[1] | 1 | MODULE production_e_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[226] | 6 | ! |
---|
[110] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
| 10 | ! $Id: production_e.f90 226 2009-02-02 07:39:34Z letzel $ |
---|
| 11 | ! |
---|
[226] | 12 | ! 208 2008-10-20 06:02:59Z raasch |
---|
| 13 | ! Bugfix concerning the calculation of velocity gradients at vertical walls |
---|
| 14 | ! in case of diabatic conditions |
---|
| 15 | ! |
---|
[198] | 16 | ! 187 2008-08-06 16:25:09Z letzel |
---|
| 17 | ! Change: add 'minus' sign to fluxes obtained from subroutine wall_fluxes_e for |
---|
| 18 | ! consistency with subroutine wall_fluxes |
---|
| 19 | ! |
---|
[139] | 20 | ! 124 2007-10-19 15:47:46Z raasch |
---|
| 21 | ! Bugfix: calculation of density flux in the ocean now starts from nzb+1 |
---|
| 22 | ! |
---|
[110] | 23 | ! 108 2007-08-24 15:10:38Z letzel |
---|
[106] | 24 | ! Bugfix: wrong sign removed from the buoyancy production term in the case |
---|
| 25 | ! use_reference = .T., |
---|
| 26 | ! u_0 and v_0 are calculated for nxr+1, nyn+1 also (otherwise these values are |
---|
| 27 | ! not available in case of non-cyclic boundary conditions) |
---|
[108] | 28 | ! Bugfix for ocean density flux at bottom |
---|
[39] | 29 | ! |
---|
[98] | 30 | ! 97 2007-06-21 08:23:15Z raasch |
---|
| 31 | ! Energy production by density flux (in ocean) added |
---|
| 32 | ! use_pt_reference renamed use_reference |
---|
| 33 | ! |
---|
[77] | 34 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 35 | ! Wall functions now include diabatic conditions, call of routine wall_fluxes_e, |
---|
| 36 | ! reference temperature pt_reference can be used in buoyancy term, |
---|
| 37 | ! moisture renamed humidity |
---|
| 38 | ! |
---|
[39] | 39 | ! 37 2007-03-01 08:33:54Z raasch |
---|
[19] | 40 | ! Calculation extended for gridpoint nzt, extended for given temperature / |
---|
[37] | 41 | ! humidity fluxes at the top, wall-part is now executed in case that a |
---|
| 42 | ! Prandtl-layer is switched on (instead of surfaces fluxes switched on) |
---|
[1] | 43 | ! |
---|
[3] | 44 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 45 | ! |
---|
[1] | 46 | ! Revision 1.21 2006/04/26 12:45:35 raasch |
---|
| 47 | ! OpenMP parallelization of production_e_init |
---|
| 48 | ! |
---|
| 49 | ! Revision 1.1 1997/09/19 07:45:35 raasch |
---|
| 50 | ! Initial revision |
---|
| 51 | ! |
---|
| 52 | ! |
---|
| 53 | ! Description: |
---|
| 54 | ! ------------ |
---|
| 55 | ! Production terms (shear + buoyancy) of the TKE |
---|
[37] | 56 | ! WARNING: the case with prandtl_layer = F and use_surface_fluxes = T is |
---|
| 57 | ! not considered well! |
---|
[1] | 58 | !------------------------------------------------------------------------------! |
---|
| 59 | |
---|
[56] | 60 | USE wall_fluxes_mod |
---|
| 61 | |
---|
[1] | 62 | PRIVATE |
---|
| 63 | PUBLIC production_e, production_e_init |
---|
[56] | 64 | |
---|
[1] | 65 | LOGICAL, SAVE :: first_call = .TRUE. |
---|
| 66 | |
---|
| 67 | REAL, DIMENSION(:,:), ALLOCATABLE, SAVE :: u_0, v_0 |
---|
| 68 | |
---|
| 69 | INTERFACE production_e |
---|
| 70 | MODULE PROCEDURE production_e |
---|
| 71 | MODULE PROCEDURE production_e_ij |
---|
| 72 | END INTERFACE production_e |
---|
| 73 | |
---|
| 74 | INTERFACE production_e_init |
---|
| 75 | MODULE PROCEDURE production_e_init |
---|
| 76 | END INTERFACE production_e_init |
---|
| 77 | |
---|
| 78 | CONTAINS |
---|
| 79 | |
---|
| 80 | |
---|
| 81 | !------------------------------------------------------------------------------! |
---|
| 82 | ! Call for all grid points |
---|
| 83 | !------------------------------------------------------------------------------! |
---|
| 84 | SUBROUTINE production_e |
---|
| 85 | |
---|
| 86 | USE arrays_3d |
---|
| 87 | USE cloud_parameters |
---|
| 88 | USE control_parameters |
---|
| 89 | USE grid_variables |
---|
| 90 | USE indices |
---|
| 91 | USE statistics |
---|
| 92 | |
---|
| 93 | IMPLICIT NONE |
---|
| 94 | |
---|
| 95 | INTEGER :: i, j, k |
---|
| 96 | |
---|
| 97 | REAL :: def, dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz, & |
---|
[208] | 98 | k1, k2, km_neutral, theta, temp |
---|
[1] | 99 | |
---|
[56] | 100 | ! REAL, DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: usvs, vsus, wsus, wsvs |
---|
| 101 | REAL, DIMENSION(nzb:nzt+1) :: usvs, vsus, wsus, wsvs |
---|
[1] | 102 | |
---|
[56] | 103 | ! |
---|
| 104 | !-- First calculate horizontal momentum flux u'v', w'v', v'u', w'u' at |
---|
| 105 | !-- vertical walls, if neccessary |
---|
| 106 | !-- So far, results are slightly different from the ij-Version. |
---|
| 107 | !-- Therefore, ij-Version is called further below within the ij-loops. |
---|
| 108 | ! IF ( topography /= 'flat' ) THEN |
---|
| 109 | ! CALL wall_fluxes_e( usvs, 1.0, 0.0, 0.0, 0.0, wall_e_y ) |
---|
| 110 | ! CALL wall_fluxes_e( wsvs, 0.0, 0.0, 1.0, 0.0, wall_e_y ) |
---|
| 111 | ! CALL wall_fluxes_e( vsus, 0.0, 1.0, 0.0, 0.0, wall_e_x ) |
---|
| 112 | ! CALL wall_fluxes_e( wsus, 0.0, 0.0, 0.0, 1.0, wall_e_x ) |
---|
| 113 | ! ENDIF |
---|
[53] | 114 | |
---|
[1] | 115 | ! |
---|
| 116 | !-- Calculate TKE production by shear |
---|
| 117 | DO i = nxl, nxr |
---|
| 118 | |
---|
| 119 | DO j = nys, nyn |
---|
[19] | 120 | DO k = nzb_diff_s_outer(j,i), nzt |
---|
[1] | 121 | |
---|
| 122 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 123 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 124 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 125 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 126 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 127 | |
---|
| 128 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 129 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 130 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 131 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 132 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 133 | |
---|
