[1] | 1 | SUBROUTINE pres |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
[674] | 6 | ! |
---|
[680] | 7 | ! gryschka |
---|
| 8 | ! bugfix in case of collective_wait |
---|
| 9 | ! |
---|
[668] | 10 | ! Former revisions: |
---|
| 11 | ! ----------------- |
---|
| 12 | ! $Id: pres.f90 680 2011-02-04 23:16:06Z gryschka $ |
---|
| 13 | ! |
---|
[676] | 14 | ! 675 2011-01-19 10:56:55Z suehring |
---|
| 15 | ! Removed bugfix while copying tend. |
---|
| 16 | ! |
---|
[674] | 17 | ! 673 2011-01-18 16:19:48Z suehring |
---|
| 18 | ! Weighting coefficients added for right computation of the pressure during |
---|
| 19 | ! Runge-Kutta substeps. |
---|
| 20 | ! |
---|
[668] | 21 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
[667] | 22 | ! New allocation of tend when ws-scheme and multigrid is used. This is due to |
---|
| 23 | ! reasons of perforance of the data_exchange. The same is done with p after |
---|
| 24 | ! poismg is called. |
---|
| 25 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng when no |
---|
| 26 | ! multigrid is used. Calls of exchange_horiz are modified. |
---|
| 27 | ! bugfix: After pressure correction no volume flow correction in case of |
---|
| 28 | ! non-cyclic boundary conditions |
---|
| 29 | ! (has to be done only before pressure correction) |
---|
| 30 | ! Call of SOR routine is referenced with ddzu_pres. |
---|
| 31 | ! |
---|
[623] | 32 | ! 622 2010-12-10 08:08:13Z raasch |
---|
| 33 | ! optional barriers included in order to speed up collective operations |
---|
| 34 | ! |
---|
[198] | 35 | ! 151 2008-03-07 13:42:18Z raasch |
---|
| 36 | ! Bugfix in volume flow control for non-cyclic boundary conditions |
---|
| 37 | ! |
---|
[110] | 38 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 39 | ! Volume flow conservation added for the remaining three outflow boundaries |
---|
| 40 | ! |
---|
[90] | 41 | ! 85 2007-05-11 09:35:14Z raasch |
---|
| 42 | ! Division through dt_3d replaced by multiplication of the inverse. |
---|
| 43 | ! For performance optimisation, this is done in the loop calculating the |
---|
| 44 | ! divergence instead of using a seperate loop. |
---|
| 45 | ! |
---|
[77] | 46 | ! 75 2007-03-22 09:54:05Z raasch |
---|
[75] | 47 | ! Volume flow control for non-cyclic boundary conditions added (currently only |
---|
[76] | 48 | ! for the north boundary!!), 2nd+3rd argument removed from exchange horiz, |
---|
| 49 | ! mean vertical velocity is removed in case of Neumann boundary conditions |
---|
| 50 | ! both at the bottom and the top |
---|
[1] | 51 | ! |
---|
[3] | 52 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 53 | ! |
---|
[1] | 54 | ! Revision 1.25 2006/04/26 13:26:12 raasch |
---|
| 55 | ! OpenMP optimization (+localsum, threadsum) |
---|
| 56 | ! |
---|
| 57 | ! Revision 1.1 1997/07/24 11:24:44 raasch |
---|
| 58 | ! Initial revision |
---|
| 59 | ! |
---|
| 60 | ! |
---|
| 61 | ! Description: |
---|
| 62 | ! ------------ |
---|
| 63 | ! Compute the divergence of the provisional velocity field. Solve the Poisson |
---|
| 64 | ! equation for the perturbation pressure. Compute the final velocities using |
---|
| 65 | ! this perturbation pressure. Compute the remaining divergence. |
---|
| 66 | !------------------------------------------------------------------------------! |
---|
| 67 | |
---|
| 68 | USE arrays_3d |
---|
| 69 | USE constants |
---|
| 70 | USE control_parameters |
---|
| 71 | USE cpulog |
---|
| 72 | USE grid_variables |
---|
| 73 | USE indices |
---|
| 74 | USE interfaces |
---|
| 75 | USE pegrid |
---|
| 76 | USE poisfft_mod |
---|
| 77 | USE poisfft_hybrid_mod |
---|
| 78 | USE statistics |
---|
| 79 | |
---|
| 80 | IMPLICIT NONE |
---|
| 81 | |
---|
| 82 | INTEGER :: i, j, k, sr |
