[1] | 1 | MODULE production_e_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
| 6 | ! |
---|
| 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
| 10 | ! $Log: production_e.f90,v $ |
---|
| 11 | ! Revision 1.21 2006/04/26 12:45:35 raasch |
---|
| 12 | ! OpenMP parallelization of production_e_init |
---|
| 13 | ! |
---|
| 14 | ! Revision 1.20 2006/02/23 12:51:25 raasch |
---|
| 15 | ! nzb_2d and nzb_diff_2d replaced by nzb_s_outer and nzb_diff_s_outer |
---|
| 16 | ! respectively, momentum flux calculation at vertical walls using profile |
---|
| 17 | ! functions, loop rearrangement for better vectorization |
---|
| 18 | ! |
---|
| 19 | ! Revision 1.19 2005/06/29 08:15:33 steinfeld |
---|
| 20 | ! Error in calculating u_0 and v_0 removed (multiplication instead of |
---|
| 21 | ! division by 2dz) |
---|
| 22 | ! |
---|
| 23 | ! Revision 1.18 2004/04/30 12:45:54 raasch |
---|
| 24 | ! dptdz eliminated |
---|
| 25 | ! |
---|
| 26 | ! Revision 1.17 2004/01/30 10:36:00 raasch |
---|
| 27 | ! Velocity gradients at the surface limited (see u_0, v_0), |
---|
| 28 | ! scalar lower k index nzb_diff replaced by 2d-array nzb_diff_2d |
---|
| 29 | ! |
---|
| 30 | ! Revision 1.16 2003/03/12 16:40:22 raasch |
---|
| 31 | ! Full code replaced in the call for all gridpoints instead of calling the |
---|
| 32 | ! _ij version (required by NEC, because otherwise no vectorization) |
---|
| 33 | ! |
---|
| 34 | ! Revision 1.15 2002/12/19 16:16:34 raasch |
---|
| 35 | ! Calculation of deformation tensor re-designed (most of the finite |
---|
| 36 | ! differences are now formed over two grid spacings, errors in derivatives |
---|
| 37 | ! along y removed) |
---|
| 38 | ! |
---|
| 39 | ! Revision 1.14 2002/09/12 13:09:44 raasch |
---|
| 40 | ! Error in calculating v_0 removed |
---|
| 41 | ! |
---|
| 42 | ! Revision 1.13 2002/06/11 13:19:04 raasch |
---|
| 43 | ! Former subroutine changed to a module which allows to be called for all grid |
---|
| 44 | ! points of a single vertical column with index i,j or for all grid points by |
---|
| 45 | ! using function overloading. |
---|
| 46 | ! Calculation of u_0 and v_0 moved to the new subroutine production_e_init |
---|
| 47 | ! due to the global communication necessary. These arrays are allocated only |
---|
| 48 | ! once during the first call. |
---|
| 49 | ! |
---|
| 50 | ! Revision 1.12 2001/08/21 09:59:47 raasch |
---|
| 51 | ! Special treatment at k=1 generally if surface fluxes are prescribed (not only |
---|
| 52 | ! in case of a Prandtl layer). In these cases, the boundary conditions are |
---|
| 53 | ! also included in the shear production term. |
---|
| 54 | ! |
---|
| 55 | ! Revision 1.11 2001/03/30 07:48:54 raasch |
---|
| 56 | ! Calculation of shear production and buoyancy production is split into |
---|
| 57 | ! two loops, arguments k1 and k2 are eliminated and now used as scalars, |
---|
| 58 | ! Translation of remaining German identifiers (variables, subroutines, etc.) |
---|
| 59 | ! |
---|
| 60 | ! Revision 1.10 2001/01/22 07:56:19 raasch |
---|
| 61 | ! Module test_variables removed |
---|
| 62 | ! |
---|
| 63 | ! Revision 1.9 2001/01/02 17:34:12 raasch |
---|
| 64 | ! -dpt_dz_d, dpt_dz_u |
---|
| 65 | ! |
---|
| 66 | ! Revision 1.8 2000/07/03 13:00:24 raasch |
---|
| 67 | ! Arguments k1 and k2 declared as pointers, |
---|
| 68 | ! all comments tranlated into English |
---|
| 69 | ! |
---|
| 70 | ! Revision 1.7 2000/04/18 08:13:00 schroeter |
---|
| 71 | ! Revision 1.5 rueckgaengig gemacht, Temperaturgrandient im |
---|
| 72 | ! Auftriebtrem wird wieder durch zentrale Differenzen gebildet |
---|
| 73 | ! |
---|
| 74 | ! Revision 1.6 2000/04/13 14:24:02 schroeter |
---|
| 75 | ! condsidering the influence of humidity to TKE-production |
---|
| 76 | ! |
---|
| 77 | ! Revision 1.5 99/02/17 09:29:18 09:29:18 raasch (Siegfried Raasch) |
---|
| 78 | ! Vertikalscherung des Windes exakter formuliert |
---|
| 79 | ! Temperaturgradient im Auftriebsterm enger gefasst, im stabilen Fall wird |
---|
| 80 | ! jetzt das Minimum vom oberen und unteren Differenzenquotienten verwendet |
---|
| 81 | ! |
---|
| 82 | ! Revision 1.4 1998/07/06 12:31:52 raasch |
---|
| 83 | ! + USE test_variables |
---|
| 84 | ! |
---|
| 85 | ! Revision 1.3 1998/04/15 11:23:49 raasch |
---|
| 86 | ! Im Fall einer Prandtl-Schicht wird die Energieproduktion bei nzb+1 |
---|
| 87 | ! jetzt immer mittels shf und sonst ueber dpt/dz berechnet (bisher nur bei |
---|
| 88 | ! vorgegebenem Waermestrom) |
---|
| 89 | ! |
---|
| 90 | ! Revision 1.2 1998/02/19 07:10:51 raasch |
---|
| 91 | ! vorgegebener Waermestrom wird gegebenenfalls im Auftriebsterm bei |
