 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 878 | |
---|
| 879 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 880 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 881 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 882 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 883 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 884 | |
---|
| 885 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 886 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 887 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 888 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 889 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 890 | |
---|
| 891 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 892 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 893 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 894 | |
---|
| 895 | IF ( def < 0.0 ) def = 0.0 |
---|
| 896 | |
---|
| 897 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 898 | |
---|
| 899 | ELSE |
---|
| 900 | |
---|
| 901 | ! |
---|
[55] | 902 | !-- Position without adjacent wall |
---|
| 903 | !-- (1) - will allways be executed. |
---|
| 904 | !-- 'bottom only: use u_0,v_0' |
---|
[1] | 905 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 906 | |
---|
| 907 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 908 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 909 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 910 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 911 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
| 912 | |
---|
| 913 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 914 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 915 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 916 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 917 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
| 918 | |
---|
| 919 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 920 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 921 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 922 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 923 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 924 | |
---|
| 925 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) & |
---|
| 926 | + dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + dvdz**2 & |
---|
| 927 | + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 928 | |
---|
| 929 | IF ( def < 0.0 ) def = 0.0 |
---|
| 930 | |
---|
| 931 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 932 | |
---|
| 933 | ENDIF |
---|
| 934 | |
---|
[37] | 935 | ELSEIF ( use_surface_fluxes ) THEN |
---|
| 936 | |
---|
| 937 | k = nzb_diff_s_outer(j,i)-1 |
---|
| 938 | |
---|
| 939 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 940 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 941 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 942 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 943 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 944 | |
---|
| 945 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 946 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 947 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 948 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 949 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 950 | |
---|
| 951 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 952 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 953 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 954 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 955 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 956 | |
---|
| 957 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 958 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 959 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 960 | |
---|
| 961 | IF ( def < 0.0 ) def = 0.0 |
---|
| 962 | |
---|
| 963 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 964 | |
---|
[1] | 965 | ENDIF |
---|
| 966 | |
---|
| 967 | ! |
---|
[940] | 968 | !-- If required, calculate TKE production by buoyancy |
---|
| 969 | IF ( .NOT. neutral ) THEN |
---|
[1] | 970 | |
---|
[940] | 971 | IF ( .NOT. humidity ) THEN |
---|
[19] | 972 | |
---|
[940] | 973 | IF ( use_reference ) THEN |
---|
| 974 | |
---|
| 975 | IF ( ocean ) THEN |
---|
[97] | 976 | ! |
---|
[940] | 977 | !-- So far in the ocean no special treatment of density flux in |
---|
| 978 | !-- the bottom and top surface layer |
---|
