[1] | 1 | MODULE production_e_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
[760] | 6 | ! |
---|
[110] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
| 10 | ! $Id: production_e.f90 760 2011-09-15 14:37:54Z gryschka $ |
---|
| 11 | ! |
---|
[760] | 12 | ! 759 2011-09-15 13:58:31Z raasch |
---|
| 13 | ! initialization of u_0, v_0 |
---|
| 14 | ! |
---|
[668] | 15 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 16 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng |
---|
| 17 | ! |
---|
[482] | 18 | ! 449 2010-02-02 11:23:59Z raasch |
---|
| 19 | ! test output from rev 410 removed |
---|
| 20 | ! |
---|
[392] | 21 | ! 388 2009-09-23 09:40:33Z raasch |
---|
| 22 | ! Bugfix: wrong sign in buoyancy production of ocean part in case of not using |
---|
| 23 | ! the reference density (only in 3D routine production_e) |
---|
| 24 | ! Bugfix to avoid zero division by km_neutral |
---|
| 25 | ! |
---|
[226] | 26 | ! 208 2008-10-20 06:02:59Z raasch |
---|
| 27 | ! Bugfix concerning the calculation of velocity gradients at vertical walls |
---|
| 28 | ! in case of diabatic conditions |
---|
| 29 | ! |
---|
[198] | 30 | ! 187 2008-08-06 16:25:09Z letzel |
---|
| 31 | ! Change: add 'minus' sign to fluxes obtained from subroutine wall_fluxes_e for |
---|
| 32 | ! consistency with subroutine wall_fluxes |
---|
| 33 | ! |
---|
[139] | 34 | ! 124 2007-10-19 15:47:46Z raasch |
---|
| 35 | ! Bugfix: calculation of density flux in the ocean now starts from nzb+1 |
---|
| 36 | ! |
---|
[110] | 37 | ! 108 2007-08-24 15:10:38Z letzel |
---|
[106] | 38 | ! Bugfix: wrong sign removed from the buoyancy production term in the case |
---|
| 39 | ! use_reference = .T., |
---|
| 40 | ! u_0 and v_0 are calculated for nxr+1, nyn+1 also (otherwise these values are |
---|
| 41 | ! not available in case of non-cyclic boundary conditions) |
---|
[108] | 42 | ! Bugfix for ocean density flux at bottom |
---|
[39] | 43 | ! |
---|
[98] | 44 | ! 97 2007-06-21 08:23:15Z raasch |
---|
| 45 | ! Energy production by density flux (in ocean) added |
---|
| 46 | ! use_pt_reference renamed use_reference |
---|
| 47 | ! |
---|
[77] | 48 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 49 | ! Wall functions now include diabatic conditions, call of routine wall_fluxes_e, |
---|
| 50 | ! reference temperature pt_reference can be used in buoyancy term, |
---|
| 51 | ! moisture renamed humidity |
---|
| 52 | ! |
---|
[39] | 53 | ! 37 2007-03-01 08:33:54Z raasch |
---|
[19] | 54 | ! Calculation extended for gridpoint nzt, extended for given temperature / |
---|
[37] | 55 | ! humidity fluxes at the top, wall-part is now executed in case that a |
---|
| 56 | ! Prandtl-layer is switched on (instead of surfaces fluxes switched on) |
---|
[1] | 57 | ! |
---|
[3] | 58 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 59 | ! |
---|
[1] | 60 | ! Revision 1.21 2006/04/26 12:45:35 raasch |
---|
| 61 | ! OpenMP parallelization of production_e_init |
---|
| 62 | ! |
---|
| 63 | ! Revision 1.1 1997/09/19 07:45:35 raasch |
---|
| 64 | ! Initial revision |
---|
| 65 | ! |
---|
| 66 | ! |
---|
| 67 | ! Description: |
---|
| 68 | ! ------------ |
---|
| 69 | ! Production terms (shear + buoyancy) of the TKE |
---|
[37] | 70 | ! WARNING: the case with prandtl_layer = F and use_surface_fluxes = T is |
---|
| 71 | ! not considered well! |
---|
[1] | 72 | !------------------------------------------------------------------------------! |
---|
| 73 | |
---|
[56] | 74 | USE wall_fluxes_mod |
---|
| 75 | |
---|
[1] | 76 | PRIVATE |
---|
| 77 | PUBLIC production_e, production_e_init |
---|
[56] | 78 | |
---|
[1] | 79 | LOGICAL, SAVE :: first_call = .TRUE. |
---|
| 80 | |
---|
| 81 | REAL, DIMENSION(:,:), ALLOCATABLE, SAVE :: u_0, v_0 |
---|
| 82 | |
---|
| 83 | INTERFACE production_e |
---|
| 84 | MODULE PROCEDURE production_e |
---|
| 85 | MODULE PROCEDURE production_e_ij |
---|
| 86 | END INTERFACE production_e |
---|
| 87 | |
---|
| 88 | INTERFACE production_e_init |
---|
| 89 | MODULE PROCEDURE production_e_init |
---|
| 90 | END INTERFACE production_e_init |
---|
| 91 | |
---|
| 92 | CONTAINS |
---|
| 93 | |
---|
| 94 | |
---|
| 95 | !------------------------------------------------------------------------------! |
---|
| 96 | ! Call for all grid points |
---|
| 97 | !------------------------------------------------------------------------------! |
---|
| 98 | SUBROUTINE production_e |
---|
| 99 | |
---|
| 100 | USE arrays_3d |
---|
| 101 | USE cloud_parameters |
---|
| 102 | USE control_parameters |
---|
| 103 | USE grid_variables |
---|
| 104 | USE indices |
---|
| 105 | USE statistics |
---|
| 106 | |
---|
| 107 | IMPLICIT NONE |
---|
| 108 | |
---|
| 109 | INTEGER :: i, j, k |
---|
| 110 | |
---|
| 111 | REAL :: def, dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz, & |
---|
[208] | 112 | k1, k2, km_neutral, theta, temp |
---|
[1] | 113 | |
---|
[56] | 114 | ! REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: usvs, vsus, wsus, wsvs |
---|
| 115 | REAL, DIMENSION(nzb:nzt+1) :: usvs, vsus, wsus, wsvs |
---|
[1] | 116 | |
---|
[56] | 117 | ! |
---|
| 118 | !-- First calculate horizontal momentum flux u'v', w'v', v'u', w'u' at |
---|
| 119 | !-- vertical walls, if neccessary |
---|
| 120 | !-- So far, results are slightly different from the ij-Version. |
---|
| 121 | !-- Therefore, ij-Version is called further below within the ij-loops. |
---|
| 122 | ! IF ( topography /= 'flat' ) THEN |
---|
| 123 | ! CALL wall_fluxes_e( usvs, 1.0, 0.0, 0.0, 0.0, wall_e_y ) |
---|
| 124 | ! CALL wall_fluxes_e( wsvs, 0.0, 0.0, 1.0, 0.0, wall_e_y ) |
---|
| 125 | ! CALL wall_fluxes_e( vsus, 0.0, 1.0, 0.0, 0.0, wall_e_x ) |
---|
| 126 | ! CALL wall_fluxes_e( wsus, 0.0, 0.0, 0.0, 1.0, wall_e_x ) |
---|
| 127 | ! ENDIF |
---|
[53] | 128 | |
---|
[1] | 129 | ! |
---|
| 130 | !-- Calculate TKE production by shear |
---|
| 131 | DO i = nxl, nxr |
---|
| 132 | |
---|
| 133 | DO j = nys, nyn |
---|
[19] | 134 | DO k = nzb_diff_s_outer(j,i), nzt |
---|
[1] | 135 | |
---|
| 136 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 137 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 138 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 139 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 140 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 141 | |
