[1] | 1 | SUBROUTINE pres |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[151] | 6 | ! Bugfix in volume flow control for non-cyclic boundary conditions |
---|
[77] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
| 10 | ! $Id: pres.f90 151 2008-03-07 13:42:18Z letzel $ |
---|
| 11 | ! |
---|
[110] | 12 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 13 | ! Volume flow conservation added for the remaining three outflow boundaries |
---|
| 14 | ! |
---|
[90] | 15 | ! 85 2007-05-11 09:35:14Z raasch |
---|
| 16 | ! Division through dt_3d replaced by multiplication of the inverse. |
---|
| 17 | ! For performance optimisation, this is done in the loop calculating the |
---|
| 18 | ! divergence instead of using a seperate loop. |
---|
| 19 | ! |
---|
[77] | 20 | ! 75 2007-03-22 09:54:05Z raasch |
---|
[75] | 21 | ! Volume flow control for non-cyclic boundary conditions added (currently only |
---|
[76] | 22 | ! for the north boundary!!), 2nd+3rd argument removed from exchange horiz, |
---|
| 23 | ! mean vertical velocity is removed in case of Neumann boundary conditions |
---|
| 24 | ! both at the bottom and the top |
---|
[1] | 25 | ! |
---|
[3] | 26 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 27 | ! |
---|
[1] | 28 | ! Revision 1.25 2006/04/26 13:26:12 raasch |
---|
| 29 | ! OpenMP optimization (+localsum, threadsum) |
---|
| 30 | ! |
---|
| 31 | ! Revision 1.1 1997/07/24 11:24:44 raasch |
---|
| 32 | ! Initial revision |
---|
| 33 | ! |
---|
| 34 | ! |
---|
| 35 | ! Description: |
---|
| 36 | ! ------------ |
---|
| 37 | ! Compute the divergence of the provisional velocity field. Solve the Poisson |
---|
| 38 | ! equation for the perturbation pressure. Compute the final velocities using |
---|
| 39 | ! this perturbation pressure. Compute the remaining divergence. |
---|
| 40 | !------------------------------------------------------------------------------! |
---|
| 41 | |
---|
| 42 | USE arrays_3d |
---|
| 43 | USE constants |
---|
| 44 | USE control_parameters |
---|
| 45 | USE cpulog |
---|
| 46 | USE grid_variables |
---|
| 47 | USE indices |
---|
| 48 | USE interfaces |
---|
| 49 | USE pegrid |
---|
| 50 | USE poisfft_mod |
---|
| 51 | USE poisfft_hybrid_mod |
---|
| 52 | USE statistics |
---|
| 53 | |
---|
| 54 | IMPLICIT NONE |
---|
| 55 | |
---|
| 56 | INTEGER :: i, j, k, sr |
---|
| 57 | |
---|
[85] | 58 | REAL :: ddt_3d, localsum, threadsum |
---|
[1] | 59 | |
---|
| 60 | REAL, DIMENSION(1:2) :: volume_flow_l, volume_flow_offset |
---|
[76] | 61 | REAL, DIMENSION(1:nzt) :: w_l, w_l_l |
---|
[1] | 62 | |
---|
| 63 | |
---|
| 64 | CALL cpu_log( log_point(8), 'pres', 'start' ) |
---|
| 65 | |
---|
[85] | 66 | |
---|
| 67 | ddt_3d = 1.0 / dt_3d |
