1 | SUBROUTINE pres |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Current revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: pres.f90 1004 2012-09-14 14:56:50Z raasch $ |
---|
11 | ! |
---|
12 | ! 1003 2012-09-14 14:35:53Z raasch |
---|
13 | ! adjustment of array tend for cases with unequal subdomain sizes removed |
---|
14 | ! |
---|
15 | ! 778 2011-11-07 14:18:25Z fricke |
---|
16 | ! New allocation of tend when multigrid is used and the collected field on PE0 |
---|
17 | ! has more grid points than the subdomain of an PE. |
---|
18 | ! |
---|
19 | ! 719 2011-04-06 13:05:23Z gryschka |
---|
20 | ! Bugfix in volume flow control for double cyclic boundary conditions |
---|
21 | ! |
---|
22 | ! 709 2011-03-30 09:31:40Z raasch |
---|
23 | ! formatting adjustments |
---|
24 | ! |
---|
25 | ! 707 2011-03-29 11:39:40Z raasch |
---|
26 | ! Calculation of weighted average of p is now handled in the same way |
---|
27 | ! regardless of the number of ghost layers (advection scheme), |
---|
28 | ! multigrid and sor method are using p_loc for iterative advancements of |
---|
29 | ! pressure, |
---|
30 | ! localsum calculation modified for proper OpenMP reduction, |
---|
31 | ! bc_lr/ns replaced by bc_lr/ns_cyc |
---|
32 | ! |
---|
33 | ! 693 2011-03-08 09:..:..Z raasch |
---|
34 | ! bugfix: weighting coefficient added to ibm branch |
---|
35 | ! |
---|
36 | ! 680 2011-02-04 23:16:06Z gryschka |
---|
37 | ! bugfix: collective_wait |
---|
38 | ! |
---|
39 | ! 675 2011-01-19 10:56:55Z suehring |
---|
40 | ! Removed bugfix while copying tend. |
---|
41 | ! |
---|
42 | ! 673 2011-01-18 16:19:48Z suehring |
---|
43 | ! Weighting coefficients added for right computation of the pressure during |
---|
44 | ! Runge-Kutta substeps. |
---|
45 | ! |
---|
46 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
47 | ! New allocation of tend when ws-scheme and multigrid is used. This is due to |
---|
48 | ! reasons of perforance of the data_exchange. The same is done with p after |
---|
49 | ! poismg is called. |
---|
50 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng when no |
---|
51 | ! multigrid is used. Calls of exchange_horiz are modified. |
---|
52 | ! bugfix: After pressure correction no volume flow correction in case of |
---|
53 | ! non-cyclic boundary conditions |
---|
54 | ! (has to be done only before pressure correction) |
---|
55 | ! Call of SOR routine is referenced with ddzu_pres. |
---|
56 | ! |
---|
57 | ! 622 2010-12-10 08:08:13Z raasch |
---|
58 | ! optional barriers included in order to speed up collective operations |
---|
59 | ! |
---|
60 | ! 151 2008-03-07 13:42:18Z raasch |
---|
61 | ! Bugfix in volume flow control for non-cyclic boundary conditions |
---|
62 | ! |
---|
63 | ! 106 2007-08-16 14:30:26Z raasch |
---|
64 | ! Volume flow conservation added for the remaining three outflow boundaries |
---|
65 | ! |
---|
66 | ! 85 2007-05-11 09:35:14Z raasch |
---|
67 | ! Division through dt_3d replaced by multiplication of the inverse. |
---|
68 | ! For performance optimisation, this is done in the loop calculating the |
---|
69 | ! divergence instead of using a seperate loop. |
---|
70 | ! |
---|
71 | ! 75 2007-03-22 09:54:05Z raasch |
---|
72 | ! Volume flow control for non-cyclic boundary conditions added (currently only |
---|
73 | ! for the north boundary!!), 2nd+3rd argument removed from exchange horiz, |
---|
74 | ! mean vertical velocity is removed in case of Neumann boundary conditions |