---|
| 83 | |
---|
[673] | 84 | REAL :: ddt_3d, localsum, threadsum, d_weight_pres |
---|
[1] | 85 | |
---|
| 86 | REAL, DIMENSION(1:2) :: volume_flow_l, volume_flow_offset |
---|
[76] | 87 | REAL, DIMENSION(1:nzt) :: w_l, w_l_l |
---|
[1] | 88 | |
---|
| 89 | |
---|
| 90 | CALL cpu_log( log_point(8), 'pres', 'start' ) |
---|
| 91 | |
---|
[85] | 92 | |
---|
| 93 | ddt_3d = 1.0 / dt_3d |
---|
[673] | 94 | d_weight_pres = 1. / weight_pres(intermediate_timestep_count) |
---|
[85] | 95 | |
---|
[1] | 96 | ! |
---|
[667] | 97 | !-- Multigrid method expects 1 additional grid point for the arrays |
---|
| 98 | !-- d, tend and p |
---|
[1] | 99 | IF ( psolver == 'multigrid' ) THEN |
---|
[667] | 100 | |
---|
[1] | 101 | DEALLOCATE( d ) |
---|
[667] | 102 | ALLOCATE( d(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 103 | |
---|
| 104 | IF ( ws_scheme_mom .OR. ws_scheme_sca ) THEN |
---|
| 105 | |
---|
| 106 | DEALLOCATE( tend ) |
---|
| 107 | ALLOCATE( tend(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 108 | DEALLOCATE( p ) |
---|
| 109 | ALLOCATE( p(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 110 | |
---|
| 111 | ENDIF |
---|
| 112 | |
---|
[1] | 113 | ENDIF |
---|
| 114 | |
---|
| 115 | ! |
---|
[75] | 116 | !-- Conserve the volume flow at the outflow in case of non-cyclic lateral |
---|
| 117 | !-- boundary conditions |
---|
[106] | 118 | !-- WARNING: so far, this conservation does not work at the left/south |
---|
| 119 | !-- boundary if the topography at the inflow differs from that at the |
---|
| 120 | !-- outflow! For this case, volume_flow_area needs adjustment! |
---|
| 121 | ! |
---|
| 122 | !-- Left/right |
---|
[680] | 123 | |
---|
[106] | 124 | IF ( conserve_volume_flow .AND. ( outflow_l .OR. outflow_r ) ) THEN |
---|
[75] | 125 | |
---|
[106] | 126 | volume_flow(1) = 0.0 |
---|
| 127 | volume_flow_l(1) = 0.0 |
---|
| 128 | |
---|
| 129 | IF ( outflow_l ) THEN |
---|
| 130 | i = 0 |
---|
| 131 | ELSEIF ( outflow_r ) THEN |
---|
| 132 | i = nx+1 |
---|
| 133 | ENDIF |
---|
| 134 | |
---|
| 135 | DO j = nys, nyn |
---|
| 136 | ! |
---|
| 137 | !-- Sum up the volume flow through the south/north boundary |
---|
| 138 | DO k = nzb_2d(j,i) + 1, nzt |
---|
[667] | 139 | volume_flow_l(1) = volume_flow_l(1) + u(k,j,i) * dzw(k) |
---|
[106] | 140 | ENDDO |
---|
| 141 | ENDDO |
---|
| 142 | |
---|
| 143 | #if defined( __parallel ) |
---|
[680] | 144 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
[106] | 145 | CALL MPI_ALLREDUCE( volume_flow_l(1), volume_flow(1), 1, MPI_REAL, & |
---|
| 146 | MPI_SUM, comm1dy, ierr ) |
---|
| 147 | #else |
---|
| 148 | volume_flow = volume_flow_l |
---|
| 149 | #endif |
---|
| 150 | volume_flow_offset(1) = ( volume_flow_initial(1) - volume_flow(1) ) & |
---|
| 151 | / volume_flow_area(1) |
---|
| 152 | |
---|
[667] | 153 | DO j = nysg, nyng |
---|
| 154 | DO k = nzb_2d(j,i) + 1, nzt |
---|
[106] | 155 | u(k,j,i) = u(k,j,i) + volume_flow_offset(1) |
---|
| 156 | ENDDO |
---|
| 157 | ENDDO |
---|
| 158 | |
---|
| 159 | ENDIF |
---|
| 160 | |
---|
| 161 | ! |
---|
| 162 | !-- South/north |
---|
| 163 | IF ( conserve_volume_flow .AND. ( outflow_n .OR. outflow_s ) ) THEN |
---|
| 164 | |
---|
[75] | 165 | volume_flow(2) = 0.0 |
---|
| 166 | volume_flow_l(2) = 0.0 |
---|
| 167 | |
---|
[106] | 168 | IF ( outflow_s ) THEN |
---|
| 169 | j = 0 |
---|
| 170 | ELSEIF ( outflow_n ) THEN |
---|
[75] | 171 | j = ny+1 |
---|
[106] | 172 | ENDIF |
---|
| 173 | |
---|
| 174 | DO i = nxl, nxr |
---|
[75] | 175 | ! |
---|
[106] | 176 | !-- Sum up the volume flow through the south/north boundary |
---|
| 177 | DO k = nzb_2d(j,i) + 1, nzt |
---|
[667] | 178 | volume_flow_l(2) = volume_flow_l(2) + v(k,j,i) * dzw(k) |