---|
| 68 | |
---|
[1] | 69 | ! |
---|
| 70 | !-- Multigrid method needs additional grid points for the divergence array |
---|
| 71 | IF ( psolver == 'multigrid' ) THEN |
---|
| 72 | DEALLOCATE( d ) |
---|
| 73 | ALLOCATE( d(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 74 | ENDIF |
---|
| 75 | |
---|
| 76 | ! |
---|
[75] | 77 | !-- Conserve the volume flow at the outflow in case of non-cyclic lateral |
---|
| 78 | !-- boundary conditions |
---|
[106] | 79 | !-- WARNING: so far, this conservation does not work at the left/south |
---|
| 80 | !-- boundary if the topography at the inflow differs from that at the |
---|
| 81 | !-- outflow! For this case, volume_flow_area needs adjustment! |
---|
| 82 | ! |
---|
| 83 | !-- Left/right |
---|
| 84 | IF ( conserve_volume_flow .AND. ( outflow_l .OR. outflow_r ) ) THEN |
---|
[75] | 85 | |
---|
[106] | 86 | volume_flow(1) = 0.0 |
---|
| 87 | volume_flow_l(1) = 0.0 |
---|
| 88 | |
---|
| 89 | IF ( outflow_l ) THEN |
---|
| 90 | i = 0 |
---|
| 91 | ELSEIF ( outflow_r ) THEN |
---|
| 92 | i = nx+1 |
---|
| 93 | ENDIF |
---|
| 94 | |
---|
| 95 | DO j = nys, nyn |
---|
| 96 | ! |
---|
| 97 | !-- Sum up the volume flow through the south/north boundary |
---|
| 98 | DO k = nzb_2d(j,i) + 1, nzt |
---|
| 99 | volume_flow_l(1) = volume_flow_l(1) + u(k,j,i) * dzu(k) |
---|
| 100 | ENDDO |
---|
| 101 | ENDDO |
---|
| 102 | |
---|
| 103 | #if defined( __parallel ) |
---|
| 104 | CALL MPI_ALLREDUCE( volume_flow_l(1), volume_flow(1), 1, MPI_REAL, & |
---|
| 105 | MPI_SUM, comm1dy, ierr ) |
---|
| 106 | #else |
---|
| 107 | volume_flow = volume_flow_l |
---|
| 108 | #endif |
---|
| 109 | volume_flow_offset(1) = ( volume_flow_initial(1) - volume_flow(1) ) & |
---|
| 110 | / volume_flow_area(1) |
---|
| 111 | |
---|
[151] | 112 | DO j = nys-1, nyn+1 |
---|
[106] | 113 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
| 114 | u(k,j,i) = u(k,j,i) + volume_flow_offset(1) |
---|
| 115 | ENDDO |
---|
| 116 | ENDDO |
---|
| 117 | |
---|
| 118 | ENDIF |
---|
| 119 | |
---|
| 120 | ! |
---|
| 121 | !-- South/north |
---|
| 122 | IF ( conserve_volume_flow .AND. ( outflow_n .OR. outflow_s ) ) THEN |
---|
| 123 | |
---|
[75] | 124 | volume_flow(2) = 0.0 |
---|
| 125 | volume_flow_l(2) = 0.0 |
---|
| 126 | |
---|
[106] | 127 | IF ( outflow_s ) THEN |
---|
| 128 | j = 0 |
---|
| 129 | ELSEIF ( outflow_n ) THEN |
---|
[75] | 130 | j = ny+1 |
---|
[106] | 131 | ENDIF |
---|
| 132 | |
---|
| 133 | DO i = nxl, nxr |
---|
[75] | 134 | ! |
---|
[106] | 135 | !-- Sum up the volume flow through the south/north boundary |
---|
| 136 | DO k = nzb_2d(j,i) + 1, nzt |
---|
| 137 | volume_flow_l(2) = volume_flow_l(2) + v(k,j,i) * dzu(k) |
---|
[75] | 138 | ENDDO |