---|
75 | ! both at the bottom and the top |
---|
76 | ! |
---|
77 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
78 | ! |
---|
79 | ! Revision 1.25 2006/04/26 13:26:12 raasch |
---|
80 | ! OpenMP optimization (+localsum, threadsum) |
---|
81 | ! |
---|
82 | ! Revision 1.1 1997/07/24 11:24:44 raasch |
---|
83 | ! Initial revision |
---|
84 | ! |
---|
85 | ! |
---|
86 | ! Description: |
---|
87 | ! ------------ |
---|
88 | ! Compute the divergence of the provisional velocity field. Solve the Poisson |
---|
89 | ! equation for the perturbation pressure. Compute the final velocities using |
---|
90 | ! this perturbation pressure. Compute the remaining divergence. |
---|
91 | !------------------------------------------------------------------------------! |
---|
92 | |
---|
93 | USE arrays_3d |
---|
94 | USE constants |
---|
95 | USE control_parameters |
---|
96 | USE cpulog |
---|
97 | USE grid_variables |
---|
98 | USE indices |
---|
99 | USE interfaces |
---|
100 | USE pegrid |
---|
101 | USE poisfft_mod |
---|
102 | USE poisfft_hybrid_mod |
---|
103 | USE statistics |
---|
104 | |
---|
105 | IMPLICIT NONE |
---|
106 | |
---|
107 | INTEGER :: i, j, k, sr |
---|
108 | |
---|
109 | REAL :: ddt_3d, localsum, threadsum, d_weight_pres |
---|
110 | |
---|
111 | REAL, DIMENSION(1:2) :: volume_flow_l, volume_flow_offset |
---|
112 | REAL, DIMENSION(1:nzt) :: w_l, w_l_l |
---|
113 | |
---|
114 | |
---|
115 | CALL cpu_log( log_point(8), 'pres', 'start' ) |
---|
116 | |
---|
117 | |
---|
118 | ddt_3d = 1.0 / dt_3d |
---|
119 | d_weight_pres = 1.0 / weight_pres(intermediate_timestep_count) |
---|
120 | |
---|
121 | ! |
---|
122 | !-- Multigrid method expects array d to have one ghost layer. |
---|
123 | !-- |
---|
124 | IF ( psolver == 'multigrid' ) THEN |
---|
125 | |
---|
126 | DEALLOCATE( d ) |
---|
127 | ALLOCATE( d(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
128 | |
---|
129 | ! |
---|
130 | !-- Since p is later used to hold the weighted average of the substeps, it |
---|
131 | !-- cannot be used in the iterative solver. Therefore, its initial value is |
---|
132 | !-- stored on p_loc, which is then iteratively advanced in every substep. |
---|
133 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
134 | DO i = nxl-1, nxr+1 |
---|
135 | DO j = nys-1, nyn+1 |
---|
136 | DO k = nzb, nzt+1 |
---|
137 | p_loc(k,j,i) = p(k,j,i) |
---|
138 | ENDDO |
---|
139 | ENDDO |
---|
140 | ENDDO |
---|
141 | ENDIF |
---|
142 | |
---|
143 | ELSEIF ( psolver == 'sor' .AND. intermediate_timestep_count == 1 ) THEN |
---|
144 | |
---|
145 | ! |
---|
146 | !-- Since p is later used to hold the weighted average of the substeps, it |
---|
147 | !-- cannot be used in the iterative solver. Therefore, its initial value is |
---|
148 | !-- stored on p_loc, which is then iteratively advanced in every substep. |
---|
149 | p_loc = p |
---|
150 | |
---|
151 | ENDIF |
---|
152 | |
---|
153 | ! |
---|
154 | !-- Conserve the volume flow at the outflow in case of non-cyclic lateral |
---|
155 | !-- boundary conditions |
---|
156 | !-- WARNING: so far, this conservation does not work at the left/south |
---|
157 | !-- boundary if the topography at the inflow differs from that at the |
---|
158 | !-- outflow! For this case, volume_flow_area needs adjustment! |
---|
159 | ! |
---|
160 | !-- Left/right |
---|
161 | IF ( conserve_volume_flow .AND. ( outflow_l .OR. outflow_r ) ) THEN |
---|
162 | |