| 979 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 980 | tend(k,j,i) = tend(k,j,i) + & |
---|
| 981 | kh(k,j,i) * g / rho_reference * & |
---|
| 982 | ( rho(k+1,j,i) - rho(k-1,j,i) ) * dd2zu(k) |
---|
| 983 | ENDDO |
---|
[97] | 984 | |
---|
[940] | 985 | ELSE |
---|
[97] | 986 | |
---|
[940] | 987 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
| 988 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 989 | kh(k,j,i) * g / pt_reference * & |
---|
| 990 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
| 991 | ENDDO |
---|
[1] | 992 | |
---|
[940] | 993 | IF ( use_surface_fluxes ) THEN |
---|
| 994 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 995 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * shf(j,i) |
---|
| 996 | ENDIF |
---|
[19] | 997 | |
---|
[940] | 998 | IF ( use_top_fluxes ) THEN |
---|
| 999 | k = nzt |
---|
| 1000 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * tswst(j,i) |
---|
| 1001 | ENDIF |
---|
| 1002 | |
---|
[97] | 1003 | ENDIF |
---|
| 1004 | |
---|
[940] | 1005 | ELSE |
---|
[57] | 1006 | |
---|
[940] | 1007 | IF ( ocean ) THEN |
---|
[97] | 1008 | ! |
---|
[940] | 1009 | !-- So far in the ocean no special treatment of density flux in |
---|
| 1010 | !-- the bottom and top surface layer |
---|
| 1011 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1012 | tend(k,j,i) = tend(k,j,i) + & |
---|
| 1013 | kh(k,j,i) * g / rho(k,j,i) * & |
---|
| 1014 | ( rho(k+1,j,i) - rho(k-1,j,i) ) * dd2zu(k) |
---|
| 1015 | ENDDO |
---|
[97] | 1016 | |
---|
[940] | 1017 | ELSE |
---|
[97] | 1018 | |
---|
[940] | 1019 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
| 1020 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 1021 | kh(k,j,i) * g / pt(k,j,i) * & |
---|
| 1022 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
| 1023 | ENDDO |
---|
[57] | 1024 | |
---|
[940] | 1025 | IF ( use_surface_fluxes ) THEN |
---|
| 1026 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 1027 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * shf(j,i) |
---|
| 1028 | ENDIF |
---|
[57] | 1029 | |
---|
[940] | 1030 | IF ( use_top_fluxes ) THEN |
---|
| 1031 | k = nzt |
---|
| 1032 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * tswst(j,i) |
---|
| 1033 | ENDIF |
---|
| 1034 | |
---|
[97] | 1035 | ENDIF |
---|
| 1036 | |
---|
[57] | 1037 | ENDIF |
---|
| 1038 | |
---|
[940] | 1039 | ELSE |
---|
[57] | 1040 | |
---|
[940] | 1041 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
[1] | 1042 | |
---|
[940] | 1043 | IF ( .NOT. cloud_physics ) THEN |
---|
[1] | 1044 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 1045 | k2 = 0.61 * pt(k,j,i) |
---|
| 1046 | ELSE |
---|
[940] | 1047 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 1048 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 1049 | k2 = 0.61 * pt(k,j,i) |
---|
| 1050 | ELSE |
---|
| 1051 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 1052 | temp = theta * t_d_pt(k) |
---|
| 1053 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 1054 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 1055 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 1056 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 1057 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 1058 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 1059 | ENDIF |
---|
[1] | 1060 | ENDIF |
---|
| 1061 | |
---|
[940] | 1062 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
| 1063 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
| 1064 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
| 1065 | ) * dd2zu(k) |
---|
| 1066 | ENDDO |
---|
[19] | 1067 | |
---|
[940] | 1068 | IF ( use_surface_fluxes ) THEN |
---|
| 1069 | k = nzb_diff_s_inner(j,i)-1 |
---|
[1] | 1070 | |
---|
[940] | 1071 | IF ( .NOT. cloud_physics ) THEN |
---|
[1] | 1072 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 1073 | k2 = 0.61 * pt(k,j,i) |
---|
| 1074 | ELSE |
---|
[940] | 1075 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 1076 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 1077 | k2 = 0.61 * pt(k,j,i) |
---|
| 1078 | ELSE |
---|
| 1079 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 1080 | temp = theta * t_d_pt(k) |
---|
| 1081 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 1082 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 1083 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 1084 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 1085 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 1086 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 1087 | ENDIF |