| 134 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 135 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 136 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 137 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 138 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 139 | |
---|
| 140 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 141 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 142 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 143 | |
---|
| 144 | IF ( def < 0.0 ) def = 0.0 |
---|
| 145 | |
---|
| 146 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 147 | |
---|
| 148 | ENDDO |
---|
| 149 | ENDDO |
---|
| 150 | |
---|
[37] | 151 | IF ( prandtl_layer ) THEN |
---|
[1] | 152 | |
---|
| 153 | ! |
---|
[55] | 154 | !-- Position beneath wall |
---|
| 155 | !-- (2) - Will allways be executed. |
---|
| 156 | !-- 'bottom and wall: use u_0,v_0 and wall functions' |
---|
[1] | 157 | DO j = nys, nyn |
---|
| 158 | |
---|
| 159 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) & |
---|
| 160 | THEN |
---|
| 161 | |
---|
| 162 | k = nzb_diff_s_inner(j,i) - 1 |
---|
| 163 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
[53] | 164 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 165 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
| 166 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 167 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 168 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
| 169 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 170 | |
---|
[1] | 171 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
[208] | 172 | ! |
---|
| 173 | !-- Inconsistency removed: as the thermal stratification is |
---|
| 174 | !-- not taken into account for the evaluation of the wall |
---|
| 175 | !-- fluxes at vertical walls, the eddy viscosity km must not |
---|
| 176 | !-- be used for the evaluation of the velocity gradients dudy |
---|
| 177 | !-- and dwdy |
---|
| 178 | !-- Note: The validity of the new method has not yet been |
---|
| 179 | !-- shown, as so far no suitable data for a validation |
---|
| 180 | !-- has been available |
---|
[53] | 181 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 182 | usvs, 1.0, 0.0, 0.0, 0.0 ) |
---|
| 183 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 184 | wsvs, 0.0, 0.0, 1.0, 0.0 ) |
---|
[208] | 185 | km_neutral = kappa * ( usvs(k)**2 + wsvs(k)**2 )**0.25 * & |
---|
| 186 | 0.5 * dy |
---|
| 187 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
| 188 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
[1] | 189 | ELSE |
---|
| 190 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 191 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
[53] | 192 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 193 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
[1] | 194 | ENDIF |
---|
| 195 | |
---|
| 196 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
[208] | 197 | ! |
---|
| 198 | !-- Inconsistency removed: as the thermal stratification is |
---|
| 199 | !-- not taken into account for the evaluation of the wall |
---|
| 200 | !-- fluxes at vertical walls, the eddy viscosity km must not |
---|
| 201 | !-- be used for the evaluation of the velocity gradients dvdx |
---|
| 202 | !-- and dwdx |
---|
| 203 | !-- Note: The validity of the new method has not yet been |
---|
| 204 | !-- shown, as so far no suitable data for a validation |
---|
| 205 | !-- has been available |
---|
[53] | 206 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 207 | vsus, 0.0, 1.0, 0.0, 0.0 ) |
---|
| 208 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 209 | wsus, 0.0, 0.0, 0.0, 1.0 ) |
---|
[208] | 210 | km_neutral = kappa * ( vsus(k)**2 + wsus(k)**2 )**0.25 * & |
---|
| 211 | 0.5 * dx |
---|
| 212 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
| 213 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
[1] | 214 | ELSE |
---|
| 215 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 216 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 217 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 218 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 219 | ENDIF |
---|
| 220 | |
---|
| 221 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 222 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 223 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 224 | |
---|
| 225 | IF ( def < 0.0 ) def = 0.0 |
---|
| 226 | |
---|
| 227 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 228 | |
---|
| 229 | |
---|
| 230 | ! |
---|
[55] | 231 | !-- (3) - will be executed only, if there is at least one level |
---|
| 232 | !-- between (2) and (4), i.e. the topography must have a |
---|
| 233 | !-- minimum height of 2 dz. Wall fluxes for this case have |
---|
| 234 | !-- already been calculated for (2). |
---|
| 235 | !-- 'wall only: use wall functions' |
---|
[1] | 236 | |
---|
| 237 | DO k = nzb_diff_s_inner(j,i), nzb_diff_s_outer(j,i)-2 |
---|
| 238 | |
---|
| 239 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
[53] | 240 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 241 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 242 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 243 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 244 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 245 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 246 | |
---|
[1] | 247 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
[208] | 248 | ! |
---|
| 249 | !-- Inconsistency removed: as the thermal stratification |
---|
| 250 | !-- is not taken into account for the evaluation of the |
---|
| 251 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
| 252 | !-- must not be used for the evaluation of the velocity |
---|
| 253 | !-- gradients dudy and dwdy |
---|
| 254 | !-- Note: The validity of the new method has not yet |
---|
| 255 | !-- been shown, as so far no suitable data for a |
---|
| 256 | !-- validation has been available |
---|
| 257 | km_neutral = kappa * ( usvs(k)**2 + & |
---|
| 258 | wsvs(k)**2 )**0.25 * 0.5 * dy |
---|
| 259 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