---|
[106] | 139 | ENDDO |
---|
| 140 | |
---|
[75] | 141 | #if defined( __parallel ) |
---|
| 142 | CALL MPI_ALLREDUCE( volume_flow_l(2), volume_flow(2), 1, MPI_REAL, & |
---|
| 143 | MPI_SUM, comm1dx, ierr ) |
---|
| 144 | #else |
---|
| 145 | volume_flow = volume_flow_l |
---|
| 146 | #endif |
---|
| 147 | volume_flow_offset(2) = ( volume_flow_initial(2) - volume_flow(2) ) & |
---|
[106] | 148 | / volume_flow_area(2) |
---|
[75] | 149 | |
---|
[151] | 150 | DO i = nxl-1, nxr+1 |
---|
[106] | 151 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
| 152 | v(k,j,i) = v(k,j,i) + volume_flow_offset(2) |
---|
[75] | 153 | ENDDO |
---|
[106] | 154 | ENDDO |
---|
[75] | 155 | |
---|
| 156 | ENDIF |
---|
| 157 | |
---|
[76] | 158 | ! |
---|
| 159 | !-- Remove mean vertical velocity |
---|
| 160 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 161 | IF ( simulated_time > 0.0 ) THEN ! otherwise nzb_w_inner is not yet known |
---|
| 162 | w_l = 0.0; w_l_l = 0.0 |
---|
| 163 | DO i = nxl, nxr |
---|
| 164 | DO j = nys, nyn |
---|
| 165 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
| 166 | w_l_l(k) = w_l_l(k) + w(k,j,i) |
---|
| 167 | ENDDO |
---|
| 168 | ENDDO |
---|
| 169 | ENDDO |
---|
| 170 | #if defined( __parallel ) |
---|
| 171 | CALL MPI_ALLREDUCE( w_l_l(1), w_l(1), nzt, MPI_REAL, MPI_SUM, comm2d, & |
---|
| 172 | ierr ) |
---|
| 173 | #else |
---|
| 174 | w_l = w_l_l |
---|
| 175 | #endif |
---|
| 176 | DO k = 1, nzt |
---|
| 177 | w_l(k) = w_l(k) / ngp_2dh_outer(k,0) |
---|
| 178 | ENDDO |
---|
[77] | 179 | DO i = nxl-1, nxr+1 |
---|
| 180 | DO j = nys-1, nyn+1 |
---|
[76] | 181 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
| 182 | w(k,j,i) = w(k,j,i) - w_l(k) |
---|
| 183 | ENDDO |
---|
| 184 | ENDDO |
---|
| 185 | ENDDO |
---|
| 186 | ENDIF |
---|
| 187 | ENDIF |
---|
[75] | 188 | |
---|
| 189 | ! |
---|
[1] | 190 | !-- Compute the divergence of the provisional velocity field. |
---|
| 191 | CALL cpu_log( log_point_s(1), 'divergence', 'start' ) |
---|
| 192 | |
---|
| 193 | IF ( psolver == 'multigrid' ) THEN |
---|
| 194 | !$OMP PARALLEL DO SCHEDULE( STATIC ) |
---|
| 195 | DO i = nxl-1, nxr+1 |
---|
| 196 | DO j = nys-1, nyn+1 |
---|
| 197 | DO k = nzb, nzt+1 |
---|
| 198 | d(k,j,i) = 0.0 |
---|
| 199 | ENDDO |
---|
| 200 | ENDDO |
---|
| 201 | ENDDO |
---|
| 202 | ELSE |
---|
| 203 | !$OMP PARALLEL DO SCHEDULE( STATIC ) |
---|
| 204 | DO i = nxl, nxra |
---|
| 205 | DO j = nys, nyna |
---|
| 206 | DO k = nzb+1, nzta |
---|
| 207 | d(k,j,i) = 0.0 |
---|
| 208 | ENDDO |
---|
| 209 | ENDDO |
---|
| 210 | ENDDO |
---|
| 211 | ENDIF |
---|
| 212 | |
---|
| 213 | localsum = 0.0 |
---|
| 214 | threadsum = 0.0 |
---|
| 215 | |
---|
| 216 | #if defined( __ibm ) |