---|
| 142 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 143 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 144 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 145 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 146 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 147 | |
---|
| 148 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 149 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 150 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 151 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 152 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 153 | |
---|
| 154 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 155 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 156 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 157 | |
---|
| 158 | IF ( def < 0.0 ) def = 0.0 |
---|
| 159 | |
---|
| 160 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 161 | |
---|
| 162 | ENDDO |
---|
| 163 | ENDDO |
---|
| 164 | |
---|
[37] | 165 | IF ( prandtl_layer ) THEN |
---|
[1] | 166 | |
---|
| 167 | ! |
---|
[55] | 168 | !-- Position beneath wall |
---|
| 169 | !-- (2) - Will allways be executed. |
---|
| 170 | !-- 'bottom and wall: use u_0,v_0 and wall functions' |
---|
[1] | 171 | DO j = nys, nyn |
---|
| 172 | |
---|
| 173 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) & |
---|
| 174 | THEN |
---|
| 175 | |
---|
| 176 | k = nzb_diff_s_inner(j,i) - 1 |
---|
| 177 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
[53] | 178 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 179 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
| 180 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 181 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 182 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
| 183 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 184 | |
---|
[1] | 185 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
[208] | 186 | ! |
---|
| 187 | !-- Inconsistency removed: as the thermal stratification is |
---|
| 188 | !-- not taken into account for the evaluation of the wall |
---|
| 189 | !-- fluxes at vertical walls, the eddy viscosity km must not |
---|
| 190 | !-- be used for the evaluation of the velocity gradients dudy |
---|
| 191 | !-- and dwdy |
---|
| 192 | !-- Note: The validity of the new method has not yet been |
---|
| 193 | !-- shown, as so far no suitable data for a validation |
---|
| 194 | !-- has been available |
---|
[53] | 195 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 196 | usvs, 1.0, 0.0, 0.0, 0.0 ) |
---|
| 197 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 198 | wsvs, 0.0, 0.0, 1.0, 0.0 ) |
---|
[208] | 199 | km_neutral = kappa * ( usvs(k)**2 + wsvs(k)**2 )**0.25 * & |
---|
| 200 | 0.5 * dy |
---|
[364] | 201 | IF ( km_neutral > 0.0 ) THEN |
---|
| 202 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
| 203 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
| 204 | ELSE |
---|
| 205 | dudy = 0.0 |
---|
| 206 | dwdy = 0.0 |
---|
| 207 | ENDIF |
---|
[1] | 208 | ELSE |
---|
| 209 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 210 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
[53] | 211 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 212 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
[1] | 213 | ENDIF |
---|
| 214 | |
---|
| 215 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
[208] | 216 | ! |
---|
| 217 | !-- Inconsistency removed: as the thermal stratification is |
---|
| 218 | !-- not taken into account for the evaluation of the wall |
---|
| 219 | !-- fluxes at vertical walls, the eddy viscosity km must not |
---|
| 220 | !-- be used for the evaluation of the velocity gradients dvdx |
---|
| 221 | !-- and dwdx |
---|
| 222 | !-- Note: The validity of the new method has not yet been |
---|
| 223 | !-- shown, as so far no suitable data for a validation |
---|
| 224 | !-- has been available |
---|
[53] | 225 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 226 | vsus, 0.0, 1.0, 0.0, 0.0 ) |
---|
| 227 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 228 | wsus, 0.0, 0.0, 0.0, 1.0 ) |
---|
[208] | 229 | km_neutral = kappa * ( vsus(k)**2 + wsus(k)**2 )**0.25 * & |
---|
| 230 | 0.5 * dx |
---|
[364] | 231 | IF ( km_neutral > 0.0 ) THEN |
---|
| 232 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
| 233 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
| 234 | ELSE |
---|
| 235 | dvdx = 0.0 |
---|
| 236 | dwdx = 0.0 |
---|
| 237 | ENDIF |
---|
[1] | 238 | ELSE |
---|
| 239 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 240 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 241 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 242 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 243 | ENDIF |
---|
| 244 | |
---|
| 245 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 246 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 247 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 248 | |
---|
| 249 | IF ( def < 0.0 ) def = 0.0 |
---|
| 250 | |
---|
| 251 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 252 | |
---|
| 253 | |
---|
| 254 | ! |
---|
[55] | 255 | !-- (3) - will be executed only, if there is at least one level |
---|
| 256 | !-- between (2) and (4), i.e. the topography must have a |
---|
| 257 | !-- minimum height of 2 dz. Wall fluxes for this case have |
---|
| 258 | !-- already been calculated for (2). |
---|
| 259 | !-- 'wall only: use wall functions' |
---|
[1] | 260 | |
---|
| 261 | DO k = nzb_diff_s_inner(j,i), nzb_diff_s_outer(j,i)-2 |
---|
| 262 | |
---|
| 263 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
[53] | 264 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 265 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 266 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 267 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 268 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 269 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 270 | |
---|
[1] | 271 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
[208] | 272 | ! |
---|
| 273 | !-- Inconsistency removed: as the thermal stratification |
---|
| 274 | !-- is not taken into account for the evaluation of the |
---|
| 275 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