---|
163 | volume_flow(1) = 0.0 |
---|
164 | volume_flow_l(1) = 0.0 |
---|
165 | |
---|
166 | IF ( outflow_l ) THEN |
---|
167 | i = 0 |
---|
168 | ELSEIF ( outflow_r ) THEN |
---|
169 | i = nx+1 |
---|
170 | ENDIF |
---|
171 | |
---|
172 | DO j = nys, nyn |
---|
173 | ! |
---|
174 | !-- Sum up the volume flow through the south/north boundary |
---|
175 | DO k = nzb_2d(j,i)+1, nzt |
---|
176 | volume_flow_l(1) = volume_flow_l(1) + u(k,j,i) * dzw(k) |
---|
177 | ENDDO |
---|
178 | ENDDO |
---|
179 | |
---|
180 | #if defined( __parallel ) |
---|
181 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
182 | CALL MPI_ALLREDUCE( volume_flow_l(1), volume_flow(1), 1, MPI_REAL, & |
---|
183 | MPI_SUM, comm1dy, ierr ) |
---|
184 | #else |
---|
185 | volume_flow = volume_flow_l |
---|
186 | #endif |
---|
187 | volume_flow_offset(1) = ( volume_flow_initial(1) - volume_flow(1) ) & |
---|
188 | / volume_flow_area(1) |
---|
189 | |
---|
190 | DO j = nysg, nyng |
---|
191 | DO k = nzb_2d(j,i)+1, nzt |
---|
192 | u(k,j,i) = u(k,j,i) + volume_flow_offset(1) |
---|
193 | ENDDO |
---|
194 | ENDDO |
---|
195 | |
---|
196 | ENDIF |
---|
197 | |
---|
198 | ! |
---|
199 | !-- South/north |
---|
200 | IF ( conserve_volume_flow .AND. ( outflow_n .OR. outflow_s ) ) THEN |
---|
201 | |
---|
202 | volume_flow(2) = 0.0 |
---|
203 | volume_flow_l(2) = 0.0 |
---|
204 | |
---|
205 | IF ( outflow_s ) THEN |
---|
206 | j = 0 |
---|
207 | ELSEIF ( outflow_n ) THEN |
---|
208 | j = ny+1 |
---|
209 | ENDIF |
---|
210 | |
---|
211 | DO i = nxl, nxr |
---|
212 | ! |
---|
213 | !-- Sum up the volume flow through the south/north boundary |
---|
214 | DO k = nzb_2d(j,i)+1, nzt |
---|
215 | volume_flow_l(2) = volume_flow_l(2) + v(k,j,i) * dzw(k) |
---|
216 | ENDDO |
---|
217 | ENDDO |
---|
218 | |
---|
219 | #if defined( __parallel ) |
---|
220 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
221 | CALL MPI_ALLREDUCE( volume_flow_l(2), volume_flow(2), 1, MPI_REAL, & |
---|
222 | MPI_SUM, comm1dx, ierr ) |
---|
223 | #else |
---|
224 | volume_flow = volume_flow_l |
---|
225 | #endif |
---|
226 | volume_flow_offset(2) = ( volume_flow_initial(2) - volume_flow(2) ) & |
---|
227 | / volume_flow_area(2) |
---|
228 | |
---|
229 | DO i = nxlg, nxrg |
---|
230 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
231 | v(k,j,i) = v(k,j,i) + volume_flow_offset(2) |
---|
232 | ENDDO |
---|
233 | ENDDO |
---|
234 | |
---|
235 | ENDIF |
---|
236 | |
---|
237 | ! |
---|
238 | !-- Remove mean vertical velocity |
---|
239 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
240 | IF ( simulated_time > 0.0 ) THEN ! otherwise nzb_w_inner not yet known |
---|
241 | w_l = 0.0; w_l_l = 0.0 |
---|
242 | DO i = nxl, nxr |
---|
243 | DO j = nys, nyn |
---|
244 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
245 | w_l_l(k) = w_l_l(k) + w(k,j,i) |
---|
246 | ENDDO |
---|
247 | ENDDO |
---|
248 | ENDDO |
---|
249 | #if defined( __parallel ) |
---|
250 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
251 | CALL MPI_ALLREDUCE( w_l_l(1), w_l(1), nzt, MPI_REAL, MPI_SUM, & |
---|
252 | comm2d, ierr ) |
---|
253 | #else |
---|
254 | w_l = w_l_l |
---|
255 | #endif |
---|
256 | DO k = 1, nzt |
---|
257 | w_l(k) = w_l(k) / ngp_2dh_outer(k,0) |
---|
258 | ENDDO |
---|
259 | DO i = nxlg, nxrg |
---|
260 | DO j = nysg, nyng |
---|
261 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
262 | w(k,j,i) = w(k,j,i) - w_l(k) |
---|
263 | ENDDO |
---|