---|
| 217 | !$OMP PARALLEL PRIVATE (i,j,k) FIRSTPRIVATE(threadsum) REDUCTION(+:localsum) |
---|
| 218 | !$OMP DO SCHEDULE( STATIC ) |
---|
| 219 | DO i = nxl, nxr |
---|
| 220 | DO j = nys, nyn |
---|
| 221 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[85] | 222 | d(k,j,i) = ( ( u(k,j,i+1) - u(k,j,i) ) * ddx + & |
---|
| 223 | ( v(k,j+1,i) - v(k,j,i) ) * ddy + & |
---|
| 224 | ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) ) * ddt_3d |
---|
[1] | 225 | ENDDO |
---|
| 226 | ! |
---|
| 227 | !-- Additional pressure boundary condition at the bottom boundary for |
---|
| 228 | !-- inhomogeneous Prandtl layer heat fluxes and temperatures, respectively |
---|
| 229 | !-- dp/dz = -(dtau13/dx + dtau23/dy) + g*pt'/pt0. |
---|
| 230 | !-- This condition must not be applied at the start of a run, because then |
---|
| 231 | !-- flow_statistics has not yet been called and thus sums = 0. |
---|
| 232 | IF ( ibc_p_b == 2 .AND. sums(nzb+1,4) /= 0.0 ) THEN |
---|
| 233 | k = nzb_s_inner(j,i) |
---|
| 234 | d(k+1,j,i) = d(k+1,j,i) + ( & |
---|
| 235 | ( usws(j,i+1) - usws(j,i) ) * ddx & |
---|
| 236 | + ( vsws(j+1,i) - vsws(j,i) ) * ddy & |
---|
| 237 | - g * ( pt(k+1,j,i) - sums(k+1,4) ) / & |
---|
| 238 | sums(k+1,4) & |
---|
[85] | 239 | ) * ddzw(k+1) * ddt_3d |
---|
[1] | 240 | ENDIF |
---|
| 241 | |
---|
| 242 | ! |
---|
| 243 | !-- Compute possible PE-sum of divergences for flow_statistics |
---|
| 244 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 245 | threadsum = threadsum + ABS( d(k,j,i) ) |
---|
| 246 | ENDDO |
---|
| 247 | |
---|
| 248 | ENDDO |
---|
| 249 | ENDDO |
---|
| 250 | |
---|
[85] | 251 | localsum = ( localsum + threadsum ) * dt_3d |
---|
[1] | 252 | !$OMP END PARALLEL |
---|
| 253 | #else |
---|
| 254 | IF ( ibc_p_b == 2 .AND. sums(nzb+1,4) /= 0.0 ) THEN |
---|
| 255 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
| 256 | !$OMP DO SCHEDULE( STATIC ) |
---|
| 257 | DO i = nxl, nxr |
---|
| 258 | DO j = nys, nyn |
---|
| 259 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[85] | 260 | d(k,j,i) = ( ( u(k,j,i+1) - u(k,j,i) ) * ddx + & |
---|
| 261 | ( v(k,j+1,i) - v(k,j,i) ) * ddy + & |
---|
| 262 | ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) ) * ddt_3d |
---|
[1] | 263 | ENDDO |
---|
| 264 | ENDDO |
---|
| 265 | ! |
---|
| 266 | !-- Additional pressure boundary condition at the bottom boundary for |
---|
| 267 | !-- inhomogeneous Prandtl layer heat fluxes and temperatures, respectively |
---|
| 268 | !-- dp/dz = -(dtau13/dx + dtau23/dy) + g*pt'/pt0. |
---|
| 269 | !-- This condition must not be applied at the start of a run, because then |
---|
| 270 | !-- flow_statistics has not yet been called and thus sums = 0. |