| 276 | !-- must not be used for the evaluation of the velocity |
---|
| 277 | !-- gradients dudy and dwdy |
---|
| 278 | !-- Note: The validity of the new method has not yet |
---|
| 279 | !-- been shown, as so far no suitable data for a |
---|
| 280 | !-- validation has been available |
---|
| 281 | km_neutral = kappa * ( usvs(k)**2 + & |
---|
| 282 | wsvs(k)**2 )**0.25 * 0.5 * dy |
---|
[364] | 283 | IF ( km_neutral > 0.0 ) THEN |
---|
| 284 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
| 285 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
| 286 | ELSE |
---|
| 287 | dudy = 0.0 |
---|
| 288 | dwdy = 0.0 |
---|
| 289 | ENDIF |
---|
[1] | 290 | ELSE |
---|
| 291 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 292 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
[53] | 293 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 294 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
[1] | 295 | ENDIF |
---|
| 296 | |
---|
| 297 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
[208] | 298 | ! |
---|
| 299 | !-- Inconsistency removed: as the thermal stratification |
---|
| 300 | !-- is not taken into account for the evaluation of the |
---|
| 301 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
| 302 | !-- must not be used for the evaluation of the velocity |
---|
| 303 | !-- gradients dvdx and dwdx |
---|
| 304 | !-- Note: The validity of the new method has not yet |
---|
| 305 | !-- been shown, as so far no suitable data for a |
---|
| 306 | !-- validation has been available |
---|
| 307 | km_neutral = kappa * ( vsus(k)**2 + & |
---|
| 308 | wsus(k)**2 )**0.25 * 0.5 * dx |
---|
[364] | 309 | IF ( km_neutral > 0.0 ) THEN |
---|
| 310 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
| 311 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
| 312 | ELSE |
---|
| 313 | dvdx = 0.0 |
---|
| 314 | dwdx = 0.0 |
---|
| 315 | ENDIF |
---|
[1] | 316 | ELSE |
---|
| 317 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 318 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 319 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 320 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 321 | ENDIF |
---|
| 322 | |
---|
| 323 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 324 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 325 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 326 | |
---|
| 327 | IF ( def < 0.0 ) def = 0.0 |
---|
| 328 | |
---|
| 329 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 330 | |
---|
| 331 | ENDDO |
---|
| 332 | |
---|
| 333 | ENDIF |
---|
| 334 | |
---|
| 335 | ENDDO |
---|
| 336 | |
---|
| 337 | ! |
---|
[55] | 338 | !-- (4) - will allways be executed. |
---|
| 339 | !-- 'special case: free atmosphere' (as for case (0)) |
---|
[1] | 340 | DO j = nys, nyn |
---|
| 341 | |
---|
| 342 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) & |
---|
| 343 | THEN |
---|
| 344 | |
---|
| 345 | k = nzb_diff_s_outer(j,i)-1 |
---|
| 346 | |
---|
| 347 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 348 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 349 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 350 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 351 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 352 | |
---|
| 353 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 354 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 355 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 356 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 357 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 358 | |
---|
| 359 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 360 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 361 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 362 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 363 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 364 | |
---|
| 365 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 366 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 367 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 368 | |
---|
| 369 | IF ( def < 0.0 ) def = 0.0 |
---|
| 370 | |
---|
| 371 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 372 | |
---|
| 373 | ENDIF |
---|
| 374 | |
---|
| 375 | ENDDO |
---|
| 376 | |
---|
| 377 | ! |
---|
[55] | 378 | !-- Position without adjacent wall |
---|
| 379 | !-- (1) - will allways be executed. |
---|
| 380 | !-- 'bottom only: use u_0,v_0' |
---|
[1] | 381 | DO j = nys, nyn |
---|
| 382 | |
---|
| 383 | IF ( ( wall_e_x(j,i) == 0.0 ) .AND. ( wall_e_y(j,i) == 0.0 ) ) & |
---|
| 384 | THEN |
---|
| 385 | |
---|
| 386 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 387 | |
---|
| 388 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 389 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 390 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 391 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 392 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
| 393 | |
---|
| 394 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 395 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 396 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 397 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 398 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
| 399 | |
---|
| 400 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 401 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 402 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 403 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 404 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 405 | |
---|
| 406 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 407 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 408 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 409 | |
---|
| 410 | IF ( def < 0.0 ) def = 0.0 |
---|
| 411 | |
---|
| 412 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 413 | |
---|
| 414 | ENDIF |
---|
| 415 | |
---|
| 416 | ENDDO |
---|
| 417 | |
---|
[37] | 418 | ELSEIF ( use_surface_fluxes ) THEN |
---|
| 419 | |
---|
| 420 | DO j = nys, nyn |
---|
| 421 | |
---|
| 422 | k = nzb_diff_s_outer(j,i)-1 |
---|
| 423 | |
---|