---|
[75] | 179 | ENDDO |
---|
[106] | 180 | ENDDO |
---|
| 181 | |
---|
[75] | 182 | #if defined( __parallel ) |
---|
[680] | 183 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
[75] | 184 | CALL MPI_ALLREDUCE( volume_flow_l(2), volume_flow(2), 1, MPI_REAL, & |
---|
| 185 | MPI_SUM, comm1dx, ierr ) |
---|
| 186 | #else |
---|
| 187 | volume_flow = volume_flow_l |
---|
| 188 | #endif |
---|
| 189 | volume_flow_offset(2) = ( volume_flow_initial(2) - volume_flow(2) ) & |
---|
[106] | 190 | / volume_flow_area(2) |
---|
[75] | 191 | |
---|
[667] | 192 | DO i = nxlg, nxrg |
---|
[106] | 193 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
| 194 | v(k,j,i) = v(k,j,i) + volume_flow_offset(2) |
---|
[75] | 195 | ENDDO |
---|
[106] | 196 | ENDDO |
---|
[75] | 197 | |
---|
| 198 | ENDIF |
---|
| 199 | |
---|
[76] | 200 | ! |
---|
| 201 | !-- Remove mean vertical velocity |
---|
| 202 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 203 | IF ( simulated_time > 0.0 ) THEN ! otherwise nzb_w_inner is not yet known |
---|
| 204 | w_l = 0.0; w_l_l = 0.0 |
---|
| 205 | DO i = nxl, nxr |
---|
| 206 | DO j = nys, nyn |
---|
| 207 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
| 208 | w_l_l(k) = w_l_l(k) + w(k,j,i) |
---|
| 209 | ENDDO |
---|
| 210 | ENDDO |
---|
| 211 | ENDDO |
---|
| 212 | #if defined( __parallel ) |
---|
[622] | 213 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[76] | 214 | CALL MPI_ALLREDUCE( w_l_l(1), w_l(1), nzt, MPI_REAL, MPI_SUM, comm2d, & |
---|
| 215 | ierr ) |
---|
| 216 | #else |
---|
| 217 | w_l = w_l_l |
---|
| 218 | #endif |
---|
| 219 | DO k = 1, nzt |
---|
| 220 | w_l(k) = w_l(k) / ngp_2dh_outer(k,0) |
---|
| 221 | ENDDO |
---|
[667] | 222 | DO i = nxlg, nxrg |
---|
| 223 | DO j = nysg, nyng |
---|
[76] | 224 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
| 225 | w(k,j,i) = w(k,j,i) - w_l(k) |
---|
| 226 | ENDDO |
---|
| 227 | ENDDO |
---|
| 228 | ENDDO |
---|
| 229 | ENDIF |
---|
| 230 | ENDIF |
---|
[75] | 231 | |
---|
| 232 | ! |
---|
[1] | 233 | !-- Compute the divergence of the provisional velocity field. |
---|
| 234 | CALL cpu_log( log_point_s(1), 'divergence', 'start' ) |
---|
| 235 | |
---|
| 236 | IF ( psolver == 'multigrid' ) THEN |
---|
| 237 | !$OMP PARALLEL DO SCHEDULE( STATIC ) |
---|
| 238 | DO i = nxl-1, nxr+1 |
---|
| 239 | DO j = nys-1, nyn+1 |
---|
| 240 | DO k = nzb, nzt+1 |
---|
| 241 | d(k,j,i) = 0.0 |
---|
| 242 | ENDDO |
---|
| 243 | ENDDO |
---|
| 244 | ENDDO |
---|
| 245 | ELSE |
---|
| 246 | !$OMP PARALLEL DO SCHEDULE( STATIC ) |
---|
| 247 | DO i = nxl, nxra |
---|
| 248 | DO j = nys, nyna |
---|
| 249 | DO k = nzb+1, nzta |
---|
| 250 | d(k,j,i) = 0.0 |
---|
| 251 | ENDDO |
---|
| 252 | ENDDO |
---|
| 253 | ENDDO |
---|
| 254 | ENDIF |
---|
| 255 | |
---|
| 256 | localsum = 0.0 |
---|
| 257 | threadsum = 0.0 |
---|
| 258 | |
---|
| 259 | #if defined( __ibm ) |
---|
| 260 | !$OMP PARALLEL PRIVATE (i,j,k) FIRSTPRIVATE(threadsum) REDUCTION(+:localsum) |
---|
| 261 | !$OMP DO SCHEDULE( STATIC ) |
---|
| 262 | DO i = nxl, nxr |
---|
| 263 | DO j = nys, nyn |
---|
| 264 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[85] | 265 | d(k,j,i) = ( ( u(k,j,i+1) - u(k,j,i) ) * ddx + & |
---|
| 266 | ( v(k,j+1,i) - v(k,j,i) ) * ddy + & |
---|
[673] | 267 | ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) ) * ddt_3d & |
---|
| 268 | * d_weight_pres |
---|
[1] | 269 | ENDDO |
---|
| 270 | ! |
---|
| 271 | !-- Additional pressure boundary condition at the bottom boundary for |
---|
| 272 | !-- inhomogeneous Prandtl layer heat fluxes and temperatures, respectively |
---|
| 273 | !-- dp/dz = -(dtau13/dx + dtau23/dy) + g*pt'/pt0. |
---|
| 274 | !-- This condition must not be applied at the start of a run, because then |