264 | ENDDO |
---|
265 | ENDDO |
---|
266 | ENDIF |
---|
267 | ENDIF |
---|
268 | |
---|
269 | ! |
---|
270 | !-- Compute the divergence of the provisional velocity field. |
---|
271 | CALL cpu_log( log_point_s(1), 'divergence', 'start' ) |
---|
272 | |
---|
273 | IF ( psolver == 'multigrid' ) THEN |
---|
274 | !$OMP PARALLEL DO SCHEDULE( STATIC ) |
---|
275 | DO i = nxl-1, nxr+1 |
---|
276 | DO j = nys-1, nyn+1 |
---|
277 | DO k = nzb, nzt+1 |
---|
278 | d(k,j,i) = 0.0 |
---|
279 | ENDDO |
---|
280 | ENDDO |
---|
281 | ENDDO |
---|
282 | ELSE |
---|
283 | !$OMP PARALLEL DO SCHEDULE( STATIC ) |
---|
284 | DO i = nxl, nxr |
---|
285 | DO j = nys, nyn |
---|
286 | DO k = nzb+1, nzt |
---|
287 | d(k,j,i) = 0.0 |
---|
288 | ENDDO |
---|
289 | ENDDO |
---|
290 | ENDDO |
---|
291 | ENDIF |
---|
292 | |
---|
293 | localsum = 0.0 |
---|
294 | threadsum = 0.0 |
---|
295 | |
---|
296 | #if defined( __ibm ) |
---|
297 | !$OMP PARALLEL PRIVATE (i,j,k) FIRSTPRIVATE(threadsum) REDUCTION(+:localsum) |
---|
298 | !$OMP DO SCHEDULE( STATIC ) |
---|
299 | DO i = nxl, nxr |
---|
300 | DO j = nys, nyn |
---|
301 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
302 | d(k,j,i) = ( ( u(k,j,i+1) - u(k,j,i) ) * ddx + & |
---|
303 | ( v(k,j+1,i) - v(k,j,i) ) * ddy + & |
---|
304 | ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) ) * ddt_3d & |
---|
305 | * d_weight_pres |
---|
306 | ENDDO |
---|
307 | ! |
---|
308 | !-- Additional pressure boundary condition at the bottom boundary for |
---|
309 | !-- inhomogeneous Prandtl layer heat fluxes and temperatures, respectively |
---|
310 | !-- dp/dz = -(dtau13/dx + dtau23/dy) + g*pt'/pt0. |
---|
311 | !-- This condition must not be applied at the start of a run, because then |
---|
312 | !-- flow_statistics has not yet been called and thus sums = 0. |
---|
313 | IF ( ibc_p_b == 2 .AND. sums(nzb+1,4) /= 0.0 ) THEN |
---|
314 | k = nzb_s_inner(j,i) |
---|
315 | d(k+1,j,i) = d(k+1,j,i) + ( & |
---|
316 | ( usws(j,i+1) - usws(j,i) ) * ddx & |
---|
317 | + ( vsws(j+1,i) - vsws(j,i) ) * ddy & |
---|
318 | - g * ( pt(k+1,j,i) - sums(k+1,4) ) / & |
---|
319 | sums(k+1,4) & |
---|
320 | ) * ddzw(k+1) * ddt_3d * d_weight_pres |
---|
321 | ENDIF |
---|
322 | |
---|
323 | ! |
---|
324 | !-- Compute possible PE-sum of divergences for flow_statistics |
---|
325 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
326 | threadsum = threadsum + ABS( d(k,j,i) ) |
---|
327 | ENDDO |
---|
328 | |
---|
329 | ENDDO |
---|
330 | ENDDO |
---|
331 | |
---|
332 | localsum = localsum + threadsum * dt_3d * & |
---|
333 | weight_pres(intermediate_timestep_count) |
---|
334 | |
---|
335 | !$OMP END PARALLEL |
---|
336 | #else |
---|
337 | IF ( ibc_p_b == 2 .AND. sums(nzb+1,4) /= 0.0 ) THEN |
---|
338 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
339 | !$OMP DO SCHEDULE( STATIC ) |
---|
340 | DO i = nxl, nxr |
---|
341 | DO j = nys, nyn |
---|
342 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
343 | d(k,j,i) = ( ( u(k,j,i+1) - u(k,j,i) ) * ddx + & |
---|
344 | ( v(k,j+1,i) - v(k,j,i) ) * ddy + & |
---|
345 | ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) ) * ddt_3d & |
---|
346 | * d_weight_pres |
---|
347 | ENDDO |
---|
348 | ENDDO |
---|
349 | ! |
---|
350 | !-- Additional pressure boundary condition at the bottom boundary for |
---|
351 | !-- inhomogeneous Prandtl layer heat fluxes and temperatures, respectively |
---|
352 | !-- dp/dz = -(dtau13/dx + dtau23/dy) + g*pt'/pt0. |