| 424 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 425 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 426 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 427 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 428 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 429 | |
---|
| 430 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 431 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 432 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 433 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 434 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 435 | |
---|
| 436 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 437 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 438 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 439 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 440 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 441 | |
---|
| 442 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 443 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 444 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 445 | |
---|
| 446 | IF ( def < 0.0 ) def = 0.0 |
---|
| 447 | |
---|
| 448 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 449 | |
---|
| 450 | ENDDO |
---|
| 451 | |
---|
[1] | 452 | ENDIF |
---|
| 453 | |
---|
| 454 | ! |
---|
| 455 | !-- Calculate TKE production by buoyancy |
---|
[75] | 456 | IF ( .NOT. humidity ) THEN |
---|
[1] | 457 | |
---|
[97] | 458 | IF ( use_reference ) THEN |
---|
[1] | 459 | |
---|
[97] | 460 | IF ( ocean ) THEN |
---|
| 461 | ! |
---|
| 462 | !-- So far in the ocean no special treatment of density flux in |
---|
| 463 | !-- the bottom and top surface layer |
---|
| 464 | DO j = nys, nyn |
---|
[124] | 465 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[388] | 466 | tend(k,j,i) = tend(k,j,i) + & |
---|
| 467 | kh(k,j,i) * g / rho_reference * & |
---|
[97] | 468 | ( rho(k+1,j,i)-rho(k-1,j,i) ) * dd2zu(k) |
---|
| 469 | ENDDO |
---|
| 470 | ENDDO |
---|
| 471 | |
---|
| 472 | ELSE |
---|
| 473 | |
---|
| 474 | DO j = nys, nyn |
---|
| 475 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
[106] | 476 | tend(k,j,i) = tend(k,j,i) - & |
---|
[97] | 477 | kh(k,j,i) * g / pt_reference * & |
---|
[57] | 478 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
[97] | 479 | ENDDO |
---|
| 480 | |
---|
| 481 | IF ( use_surface_fluxes ) THEN |
---|
| 482 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 483 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * shf(j,i) |
---|
| 484 | ENDIF |
---|
| 485 | |
---|
| 486 | IF ( use_top_fluxes ) THEN |
---|
| 487 | k = nzt |
---|
| 488 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
| 489 | tswst(j,i) |
---|
| 490 | ENDIF |
---|
[57] | 491 | ENDDO |
---|
| 492 | |
---|
[97] | 493 | ENDIF |
---|
[57] | 494 | |
---|
| 495 | ELSE |
---|
[1] | 496 | |
---|
[97] | 497 | IF ( ocean ) THEN |
---|
| 498 | ! |
---|
| 499 | !-- So far in the ocean no special treatment of density flux in |
---|
| 500 | !-- the bottom and top surface layer |
---|
| 501 | DO j = nys, nyn |
---|
[124] | 502 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[388] | 503 | tend(k,j,i) = tend(k,j,i) + & |
---|
[97] | 504 | kh(k,j,i) * g / rho(k,j,i) * & |
---|
| 505 | ( rho(k+1,j,i)-rho(k-1,j,i) ) * dd2zu(k) |
---|
| 506 | ENDDO |
---|
| 507 | ENDDO |
---|
| 508 | |
---|
| 509 | ELSE |
---|
| 510 | |
---|
| 511 | DO j = nys, nyn |
---|
| 512 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
| 513 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 514 | kh(k,j,i) * g / pt(k,j,i) * & |
---|
[57] | 515 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
[97] | 516 | ENDDO |
---|
| 517 | |
---|
| 518 | IF ( use_surface_fluxes ) THEN |
---|
| 519 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 520 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * shf(j,i) |
---|
| 521 | ENDIF |
---|
| 522 | |
---|
| 523 | IF ( use_top_fluxes ) THEN |
---|
| 524 | k = nzt |
---|
| 525 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * tswst(j,i) |
---|
| 526 | ENDIF |
---|
[57] | 527 | ENDDO |
---|
[19] | 528 | |
---|
[97] | 529 | ENDIF |
---|
[1] | 530 | |
---|
[57] | 531 | ENDIF |
---|
| 532 | |
---|
[1] | 533 | ELSE |
---|
| 534 | |
---|
| 535 | DO j = nys, nyn |
---|
| 536 | |
---|
[19] | 537 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
[1] | 538 | |
---|
| 539 | IF ( .NOT. cloud_physics ) THEN |
---|
| 540 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 541 | k2 = 0.61 * pt(k,j,i) |
---|
| 542 | ELSE |
---|
| 543 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 544 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 545 | k2 = 0.61 * pt(k,j,i) |
---|
| 546 | ELSE |
---|
| 547 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 548 | temp = theta * t_d_pt(k) |
---|
| 549 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 550 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 551 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 552 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 553 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 554 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 555 | ENDIF |
---|
| 556 | ENDIF |
---|
| 557 | |
---|
| 558 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
| 559 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
| 560 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
| 561 | ) * dd2zu(k) |
---|
| 562 | ENDDO |
---|
| 563 | |
---|
| 564 | ENDDO |
---|
| 565 | |
---|
| 566 | IF ( use_surface_fluxes ) THEN |
---|
| 567 | |
---|
| 568 | DO j = nys, nyn |
---|
| 569 | |
---|
[53] | 570 | k = nzb_diff_s_inner(j,i)-1 |
---|
[1] | 571 | |
---|
| 572 | IF ( .NOT. cloud_physics ) THEN |
---|
| 573 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 574 | k2 = 0.61 * pt(k,j,i) |
---|
| 575 | ELSE |
---|
| 576 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 577 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 578 | k2 = 0.61 * pt(k,j,i) |
---|
| 579 | ELSE |
---|
| 580 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 581 | temp = theta * t_d_pt(k) |
---|
| 582 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 583 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 584 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 585 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 586 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 587 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 588 | ENDIF |