---|
| 275 | !-- flow_statistics has not yet been called and thus sums = 0. |
---|
| 276 | IF ( ibc_p_b == 2 .AND. sums(nzb+1,4) /= 0.0 ) THEN |
---|
| 277 | k = nzb_s_inner(j,i) |
---|
| 278 | d(k+1,j,i) = d(k+1,j,i) + ( & |
---|
| 279 | ( usws(j,i+1) - usws(j,i) ) * ddx & |
---|
| 280 | + ( vsws(j+1,i) - vsws(j,i) ) * ddy & |
---|
| 281 | - g * ( pt(k+1,j,i) - sums(k+1,4) ) / & |
---|
| 282 | sums(k+1,4) & |
---|
[673] | 283 | ) * ddzw(k+1) * ddt_3d * d_weight_pres |
---|
[1] | 284 | ENDIF |
---|
| 285 | |
---|
| 286 | ! |
---|
| 287 | !-- Compute possible PE-sum of divergences for flow_statistics |
---|
| 288 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 289 | threadsum = threadsum + ABS( d(k,j,i) ) |
---|
| 290 | ENDDO |
---|
| 291 | |
---|
| 292 | ENDDO |
---|
| 293 | ENDDO |
---|
| 294 | |
---|
[85] | 295 | localsum = ( localsum + threadsum ) * dt_3d |
---|
[1] | 296 | !$OMP END PARALLEL |
---|
| 297 | #else |
---|
| 298 | IF ( ibc_p_b == 2 .AND. sums(nzb+1,4) /= 0.0 ) THEN |
---|
| 299 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
| 300 | !$OMP DO SCHEDULE( STATIC ) |
---|
| 301 | DO i = nxl, nxr |
---|
| 302 | DO j = nys, nyn |
---|
| 303 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[667] | 304 | d(k,j,i) = ( ( u(k,j,i+1) - u(k,j,i) ) * ddx + & |
---|
| 305 | ( v(k,j+1,i) - v(k,j,i) ) * ddy + & |
---|
[673] | 306 | ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) ) * ddt_3d & |
---|
| 307 | * d_weight_pres |
---|
[1] | 308 | ENDDO |
---|
| 309 | ENDDO |
---|
| 310 | ! |
---|
| 311 | !-- Additional pressure boundary condition at the bottom boundary for |
---|
| 312 | !-- inhomogeneous Prandtl layer heat fluxes and temperatures, respectively |
---|
| 313 | !-- dp/dz = -(dtau13/dx + dtau23/dy) + g*pt'/pt0. |
---|
| 314 | !-- This condition must not be applied at the start of a run, because then |
---|
| 315 | !-- flow_statistics has not yet been called and thus sums = 0. |
---|
| 316 | DO j = nys, nyn |
---|
| 317 | k = nzb_s_inner(j,i) |
---|
| 318 | d(k+1,j,i) = d(k+1,j,i) + ( & |
---|
| 319 | ( usws(j,i+1) - usws(j,i) ) * ddx & |
---|
| 320 | + ( vsws(j+1,i) - vsws(j,i) ) * ddy & |
---|
| 321 | - g * ( pt(k+1,j,i) - sums(k+1,4) ) / & |
---|
| 322 | sums(k+1,4) & |
---|
[673] | 323 | ) * ddzw(k+1) * ddt_3d & |
---|
| 324 | * d_weight_pres |
---|
[1] | 325 | ENDDO |
---|
| 326 | ENDDO |
---|
| 327 | !$OMP END PARALLEL |
---|
| 328 | |
---|
| 329 | ELSE |
---|
| 330 | |
---|
| 331 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
| 332 | !$OMP DO SCHEDULE( STATIC ) |
---|
| 333 | DO i = nxl, nxr |
---|
| 334 | DO j = nys, nyn |
---|
| 335 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[85] | 336 | d(k,j,i) = ( ( u(k,j,i+1) - u(k,j,i) ) * ddx + & |
---|
[667] | 337 | ( v(k,j+1,i) - v(k,j,i) ) * ddy + & |
---|
[673] | 338 | ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) ) * ddt_3d & |
---|
| 339 | * d_weight_pres |
---|
[1] | 340 | ENDDO |
---|
| 341 | ENDDO |
---|
| 342 | ENDDO |
---|
| 343 | !$OMP END PARALLEL |
---|
| 344 | |
---|
| 345 | ENDIF |
---|
| 346 | |
---|
| 347 | ! |
---|
| 348 | !-- Compute possible PE-sum of divergences for flow_statistics |
---|
| 349 | !$OMP PARALLEL PRIVATE (i,j,k) FIRSTPRIVATE(threadsum) REDUCTION(+:localsum) |
---|
| 350 | !$OMP DO SCHEDULE( STATIC ) |
---|
| 351 | DO i = nxl, nxr |
---|
| 352 | DO j = nys, nyn |
---|
| 353 | DO k = nzb+1, nzt |
---|
| 354 | threadsum = threadsum + ABS( d(k,j,i) ) |
---|
| 355 | ENDDO |
---|
| 356 | ENDDO |
---|
| 357 | ENDDO |
---|
[673] | 358 | localsum = ( localsum + threadsum ) * dt_3d & |
---|
| 359 | * weight_pres(intermediate_timestep_count) |
---|
[1] | 360 | !$OMP END PARALLEL |
---|
| 361 | #endif |
---|