---|
| 271 | DO j = nys, nyn |
---|
| 272 | k = nzb_s_inner(j,i) |
---|
| 273 | d(k+1,j,i) = d(k+1,j,i) + ( & |
---|
| 274 | ( usws(j,i+1) - usws(j,i) ) * ddx & |
---|
| 275 | + ( vsws(j+1,i) - vsws(j,i) ) * ddy & |
---|
| 276 | - g * ( pt(k+1,j,i) - sums(k+1,4) ) / & |
---|
| 277 | sums(k+1,4) & |
---|
[85] | 278 | ) * ddzw(k+1) * ddt_3d |
---|
[1] | 279 | ENDDO |
---|
| 280 | ENDDO |
---|
| 281 | !$OMP END PARALLEL |
---|
| 282 | |
---|
| 283 | ELSE |
---|
| 284 | |
---|
| 285 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
| 286 | !$OMP DO SCHEDULE( STATIC ) |
---|
| 287 | DO i = nxl, nxr |
---|
| 288 | DO j = nys, nyn |
---|
| 289 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[85] | 290 | d(k,j,i) = ( ( u(k,j,i+1) - u(k,j,i) ) * ddx + & |
---|
| 291 | ( v(k,j+1,i) - v(k,j,i) ) * ddy + & |
---|
| 292 | ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) ) * ddt_3d |
---|
[1] | 293 | ENDDO |
---|
| 294 | ENDDO |
---|
| 295 | ENDDO |
---|
| 296 | !$OMP END PARALLEL |
---|
| 297 | |
---|
| 298 | ENDIF |
---|
| 299 | |
---|
| 300 | ! |
---|
| 301 | !-- Compute possible PE-sum of divergences for flow_statistics |
---|
| 302 | !$OMP PARALLEL PRIVATE (i,j,k) FIRSTPRIVATE(threadsum) REDUCTION(+:localsum) |
---|
| 303 | !$OMP DO SCHEDULE( STATIC ) |
---|
| 304 | DO i = nxl, nxr |
---|
| 305 | DO j = nys, nyn |
---|
| 306 | DO k = nzb+1, nzt |
---|
| 307 | threadsum = threadsum + ABS( d(k,j,i) ) |
---|
| 308 | ENDDO |
---|
| 309 | ENDDO |
---|
| 310 | ENDDO |
---|
[85] | 311 | localsum = ( localsum + threadsum ) * dt_3d |
---|
[1] | 312 | !$OMP END PARALLEL |
---|
| 313 | #endif |
---|
| 314 | |
---|
| 315 | ! |
---|
| 316 | !-- For completeness, set the divergence sum of all statistic regions to those |
---|
| 317 | !-- of the total domain |
---|
| 318 | sums_divold_l(0:statistic_regions) = localsum |
---|
| 319 | |
---|
| 320 | ! |
---|
| 321 | !-- Determine absolute minimum/maximum (only for test cases, therefore as |
---|
| 322 | !-- comment line) |
---|
| 323 | ! CALL global_min_max( nzb+1, nzt, nys, nyn, nxl, nxr, d, 'abs', divmax, & |
---|
| 324 | ! divmax_ijk ) |
---|
| 325 | |
---|
| 326 | CALL cpu_log( log_point_s(1), 'divergence', 'stop' ) |
---|
| 327 | |
---|
| 328 | ! |
---|
| 329 | !-- Compute the pressure perturbation solving the Poisson equation |
---|
| 330 | IF ( psolver(1:7) == 'poisfft' ) THEN |
---|
| 331 | |
---|
| 332 | ! |
---|
| 333 | !-- Enlarge the size of tend, used as a working array for the transpositions |
---|
| 334 | IF ( nxra > nxr .OR. nyna > nyn .OR. nza > nz ) THEN |
---|
| 335 | DEALLOCATE( tend ) |
---|
| 336 | ALLOCATE( tend(1:nza,nys:nyna,nxl:nxra) ) |
---|
| 337 | ENDIF |
---|
| 338 | |
---|
| 339 | ! |
---|