| 260 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
[1] | 261 | ELSE |
---|
| 262 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 263 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
[53] | 264 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 265 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
[1] | 266 | ENDIF |
---|
| 267 | |
---|
| 268 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
[208] | 269 | ! |
---|
| 270 | !-- Inconsistency removed: as the thermal stratification |
---|
| 271 | !-- is not taken into account for the evaluation of the |
---|
| 272 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
| 273 | !-- must not be used for the evaluation of the velocity |
---|
| 274 | !-- gradients dvdx and dwdx |
---|
| 275 | !-- Note: The validity of the new method has not yet |
---|
| 276 | !-- been shown, as so far no suitable data for a |
---|
| 277 | !-- validation has been available |
---|
| 278 | km_neutral = kappa * ( vsus(k)**2 + & |
---|
| 279 | wsus(k)**2 )**0.25 * 0.5 * dx |
---|
| 280 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
| 281 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
[1] | 282 | ELSE |
---|
| 283 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 284 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 285 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 286 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 287 | ENDIF |
---|
| 288 | |
---|
| 289 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 290 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 291 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 292 | |
---|
| 293 | IF ( def < 0.0 ) def = 0.0 |
---|
| 294 | |
---|
| 295 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 296 | |
---|
| 297 | ENDDO |
---|
| 298 | |
---|
| 299 | ENDIF |
---|
| 300 | |
---|
| 301 | ENDDO |
---|
| 302 | |
---|
| 303 | ! |
---|
[55] | 304 | !-- (4) - will allways be executed. |
---|
| 305 | !-- 'special case: free atmosphere' (as for case (0)) |
---|
[1] | 306 | DO j = nys, nyn |
---|
| 307 | |
---|
| 308 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) & |
---|
| 309 | THEN |
---|
| 310 | |
---|
| 311 | k = nzb_diff_s_outer(j,i)-1 |
---|
| 312 | |
---|
| 313 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 314 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 315 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 316 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 317 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 318 | |
---|
| 319 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 320 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 321 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 322 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 323 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 324 | |
---|
| 325 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 326 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 327 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 328 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 329 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 330 | |
---|
| 331 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 332 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 333 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 334 | |
---|
| 335 | IF ( def < 0.0 ) def = 0.0 |
---|
| 336 | |
---|
| 337 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 338 | |
---|
| 339 | ENDIF |
---|
| 340 | |
---|
| 341 | ENDDO |
---|
| 342 | |
---|
| 343 | ! |
---|
[55] | 344 | !-- Position without adjacent wall |
---|
| 345 | !-- (1) - will allways be executed. |
---|
| 346 | !-- 'bottom only: use u_0,v_0' |
---|
[1] | 347 | DO j = nys, nyn |
---|
| 348 | |
---|
| 349 | IF ( ( wall_e_x(j,i) == 0.0 ) .AND. ( wall_e_y(j,i) == 0.0 ) ) & |
---|
| 350 | THEN |
---|
| 351 | |
---|
| 352 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 353 | |
---|
| 354 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 355 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 356 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 357 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 358 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
| 359 | |
---|
| 360 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 361 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 362 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 363 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 364 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
| 365 | |
---|
| 366 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 367 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 368 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 369 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 370 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 371 | |
---|
| 372 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 373 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 374 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 375 | |
---|
| 376 | IF ( def < 0.0 ) def = 0.0 |
---|
| 377 | |
---|
| 378 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 379 | |
---|
| 380 | ENDIF |
---|
| 381 | |
---|
| 382 | ENDDO |
---|
| 383 | |
---|
[37] | 384 | ELSEIF ( use_surface_fluxes ) THEN |
---|
| 385 | |
---|
| 386 | DO j = nys, nyn |
---|
| 387 | |
---|
| 388 | k = nzb_diff_s_outer(j,i)-1 |
---|
| 389 | |
---|
| 390 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 391 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 392 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 393 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 394 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 395 | |
---|
| 396 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 397 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 398 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 399 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 400 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 401 | |
---|