---|
353 | !-- This condition must not be applied at the start of a run, because then |
---|
354 | !-- flow_statistics has not yet been called and thus sums = 0. |
---|
355 | DO j = nys, nyn |
---|
356 | k = nzb_s_inner(j,i) |
---|
357 | d(k+1,j,i) = d(k+1,j,i) + ( & |
---|
358 | ( usws(j,i+1) - usws(j,i) ) * ddx & |
---|
359 | + ( vsws(j+1,i) - vsws(j,i) ) * ddy & |
---|
360 | - g * ( pt(k+1,j,i) - sums(k+1,4) ) / & |
---|
361 | sums(k+1,4) & |
---|
362 | ) * ddzw(k+1) * ddt_3d & |
---|
363 | * d_weight_pres |
---|
364 | ENDDO |
---|
365 | ENDDO |
---|
366 | !$OMP END PARALLEL |
---|
367 | |
---|
368 | ELSE |
---|
369 | |
---|
370 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
371 | !$OMP DO SCHEDULE( STATIC ) |
---|
372 | DO i = nxl, nxr |
---|
373 | DO j = nys, nyn |
---|
374 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
375 | d(k,j,i) = ( ( u(k,j,i+1) - u(k,j,i) ) * ddx + & |
---|
376 | ( v(k,j+1,i) - v(k,j,i) ) * ddy + & |
---|
377 | ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) ) * ddt_3d & |
---|
378 | * d_weight_pres |
---|
379 | ENDDO |
---|
380 | ENDDO |
---|
381 | ENDDO |
---|
382 | !$OMP END PARALLEL |
---|
383 | |
---|
384 | ENDIF |
---|
385 | |
---|
386 | ! |
---|
387 | !-- Compute possible PE-sum of divergences for flow_statistics |
---|
388 | !$OMP PARALLEL PRIVATE (i,j,k) FIRSTPRIVATE(threadsum) REDUCTION(+:localsum) |
---|
389 | !$OMP DO SCHEDULE( STATIC ) |
---|
390 | DO i = nxl, nxr |
---|
391 | DO j = nys, nyn |
---|
392 | DO k = nzb+1, nzt |
---|
393 | threadsum = threadsum + ABS( d(k,j,i) ) |
---|
394 | ENDDO |
---|
395 | ENDDO |
---|
396 | ENDDO |
---|
397 | localsum = localsum + threadsum * dt_3d * & |
---|
398 | weight_pres(intermediate_timestep_count) |
---|
399 | !$OMP END PARALLEL |
---|
400 | #endif |
---|
401 | |
---|
402 | ! |
---|
403 | !-- For completeness, set the divergence sum of all statistic regions to those |
---|
404 | !-- of the total domain |
---|
405 | sums_divold_l(0:statistic_regions) = localsum |
---|
406 | |
---|
407 | CALL cpu_log( log_point_s(1), 'divergence', 'stop' ) |
---|
408 | |
---|
409 | ! |
---|
410 | !-- Compute the pressure perturbation solving the Poisson equation |
---|
411 | IF ( psolver(1:7) == 'poisfft' ) THEN |
---|
412 | |
---|
413 | ! |
---|
414 | !-- Solve Poisson equation via FFT and solution of tridiagonal matrices |
---|
415 | IF ( psolver == 'poisfft' ) THEN |
---|
416 | ! |
---|
417 | !-- Solver for 2d-decomposition |
---|
418 | CALL poisfft( d, tend ) |
---|
419 | ELSEIF ( psolver == 'poisfft_hybrid' ) THEN |
---|
420 | ! |
---|
421 | !-- Solver for 1d-decomposition (using MPI and OpenMP). |
---|
422 | !-- The old hybrid-solver is still included here, as long as there |
---|
423 | !-- are some optimization problems in poisfft |
---|
424 | CALL poisfft_hybrid( d ) |
---|
425 | ENDIF |
---|
426 | |
---|
427 | ! |
---|
428 | !-- Store computed perturbation pressure and set boundary condition in |
---|
429 | !-- z-direction |
---|
430 | !$OMP PARALLEL DO |
---|
431 | DO i = nxl, nxr |
---|
432 | DO j = nys, nyn |
---|
433 | DO k = nzb+1, nzt |
---|
434 | tend(k,j,i) = d(k,j,i) |
---|
435 | ENDDO |
---|
436 | ENDDO |
---|
437 | ENDDO |
---|
438 | |
---|
439 | ! |
---|
440 | !-- Bottom boundary: |
---|
441 | !-- This condition is only required for internal output. The pressure |
---|
442 | !-- gradient (dp(nzb+1)-dp(nzb))/dz is not used anywhere else. |
---|
443 | IF ( ibc_p_b == 1 ) THEN |
---|