---|
| 589 | ENDIF |
---|
| 590 | |
---|
| 591 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
| 592 | ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
| 593 | ENDDO |
---|
| 594 | |
---|
| 595 | ENDIF |
---|
| 596 | |
---|
[19] | 597 | IF ( use_top_fluxes ) THEN |
---|
| 598 | |
---|
| 599 | DO j = nys, nyn |
---|
| 600 | |
---|
| 601 | k = nzt |
---|
| 602 | |
---|
| 603 | IF ( .NOT. cloud_physics ) THEN |
---|
| 604 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 605 | k2 = 0.61 * pt(k,j,i) |
---|
| 606 | ELSE |
---|
| 607 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 608 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 609 | k2 = 0.61 * pt(k,j,i) |
---|
| 610 | ELSE |
---|
| 611 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 612 | temp = theta * t_d_pt(k) |
---|
| 613 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 614 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 615 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 616 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 617 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 618 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 619 | ENDIF |
---|
| 620 | ENDIF |
---|
| 621 | |
---|
| 622 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
| 623 | ( k1* tswst(j,i) + k2 * qswst(j,i) ) |
---|
| 624 | ENDDO |
---|
| 625 | |
---|
| 626 | ENDIF |
---|
| 627 | |
---|
[1] | 628 | ENDIF |
---|
| 629 | |
---|
| 630 | ENDDO |
---|
| 631 | |
---|
| 632 | END SUBROUTINE production_e |
---|
| 633 | |
---|
| 634 | |
---|
| 635 | !------------------------------------------------------------------------------! |
---|
| 636 | ! Call for grid point i,j |
---|
| 637 | !------------------------------------------------------------------------------! |
---|
| 638 | SUBROUTINE production_e_ij( i, j ) |
---|
| 639 | |
---|
| 640 | USE arrays_3d |
---|
| 641 | USE cloud_parameters |
---|
| 642 | USE control_parameters |
---|
| 643 | USE grid_variables |
---|
| 644 | USE indices |
---|
| 645 | USE statistics |
---|
[449] | 646 | |
---|
[1] | 647 | IMPLICIT NONE |
---|
| 648 | |
---|
| 649 | INTEGER :: i, j, k |
---|
| 650 | |
---|
| 651 | REAL :: def, dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz, & |
---|
[208] | 652 | k1, k2, km_neutral, theta, temp |
---|
[1] | 653 | |
---|
[56] | 654 | REAL, DIMENSION(nzb:nzt+1) :: usvs, vsus, wsus, wsvs |
---|
[53] | 655 | |
---|
[1] | 656 | ! |
---|
| 657 | !-- Calculate TKE production by shear |
---|
[19] | 658 | DO k = nzb_diff_s_outer(j,i), nzt |
---|
[1] | 659 | |
---|
| 660 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 661 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 662 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 663 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 664 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 665 | |
---|
| 666 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 667 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 668 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 669 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 670 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 671 | |
---|
| 672 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 673 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 674 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 675 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 676 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 677 | |
---|
| 678 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) & |
---|
| 679 | + dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + dvdz**2 & |
---|
| 680 | + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 681 | |
---|
| 682 | IF ( def < 0.0 ) def = 0.0 |
---|
| 683 | |
---|
| 684 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 685 | |
---|
| 686 | ENDDO |
---|
| 687 | |
---|
[37] | 688 | IF ( prandtl_layer ) THEN |
---|
[1] | 689 | |
---|
| 690 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) THEN |
---|
[55] | 691 | |
---|
[1] | 692 | ! |
---|
[55] | 693 | !-- Position beneath wall |
---|
| 694 | !-- (2) - Will allways be executed. |
---|
| 695 | !-- 'bottom and wall: use u_0,v_0 and wall functions' |
---|
[1] | 696 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 697 | |
---|
| 698 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
[53] | 699 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 700 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
| 701 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 702 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 703 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
| 704 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 705 | |
---|
[1] | 706 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
[208] | 707 | ! |
---|
| 708 | !-- Inconsistency removed: as the thermal stratification |
---|
| 709 | !-- is not taken into account for the evaluation of the |
---|
| 710 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
| 711 | !-- must not be used for the evaluation of the velocity |
---|
| 712 | !-- gradients dudy and dwdy |
---|
| 713 | !-- Note: The validity of the new method has not yet |
---|
| 714 | !-- been shown, as so far no suitable data for a |
---|
| 715 | !-- validation has been available |
---|
[53] | 716 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 717 | usvs, 1.0, 0.0, 0.0, 0.0 ) |
---|
| 718 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 719 | wsvs, 0.0, 0.0, 1.0, 0.0 ) |
---|
[208] | 720 | km_neutral = kappa * ( usvs(k)**2 + wsvs(k)**2 )**0.25 * & |
---|
| 721 | 0.5 * dy |
---|
[364] | 722 | IF ( km_neutral > 0.0 ) THEN |
---|
| 723 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
| 724 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
| 725 | ELSE |
---|
| 726 | dudy = 0.0 |
---|
| 727 | dwdy = 0.0 |
---|
| 728 | ENDIF |
---|
[1] | 729 | ELSE |
---|
| 730 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 731 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
[53] | 732 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 733 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
[1] | 734 | ENDIF |
---|
| 735 | |
---|
| 736 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
[208] | 737 | ! |