---|
| 92 | ! k=nzb+1 direkt angegeben |
---|
| 93 | ! |
---|
| 94 | ! Revision 1.1 1997/09/19 07:45:35 raasch |
---|
| 95 | ! Initial revision |
---|
| 96 | ! |
---|
| 97 | ! |
---|
| 98 | ! Description: |
---|
| 99 | ! ------------ |
---|
| 100 | ! Production terms (shear + buoyancy) of the TKE |
---|
| 101 | !------------------------------------------------------------------------------! |
---|
| 102 | |
---|
| 103 | PRIVATE |
---|
| 104 | PUBLIC production_e, production_e_init |
---|
| 105 | |
---|
| 106 | LOGICAL, SAVE :: first_call = .TRUE. |
---|
| 107 | |
---|
| 108 | REAL, DIMENSION(:,:), ALLOCATABLE, SAVE :: u_0, v_0 |
---|
| 109 | |
---|
| 110 | INTERFACE production_e |
---|
| 111 | MODULE PROCEDURE production_e |
---|
| 112 | MODULE PROCEDURE production_e_ij |
---|
| 113 | END INTERFACE production_e |
---|
| 114 | |
---|
| 115 | INTERFACE production_e_init |
---|
| 116 | MODULE PROCEDURE production_e_init |
---|
| 117 | END INTERFACE production_e_init |
---|
| 118 | |
---|
| 119 | CONTAINS |
---|
| 120 | |
---|
| 121 | |
---|
| 122 | !------------------------------------------------------------------------------! |
---|
| 123 | ! Call for all grid points |
---|
| 124 | !------------------------------------------------------------------------------! |
---|
| 125 | SUBROUTINE production_e |
---|
| 126 | |
---|
| 127 | USE arrays_3d |
---|
| 128 | USE cloud_parameters |
---|
| 129 | USE control_parameters |
---|
| 130 | USE grid_variables |
---|
| 131 | USE indices |
---|
| 132 | USE statistics |
---|
| 133 | |
---|
| 134 | IMPLICIT NONE |
---|
| 135 | |
---|
| 136 | INTEGER :: i, j, k |
---|
| 137 | |
---|
| 138 | REAL :: def, dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz, & |
---|
| 139 | k1, k2, theta, temp, usvs, vsus, wsus, wsvs |
---|
| 140 | |
---|
| 141 | |
---|
| 142 | ! |
---|
| 143 | !-- Calculate TKE production by shear |
---|
| 144 | DO i = nxl, nxr |
---|
| 145 | |
---|
| 146 | DO j = nys, nyn |
---|
| 147 | DO k = nzb_diff_s_outer(j,i), nzt-1 |
---|
| 148 | |
---|
| 149 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 150 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 151 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 152 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 153 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 154 | |
---|
| 155 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 156 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 157 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 158 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 159 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 160 | |
---|
| 161 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 162 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 163 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 164 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 165 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 166 | |
---|
| 167 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 168 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 169 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 170 | |
---|
| 171 | IF ( def < 0.0 ) def = 0.0 |
---|
| 172 | |
---|
| 173 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 174 | |
---|
| 175 | ENDDO |
---|
| 176 | ENDDO |
---|
| 177 | |
---|
| 178 | IF ( use_surface_fluxes ) THEN |
---|
| 179 | |
---|
| 180 | ! |
---|
| 181 | !-- Position neben Gebaeudewand |
---|
| 182 | !-- 2 - Wird immer ausgefuehrt. 'Boden und Wand: |
---|
| 183 | !-- u_0,v_0 und Wall functions' |
---|
| 184 | DO j = nys, nyn |
---|
| 185 | |
---|
| 186 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) & |
---|
| 187 | THEN |
---|
| 188 | |
---|
| 189 | k = nzb_diff_s_inner(j,i) - 1 |
---|
| 190 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 191 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
| 192 | usvs = kappa * 0.5 * ( u(k,j,i) + u(k,j,i+1) ) & |
---|
| 193 | / LOG( 0.5 * dy / z0(j,i) ) |
---|
| 194 | usvs = usvs * ABS( usvs ) |
---|
| 195 | dudy = wall_e_y(j,i) * usvs / km(k,j,i) |
---|
| 196 | ELSE |
---|
| 197 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 198 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 199 | ENDIF |
---|
| 200 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 201 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
| 202 | |
---|
| 203 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
| 204 | vsus = kappa * 0.5 * ( v(k,j,i) + v(k,j+1,i) ) & |
---|
| 205 | / LOG( 0.5 * dx / z0(j,i)) |
---|
| 206 | vsus = vsus * ABS( vsus ) |
---|
| 207 | dvdx = wall_e_x(j,i) * vsus / km(k,j,i) |