444 | ! |
---|
445 | !-- Neumann (dp/dz = 0) |
---|
446 | !$OMP PARALLEL DO |
---|
447 | DO i = nxlg, nxrg |
---|
448 | DO j = nysg, nyng |
---|
449 | tend(nzb_s_inner(j,i),j,i) = tend(nzb_s_inner(j,i)+1,j,i) |
---|
450 | ENDDO |
---|
451 | ENDDO |
---|
452 | |
---|
453 | ELSEIF ( ibc_p_b == 2 ) THEN |
---|
454 | ! |
---|
455 | !-- Neumann condition for inhomogeneous surfaces, |
---|
456 | !-- here currently still in the form of a zero gradient. Actually |
---|
457 | !-- dp/dz = -(dtau13/dx + dtau23/dy) + g*pt'/pt0 would have to be used for |
---|
458 | !-- the computation (cf. above: computation of divergences). |
---|
459 | !$OMP PARALLEL DO |
---|
460 | DO i = nxlg, nxrg |
---|
461 | DO j = nysg, nyng |
---|
462 | tend(nzb_s_inner(j,i),j,i) = tend(nzb_s_inner(j,i)+1,j,i) |
---|
463 | ENDDO |
---|
464 | ENDDO |
---|
465 | |
---|
466 | ELSE |
---|
467 | ! |
---|
468 | !-- Dirichlet |
---|
469 | !$OMP PARALLEL DO |
---|
470 | DO i = nxlg, nxrg |
---|
471 | DO j = nysg, nyng |
---|
472 | tend(nzb_s_inner(j,i),j,i) = 0.0 |
---|
473 | ENDDO |
---|
474 | ENDDO |
---|
475 | |
---|
476 | ENDIF |
---|
477 | |
---|
478 | ! |
---|
479 | !-- Top boundary |
---|
480 | IF ( ibc_p_t == 1 ) THEN |
---|
481 | ! |
---|
482 | !-- Neumann |
---|
483 | !$OMP PARALLEL DO |
---|
484 | DO i = nxlg, nxrg |
---|
485 | DO j = nysg, nyng |
---|
486 | tend(nzt+1,j,i) = tend(nzt,j,i) |
---|
487 | ENDDO |
---|
488 | ENDDO |
---|
489 | |
---|
490 | ELSE |
---|
491 | ! |
---|
492 | !-- Dirichlet |
---|
493 | !$OMP PARALLEL DO |
---|
494 | DO i = nxlg, nxrg |
---|
495 | DO j = nysg, nyng |
---|
496 | tend(nzt+1,j,i) = 0.0 |
---|
497 | ENDDO |
---|
498 | ENDDO |
---|
499 | |
---|
500 | ENDIF |
---|
501 | |
---|
502 | ! |
---|
503 | !-- Exchange boundaries for p |
---|
504 | CALL exchange_horiz( tend, nbgp ) |
---|
505 | |
---|
506 | ELSEIF ( psolver == 'sor' ) THEN |
---|
507 | |
---|
508 | ! |
---|
509 | !-- Solve Poisson equation for perturbation pressure using SOR-Red/Black |
---|
510 | !-- scheme |
---|
511 | CALL sor( d, ddzu_pres, ddzw, p_loc ) |
---|
512 | tend = p_loc |
---|
513 | |
---|
514 | ELSEIF ( psolver == 'multigrid' ) THEN |
---|
515 | |
---|
516 | ! |
---|
517 | !-- Solve Poisson equation for perturbation pressure using Multigrid scheme, |
---|
518 | !-- array tend is used to store the residuals, logical exchange_mg is used |
---|
519 | !-- to discern data exchange in multigrid ( 1 ghostpoint ) and normal grid |
---|
520 | !-- ( nbgp ghost points ). |
---|
521 | |
---|
522 | !-- If the number of grid points of the gathered grid, which is collected |
---|
523 | !-- on PE0, is larger than the number of grid points of an PE, than array |
---|
524 | !-- tend will be enlarged. |
---|
525 | IF ( gathered_size > subdomain_size ) THEN |
---|
526 | DEALLOCATE( tend ) |
---|
527 | ALLOCATE( tend(nzb:nzt_mg(mg_switch_to_pe0_level)+1,nys_mg( & |
---|
528 | mg_switch_to_pe0_level)-1:nyn_mg(mg_switch_to_pe0_level)+1,& |
---|
529 | nxl_mg(mg_switch_to_pe0_level)-1:nxr_mg( & |
---|
530 | mg_switch_to_pe0_level)+1) ) |
---|
531 | ENDIF |
---|
532 | |
---|
533 | CALL poismg( tend ) |
---|
534 | |
---|
535 | IF ( gathered_size > subdomain_size ) THEN |
---|
536 | DEALLOCATE( tend ) |
---|
537 | ALLOCATE( tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
538 | ENDIF |
---|
539 | |
---|
540 | ! |
---|
541 | !-- Restore perturbation pressure on tend because this array is used |
---|
542 | !-- further below to correct the velocity fields |