| 340 | !-- Solve Poisson equation via FFT and solution of tridiagonal matrices |
---|
| 341 | IF ( psolver == 'poisfft' ) THEN |
---|
| 342 | ! |
---|
| 343 | !-- Solver for 2d-decomposition |
---|
| 344 | CALL poisfft( d, tend ) |
---|
| 345 | ELSEIF ( psolver == 'poisfft_hybrid' ) THEN |
---|
| 346 | ! |
---|
| 347 | !-- Solver for 1d-decomposition (using MPI and OpenMP). |
---|
| 348 | !-- The old hybrid-solver is still included here, as long as there |
---|
| 349 | !-- are some optimization problems in poisfft |
---|
| 350 | CALL poisfft_hybrid( d ) |
---|
| 351 | ENDIF |
---|
| 352 | |
---|
| 353 | ! |
---|
| 354 | !-- Resize tend to its normal size |
---|
| 355 | IF ( nxra > nxr .OR. nyna > nyn .OR. nza > nz ) THEN |
---|
| 356 | DEALLOCATE( tend ) |
---|
| 357 | ALLOCATE( tend(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 358 | ENDIF |
---|
| 359 | |
---|
| 360 | ! |
---|
| 361 | !-- Store computed perturbation pressure and set boundary condition in |
---|
| 362 | !-- z-direction |
---|
| 363 | !$OMP PARALLEL DO |
---|
| 364 | DO i = nxl, nxr |
---|
| 365 | DO j = nys, nyn |
---|
| 366 | DO k = nzb+1, nzt |
---|
| 367 | tend(k,j,i) = d(k,j,i) |
---|
| 368 | ENDDO |
---|
| 369 | ENDDO |
---|
| 370 | ENDDO |
---|
| 371 | |
---|
| 372 | ! |
---|
| 373 | !-- Bottom boundary: |
---|
| 374 | !-- This condition is only required for internal output. The pressure |
---|
| 375 | !-- gradient (dp(nzb+1)-dp(nzb))/dz is not used anywhere else. |
---|
| 376 | IF ( ibc_p_b == 1 ) THEN |
---|
| 377 | ! |
---|
| 378 | !-- Neumann (dp/dz = 0) |
---|
| 379 | !$OMP PARALLEL DO |
---|
| 380 | DO i = nxl-1, nxr+1 |
---|
| 381 | DO j = nys-1, nyn+1 |
---|
| 382 | tend(nzb_s_inner(j,i),j,i) = tend(nzb_s_inner(j,i)+1,j,i) |
---|
| 383 | ENDDO |
---|
| 384 | ENDDO |
---|
| 385 | |
---|
| 386 | ELSEIF ( ibc_p_b == 2 ) THEN |
---|
| 387 | ! |
---|
| 388 | !-- Neumann condition for inhomogeneous surfaces, |
---|
| 389 | !-- here currently still in the form of a zero gradient. Actually |
---|
| 390 | !-- dp/dz = -(dtau13/dx + dtau23/dy) + g*pt'/pt0 would have to be used for |
---|
| 391 | !-- the computation (cf. above: computation of divergences). |
---|
| 392 | !$OMP PARALLEL DO |
---|
| 393 | DO i = nxl-1, nxr+1 |
---|
| 394 | DO j = nys-1, nyn+1 |
---|
| 395 | tend(nzb_s_inner(j,i),j,i) = tend(nzb_s_inner(j,i)+1,j,i) |
---|
| 396 | ENDDO |
---|
| 397 | ENDDO |
---|
| 398 | |
---|
| 399 | ELSE |
---|
| 400 | ! |
---|
| 401 | !-- Dirichlet |
---|
| 402 | !$OMP PARALLEL DO |
---|
| 403 | DO i = nxl-1, nxr+1 |
---|
| 404 | DO j = nys-1, nyn+1 |
---|
| 405 | tend(nzb_s_inner(j,i),j,i) = 0.0 |
---|
| 406 | ENDDO |
---|
| 407 | ENDDO |
---|
| 408 | |
---|
| 409 | ENDIF |
---|
| 410 | |
---|
| 411 | ! |