---|
| 208 | ELSE |
---|
| 209 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 210 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 211 | ENDIF |
---|
| 212 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 213 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 214 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
| 215 | |
---|
| 216 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
| 217 | wsus = kappa * 0.5 * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
| 218 | / LOG( 0.5 * dx / z0(j,i)) |
---|
| 219 | wsus = wsus * ABS( wsus ) |
---|
| 220 | dwdx = wall_e_x(j,i) * wsus / km(k,j,i) |
---|
| 221 | ELSE |
---|
| 222 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 223 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 224 | ENDIF |
---|
| 225 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
| 226 | wsvs = kappa * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
| 227 | / LOG( 0.5 * dy / z0(j,i)) |
---|
| 228 | wsvs = wsvs * ABS( wsvs ) |
---|
| 229 | dwdy = wall_e_y(j,i) * wsvs / km(k,j,i) |
---|
| 230 | ELSE |
---|
| 231 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 232 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 233 | ENDIF |
---|
| 234 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 235 | |
---|
| 236 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 237 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 238 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 239 | |
---|
| 240 | IF ( def < 0.0 ) def = 0.0 |
---|
| 241 | |
---|
| 242 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 243 | |
---|
| 244 | ENDIF |
---|
| 245 | |
---|
| 246 | ENDDO |
---|
| 247 | |
---|
| 248 | ! |
---|
| 249 | !-- 3 - Wird nur ausgefuehrt, wenn mindestens ein Niveau |
---|
| 250 | !-- zwischen 2 und 4 liegt, d.h. ab einer Gebaeudemindest- |
---|
| 251 | !-- hoehe von 2 dz. 'Nur Wand: Wall functions' |
---|
| 252 | DO j = nys, nyn |
---|
| 253 | |
---|
| 254 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) & |
---|
| 255 | THEN |
---|
| 256 | |
---|
| 257 | DO k = nzb_diff_s_inner(j,i), nzb_diff_s_outer(j,i)-2 |
---|
| 258 | |
---|
| 259 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 260 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
| 261 | usvs = kappa * 0.5 * ( u(k,j,i) + u(k,j,i+1) ) & |
---|
| 262 | / LOG( 0.5 * dy / z0(j,i) ) |
---|
| 263 | usvs = usvs * ABS( usvs ) |
---|
| 264 | dudy = wall_e_y(j,i) * usvs / km(k,j,i) |
---|
| 265 | ELSE |
---|
| 266 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 267 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 268 | ENDIF |
---|
| 269 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 270 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 271 | |
---|
| 272 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
| 273 | vsus = kappa * 0.5 * ( v(k,j,i) + v(k,j+1,i) ) & |
---|
| 274 | / LOG( 0.5 * dx / z0(j,i)) |
---|
| 275 | vsus = vsus * ABS( vsus ) |
---|
| 276 | dvdx = wall_e_x(j,i) * vsus / km(k,j,i) |
---|
| 277 | ELSE |
---|
| 278 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 279 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 280 | ENDIF |
---|
| 281 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 282 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 283 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 284 | |
---|
| 285 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
| 286 | wsus = kappa * 0.5 * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
| 287 | / LOG( 0.5 * dx / z0(j,i)) |
---|
| 288 | wsus = wsus * ABS( wsus ) |
---|
| 289 | dwdx = wall_e_x(j,i) * wsus / km(k,j,i) |
---|
| 290 | ELSE |
---|
| 291 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 292 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 293 | ENDIF |
---|
| 294 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
| 295 | wsvs = kappa * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
| 296 | / LOG( 0.5 * dy / z0(j,i)) |
---|
| 297 | wsvs = wsvs * ABS( wsvs ) |
---|
| 298 | dwdy = wall_e_y(j,i) * wsvs / km(k,j,i) |
---|
| 299 | ELSE |
---|
| 300 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 301 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 302 | ENDIF |
---|
| 303 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 304 | |
---|
| 305 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 306 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 307 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 308 | |
---|
| 309 | IF ( def < 0.0 ) def = 0.0 |
---|
| 310 | |
---|
| 311 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 312 | |
---|
| 313 | ENDDO |