---|
| 738 | !-- Inconsistency removed: as the thermal stratification |
---|
| 739 | !-- is not taken into account for the evaluation of the |
---|
| 740 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
| 741 | !-- must not be used for the evaluation of the velocity |
---|
| 742 | !-- gradients dvdx and dwdx |
---|
| 743 | !-- Note: The validity of the new method has not yet |
---|
| 744 | !-- been shown, as so far no suitable data for a |
---|
| 745 | !-- validation has been available |
---|
[53] | 746 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 747 | vsus, 0.0, 1.0, 0.0, 0.0 ) |
---|
| 748 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 749 | wsus, 0.0, 0.0, 0.0, 1.0 ) |
---|
[208] | 750 | km_neutral = kappa * ( vsus(k)**2 + wsus(k)**2 )**0.25 * & |
---|
| 751 | 0.5 * dx |
---|
[364] | 752 | IF ( km_neutral > 0.0 ) THEN |
---|
| 753 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
| 754 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
| 755 | ELSE |
---|
| 756 | dvdx = 0.0 |
---|
| 757 | dwdx = 0.0 |
---|
| 758 | ENDIF |
---|
[1] | 759 | ELSE |
---|
| 760 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 761 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 762 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 763 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 764 | ENDIF |
---|
| 765 | |
---|
| 766 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 767 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 768 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 769 | |
---|
| 770 | IF ( def < 0.0 ) def = 0.0 |
---|
| 771 | |
---|
| 772 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 773 | |
---|
| 774 | ! |
---|
[55] | 775 | !-- (3) - will be executed only, if there is at least one level |
---|
| 776 | !-- between (2) and (4), i.e. the topography must have a |
---|
| 777 | !-- minimum height of 2 dz. Wall fluxes for this case have |
---|
| 778 | !-- already been calculated for (2). |
---|
| 779 | !-- 'wall only: use wall functions' |
---|
[1] | 780 | DO k = nzb_diff_s_inner(j,i), nzb_diff_s_outer(j,i)-2 |
---|
| 781 | |
---|
| 782 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
[53] | 783 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 784 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 785 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 786 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 787 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 788 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 789 | |
---|
[1] | 790 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
[208] | 791 | ! |
---|
| 792 | !-- Inconsistency removed: as the thermal stratification |
---|
| 793 | !-- is not taken into account for the evaluation of the |
---|
| 794 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
| 795 | !-- must not be used for the evaluation of the velocity |
---|
| 796 | !-- gradients dudy and dwdy |
---|
| 797 | !-- Note: The validity of the new method has not yet |
---|
| 798 | !-- been shown, as so far no suitable data for a |
---|
| 799 | !-- validation has been available |
---|
| 800 | km_neutral = kappa * ( usvs(k)**2 + & |
---|
| 801 | wsvs(k)**2 )**0.25 * 0.5 * dy |
---|
[364] | 802 | IF ( km_neutral > 0.0 ) THEN |
---|
| 803 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
| 804 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
| 805 | ELSE |
---|
| 806 | dudy = 0.0 |
---|
| 807 | dwdy = 0.0 |
---|
| 808 | ENDIF |
---|
[1] | 809 | ELSE |
---|
| 810 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 811 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
[53] | 812 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 813 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
[1] | 814 | ENDIF |
---|
| 815 | |
---|
| 816 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
[208] | 817 | ! |
---|
| 818 | !-- Inconsistency removed: as the thermal stratification |
---|
| 819 | !-- is not taken into account for the evaluation of the |
---|
| 820 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
| 821 | !-- must not be used for the evaluation of the velocity |
---|
| 822 | !-- gradients dvdx and dwdx |
---|
| 823 | !-- Note: The validity of the new method has not yet |
---|
| 824 | !-- been shown, as so far no suitable data for a |
---|
| 825 | !-- validation has been available |
---|
| 826 | km_neutral = kappa * ( vsus(k)**2 + & |
---|
| 827 | wsus(k)**2 )**0.25 * 0.5 * dx |
---|
[364] | 828 | IF ( km_neutral > 0.0 ) THEN |
---|
| 829 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
| 830 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
| 831 | ELSE |
---|
| 832 | dvdx = 0.0 |
---|
| 833 | dwdx = 0.0 |
---|
| 834 | ENDIF |
---|
[1] | 835 | ELSE |
---|
| 836 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 837 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 838 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 839 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 840 | ENDIF |
---|
| 841 | |
---|
| 842 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 843 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 844 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 845 | |
---|
| 846 | IF ( def < 0.0 ) def = 0.0 |
---|
| 847 | |
---|
| 848 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 849 | |
---|
| 850 | ENDDO |
---|
| 851 | |
---|
| 852 | ! |
---|
[55] | 853 | !-- (4) - will allways be executed. |
---|
| 854 | !-- 'special case: free atmosphere' (as for case (0)) |
---|
[1] | 855 | k = nzb_diff_s_outer(j,i)-1 |
---|
| 856 | |
---|
| 857 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 858 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 859 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 860 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 861 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 862 | |
---|
| 863 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 864 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 865 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 866 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 867 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 868 | |
---|