| 362 | |
---|
| 363 | ! |
---|
| 364 | !-- For completeness, set the divergence sum of all statistic regions to those |
---|
| 365 | !-- of the total domain |
---|
| 366 | sums_divold_l(0:statistic_regions) = localsum |
---|
| 367 | |
---|
| 368 | ! |
---|
| 369 | !-- Determine absolute minimum/maximum (only for test cases, therefore as |
---|
| 370 | !-- comment line) |
---|
| 371 | ! CALL global_min_max( nzb+1, nzt, nys, nyn, nxl, nxr, d, 'abs', divmax, & |
---|
[667] | 372 | ! divmax_ijk ) |
---|
[1] | 373 | |
---|
| 374 | CALL cpu_log( log_point_s(1), 'divergence', 'stop' ) |
---|
| 375 | |
---|
| 376 | ! |
---|
| 377 | !-- Compute the pressure perturbation solving the Poisson equation |
---|
| 378 | IF ( psolver(1:7) == 'poisfft' ) THEN |
---|
| 379 | |
---|
| 380 | ! |
---|
| 381 | !-- Enlarge the size of tend, used as a working array for the transpositions |
---|
| 382 | IF ( nxra > nxr .OR. nyna > nyn .OR. nza > nz ) THEN |
---|
| 383 | DEALLOCATE( tend ) |
---|
| 384 | ALLOCATE( tend(1:nza,nys:nyna,nxl:nxra) ) |
---|
| 385 | ENDIF |
---|
| 386 | |
---|
| 387 | ! |
---|
| 388 | !-- Solve Poisson equation via FFT and solution of tridiagonal matrices |
---|
| 389 | IF ( psolver == 'poisfft' ) THEN |
---|
| 390 | ! |
---|
| 391 | !-- Solver for 2d-decomposition |
---|
| 392 | CALL poisfft( d, tend ) |
---|
| 393 | ELSEIF ( psolver == 'poisfft_hybrid' ) THEN |
---|
| 394 | ! |
---|
| 395 | !-- Solver for 1d-decomposition (using MPI and OpenMP). |
---|
| 396 | !-- The old hybrid-solver is still included here, as long as there |
---|
| 397 | !-- are some optimization problems in poisfft |
---|
| 398 | CALL poisfft_hybrid( d ) |
---|
| 399 | ENDIF |
---|
| 400 | |
---|
| 401 | ! |
---|
| 402 | !-- Resize tend to its normal size |
---|
| 403 | IF ( nxra > nxr .OR. nyna > nyn .OR. nza > nz ) THEN |
---|
| 404 | DEALLOCATE( tend ) |
---|
[667] | 405 | ALLOCATE( tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1] | 406 | ENDIF |
---|
| 407 | |
---|
| 408 | ! |
---|
| 409 | !-- Store computed perturbation pressure and set boundary condition in |
---|
| 410 | !-- z-direction |
---|
| 411 | !$OMP PARALLEL DO |
---|
| 412 | DO i = nxl, nxr |
---|
| 413 | DO j = nys, nyn |
---|
| 414 | DO k = nzb+1, nzt |
---|
| 415 | tend(k,j,i) = d(k,j,i) |
---|
| 416 | ENDDO |
---|
| 417 | ENDDO |
---|
| 418 | ENDDO |
---|
| 419 | |
---|
| 420 | ! |
---|
| 421 | !-- Bottom boundary: |
---|
| 422 | !-- This condition is only required for internal output. The pressure |
---|
| 423 | !-- gradient (dp(nzb+1)-dp(nzb))/dz is not used anywhere else. |
---|
| 424 | IF ( ibc_p_b == 1 ) THEN |
---|
| 425 | ! |
---|
| 426 | !-- Neumann (dp/dz = 0) |
---|
| 427 | !$OMP PARALLEL DO |
---|
[667] | 428 | DO i = nxlg, nxrg |
---|
| 429 | DO j = nysg, nyng |
---|
[1] | 430 | tend(nzb_s_inner(j,i),j,i) = tend(nzb_s_inner(j,i)+1,j,i) |
---|
| 431 | ENDDO |
---|
| 432 | ENDDO |
---|
| 433 | |
---|
| 434 | ELSEIF ( ibc_p_b == 2 ) THEN |
---|
| 435 | ! |
---|
| 436 | !-- Neumann condition for inhomogeneous surfaces, |
---|
| 437 | !-- here currently still in the form of a zero gradient. Actually |
---|
| 438 | !-- dp/dz = -(dtau13/dx + dtau23/dy) + g*pt'/pt0 would have to be used for |
---|
| 439 | !-- the computation (cf. above: computation of divergences). |
---|
| 440 | !$OMP PARALLEL DO |
---|
[667] | 441 | DO i = nxlg, nxrg |
---|
| 442 | DO j = nysg, nyng |
---|
[1] | 443 | tend(nzb_s_inner(j,i),j,i) = tend(nzb_s_inner(j,i)+1,j,i) |
---|
| 444 | ENDDO |
---|
| 445 | ENDDO |
---|
| 446 | |
---|
| 447 | ELSE |
---|
| 448 | ! |
---|
| 449 | !-- Dirichlet |
---|
| 450 | !$OMP PARALLEL DO |
---|
[667] | 451 | DO i = nxlg, nxrg |
---|
| 452 | DO j = nysg, nyng |
---|
[1] | 453 | tend(nzb_s_inner(j,i),j,i) = 0.0 |