---|
| 314 | |
---|
| 315 | ENDIF |
---|
| 316 | |
---|
| 317 | ENDDO |
---|
| 318 | |
---|
| 319 | ! |
---|
| 320 | !-- 4 - Wird immer ausgefuehrt. |
---|
| 321 | !-- 'Sonderfall: Freie Atmosphaere' (wie bei 0) |
---|
| 322 | DO j = nys, nyn |
---|
| 323 | |
---|
| 324 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) & |
---|
| 325 | THEN |
---|
| 326 | |
---|
| 327 | k = nzb_diff_s_outer(j,i)-1 |
---|
| 328 | |
---|
| 329 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 330 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 331 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 332 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 333 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 334 | |
---|
| 335 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 336 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 337 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 338 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 339 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 340 | |
---|
| 341 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 342 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 343 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 344 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 345 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 346 | |
---|
| 347 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 348 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 349 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 350 | |
---|
| 351 | IF ( def < 0.0 ) def = 0.0 |
---|
| 352 | |
---|
| 353 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 354 | |
---|
| 355 | ENDIF |
---|
| 356 | |
---|
| 357 | ENDDO |
---|
| 358 | |
---|
| 359 | ! |
---|
| 360 | !-- Position ohne angrenzende Gebaeudewand |
---|
| 361 | !-- 1 - Wird immer ausgefuehrt. 'Nur Boden: u_0,v_0' |
---|
| 362 | DO j = nys, nyn |
---|
| 363 | |
---|
| 364 | IF ( ( wall_e_x(j,i) == 0.0 ) .AND. ( wall_e_y(j,i) == 0.0 ) ) & |
---|
| 365 | THEN |
---|
| 366 | |
---|
| 367 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 368 | |
---|
| 369 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 370 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 371 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 372 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 373 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
| 374 | |
---|
| 375 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 376 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 377 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 378 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 379 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
| 380 | |
---|
| 381 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 382 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 383 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 384 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 385 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 386 | |
---|
| 387 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 388 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 389 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 390 | |
---|
| 391 | IF ( def < 0.0 ) def = 0.0 |
---|
| 392 | |
---|
| 393 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 394 | |
---|
| 395 | ENDIF |
---|
| 396 | |
---|
| 397 | ENDDO |
---|
| 398 | |
---|
| 399 | ENDIF |
---|
| 400 | |
---|
| 401 | ! |
---|
| 402 | !-- Calculate TKE production by buoyancy |
---|
| 403 | IF ( .NOT. moisture ) THEN |
---|
| 404 | |
---|
| 405 | DO j = nys, nyn |
---|
| 406 | |
---|
| 407 | DO k = nzb_diff_s_inner(j,i), nzt-1 |
---|
| 408 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / pt(k,j,i) * & |
---|
| 409 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
| 410 | ENDDO |
---|
| 411 | IF ( use_surface_fluxes ) THEN |
---|
| 412 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 413 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * shf(j,i) |
---|
| 414 | ENDIF |
---|
| 415 | |
---|
| 416 | ENDDO |
---|
| 417 | |
---|
| 418 | ELSE |
---|
| 419 | |
---|
| 420 | DO j = nys, nyn |
---|
| 421 | |
---|
| 422 | DO k = nzb_diff_s_inner(j,i), nzt-1 |
---|
| 423 | |
---|
| 424 | IF ( .NOT. cloud_physics ) THEN |
---|
| 425 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 426 | k2 = 0.61 * pt(k,j,i) |
---|
| 427 | ELSE |
---|
| 428 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 429 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 430 | k2 = 0.61 * pt(k,j,i) |
---|
| 431 | ELSE |
---|
| 432 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 433 | temp = theta * t_d_pt(k) |