| 869 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 870 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 871 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 872 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 873 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 874 | |
---|
| 875 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 876 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 877 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 878 | |
---|
| 879 | IF ( def < 0.0 ) def = 0.0 |
---|
| 880 | |
---|
| 881 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 882 | |
---|
| 883 | ELSE |
---|
| 884 | |
---|
| 885 | ! |
---|
[55] | 886 | !-- Position without adjacent wall |
---|
| 887 | !-- (1) - will allways be executed. |
---|
| 888 | !-- 'bottom only: use u_0,v_0' |
---|
[1] | 889 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 890 | |
---|
| 891 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 892 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 893 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 894 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 895 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
| 896 | |
---|
| 897 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 898 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 899 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 900 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 901 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
| 902 | |
---|
| 903 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 904 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 905 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 906 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 907 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 908 | |
---|
| 909 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) & |
---|
| 910 | + dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + dvdz**2 & |
---|
| 911 | + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 912 | |
---|
| 913 | IF ( def < 0.0 ) def = 0.0 |
---|
| 914 | |
---|
| 915 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 916 | |
---|
| 917 | ENDIF |
---|
| 918 | |
---|
[37] | 919 | ELSEIF ( use_surface_fluxes ) THEN |
---|
| 920 | |
---|
| 921 | k = nzb_diff_s_outer(j,i)-1 |
---|
| 922 | |
---|
| 923 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 924 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 925 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 926 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 927 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 928 | |
---|
| 929 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 930 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 931 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 932 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 933 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 934 | |
---|
| 935 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 936 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 937 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 938 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 939 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 940 | |
---|
| 941 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 942 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 943 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 944 | |
---|
| 945 | IF ( def < 0.0 ) def = 0.0 |
---|
| 946 | |
---|
| 947 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 948 | |
---|
[1] | 949 | ENDIF |
---|
| 950 | |
---|
| 951 | ! |
---|
| 952 | !-- Calculate TKE production by buoyancy |
---|
[75] | 953 | IF ( .NOT. humidity ) THEN |
---|
[1] | 954 | |
---|
[97] | 955 | IF ( use_reference ) THEN |
---|
[19] | 956 | |
---|
[97] | 957 | IF ( ocean ) THEN |
---|
| 958 | ! |
---|
| 959 | !-- So far in the ocean no special treatment of density flux in the |
---|
| 960 | !-- bottom and top surface layer |
---|
[108] | 961 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[388] | 962 | tend(k,j,i) = tend(k,j,i) + kh(k,j,i) * g / rho_reference * & |
---|
[97] | 963 | ( rho(k+1,j,i) - rho(k-1,j,i) ) * dd2zu(k) |
---|
| 964 | ENDDO |
---|
| 965 | |
---|
| 966 | ELSE |
---|
| 967 | |
---|
| 968 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
| 969 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / pt_reference * & |
---|
[57] | 970 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
[97] | 971 | ENDDO |
---|
[1] | 972 | |
---|
[97] | 973 | IF ( use_surface_fluxes ) THEN |
---|
| 974 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 975 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * shf(j,i) |
---|
| 976 | ENDIF |
---|
[19] | 977 | |
---|
[97] | 978 | IF ( use_top_fluxes ) THEN |
---|
| 979 | k = nzt |
---|
| 980 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * tswst(j,i) |
---|
| 981 | ENDIF |
---|
| 982 | |
---|
[57] | 983 | ENDIF |
---|
| 984 | |
---|
| 985 | ELSE |
---|
| 986 | |
---|
[97] | 987 | IF ( ocean ) THEN |
---|
| 988 | ! |
---|
| 989 | !-- So far in the ocean no special treatment of density flux in the |
---|
| 990 | !-- bottom and top surface layer |
---|
[124] | 991 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[97] | 992 | tend(k,j,i) = tend(k,j,i) + kh(k,j,i) * g / rho(k,j,i) * & |
---|
| 993 | ( rho(k+1,j,i) - rho(k-1,j,i) ) * dd2zu(k) |
---|
| 994 | ENDDO |
---|
| 995 | |
---|
| 996 | ELSE |
---|
| 997 | |
---|
| 998 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
| 999 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / pt(k,j,i) * & |
---|
[57] | 1000 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
[97] | 1001 | ENDDO |
---|
[57] | 1002 | |
---|
[97] | 1003 | IF ( use_surface_fluxes ) THEN |
---|
| 1004 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 1005 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * shf(j,i) |
---|
| 1006 | ENDIF |
---|
[57] | 1007 | |
---|
[97] | 1008 | IF ( use_top_fluxes ) THEN |
---|
| 1009 | k = nzt |
---|
| 1010 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * tswst(j,i) |
---|
| 1011 | ENDIF |
---|
| 1012 | |
---|
[57] | 1013 | ENDIF |
---|
| 1014 | |
---|
[97] | 1015 | ENDIF |
---|
[57] | 1016 | |
---|
[1] | 1017 | ELSE |
---|
| 1018 | |
---|
[19] | 1019 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
[1] | 1020 | |
---|