| 402 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 403 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 404 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 405 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 406 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 407 | |
---|
| 408 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 409 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 410 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 411 | |
---|
| 412 | IF ( def < 0.0 ) def = 0.0 |
---|
| 413 | |
---|
| 414 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 415 | |
---|
| 416 | ENDDO |
---|
| 417 | |
---|
[1] | 418 | ENDIF |
---|
| 419 | |
---|
| 420 | ! |
---|
| 421 | !-- Calculate TKE production by buoyancy |
---|
[75] | 422 | IF ( .NOT. humidity ) THEN |
---|
[1] | 423 | |
---|
[97] | 424 | IF ( use_reference ) THEN |
---|
[1] | 425 | |
---|
[97] | 426 | IF ( ocean ) THEN |
---|
| 427 | ! |
---|
| 428 | !-- So far in the ocean no special treatment of density flux in |
---|
| 429 | !-- the bottom and top surface layer |
---|
| 430 | DO j = nys, nyn |
---|
[124] | 431 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[97] | 432 | tend(k,j,i) = tend(k,j,i) + & |
---|
| 433 | kh(k,j,i) * g / prho_reference * & |
---|
| 434 | ( rho(k+1,j,i)-rho(k-1,j,i) ) * dd2zu(k) |
---|
| 435 | ENDDO |
---|
| 436 | ENDDO |
---|
| 437 | |
---|
| 438 | ELSE |
---|
| 439 | |
---|
| 440 | DO j = nys, nyn |
---|
| 441 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
[106] | 442 | tend(k,j,i) = tend(k,j,i) - & |
---|
[97] | 443 | kh(k,j,i) * g / pt_reference * & |
---|
[57] | 444 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
[97] | 445 | ENDDO |
---|
| 446 | |
---|
| 447 | IF ( use_surface_fluxes ) THEN |
---|
| 448 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 449 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * shf(j,i) |
---|
| 450 | ENDIF |
---|
| 451 | |
---|
| 452 | IF ( use_top_fluxes ) THEN |
---|
| 453 | k = nzt |
---|
| 454 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * & |
---|
| 455 | tswst(j,i) |
---|
| 456 | ENDIF |
---|
[57] | 457 | ENDDO |
---|
| 458 | |
---|
[97] | 459 | ENDIF |
---|
[57] | 460 | |
---|
| 461 | ELSE |
---|
[1] | 462 | |
---|
[97] | 463 | IF ( ocean ) THEN |
---|
| 464 | ! |
---|
| 465 | !-- So far in the ocean no special treatment of density flux in |
---|
| 466 | !-- the bottom and top surface layer |
---|
| 467 | DO j = nys, nyn |
---|
[124] | 468 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[97] | 469 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 470 | kh(k,j,i) * g / rho(k,j,i) * & |
---|
| 471 | ( rho(k+1,j,i)-rho(k-1,j,i) ) * dd2zu(k) |
---|
| 472 | ENDDO |
---|
| 473 | ENDDO |
---|
| 474 | |
---|
| 475 | ELSE |
---|
| 476 | |
---|
| 477 | DO j = nys, nyn |
---|
| 478 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
| 479 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 480 | kh(k,j,i) * g / pt(k,j,i) * & |
---|
[57] | 481 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
[97] | 482 | ENDDO |
---|
| 483 | |
---|
| 484 | IF ( use_surface_fluxes ) THEN |
---|
| 485 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 486 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * shf(j,i) |
---|
| 487 | ENDIF |
---|
| 488 | |
---|
| 489 | IF ( use_top_fluxes ) THEN |
---|
| 490 | k = nzt |
---|
| 491 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * tswst(j,i) |
---|
| 492 | ENDIF |
---|
[57] | 493 | ENDDO |
---|
[19] | 494 | |
---|
[97] | 495 | ENDIF |
---|
[1] | 496 | |
---|
[57] | 497 | ENDIF |
---|
| 498 | |
---|
[1] | 499 | ELSE |
---|
| 500 | |
---|
| 501 | DO j = nys, nyn |
---|
| 502 | |
---|
[19] | 503 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
[1] | 504 | |
---|
| 505 | IF ( .NOT. cloud_physics ) THEN |
---|
| 506 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 507 | k2 = 0.61 * pt(k,j,i) |
---|
| 508 | ELSE |
---|
| 509 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 510 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 511 | k2 = 0.61 * pt(k,j,i) |
---|
| 512 | ELSE |
---|
| 513 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 514 | temp = theta * t_d_pt(k) |
---|
| 515 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 516 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 517 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 518 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 519 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 520 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 521 | ENDIF |
---|
| 522 | ENDIF |
---|
| 523 | |
---|
| 524 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
| 525 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
| 526 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
| 527 | ) * dd2zu(k) |
---|
| 528 | ENDDO |
---|
| 529 | |
---|
| 530 | ENDDO |
---|
| 531 | |
---|
| 532 | IF ( use_surface_fluxes ) THEN |
---|
| 533 | |
---|
| 534 | DO j = nys, nyn |
---|
| 535 | |
---|
[53] | 536 | k = nzb_diff_s_inner(j,i)-1 |
---|
[1] | 537 | |
---|
| 538 | IF ( .NOT. cloud_physics ) THEN |
---|
| 539 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 540 | k2 = 0.61 * pt(k,j,i) |
---|
| 541 | ELSE |
---|
| 542 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 543 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 544 | k2 = 0.61 * pt(k,j,i) |
---|
| 545 | ELSE |
---|
| 546 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 547 | temp = theta * t_d_pt(k) |
---|
| 548 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 549 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 550 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 551 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 552 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 553 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 554 | ENDIF |
---|
| 555 | ENDIF |
---|
| 556 | |
---|
| 557 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
| 558 | ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
| 559 | ENDDO |
---|
| 560 | |
---|
| 561 | ENDIF |
---|
| 562 | |