---|
| 434 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 435 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 436 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 437 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 438 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 439 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 440 | ENDIF |
---|
| 441 | ENDIF |
---|
| 442 | |
---|
| 443 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
| 444 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
| 445 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
| 446 | ) * dd2zu(k) |
---|
| 447 | ENDDO |
---|
| 448 | |
---|
| 449 | ENDDO |
---|
| 450 | |
---|
| 451 | IF ( use_surface_fluxes ) THEN |
---|
| 452 | |
---|
| 453 | DO j = nys, nyn |
---|
| 454 | |
---|
| 455 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 456 | |
---|
| 457 | IF ( .NOT. cloud_physics ) THEN |
---|
| 458 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 459 | k2 = 0.61 * pt(k,j,i) |
---|
| 460 | ELSE |
---|
| 461 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 462 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 463 | k2 = 0.61 * pt(k,j,i) |
---|
| 464 | ELSE |
---|
| 465 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 466 | temp = theta * t_d_pt(k) |
---|
| 467 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 468 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 469 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 470 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 471 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 472 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 473 | ENDIF |
---|
| 474 | ENDIF |
---|
| 475 | |
---|
| 476 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
| 477 | ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
| 478 | ENDDO |
---|
| 479 | |
---|
| 480 | ENDIF |
---|
| 481 | |
---|
| 482 | ENDIF |
---|
| 483 | |
---|
| 484 | ENDDO |
---|
| 485 | |
---|
| 486 | END SUBROUTINE production_e |
---|
| 487 | |
---|
| 488 | |
---|
| 489 | !------------------------------------------------------------------------------! |
---|
| 490 | ! Call for grid point i,j |
---|
| 491 | !------------------------------------------------------------------------------! |
---|
| 492 | SUBROUTINE production_e_ij( i, j ) |
---|
| 493 | |
---|
| 494 | USE arrays_3d |
---|
| 495 | USE cloud_parameters |
---|
| 496 | USE control_parameters |
---|
| 497 | USE grid_variables |
---|
| 498 | USE indices |
---|
| 499 | USE statistics |
---|
| 500 | |
---|
| 501 | IMPLICIT NONE |
---|
| 502 | |
---|
| 503 | INTEGER :: i, j, k |
---|
| 504 | |
---|
| 505 | REAL :: def, dudx, dudy, dudz, dvdx, dvdy, dvdz, dwdx, dwdy, dwdz, & |
---|
| 506 | k1, k2, theta, temp, usvs, vsus, wsus,wsvs |
---|
| 507 | |
---|
| 508 | ! |
---|
| 509 | !-- Calculate TKE production by shear |
---|
| 510 | DO k = nzb_diff_s_outer(j,i), nzt-1 |
---|
| 511 | |
---|
| 512 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 513 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 514 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 515 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 516 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 517 | |
---|
| 518 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 519 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 520 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 521 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 522 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 523 | |
---|
| 524 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 525 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 526 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 527 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 528 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 529 | |
---|
| 530 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) & |
---|
| 531 | + dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + dvdz**2 & |
---|
| 532 | + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 533 | |
---|
| 534 | IF ( def < 0.0 ) def = 0.0 |
---|
| 535 | |
---|
| 536 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 537 | |
---|
| 538 | ENDDO |
---|
| 539 | |
---|
| 540 | IF ( use_surface_fluxes ) THEN |
---|
| 541 | |
---|
| 542 | IF ( ( wall_e_x(j,i) /= 0.0 ) .OR. ( wall_e_y(j,i) /= 0.0 ) ) THEN |
---|
| 543 | ! |
---|
| 544 | !-- Position neben Gebaeudewand |
---|
| 545 | !-- 2 - Wird immer ausgefuehrt. 'Boden und Wand: |
---|
| 546 | !-- u_0,v_0 und Wall functions' |
---|