| 1021 | IF ( .NOT. cloud_physics ) THEN |
---|
| 1022 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 1023 | k2 = 0.61 * pt(k,j,i) |
---|
| 1024 | ELSE |
---|
| 1025 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 1026 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 1027 | k2 = 0.61 * pt(k,j,i) |
---|
| 1028 | ELSE |
---|
| 1029 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 1030 | temp = theta * t_d_pt(k) |
---|
| 1031 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 1032 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 1033 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 1034 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 1035 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 1036 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 1037 | ENDIF |
---|
| 1038 | ENDIF |
---|
| 1039 | |
---|
| 1040 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
| 1041 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
| 1042 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
| 1043 | ) * dd2zu(k) |
---|
| 1044 | ENDDO |
---|
[19] | 1045 | |
---|
[1] | 1046 | IF ( use_surface_fluxes ) THEN |
---|
| 1047 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 1048 | |
---|
| 1049 | IF ( .NOT. cloud_physics ) THEN |
---|
| 1050 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 1051 | k2 = 0.61 * pt(k,j,i) |
---|
| 1052 | ELSE |
---|
| 1053 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 1054 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 1055 | k2 = 0.61 * pt(k,j,i) |
---|
| 1056 | ELSE |
---|
| 1057 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 1058 | temp = theta * t_d_pt(k) |
---|
| 1059 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 1060 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 1061 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 1062 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 1063 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 1064 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 1065 | ENDIF |
---|
| 1066 | ENDIF |
---|
| 1067 | |
---|
| 1068 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
| 1069 | ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
| 1070 | ENDIF |
---|
| 1071 | |
---|
[19] | 1072 | IF ( use_top_fluxes ) THEN |
---|
| 1073 | k = nzt |
---|
| 1074 | |
---|
| 1075 | IF ( .NOT. cloud_physics ) THEN |
---|
| 1076 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 1077 | k2 = 0.61 * pt(k,j,i) |
---|
| 1078 | ELSE |
---|
| 1079 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 1080 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 1081 | k2 = 0.61 * pt(k,j,i) |
---|
| 1082 | ELSE |
---|
| 1083 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 1084 | temp = theta * t_d_pt(k) |
---|
| 1085 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 1086 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 1087 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 1088 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 1089 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 1090 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 1091 | ENDIF |
---|
| 1092 | ENDIF |
---|
| 1093 | |
---|
| 1094 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
| 1095 | ( k1* tswst(j,i) + k2 * qswst(j,i) ) |
---|
| 1096 | ENDIF |
---|
| 1097 | |
---|
[1] | 1098 | ENDIF |
---|
| 1099 | |
---|
| 1100 | END SUBROUTINE production_e_ij |
---|
| 1101 | |
---|
| 1102 | |
---|
| 1103 | SUBROUTINE production_e_init |
---|
| 1104 | |
---|
| 1105 | USE arrays_3d |
---|
| 1106 | USE control_parameters |
---|
| 1107 | USE grid_variables |
---|
| 1108 | USE indices |
---|
| 1109 | |
---|
| 1110 | IMPLICIT NONE |
---|
| 1111 | |
---|
| 1112 | INTEGER :: i, j, ku, kv |
---|
| 1113 | |
---|
[37] | 1114 | IF ( prandtl_layer ) THEN |
---|
[1] | 1115 | |
---|
| 1116 | IF ( first_call ) THEN |
---|
[759] | 1117 | ALLOCATE( u_0(nysg:nyng,nxlg:nxrg), v_0(nysg:nyng,nxlg:nxrg) ) |
---|
| 1118 | u_0 = 0.0 ! just to avoid access of uninitialized memory |
---|
| 1119 | v_0 = 0.0 ! within exchange_horiz_2d |
---|
[1] | 1120 | first_call = .FALSE. |
---|
| 1121 | ENDIF |
---|
| 1122 | |
---|
| 1123 | ! |
---|
| 1124 | !-- Calculate a virtual velocity at the surface in a way that the |
---|
| 1125 | !-- vertical velocity gradient at k = 1 (u(k+1)-u_0) matches the |
---|
| 1126 | !-- Prandtl law (-w'u'/km). This gradient is used in the TKE shear |
---|
| 1127 | !-- production term at k=1 (see production_e_ij). |
---|
| 1128 | !-- The velocity gradient has to be limited in case of too small km |
---|
| 1129 | !-- (otherwise the timestep may be significantly reduced by large |
---|
| 1130 | !-- surface winds). |
---|
[106] | 1131 | !-- Upper bounds are nxr+1 and nyn+1 because otherwise these values are |
---|
| 1132 | !-- not available in case of non-cyclic boundary conditions. |
---|
[1] | 1133 | !-- WARNING: the exact analytical solution would require the determination |
---|
| 1134 | !-- of the eddy diffusivity by km = u* * kappa * zp / phi_m. |
---|
| 1135 | !$OMP PARALLEL DO PRIVATE( ku, kv ) |
---|
[106] | 1136 | DO i = nxl, nxr+1 |
---|
| 1137 | DO j = nys, nyn+1 |
---|
[1] | 1138 | |
---|
| 1139 | ku = nzb_u_inner(j,i)+1 |
---|
| 1140 | kv = nzb_v_inner(j,i)+1 |
---|
| 1141 | |
---|
| 1142 | u_0(j,i) = u(ku+1,j,i) + usws(j,i) * ( zu(ku+1) - zu(ku-1) ) / & |
---|
| 1143 | ( 0.5 * ( km(ku,j,i) + km(ku,j,i-1) ) + & |
---|
| 1144 | 1.0E-20 ) |
---|
| 1145 | ! ( us(j,i) * kappa * zu(1) ) |
---|
| 1146 | v_0(j,i) = v(kv+1,j,i) + vsws(j,i) * ( zu(kv+1) - zu(kv-1) ) / & |
---|
| 1147 | ( 0.5 * ( km(kv,j,i) + km(kv,j-1,i) ) + & |
---|
| 1148 | 1.0E-20 ) |
---|
| 1149 | ! ( us(j,i) * kappa * zu(1) ) |
---|
| 1150 | |
---|
| 1151 | IF ( ABS( u(ku+1,j,i) - u_0(j,i) ) > & |
---|
| 1152 | ABS( u(ku+1,j,i) - u(ku-1,j,i) ) ) u_0(j,i) = u(ku-1,j,i) |
---|
| 1153 | IF ( ABS( v(kv+1,j,i) - v_0(j,i) ) > & |
---|
| 1154 | ABS( v(kv+1,j,i) - v(kv-1,j,i) ) ) v_0(j,i) = v(kv-1,j,i) |
---|
| 1155 | |
---|
| 1156 | ENDDO |
---|
| 1157 | ENDDO |
---|
| 1158 | |
---|
| 1159 | CALL exchange_horiz_2d( u_0 ) |
---|
| 1160 | CALL exchange_horiz_2d( v_0 ) |
---|
| 1161 | |
---|
| 1162 | ENDIF |
---|
| 1163 | |
---|
| 1164 | END SUBROUTINE production_e_init |
---|
| 1165 | |
---|
| 1166 | END MODULE production_e_mod |
---|