---|
[1] | 1088 | ENDIF |
---|
[940] | 1089 | |
---|
| 1090 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
| 1091 | ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
[1] | 1092 | ENDIF |
---|
| 1093 | |
---|
[940] | 1094 | IF ( use_top_fluxes ) THEN |
---|
| 1095 | k = nzt |
---|
[1] | 1096 | |
---|
[940] | 1097 | IF ( .NOT. cloud_physics ) THEN |
---|
[19] | 1098 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 1099 | k2 = 0.61 * pt(k,j,i) |
---|
| 1100 | ELSE |
---|
[940] | 1101 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 1102 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 1103 | k2 = 0.61 * pt(k,j,i) |
---|
| 1104 | ELSE |
---|
| 1105 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 1106 | temp = theta * t_d_pt(k) |
---|
| 1107 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 1108 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 1109 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 1110 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 1111 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 1112 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 1113 | ENDIF |
---|
[19] | 1114 | ENDIF |
---|
[940] | 1115 | |
---|
| 1116 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
| 1117 | ( k1* tswst(j,i) + k2 * qswst(j,i) ) |
---|
[19] | 1118 | ENDIF |
---|
| 1119 | |
---|
| 1120 | ENDIF |
---|
| 1121 | |
---|
[1] | 1122 | ENDIF |
---|
| 1123 | |
---|
| 1124 | END SUBROUTINE production_e_ij |
---|
| 1125 | |
---|
| 1126 | |
---|
| 1127 | SUBROUTINE production_e_init |
---|
| 1128 | |
---|
| 1129 | USE arrays_3d |
---|
| 1130 | USE control_parameters |
---|
| 1131 | USE grid_variables |
---|
| 1132 | USE indices |
---|
| 1133 | |
---|
| 1134 | IMPLICIT NONE |
---|
| 1135 | |
---|
| 1136 | INTEGER :: i, j, ku, kv |
---|
| 1137 | |
---|
[37] | 1138 | IF ( prandtl_layer ) THEN |
---|
[1] | 1139 | |
---|
| 1140 | IF ( first_call ) THEN |
---|
[759] | 1141 | ALLOCATE( u_0(nysg:nyng,nxlg:nxrg), v_0(nysg:nyng,nxlg:nxrg) ) |
---|
| 1142 | u_0 = 0.0 ! just to avoid access of uninitialized memory |
---|
| 1143 | v_0 = 0.0 ! within exchange_horiz_2d |
---|
[1] | 1144 | first_call = .FALSE. |
---|
| 1145 | ENDIF |
---|
| 1146 | |
---|
| 1147 | ! |
---|
| 1148 | !-- Calculate a virtual velocity at the surface in a way that the |
---|
| 1149 | !-- vertical velocity gradient at k = 1 (u(k+1)-u_0) matches the |
---|
| 1150 | !-- Prandtl law (-w'u'/km). This gradient is used in the TKE shear |
---|
| 1151 | !-- production term at k=1 (see production_e_ij). |
---|
| 1152 | !-- The velocity gradient has to be limited in case of too small km |
---|
| 1153 | !-- (otherwise the timestep may be significantly reduced by large |
---|
| 1154 | !-- surface winds). |
---|
[106] | 1155 | !-- Upper bounds are nxr+1 and nyn+1 because otherwise these values are |
---|
| 1156 | !-- not available in case of non-cyclic boundary conditions. |
---|
[1] | 1157 | !-- WARNING: the exact analytical solution would require the determination |
---|
| 1158 | !-- of the eddy diffusivity by km = u* * kappa * zp / phi_m. |
---|
| 1159 | !$OMP PARALLEL DO PRIVATE( ku, kv ) |
---|
[106] | 1160 | DO i = nxl, nxr+1 |
---|
| 1161 | DO j = nys, nyn+1 |
---|
[1] | 1162 | |
---|
| 1163 | ku = nzb_u_inner(j,i)+1 |
---|
| 1164 | kv = nzb_v_inner(j,i)+1 |
---|
| 1165 | |
---|
| 1166 | u_0(j,i) = u(ku+1,j,i) + usws(j,i) * ( zu(ku+1) - zu(ku-1) ) / & |
---|
| 1167 | ( 0.5 * ( km(ku,j,i) + km(ku,j,i-1) ) + & |
---|
| 1168 | 1.0E-20 ) |
---|
| 1169 | ! ( us(j,i) * kappa * zu(1) ) |
---|
| 1170 | v_0(j,i) = v(kv+1,j,i) + vsws(j,i) * ( zu(kv+1) - zu(kv-1) ) / & |
---|
| 1171 | ( 0.5 * ( km(kv,j,i) + km(kv,j-1,i) ) + & |
---|
| 1172 | 1.0E-20 ) |
---|
| 1173 | ! ( us(j,i) * kappa * zu(1) ) |
---|
| 1174 | |
---|
| 1175 | IF ( ABS( u(ku+1,j,i) - u_0(j,i) ) > & |
---|
| 1176 | ABS( u(ku+1,j,i) - u(ku-1,j,i) ) ) u_0(j,i) = u(ku-1,j,i) |
---|
| 1177 | IF ( ABS( v(kv+1,j,i) - v_0(j,i) ) > & |
---|
| 1178 | ABS( v(kv+1,j,i) - v(kv-1,j,i) ) ) v_0(j,i) = v(kv-1,j,i) |
---|
| 1179 | |
---|
| 1180 | ENDDO |
---|
| 1181 | ENDDO |
---|
| 1182 | |
---|
| 1183 | CALL exchange_horiz_2d( u_0 ) |
---|
| 1184 | CALL exchange_horiz_2d( v_0 ) |
---|
| 1185 | |
---|
| 1186 | ENDIF |
---|
| 1187 | |
---|
| 1188 | END SUBROUTINE production_e_init |
---|
| 1189 | |
---|
| 1190 | END MODULE production_e_mod |
---|