| 547 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 548 | |
---|
| 549 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 550 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
| 551 | usvs = kappa * 0.5 * ( u(k,j,i) + u(k,j,i+1) ) & |
---|
| 552 | / LOG( 0.5 * dy / z0(j,i) ) |
---|
| 553 | usvs = usvs * ABS( usvs ) |
---|
| 554 | dudy = wall_e_y(j,i) * usvs / km(k,j,i) |
---|
| 555 | ELSE |
---|
| 556 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 557 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 558 | ENDIF |
---|
| 559 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 560 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
| 561 | |
---|
| 562 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
| 563 | vsus = kappa * 0.5 * ( v(k,j,i) + v(k,j+1,i) ) & |
---|
| 564 | / LOG( 0.5 * dx / z0(j,i)) |
---|
| 565 | vsus = vsus * ABS( vsus ) |
---|
| 566 | dvdx = wall_e_x(j,i) * vsus / km(k,j,i) |
---|
| 567 | ELSE |
---|
| 568 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 569 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 570 | ENDIF |
---|
| 571 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 572 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 573 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
| 574 | |
---|
| 575 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
| 576 | wsus = kappa * 0.5 * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
| 577 | / LOG( 0.5 * dx / z0(j,i)) |
---|
| 578 | wsus = wsus * ABS( wsus ) |
---|
| 579 | dwdx = wall_e_x(j,i) * wsus / km(k,j,i) |
---|
| 580 | ELSE |
---|
| 581 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 582 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 583 | ENDIF |
---|
| 584 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
| 585 | wsvs = kappa * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
| 586 | / LOG( 0.5 * dy / z0(j,i)) |
---|
| 587 | wsvs = wsvs * ABS( wsvs ) |
---|
| 588 | dwdy = wall_e_y(j,i) * wsvs / km(k,j,i) |
---|
| 589 | ELSE |
---|
| 590 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 591 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 592 | ENDIF |
---|
| 593 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 594 | |
---|
| 595 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 596 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 597 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 598 | |
---|
| 599 | IF ( def < 0.0 ) def = 0.0 |
---|
| 600 | |
---|
| 601 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 602 | |
---|
| 603 | ! |
---|
| 604 | !-- 3 - Wird nur ausgefuehrt, wenn mindestens ein Niveau |
---|
| 605 | !-- zwischen 2 und 4 liegt, d.h. ab einer Gebaeudemindest- |
---|
| 606 | !-- hoehe von 2 dz. 'Nur Wand: Wall functions' |
---|
| 607 | DO k = nzb_diff_s_inner(j,i), nzb_diff_s_outer(j,i)-2 |
---|
| 608 | |
---|
| 609 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 610 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
| 611 | usvs = kappa * 0.5 * ( u(k,j,i) + u(k,j,i+1) ) & |
---|
| 612 | / LOG( 0.5 * dy / z0(j,i) ) |
---|
| 613 | usvs = usvs * ABS( usvs ) |
---|
| 614 | dudy = wall_e_y(j,i) * usvs / km(k,j,i) |
---|
| 615 | ELSE |
---|
| 616 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 617 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 618 | ENDIF |
---|
| 619 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 620 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 621 | |
---|
| 622 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
| 623 | vsus = kappa * 0.5 * ( v(k,j,i) + v(k,j+1,i) ) & |
---|
| 624 | / LOG( 0.5 * dx / z0(j,i)) |
---|
| 625 | vsus = vsus * ABS( vsus ) |
---|
| 626 | dvdx = wall_e_x(j,i) * vsus / km(k,j,i) |
---|
| 627 | ELSE |
---|
| 628 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 629 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 630 | ENDIF |
---|
| 631 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 632 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 633 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 634 | |
---|
| 635 | IF ( wall_e_x(j,i) /= 0.0 ) THEN |
---|
| 636 | wsus = kappa * 0.5 * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
| 637 | / LOG( 0.5 * dx / z0(j,i)) |
---|
| 638 | wsus = wsus * ABS( wsus ) |
---|
| 639 | dwdx = wall_e_x(j,i) * wsus / km(k,j,i) |
---|
| 640 | ELSE |
---|
| 641 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 642 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 643 | ENDIF |
---|
| 644 | IF ( wall_e_y(j,i) /= 0.0 ) THEN |
---|
| 645 | wsvs = kappa * ( w(k,j,i) + w(k-1,j,i) ) & |
---|
| 646 | / LOG( 0.5 * dy / z0(j,i)) |
---|