---|
| 454 | ENDDO |
---|
| 455 | ENDDO |
---|
| 456 | |
---|
| 457 | ENDIF |
---|
| 458 | |
---|
| 459 | ! |
---|
| 460 | !-- Top boundary |
---|
| 461 | IF ( ibc_p_t == 1 ) THEN |
---|
| 462 | ! |
---|
| 463 | !-- Neumann |
---|
| 464 | !$OMP PARALLEL DO |
---|
[667] | 465 | DO i = nxlg, nxrg |
---|
| 466 | DO j = nysg, nyng |
---|
[1] | 467 | tend(nzt+1,j,i) = tend(nzt,j,i) |
---|
| 468 | ENDDO |
---|
| 469 | ENDDO |
---|
| 470 | |
---|
| 471 | ELSE |
---|
| 472 | ! |
---|
| 473 | !-- Dirichlet |
---|
| 474 | !$OMP PARALLEL DO |
---|
[667] | 475 | DO i = nxlg, nxrg |
---|
| 476 | DO j = nysg, nyng |
---|
[1] | 477 | tend(nzt+1,j,i) = 0.0 |
---|
| 478 | ENDDO |
---|
| 479 | ENDDO |
---|
| 480 | |
---|
| 481 | ENDIF |
---|
| 482 | |
---|
| 483 | ! |
---|
| 484 | !-- Exchange boundaries for p |
---|
[667] | 485 | CALL exchange_horiz( tend, nbgp ) |
---|
[1] | 486 | |
---|
| 487 | ELSEIF ( psolver == 'sor' ) THEN |
---|
| 488 | |
---|
| 489 | ! |
---|
| 490 | !-- Solve Poisson equation for perturbation pressure using SOR-Red/Black |
---|
| 491 | !-- scheme |
---|
[667] | 492 | CALL sor( d, ddzu_pres, ddzw, p ) |
---|
[1] | 493 | tend = p |
---|
| 494 | |
---|
| 495 | ELSEIF ( psolver == 'multigrid' ) THEN |
---|
| 496 | |
---|
| 497 | ! |
---|
| 498 | !-- Solve Poisson equation for perturbation pressure using Multigrid scheme, |
---|
[667] | 499 | !-- array tend is used to store the residuals, logical exchange_mg is used |
---|
| 500 | !-- to discern data exchange in multigrid ( 1 ghostpoint ) and normal grid |
---|
| 501 | !-- ( nbgp ghost points ). |
---|
| 502 | exchange_mg = .TRUE. |
---|
[1] | 503 | CALL poismg( tend ) |
---|
[667] | 504 | exchange_mg = .FALSE. |
---|
[1] | 505 | ! |
---|
| 506 | !-- Restore perturbation pressure on tend because this array is used |
---|
| 507 | !-- further below to correct the velocity fields |
---|
[667] | 508 | |
---|
[1] | 509 | tend = p |
---|
[667] | 510 | IF( ws_scheme_mom .OR. ws_scheme_sca ) THEN |
---|
| 511 | ! |
---|
| 512 | !-- Allocate p to its normal size and restore pressure. |
---|
| 513 | DEALLOCATE( p ) |
---|
| 514 | ALLOCATE( p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[673] | 515 | |
---|
[667] | 516 | ENDIF |
---|
[1] | 517 | |
---|
| 518 | ENDIF |
---|
| 519 | |
---|
| 520 | ! |
---|
| 521 | !-- Store perturbation pressure on array p, used in the momentum equations |
---|
| 522 | IF ( psolver(1:7) == 'poisfft' ) THEN |
---|
[673] | 523 | |
---|
| 524 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 525 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
| 526 | !$OMP DO |
---|
| 527 | DO i = nxlg, nxrg |
---|
| 528 | DO j = nysg, nyng |
---|
| 529 | DO k = nzb, nzt+1 |
---|
| 530 | p(k,j,i) = tend(k,j,i) & |
---|
| 531 | * weight_substep(intermediate_timestep_count) |
---|
| 532 | ENDDO |
---|
| 533 | ENDDO |
---|
[1] | 534 | ENDDO |
---|
[673] | 535 | !$OMP END PARALLEL |
---|
| 536 | |
---|
| 537 | ELSE |
---|
| 538 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
| 539 | !$OMP DO |
---|
| 540 | DO i = nxlg, nxrg |
---|
| 541 | DO j = nysg, nyng |
---|
| 542 | DO k = nzb, nzt+1 |
---|
| 543 | p(k,j,i) = p(k,j,i) + tend(k,j,i) & |
---|
| 544 | * weight_substep(intermediate_timestep_count) |
---|
| 545 | ENDDO |
---|
| 546 | ENDDO |
---|
| 547 | ENDDO |
---|
| 548 | !$OMP END PARALLEL |
---|
| 549 | |
---|
| 550 | ENDIF |
---|
| 551 | |
---|
[1] | 552 | ENDIF |
---|
[680] | 553 | print*, "cc" |
---|
[1] | 554 | ! |
---|
| 555 | !-- Correction of the provisional velocities with the current perturbation |
---|
| 556 | !-- pressure just computed |
---|
[75] | 557 | IF ( conserve_volume_flow .AND. & |
---|
| 558 | ( bc_lr == 'cyclic' .OR. bc_ns == 'cyclic' ) ) THEN |
---|