---|
[19] | 563 | IF ( use_top_fluxes ) THEN |
---|
| 564 | |
---|
| 565 | DO j = nys, nyn |
---|
| 566 | |
---|
| 567 | k = nzt |
---|
| 568 | |
---|
| 569 | IF ( .NOT. cloud_physics ) THEN |
---|
| 570 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 571 | k2 = 0.61 * pt(k,j,i) |
---|
| 572 | ELSE |
---|
| 573 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 574 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 575 | k2 = 0.61 * pt(k,j,i) |
---|
| 576 | ELSE |
---|
| 577 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 578 | temp = theta * t_d_pt(k) |
---|
| 579 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 580 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 581 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 582 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 583 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 584 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 585 | ENDIF |
---|
| 586 | ENDIF |
---|
| 587 | |
---|
| 588 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
| 589 | ( k1* tswst(j,i) + k2 * qswst(j,i) ) |
---|
| 590 | ENDDO |
---|
| 591 | |
---|
| 592 | ENDIF |
---|
| 593 | |
---|
[1] | 594 | ENDIF |
---|
| 595 | |
---|
| 596 | ENDDO |
---|
| 597 | |
---|
| 598 | END SUBROUTINE production_e |
---|
| 599 | |
---|
| 600 | |
---|
| 601 | !------------------------------------------------------------------------------! |
---|
| 602 | ! Call for grid point i,j |
---|
| 603 | !------------------------------------------------------------------------------! |
---|
| 604 | SUBROUTINE production_e_ij( i, j ) |
---|
| 605 | |
---|
| 606 | USE arrays_3d |
---|
| 607 | USE cloud_parameters |
---|
| 608 | USE control_parameters |
---|
| 609 | USE grid_variables |
---|
| 610 | USE indices |
---|
| 611 | USE statistics |
---|
| 612 | |
---|
| 613 | IMPLICIT NONE |
---|
| 614 | |
---|
| 615 | INTEGER :: i, j, k |
---|
| 616 | |
---|
| 617 | REAL :: def, dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz, & |
---|
[208] | 618 | k1, k2, km_neutral, theta, temp |
---|
[1] | 619 | |
---|
[56] | 620 | REAL, DIMENSION(nzb:nzt+1) :: usvs, vsus, wsus, wsvs |
---|
[53] | 621 | |
---|
[1] | 622 | ! |
---|
| 623 | !-- Calculate TKE production by shear |
---|
[19] | 624 | DO k = nzb_diff_s_outer(j,i), nzt |
---|
[1] | 625 | |
---|
| 626 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 627 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 628 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 629 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 630 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 631 | |
---|
| 632 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 633 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 634 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 635 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 636 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 637 | |
---|
| 638 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 639 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 640 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 641 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 642 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 643 | |
---|
| 644 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) & |
---|
| 645 | + dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + dvdz**2 & |
---|
| 646 | + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 647 | |
---|
| 648 | IF ( def < 0.0 ) def = 0.0 |
---|
| 649 | |
---|
| 650 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 651 | |
---|
| 652 | ENDDO |
---|
| 653 | |
---|
[37] | 654 | IF ( prandtl_layer ) THEN |
---|
[1] | 655 | |
---|
| 656 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) THEN |
---|
[55] | 657 | |
---|
[1] | 658 | ! |
---|
[55] | 659 | !-- Position beneath wall |
---|
| 660 | !-- (2) - Will allways be executed. |
---|
| 661 | !-- 'bottom and wall: use u_0,v_0 and wall functions' |
---|
[1] | 662 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 663 | |
---|
| 664 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
[53] | 665 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 666 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
| 667 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 668 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 669 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
| 670 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 671 | |
---|
[1] | 672 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
[208] | 673 | ! |
---|
| 674 | !-- Inconsistency removed: as the thermal stratification |
---|
| 675 | !-- is not taken into account for the evaluation of the |
---|
| 676 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
| 677 | !-- must not be used for the evaluation of the velocity |
---|
| 678 | !-- gradients dudy and dwdy |
---|
| 679 | !-- Note: The validity of the new method has not yet |
---|
| 680 | !-- been shown, as so far no suitable data for a |
---|
| 681 | !-- validation has been available |
---|
[53] | 682 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 683 | usvs, 1.0, 0.0, 0.0, 0.0 ) |
---|
| 684 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 685 | wsvs, 0.0, 0.0, 1.0, 0.0 ) |
---|
[208] | 686 | km_neutral = kappa * ( usvs(k)**2 + wsvs(k)**2 )**0.25 * & |
---|
| 687 | 0.5 * dy |
---|
| 688 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
| 689 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
[1] | 690 | ELSE |
---|
| 691 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 692 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
[53] | 693 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 694 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
[1] | 695 | ENDIF |
---|
| 696 | |
---|
| 697 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
[208] | 698 | ! |
---|
| 699 | !-- Inconsistency removed: as the thermal stratification |
---|
| 700 | !-- is not taken into account for the evaluation of the |
---|
| 701 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