---|
543 | DO i = nxl-1, nxr+1 |
---|
544 | DO j = nys-1, nyn+1 |
---|
545 | DO k = nzb, nzt+1 |
---|
546 | tend(k,j,i) = p_loc(k,j,i) |
---|
547 | ENDDO |
---|
548 | ENDDO |
---|
549 | ENDDO |
---|
550 | |
---|
551 | ENDIF |
---|
552 | |
---|
553 | ! |
---|
554 | !-- Store perturbation pressure on array p, used for pressure data output. |
---|
555 | !-- Ghost layers are added in the output routines (except sor-method: see below) |
---|
556 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
557 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
558 | !$OMP DO |
---|
559 | DO i = nxl-1, nxr+1 |
---|
560 | DO j = nys-1, nyn+1 |
---|
561 | DO k = nzb, nzt+1 |
---|
562 | p(k,j,i) = tend(k,j,i) * & |
---|
563 | weight_substep(intermediate_timestep_count) |
---|
564 | ENDDO |
---|
565 | ENDDO |
---|
566 | ENDDO |
---|
567 | !$OMP END PARALLEL |
---|
568 | |
---|
569 | ELSE |
---|
570 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
571 | !$OMP DO |
---|
572 | DO i = nxl-1, nxr+1 |
---|
573 | DO j = nys-1, nyn+1 |
---|
574 | DO k = nzb, nzt+1 |
---|
575 | p(k,j,i) = p(k,j,i) + tend(k,j,i) * & |
---|
576 | weight_substep(intermediate_timestep_count) |
---|
577 | ENDDO |
---|
578 | ENDDO |
---|
579 | ENDDO |
---|
580 | !$OMP END PARALLEL |
---|
581 | |
---|
582 | ENDIF |
---|
583 | |
---|
584 | ! |
---|
585 | !-- SOR-method needs ghost layers for the next timestep |
---|
586 | IF ( psolver == 'sor' ) CALL exchange_horiz( p, nbgp ) |
---|
587 | |
---|
588 | ! |
---|
589 | !-- Correction of the provisional velocities with the current perturbation |
---|
590 | !-- pressure just computed |
---|
591 | IF ( conserve_volume_flow .AND. ( bc_lr_cyc .OR. bc_ns_cyc ) ) THEN |
---|
592 | volume_flow_l(1) = 0.0 |
---|
593 | volume_flow_l(2) = 0.0 |
---|
594 | ENDIF |
---|
595 | |
---|
596 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
597 | !$OMP DO |
---|
598 | DO i = nxl, nxr |
---|
599 | DO j = nys, nyn |
---|
600 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
601 | w(k,j,i) = w(k,j,i) - dt_3d * & |
---|
602 | ( tend(k+1,j,i) - tend(k,j,i) ) * ddzu(k+1) * & |
---|
603 | weight_pres(intermediate_timestep_count) |
---|
604 | ENDDO |
---|
605 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
606 | u(k,j,i) = u(k,j,i) - dt_3d * & |
---|
607 | ( tend(k,j,i) - tend(k,j,i-1) ) * ddx * & |
---|
608 | weight_pres(intermediate_timestep_count) |
---|
609 | ENDDO |
---|
610 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
611 | v(k,j,i) = v(k,j,i) - dt_3d * & |
---|
612 | ( tend(k,j,i) - tend(k,j-1,i) ) * ddy * & |
---|
613 | weight_pres(intermediate_timestep_count) |
---|
614 | ENDDO |
---|
615 | ! |
---|
616 | !-- Sum up the volume flow through the right and north boundary |
---|
617 | IF ( conserve_volume_flow .AND. bc_lr_cyc .AND. bc_ns_cyc .AND. & |
---|
618 | i == nx ) THEN |
---|
619 | !$OMP CRITICAL |
---|
620 | DO k = nzb_2d(j,i) + 1, nzt |
---|
621 | volume_flow_l(1) = volume_flow_l(1) + u(k,j,i) * dzw(k) |
---|
622 | ENDDO |
---|
623 | !$OMP END CRITICAL |
---|
624 | ENDIF |
---|
625 | IF ( conserve_volume_flow .AND. bc_ns_cyc .AND. bc_lr_cyc .AND. & |
---|
626 | j == ny ) THEN |
---|
627 | !$OMP CRITICAL |
---|
628 | DO k = nzb_2d(j,i) + 1, nzt |
---|
629 | volume_flow_l(2) = volume_flow_l(2) + v(k,j,i) * dzw(k) |
---|
630 | ENDDO |
---|
631 | !$OMP END CRITICAL |
---|
632 | ENDIF |
---|
633 | |
---|
634 | ENDDO |
---|
635 | ENDDO |
---|
636 | !$OMP END PARALLEL |