[1] | 559 | volume_flow_l(1) = 0.0 |
---|
| 560 | volume_flow_l(2) = 0.0 |
---|
| 561 | ENDIF |
---|
| 562 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
| 563 | !$OMP DO |
---|
[673] | 564 | DO i = nxl, nxr |
---|
[1] | 565 | DO j = nys, nyn |
---|
| 566 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
[673] | 567 | w(k,j,i) = w(k,j,i) - dt_3d * & |
---|
| 568 | ( tend(k+1,j,i) - tend(k,j,i) ) * ddzu(k+1) & |
---|
| 569 | * weight_pres(intermediate_timestep_count) |
---|
[1] | 570 | ENDDO |
---|
| 571 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
[673] | 572 | u(k,j,i) = u(k,j,i) - dt_3d * & |
---|
| 573 | ( tend(k,j,i) - tend(k,j,i-1) ) * ddx & |
---|
| 574 | * weight_pres(intermediate_timestep_count) |
---|
[1] | 575 | ENDDO |
---|
| 576 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
[673] | 577 | v(k,j,i) = v(k,j,i) - dt_3d * & |
---|
| 578 | ( tend(k,j,i) - tend(k,j-1,i) ) * ddy & |
---|
| 579 | * weight_pres(intermediate_timestep_count) |
---|
| 580 | ENDDO |
---|
[1] | 581 | ! |
---|
| 582 | !-- Sum up the volume flow through the right and north boundary |
---|
[75] | 583 | IF ( conserve_volume_flow .AND. bc_lr == 'cyclic' .AND. & |
---|
[667] | 584 | bc_ns == 'cyclic' .AND. i == nx ) THEN |
---|
[1] | 585 | !$OMP CRITICAL |
---|
| 586 | DO k = nzb_2d(j,i) + 1, nzt |
---|
[667] | 587 | volume_flow_l(1) = volume_flow_l(1) + u(k,j,i) * dzw(k) |
---|
[1] | 588 | ENDDO |
---|
| 589 | !$OMP END CRITICAL |
---|
| 590 | ENDIF |
---|
[75] | 591 | IF ( conserve_volume_flow .AND. bc_ns == 'cyclic' .AND. & |
---|
[667] | 592 | bc_lr == 'cyclic' .AND. j == ny ) THEN |
---|
[1] | 593 | !$OMP CRITICAL |
---|
| 594 | DO k = nzb_2d(j,i) + 1, nzt |
---|
[667] | 595 | volume_flow_l(2) = volume_flow_l(2) + v(k,j,i) * dzw(k) |
---|
[1] | 596 | ENDDO |
---|
| 597 | !$OMP END CRITICAL |
---|
| 598 | ENDIF |
---|
| 599 | |
---|
| 600 | ENDDO |
---|
| 601 | ENDDO |
---|
| 602 | !$OMP END PARALLEL |
---|
[673] | 603 | |
---|
| 604 | IF ( psolver == 'multigrid' .OR. psolver == 'sor' ) THEN |
---|
| 605 | IF ( intermediate_timestep_count == 1 .OR. simulated_time == 0) THEN |
---|
| 606 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
| 607 | !$OMP DO |
---|
| 608 | DO i = nxl, nxr |
---|
| 609 | DO j = nys, nyn |
---|
| 610 | DO k = nzb, nzt+1 |
---|
| 611 | p_sub(k,j,i) = tend(k,j,i) & |
---|
| 612 | * weight_substep(intermediate_timestep_count) |
---|
| 613 | ENDDO |
---|
| 614 | ENDDO |
---|
| 615 | ENDDO |
---|
| 616 | !$OMP END PARALLEL |
---|
| 617 | ELSE |
---|
| 618 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
| 619 | !$OMP DO |
---|
| 620 | DO i = nxl, nxr |
---|
| 621 | DO j = nys, nyn |
---|
| 622 | DO k = nzb, nzt+1 |
---|
| 623 | p_sub(k,j,i) = p_sub(k,j,i) + tend(k,j,i) & |
---|
| 624 | * weight_substep(intermediate_timestep_count) |
---|
| 625 | ENDDO |
---|
| 626 | ENDDO |
---|
| 627 | ENDDO |
---|
| 628 | !$OMP END PARALLEL |
---|
| 629 | ENDIF |
---|
| 630 | |
---|
| 631 | IF ( intermediate_timestep_count == intermediate_timestep_count_max ) & |
---|
| 632 | THEN |
---|
| 633 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
| 634 | !$OMP DO |
---|
| 635 | DO i = nxl, nxr |
---|
| 636 | DO j = nys, nyn |
---|
| 637 | DO k = nzb, nzt+1 |
---|
| 638 | p(k,j,i) = p_sub(k,j,i) |
---|
| 639 | ENDDO |
---|
| 640 | ENDDO |
---|
| 641 | ENDDO |
---|
| 642 | !$OMP END PARALLEL |
---|
| 643 | ENDIF |
---|
| 644 | ENDIF |
---|
| 645 | |
---|
[1] | 646 | ! |
---|
[667] | 647 | !-- Resize tend to its normal size in case of multigrid and ws-scheme. |
---|
| 648 | IF ( psolver == 'multigrid' .AND. ( ws_scheme_mom & |
---|
| 649 | .OR. ws_scheme_sca ) ) THEN |
---|
| 650 | DEALLOCATE( tend ) |
---|