| 702 | !-- must not be used for the evaluation of the velocity |
---|
| 703 | !-- gradients dvdx and dwdx |
---|
| 704 | !-- Note: The validity of the new method has not yet |
---|
| 705 | !-- been shown, as so far no suitable data for a |
---|
| 706 | !-- validation has been available |
---|
[53] | 707 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 708 | vsus, 0.0, 1.0, 0.0, 0.0 ) |
---|
| 709 | CALL wall_fluxes_e( i, j, k, nzb_diff_s_outer(j,i)-2, & |
---|
| 710 | wsus, 0.0, 0.0, 0.0, 1.0 ) |
---|
[208] | 711 | km_neutral = kappa * ( vsus(k)**2 + wsus(k)**2 )**0.25 * & |
---|
| 712 | 0.5 * dx |
---|
| 713 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
| 714 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
[1] | 715 | ELSE |
---|
| 716 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 717 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 718 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 719 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 720 | ENDIF |
---|
| 721 | |
---|
| 722 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 723 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 724 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 725 | |
---|
| 726 | IF ( def < 0.0 ) def = 0.0 |
---|
| 727 | |
---|
| 728 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 729 | |
---|
| 730 | ! |
---|
[55] | 731 | !-- (3) - will be executed only, if there is at least one level |
---|
| 732 | !-- between (2) and (4), i.e. the topography must have a |
---|
| 733 | !-- minimum height of 2 dz. Wall fluxes for this case have |
---|
| 734 | !-- already been calculated for (2). |
---|
| 735 | !-- 'wall only: use wall functions' |
---|
[1] | 736 | DO k = nzb_diff_s_inner(j,i), nzb_diff_s_outer(j,i)-2 |
---|
| 737 | |
---|
| 738 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
[53] | 739 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 740 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 741 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 742 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 743 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 744 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 745 | |
---|
[1] | 746 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
[208] | 747 | ! |
---|
| 748 | !-- Inconsistency removed: as the thermal stratification |
---|
| 749 | !-- is not taken into account for the evaluation of the |
---|
| 750 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
| 751 | !-- must not be used for the evaluation of the velocity |
---|
| 752 | !-- gradients dudy and dwdy |
---|
| 753 | !-- Note: The validity of the new method has not yet |
---|
| 754 | !-- been shown, as so far no suitable data for a |
---|
| 755 | !-- validation has been available |
---|
| 756 | km_neutral = kappa * ( usvs(k)**2 + & |
---|
| 757 | wsvs(k)**2 )**0.25 * 0.5 * dy |
---|
| 758 | dudy = - wall_e_y(j,i) * usvs(k) / km_neutral |
---|
| 759 | dwdy = - wall_e_y(j,i) * wsvs(k) / km_neutral |
---|
[1] | 760 | ELSE |
---|
| 761 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 762 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
[53] | 763 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 764 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
[1] | 765 | ENDIF |
---|
| 766 | |
---|
| 767 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
[208] | 768 | ! |
---|
| 769 | !-- Inconsistency removed: as the thermal stratification |
---|
| 770 | !-- is not taken into account for the evaluation of the |
---|
| 771 | !-- wall fluxes at vertical walls, the eddy viscosity km |
---|
| 772 | !-- must not be used for the evaluation of the velocity |
---|
| 773 | !-- gradients dvdx and dwdx |
---|
| 774 | !-- Note: The validity of the new method has not yet |
---|
| 775 | !-- been shown, as so far no suitable data for a |
---|
| 776 | !-- validation has been available |
---|
| 777 | km_neutral = kappa * ( vsus(k)**2 + & |
---|
| 778 | wsus(k)**2 )**0.25 * 0.5 * dx |
---|
| 779 | dvdx = - wall_e_x(j,i) * vsus(k) / km_neutral |
---|
| 780 | dwdx = - wall_e_x(j,i) * wsus(k) / km_neutral |
---|
[1] | 781 | ELSE |
---|
| 782 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 783 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 784 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 785 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 786 | ENDIF |
---|
| 787 | |
---|
| 788 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 789 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 790 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 791 | |
---|
| 792 | IF ( def < 0.0 ) def = 0.0 |
---|
| 793 | |
---|
| 794 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 795 | |
---|
| 796 | ENDDO |
---|
| 797 | |
---|
| 798 | ! |
---|
[55] | 799 | !-- (4) - will allways be executed. |
---|
| 800 | !-- 'special case: free atmosphere' (as for case (0)) |
---|
[1] | 801 | k = nzb_diff_s_outer(j,i)-1 |
---|
| 802 | |
---|
| 803 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 804 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 805 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 806 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 807 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 808 | |
---|
| 809 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 810 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 811 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 812 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 813 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 814 | |
---|
| 815 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 816 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 817 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 818 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 819 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 820 | |
---|
| 821 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 822 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 823 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 824 | |