| 647 | wsvs = wsvs * ABS( wsvs ) |
---|
| 648 | dwdy = wall_e_y(j,i) * wsvs / km(k,j,i) |
---|
| 649 | ELSE |
---|
| 650 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 651 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 652 | ENDIF |
---|
| 653 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 654 | |
---|
| 655 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 656 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 657 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 658 | |
---|
| 659 | IF ( def < 0.0 ) def = 0.0 |
---|
| 660 | |
---|
| 661 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 662 | |
---|
| 663 | ENDDO |
---|
| 664 | |
---|
| 665 | ! |
---|
| 666 | !-- 4 - Wird immer ausgefuehrt. |
---|
| 667 | !-- 'Sonderfall: Freie Atmosphaere' (wie bei 0) |
---|
| 668 | k = nzb_diff_s_outer(j,i)-1 |
---|
| 669 | |
---|
| 670 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 671 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 672 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 673 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 674 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
| 675 | |
---|
| 676 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 677 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 678 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 679 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 680 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
| 681 | |
---|
| 682 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 683 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 684 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 685 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 686 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 687 | |
---|
| 688 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) + & |
---|
| 689 | dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + & |
---|
| 690 | dvdz**2 + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 691 | |
---|
| 692 | IF ( def < 0.0 ) def = 0.0 |
---|
| 693 | |
---|
| 694 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 695 | |
---|
| 696 | ELSE |
---|
| 697 | |
---|
| 698 | ! |
---|
| 699 | !-- Position ohne angrenzende Gebaeudewand |
---|
| 700 | !-- 1 - Wird immer ausgefuehrt. 'Nur Boden: u_0,v_0' |
---|
| 701 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 702 | |
---|
| 703 | dudx = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
| 704 | dudy = 0.25 * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
| 705 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
| 706 | dudz = 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
| 707 | u_0(j,i) - u_0(j,i+1) ) * dd2zu(k) |
---|
| 708 | |
---|
| 709 | dvdx = 0.25 * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
| 710 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
| 711 | dvdy = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
| 712 | dvdz = 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
| 713 | v_0(j,i) - v_0(j+1,i) ) * dd2zu(k) |
---|
| 714 | |
---|
| 715 | dwdx = 0.25 * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
| 716 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
| 717 | dwdy = 0.25 * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
| 718 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
| 719 | dwdz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 720 | |
---|
| 721 | def = 2.0 * ( dudx**2 + dvdy**2 + dwdz**2 ) & |
---|
| 722 | + dudy**2 + dvdx**2 + dwdx**2 + dwdy**2 + dudz**2 + dvdz**2 & |
---|
| 723 | + 2.0 * ( dvdx*dudy + dwdx*dudz + dwdy*dvdz ) |
---|
| 724 | |
---|
| 725 | IF ( def < 0.0 ) def = 0.0 |
---|
| 726 | |
---|
| 727 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def |
---|
| 728 | |
---|
| 729 | ENDIF |
---|
| 730 | |
---|
| 731 | ENDIF |
---|
| 732 | |
---|
| 733 | ! |
---|
| 734 | !-- Calculate TKE production by buoyancy |
---|
| 735 | IF ( .NOT. moisture ) THEN |
---|
| 736 | |
---|
| 737 | DO k = nzb_diff_s_inner(j,i), nzt-1 |
---|
| 738 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / pt(k,j,i) * & |
---|
| 739 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) |
---|
| 740 | ENDDO |
---|
| 741 | IF ( use_surface_fluxes ) THEN |
---|
| 742 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 743 | tend(k,j,i) = tend(k,j,i) + g / pt(k,j,i) * shf(j,i) |
---|
| 744 | ENDIF |
---|
| 745 | |
---|
| 746 | ELSE |
---|
| 747 | |
---|
| 748 | DO k = nzb_diff_s_inner(j,i), nzt-1 |
---|
| 749 | |
---|
| 750 | IF ( .NOT. cloud_physics ) THEN |
---|
| 751 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 752 | k2 = 0.61 * pt(k,j,i) |