| 651 | ALLOCATE( tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 652 | ENDIF |
---|
| 653 | |
---|
[680] | 654 | |
---|
[667] | 655 | ! |
---|
[1] | 656 | !-- Conserve the volume flow |
---|
[75] | 657 | IF ( conserve_volume_flow .AND. & |
---|
[667] | 658 | ( bc_lr == 'cyclic' .AND. bc_ns == 'cyclic' ) ) THEN |
---|
[1] | 659 | |
---|
| 660 | #if defined( __parallel ) |
---|
[622] | 661 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 662 | CALL MPI_ALLREDUCE( volume_flow_l(1), volume_flow(1), 2, MPI_REAL, & |
---|
| 663 | MPI_SUM, comm2d, ierr ) |
---|
| 664 | #else |
---|
| 665 | volume_flow = volume_flow_l |
---|
| 666 | #endif |
---|
| 667 | |
---|
| 668 | volume_flow_offset = ( volume_flow_initial - volume_flow ) / & |
---|
| 669 | volume_flow_area |
---|
| 670 | |
---|
| 671 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
| 672 | !$OMP DO |
---|
| 673 | DO i = nxl, nxr |
---|
| 674 | DO j = nys, nyn |
---|
[667] | 675 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
| 676 | u(k,j,i) = u(k,j,i) + volume_flow_offset(1) |
---|
| 677 | v(k,j,i) = v(k,j,i) + volume_flow_offset(2) |
---|
| 678 | ENDDO |
---|
[1] | 679 | ENDDO |
---|
| 680 | ENDDO |
---|
[667] | 681 | |
---|
[1] | 682 | !$OMP END PARALLEL |
---|
| 683 | |
---|
| 684 | ENDIF |
---|
| 685 | |
---|
| 686 | ! |
---|
| 687 | !-- Exchange of boundaries for the velocities |
---|
[667] | 688 | CALL exchange_horiz( u, nbgp ) |
---|
| 689 | CALL exchange_horiz( v, nbgp ) |
---|
| 690 | CALL exchange_horiz( w, nbgp ) |
---|
[1] | 691 | |
---|
| 692 | ! |
---|
| 693 | !-- Compute the divergence of the corrected velocity field, |
---|
| 694 | !-- a possible PE-sum is computed in flow_statistics |
---|
| 695 | CALL cpu_log( log_point_s(1), 'divergence', 'start' ) |
---|
| 696 | sums_divnew_l = 0.0 |
---|
| 697 | |
---|
| 698 | ! |
---|
| 699 | !-- d must be reset to zero because it can contain nonzero values below the |
---|
| 700 | !-- topography |
---|
| 701 | IF ( topography /= 'flat' ) d = 0.0 |
---|
| 702 | |
---|
| 703 | localsum = 0.0 |
---|
| 704 | threadsum = 0.0 |
---|
| 705 | |
---|
| 706 | !$OMP PARALLEL PRIVATE (i,j,k) FIRSTPRIVATE(threadsum) REDUCTION(+:localsum) |
---|
| 707 | !$OMP DO SCHEDULE( STATIC ) |
---|
| 708 | #if defined( __ibm ) |
---|
| 709 | DO i = nxl, nxr |
---|
| 710 | DO j = nys, nyn |
---|
| 711 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 712 | d(k,j,i) = ( u(k,j,i+1) - u(k,j,i) ) * ddx + & |
---|
| 713 | ( v(k,j+1,i) - v(k,j,i) ) * ddy + & |
---|
| 714 | ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 715 | ENDDO |
---|
| 716 | DO k = nzb+1, nzt |
---|
| 717 | threadsum = threadsum + ABS( d(k,j,i) ) |
---|
| 718 | ENDDO |
---|
| 719 | ENDDO |
---|
| 720 | ENDDO |
---|
| 721 | #else |
---|
| 722 | DO i = nxl, nxr |
---|
| 723 | DO j = nys, nyn |
---|
| 724 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 725 | d(k,j,i) = ( u(k,j,i+1) - u(k,j,i) ) * ddx + & |
---|
| 726 | ( v(k,j+1,i) - v(k,j,i) ) * ddy + & |
---|
| 727 | ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 728 | threadsum = threadsum + ABS( d(k,j,i) ) |
---|
| 729 | ENDDO |
---|
| 730 | ENDDO |
---|
| 731 | ENDDO |
---|
| 732 | #endif |
---|
[667] | 733 | |
---|
[1] | 734 | localsum = localsum + threadsum |
---|
| 735 | !$OMP END PARALLEL |
---|
| 736 | |
---|
| 737 | ! |
---|
| 738 | !-- For completeness, set the divergence sum of all statistic regions to those |
---|
| 739 | !-- of the total domain |
---|
| 740 | sums_divnew_l(0:statistic_regions) = localsum |
---|
| 741 | |
---|
| 742 | CALL cpu_log( log_point_s(1), 'divergence', 'stop' ) |
---|
| 743 | |
---|
| 744 | CALL cpu_log( log_point(8), 'pres', 'stop' ) |
---|
[667] | 745 | |
---|
[1] | 746 | |
---|
| 747 | |
---|
| 748 | END SUBROUTINE pres |
---|