---|
| 825 | IF ( def < 0.0 ) def = 0.0 |
---|
| 826 | |
---|
| 827 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 828 | |
---|
| 829 | ELSE |
---|
| 830 | |
---|
| 831 | ! |
---|
[55] | 832 | !-- Position without adjacent wall |
---|
| 833 | !-- (1) - will allways be executed. |
---|
| 834 | !-- 'bottom only: use u_0,v_0' |
---|
[1] | 835 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 836 | |
---|
| 837 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 838 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 839 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 840 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 841 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
| 842 | |
---|
| 843 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 844 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 845 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 846 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 847 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
| 848 | |
---|
| 849 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 850 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 851 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 852 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 853 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 854 | |
---|
| 855 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) & |
---|
| 856 | + dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + dvdz**2 & |
---|
| 857 | + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 858 | |
---|
| 859 | IF ( def < 0.0 ) def = 0.0 |
---|
| 860 | |
---|
| 861 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 862 | |
---|
| 863 | ENDIF |
---|
| 864 | |
---|
[37] | 865 | ELSEIF ( use_surface_fluxes ) THEN |
---|
| 866 | |
---|
| 867 | k = nzb_diff_s_outer(j,i)-1 |
---|
| 868 | |
---|
| 869 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 870 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 871 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 872 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 873 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 874 | |
---|
| 875 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 876 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 877 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 878 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 879 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 880 | |
---|
| 881 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 882 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 883 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 884 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 885 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 886 | |
---|
| 887 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 888 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 889 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 890 | |
---|
| 891 | IF ( def < 0.0 ) def = 0.0 |
---|
| 892 | |
---|
| 893 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 894 | |
---|
[1] | 895 | ENDIF |
---|
| 896 | |
---|
| 897 | ! |
---|
| 898 | !-- Calculate TKE production by buoyancy |
---|
[75] | 899 | IF ( .NOT. humidity ) THEN |
---|
[1] | 900 | |
---|
[97] | 901 | IF ( use_reference ) THEN |
---|
[19] | 902 | |
---|
[97] | 903 | IF ( ocean ) THEN |
---|
| 904 | ! |
---|
| 905 | !-- So far in the ocean no special treatment of density flux in the |
---|
| 906 | !-- bottom and top surface layer |
---|
[108] | 907 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[97] | 908 | tend(k,j,i) = tend(k,j,i) + kh(k,j,i) * g / prho_reference * & |
---|
| 909 | ( rho(k+1,j,i) - rho(k-1,j,i) ) * dd2zu(k) |
---|
| 910 | ENDDO |
---|
| 911 | |
---|
| 912 | ELSE |
---|
| 913 | |
---|
| 914 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
| 915 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / pt_reference * & |
---|
[57] | 916 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
[97] | 917 | ENDDO |
---|
[1] | 918 | |
---|
[97] | 919 | IF ( use_surface_fluxes ) THEN |
---|
| 920 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 921 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * shf(j,i) |
---|
| 922 | ENDIF |
---|
[19] | 923 | |
---|
[97] | 924 | IF ( use_top_fluxes ) THEN |
---|
| 925 | k = nzt |
---|
| 926 | tend(k,j,i) = tend(k,j,i) + g / pt_reference * tswst(j,i) |
---|
| 927 | ENDIF |
---|
| 928 | |
---|
[57] | 929 | ENDIF |
---|
| 930 | |
---|
| 931 | ELSE |
---|
| 932 | |
---|
[97] | 933 | IF ( ocean ) THEN |
---|
| 934 | ! |
---|
| 935 | !-- So far in the ocean no special treatment of density flux in the |
---|
| 936 | !-- bottom and top surface layer |
---|
[124] | 937 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[97] | 938 | tend(k,j,i) = tend(k,j,i) + kh(k,j,i) * g / rho(k,j,i) * & |
---|
| 939 | ( rho(k+1,j,i) - rho(k-1,j,i) ) * dd2zu(k) |
---|
| 940 | ENDDO |
---|
| 941 | |
---|
| 942 | ELSE |
---|
| 943 | |
---|
| 944 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
| 945 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / pt(k,j,i) * & |
---|
[57] | 946 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
[97] | 947 | ENDDO |
---|
[57] | 948 | |
---|
[97] | 949 | IF ( use_surface_fluxes ) THEN |
---|
| 950 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 951 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * shf(j,i) |
---|
| 952 | ENDIF |
---|
[57] | 953 | |
---|
[97] | 954 | IF ( use_top_fluxes ) THEN |
---|
| 955 | k = nzt |
---|
| 956 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * tswst(j,i) |
---|
| 957 | ENDIF |
---|
| 958 | |
---|
[57] | 959 | ENDIF |
---|
| 960 | |
---|
[97] | 961 | ENDIF |
---|
[57] | 962 | |
---|
[1] | 963 | ELSE |
---|
| 964 | |
---|
[19] | 965 | DO k = nzb_diff_s_inner(j,i), nzt_diff |
---|
[1] | 966 | |
---|
| 967 | IF ( .NOT. cloud_physics ) THEN |
---|
| 968 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 969 | k2 = 0.61 * pt(k,j,i) |
---|
| 970 | ELSE |