---|
637 | |
---|
638 | ! |
---|
639 | !-- Conserve the volume flow |
---|
640 | IF ( conserve_volume_flow .AND. ( bc_lr_cyc .AND. bc_ns_cyc ) ) THEN |
---|
641 | |
---|
642 | #if defined( __parallel ) |
---|
643 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
644 | CALL MPI_ALLREDUCE( volume_flow_l(1), volume_flow(1), 2, MPI_REAL, & |
---|
645 | MPI_SUM, comm2d, ierr ) |
---|
646 | #else |
---|
647 | volume_flow = volume_flow_l |
---|
648 | #endif |
---|
649 | |
---|
650 | volume_flow_offset = ( volume_flow_initial - volume_flow ) / & |
---|
651 | volume_flow_area |
---|
652 | |
---|
653 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
654 | !$OMP DO |
---|
655 | DO i = nxl, nxr |
---|
656 | DO j = nys, nyn |
---|
657 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
658 | u(k,j,i) = u(k,j,i) + volume_flow_offset(1) |
---|
659 | ENDDO |
---|
660 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
661 | v(k,j,i) = v(k,j,i) + volume_flow_offset(2) |
---|
662 | ENDDO |
---|
663 | ENDDO |
---|
664 | ENDDO |
---|
665 | |
---|
666 | !$OMP END PARALLEL |
---|
667 | |
---|
668 | ENDIF |
---|
669 | |
---|
670 | ! |
---|
671 | !-- Exchange of boundaries for the velocities |
---|
672 | CALL exchange_horiz( u, nbgp ) |
---|
673 | CALL exchange_horiz( v, nbgp ) |
---|
674 | CALL exchange_horiz( w, nbgp ) |
---|
675 | |
---|
676 | ! |
---|
677 | !-- Compute the divergence of the corrected velocity field, |
---|
678 | !-- a possible PE-sum is computed in flow_statistics |
---|
679 | CALL cpu_log( log_point_s(1), 'divergence', 'start' ) |
---|
680 | sums_divnew_l = 0.0 |
---|
681 | |
---|
682 | ! |
---|
683 | !-- d must be reset to zero because it can contain nonzero values below the |
---|
684 | !-- topography |
---|
685 | IF ( topography /= 'flat' ) d = 0.0 |
---|
686 | |
---|
687 | localsum = 0.0 |
---|
688 | threadsum = 0.0 |
---|
689 | |
---|
690 | !$OMP PARALLEL PRIVATE (i,j,k) FIRSTPRIVATE(threadsum) REDUCTION(+:localsum) |
---|
691 | !$OMP DO SCHEDULE( STATIC ) |
---|
692 | #if defined( __ibm ) |
---|
693 | DO i = nxl, nxr |
---|
694 | DO j = nys, nyn |
---|
695 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
696 | d(k,j,i) = ( u(k,j,i+1) - u(k,j,i) ) * ddx + & |
---|
697 | ( v(k,j+1,i) - v(k,j,i) ) * ddy + & |
---|
698 | ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
699 | ENDDO |
---|
700 | DO k = nzb+1, nzt |
---|
701 | threadsum = threadsum + ABS( d(k,j,i) ) |
---|
702 | ENDDO |
---|
703 | ENDDO |
---|
704 | ENDDO |
---|
705 | #else |
---|
706 | DO i = nxl, nxr |
---|
707 | DO j = nys, nyn |
---|
708 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
709 | d(k,j,i) = ( u(k,j,i+1) - u(k,j,i) ) * ddx + & |
---|
710 | ( v(k,j+1,i) - v(k,j,i) ) * ddy + & |
---|
711 | ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
712 | threadsum = threadsum + ABS( d(k,j,i) ) |
---|
713 | ENDDO |
---|
714 | ENDDO |
---|
715 | ENDDO |
---|
716 | #endif |
---|
717 | |
---|
718 | localsum = localsum + threadsum |
---|
719 | !$OMP END PARALLEL |
---|
720 | |
---|
721 | ! |
---|
722 | !-- For completeness, set the divergence sum of all statistic regions to those |
---|
723 | !-- of the total domain |
---|
724 | sums_divnew_l(0:statistic_regions) = localsum |
---|
725 | |
---|
726 | CALL cpu_log( log_point_s(1), 'divergence', 'stop' ) |
---|
727 | |
---|
728 | CALL cpu_log( log_point(8), 'pres', 'stop' ) |
---|
729 | |
---|
730 | |
---|
731 | |
---|
732 | END SUBROUTINE pres |
---|