---|
| 753 | ELSE |
---|
| 754 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 755 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 756 | k2 = 0.61 * pt(k,j,i) |
---|
| 757 | ELSE |
---|
| 758 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 759 | temp = theta * t_d_pt(k) |
---|
| 760 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 761 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 762 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 763 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 764 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 765 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 766 | ENDIF |
---|
| 767 | ENDIF |
---|
| 768 | |
---|
| 769 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * g / vpt(k,j,i) * & |
---|
| 770 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
| 771 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
| 772 | ) * dd2zu(k) |
---|
| 773 | ENDDO |
---|
| 774 | IF ( use_surface_fluxes ) THEN |
---|
| 775 | k = nzb_diff_s_inner(j,i)-1 |
---|
| 776 | |
---|
| 777 | IF ( .NOT. cloud_physics ) THEN |
---|
| 778 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 779 | k2 = 0.61 * pt(k,j,i) |
---|
| 780 | ELSE |
---|
| 781 | IF ( ql(k,j,i) == 0.0 ) THEN |
---|
| 782 | k1 = 1.0 + 0.61 * q(k,j,i) |
---|
| 783 | k2 = 0.61 * pt(k,j,i) |
---|
| 784 | ELSE |
---|
| 785 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
| 786 | temp = theta * t_d_pt(k) |
---|
| 787 | k1 = ( 1.0 - q(k,j,i) + 1.61 * & |
---|
| 788 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
| 789 | ( 1.0 + 0.622 * l_d_r / temp ) ) / & |
---|
| 790 | ( 1.0 + 0.622 * l_d_r * l_d_cp * & |
---|
| 791 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
| 792 | k2 = theta * ( l_d_cp / temp * k1 - 1.0 ) |
---|
| 793 | ENDIF |
---|
| 794 | ENDIF |
---|
| 795 | |
---|
| 796 | tend(k,j,i) = tend(k,j,i) + g / vpt(k,j,i) * & |
---|
| 797 | ( k1* shf(j,i) + k2 * qsws(j,i) ) |
---|
| 798 | ENDIF |
---|
| 799 | |
---|
| 800 | ENDIF |
---|
| 801 | |
---|
| 802 | END SUBROUTINE production_e_ij |
---|
| 803 | |
---|
| 804 | |
---|
| 805 | SUBROUTINE production_e_init |
---|
| 806 | |
---|
| 807 | USE arrays_3d |
---|
| 808 | USE control_parameters |
---|
| 809 | USE grid_variables |
---|
| 810 | USE indices |
---|
| 811 | |
---|
| 812 | IMPLICIT NONE |
---|
| 813 | |
---|
| 814 | INTEGER :: i, j, ku, kv |
---|
| 815 | |
---|
| 816 | IF ( use_surface_fluxes ) THEN |
---|
| 817 | |
---|
| 818 | IF ( first_call ) THEN |
---|
| 819 | ALLOCATE( u_0(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 820 | v_0(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 821 | first_call = .FALSE. |
---|
| 822 | ENDIF |
---|
| 823 | |
---|
| 824 | ! |
---|
| 825 | !-- Calculate a virtual velocity at the surface in a way that the |
---|
| 826 | !-- vertical velocity gradient at k = 1 (u(k+1)-u_0) matches the |
---|
| 827 | !-- Prandtl law (-w'u'/km). This gradient is used in the TKE shear |
---|
| 828 | !-- production term at k=1 (see production_e_ij). |
---|
| 829 | !-- The velocity gradient has to be limited in case of too small km |
---|
| 830 | !-- (otherwise the timestep may be significantly reduced by large |
---|
| 831 | !-- surface winds). |
---|
| 832 | !-- WARNING: the exact analytical solution would require the determination |
---|
| 833 | !-- of the eddy diffusivity by km = u* * kappa * zp / phi_m. |
---|
| 834 | !$OMP PARALLEL DO PRIVATE( ku, kv ) |
---|
| 835 | DO i = nxl, nxr |
---|
| 836 | DO j = nys, nyn |
---|
| 837 | |
---|
| 838 | ku = nzb_u_inner(j,i)+1 |
---|
| 839 | kv = nzb_v_inner(j,i)+1 |
---|
| 840 | |
---|
| 841 | u_0(j,i) = u(ku+1,j,i) + usws(j,i) * ( zu(ku+1) - zu(ku-1) ) / & |
---|
| 842 | ( 0.5 * ( km(ku,j,i) + km(ku,j,i-1) ) + & |
---|
| 843 | 1.0E-20 ) |
---|
| 844 | ! ( us(j,i) * kappa * zu(1) ) |
---|
| 845 | v_0(j,i) = v(kv+1,j,i) + vsws(j,i) * ( zu(kv+1) - zu(kv-1) ) / & |
---|
| 846 | ( 0.5 * ( km(kv,j,i) + km(kv,j-1,i) ) + & |
---|
| 847 | 1.0E-20 ) |
---|
| 848 | ! ( us(j,i) * kappa * zu(1) ) |
---|
| 849 | |
---|
| 850 | IF ( ABS( u(ku+1,j,i) - u_0(j,i) ) > & |
---|
| 851 | ABS( u(ku+1,j,i) - u(ku-1,j,i) ) ) u_0(j,i) = u(ku-1,j,i) |
---|
| 852 | IF ( ABS( v(kv+1,j,i) - v_0(j,i) ) > & |
---|
| 853 | ABS( v(kv+1,j,i) - v(kv-1,j,i) ) ) v_0(j,i) = v(kv-1,j,i) |
---|
| 854 | |
---|
| 855 | ENDDO |
---|
| 856 | ENDDO |
---|
| 857 | |
---|
| 858 | CALL exchange_horiz_2d( u_0 ) |
---|
| 859 | CALL exchange_horiz_2d( v_0 ) |
---|
| 860 | |
---|
| 861 | ENDIF |
---|
| 862 | |
---|
| 863 | END SUBROUTINE production_e_init |
---|
| 864 | |
---|
| 865 | END MODULE production_e_mod |
---|