---|
| 971 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 972 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 973 | k2 = 0.61 * pt(k,j,i) |
---|
| 974 | ELSE |
---|
| 975 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 976 | temp = theta * t_d_pt(k) |
---|
| 977 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 978 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 979 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 980 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 981 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 982 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 983 | ENDIF |
---|
| 984 | ENDIF |
---|
| 985 | |
---|
| 986 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
| 987 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
| 988 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
| 989 | ) * dd2zu(k) |
---|
| 990 | ENDDO |
---|
[19] | 991 | |
---|
[1] | 992 | IF ( use_surface_fluxes ) THEN |
---|
| 993 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 994 | |
---|
| 995 | IF ( .NOT. cloud_physics ) THEN |
---|
| 996 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 997 | k2 = 0.61 * pt(k,j,i) |
---|
| 998 | ELSE |
---|
| 999 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 1000 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 1001 | k2 = 0.61 * pt(k,j,i) |
---|
| 1002 | ELSE |
---|
| 1003 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 1004 | temp = theta * t_d_pt(k) |
---|
| 1005 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 1006 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 1007 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 1008 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 1009 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 1010 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 1011 | ENDIF |
---|
| 1012 | ENDIF |
---|
| 1013 | |
---|
| 1014 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
| 1015 | ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
| 1016 | ENDIF |
---|
| 1017 | |
---|
[19] | 1018 | IF ( use_top_fluxes ) THEN |
---|
| 1019 | k = nzt |
---|
| 1020 | |
---|
| 1021 | IF ( .NOT. cloud_physics ) THEN |
---|
| 1022 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 1023 | k2 = 0.61 * pt(k,j,i) |
---|
| 1024 | ELSE |
---|
| 1025 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 1026 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 1027 | k2 = 0.61 * pt(k,j,i) |
---|
| 1028 | ELSE |
---|
| 1029 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 1030 | temp = theta * t_d_pt(k) |
---|
| 1031 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 1032 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 1033 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 1034 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 1035 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 1036 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 1037 | ENDIF |
---|
| 1038 | ENDIF |
---|
| 1039 | |
---|
| 1040 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
| 1041 | ( k1* tswst(j,i) + k2 * qswst(j,i) ) |
---|
| 1042 | ENDIF |
---|
| 1043 | |
---|
[1] | 1044 | ENDIF |
---|
| 1045 | |
---|
| 1046 | END SUBROUTINE production_e_ij |
---|
| 1047 | |
---|
| 1048 | |
---|
| 1049 | SUBROUTINE production_e_init |
---|
| 1050 | |
---|
| 1051 | USE arrays_3d |
---|
| 1052 | USE control_parameters |
---|
| 1053 | USE grid_variables |
---|
| 1054 | USE indices |
---|
| 1055 | |
---|
| 1056 | IMPLICIT NONE |
---|
| 1057 | |
---|
| 1058 | INTEGER :: i, j, ku, kv |
---|
| 1059 | |
---|
[37] | 1060 | IF ( prandtl_layer ) THEN |
---|
[1] | 1061 | |
---|
| 1062 | IF ( first_call ) THEN |
---|
| 1063 | ALLOCATE( u_0(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 1064 | v_0(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 1065 | first_call = .FALSE. |
---|
| 1066 | ENDIF |
---|
| 1067 | |
---|
| 1068 | ! |
---|
| 1069 | !-- Calculate a virtual velocity at the surface in a way that the |
---|
| 1070 | !-- vertical velocity gradient at k = 1 (u(k+1)-u_0) matches the |
---|
| 1071 | !-- Prandtl law (-w'u'/km). This gradient is used in the TKE shear |
---|
| 1072 | !-- production term at k=1 (see production_e_ij). |
---|
| 1073 | !-- The velocity gradient has to be limited in case of too small km |
---|
| 1074 | !-- (otherwise the timestep may be significantly reduced by large |
---|
| 1075 | !-- surface winds). |
---|
[106] | 1076 | !-- Upper bounds are nxr+1 and nyn+1 because otherwise these values are |
---|
| 1077 | !-- not available in case of non-cyclic boundary conditions. |
---|
[1] | 1078 | !-- WARNING: the exact analytical solution would require the determination |
---|
| 1079 | !-- of the eddy diffusivity by km = u* * kappa * zp / phi_m. |
---|
| 1080 | !$OMP PARALLEL DO PRIVATE( ku, kv ) |
---|
[106] | 1081 | DO i = nxl, nxr+1 |
---|
| 1082 | DO j = nys, nyn+1 |
---|
[1] | 1083 | |
---|
| 1084 | ku = nzb_u_inner(j,i)+1 |
---|
| 1085 | kv = nzb_v_inner(j,i)+1 |
---|
| 1086 | |
---|
| 1087 | u_0(j,i) = u(ku+1,j,i) + usws(j,i) * ( zu(ku+1) - zu(ku-1) ) / & |
---|
| 1088 | ( 0.5 * ( km(ku,j,i) + km(ku,j,i-1) ) + & |
---|
| 1089 | 1.0E-20 ) |
---|
| 1090 | ! ( us(j,i) * kappa * zu(1) ) |
---|
| 1091 | v_0(j,i) = v(kv+1,j,i) + vsws(j,i) * ( zu(kv+1) - zu(kv-1) ) / & |
---|
| 1092 | ( 0.5 * ( km(kv,j,i) + km(kv,j-1,i) ) + & |
---|
| 1093 | 1.0E-20 ) |
---|
| 1094 | ! ( us(j,i) * kappa * zu(1) ) |
---|
| 1095 | |
---|
| 1096 | IF ( ABS( u(ku+1,j,i) - u_0(j,i) ) > & |
---|
| 1097 | ABS( u(ku+1,j,i) - u(ku-1,j,i) ) ) u_0(j,i) = u(ku-1,j,i) |
---|
| 1098 | IF ( ABS( v(kv+1,j,i) - v_0(j,i) ) > & |
---|
| 1099 | ABS( v(kv+1,j,i) - v(kv-1,j,i) ) ) v_0(j,i) = v(kv-1,j,i) |
---|
| 1100 | |
---|
| 1101 | ENDDO |
---|
| 1102 | ENDDO |
---|
| 1103 | |
---|
| 1104 | CALL exchange_horiz_2d( u_0 ) |
---|
| 1105 | CALL exchange_horiz_2d( v_0 ) |
---|
| 1106 | |
---|
| 1107 | ENDIF |
---|
| 1108 | |
---|
| 1109 | END SUBROUTINE production_e_init |
---|
| 1110 | |
---|
| 1111 | END MODULE production_e_mod |
---|