---|
| 412 | !-- Top boundary |
---|
| 413 | IF ( ibc_p_t == 1 ) THEN |
---|
| 414 | ! |
---|
| 415 | !-- Neumann |
---|
| 416 | !$OMP PARALLEL DO |
---|
| 417 | DO i = nxl-1, nxr+1 |
---|
| 418 | DO j = nys-1, nyn+1 |
---|
| 419 | tend(nzt+1,j,i) = tend(nzt,j,i) |
---|
| 420 | ENDDO |
---|
| 421 | ENDDO |
---|
| 422 | |
---|
| 423 | ELSE |
---|
| 424 | ! |
---|
| 425 | !-- Dirichlet |
---|
| 426 | !$OMP PARALLEL DO |
---|
| 427 | DO i = nxl-1, nxr+1 |
---|
| 428 | DO j = nys-1, nyn+1 |
---|
| 429 | tend(nzt+1,j,i) = 0.0 |
---|
| 430 | ENDDO |
---|
| 431 | ENDDO |
---|
| 432 | |
---|
| 433 | ENDIF |
---|
| 434 | |
---|
| 435 | ! |
---|
| 436 | !-- Exchange boundaries for p |
---|
[75] | 437 | CALL exchange_horiz( tend ) |
---|
[1] | 438 | |
---|
| 439 | ELSEIF ( psolver == 'sor' ) THEN |
---|
| 440 | |
---|
| 441 | ! |
---|
| 442 | !-- Solve Poisson equation for perturbation pressure using SOR-Red/Black |
---|
| 443 | !-- scheme |
---|
| 444 | CALL sor( d, ddzu, ddzw, p ) |
---|
| 445 | tend = p |
---|
| 446 | |
---|
| 447 | ELSEIF ( psolver == 'multigrid' ) THEN |
---|
| 448 | |
---|
| 449 | ! |
---|
| 450 | !-- Solve Poisson equation for perturbation pressure using Multigrid scheme, |
---|
| 451 | !-- array tend is used to store the residuals |
---|
| 452 | CALL poismg( tend ) |
---|
| 453 | |
---|
| 454 | ! |
---|
| 455 | !-- Restore perturbation pressure on tend because this array is used |
---|
| 456 | !-- further below to correct the velocity fields |
---|
| 457 | tend = p |
---|
| 458 | |
---|
| 459 | ENDIF |
---|
| 460 | |
---|
| 461 | ! |
---|
| 462 | !-- Store perturbation pressure on array p, used in the momentum equations |
---|
| 463 | IF ( psolver(1:7) == 'poisfft' ) THEN |
---|
| 464 | ! |
---|
| 465 | !-- Here, only the values from the left and right boundaries are copied |
---|
| 466 | !-- The remaining values are copied in the following loop due to speed |
---|
| 467 | !-- optimization |
---|
| 468 | !$OMP PARALLEL DO |
---|
| 469 | DO j = nys-1, nyn+1 |
---|
| 470 | DO k = nzb, nzt+1 |
---|
| 471 | p(k,j,nxl-1) = tend(k,j,nxl-1) |
---|
| 472 | p(k,j,nxr+1) = tend(k,j,nxr+1) |
---|
| 473 | ENDDO |
---|
| 474 | ENDDO |
---|
| 475 | ENDIF |
---|
| 476 | |
---|
| 477 | ! |
---|
| 478 | !-- Correction of the provisional velocities with the current perturbation |
---|
| 479 | !-- pressure just computed |
---|
[75] | 480 | IF ( conserve_volume_flow .AND. & |
---|
| 481 | ( bc_lr == 'cyclic' .OR. bc_ns == 'cyclic' ) ) THEN |
---|
[1] | 482 | volume_flow_l(1) = 0.0 |
---|
| 483 | volume_flow_l(2) = 0.0 |
---|
| 484 | ENDIF |
---|
| 485 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
| 486 | !$OMP DO |
---|
| 487 | DO i = nxl, nxr |
---|
| 488 | IF ( psolver(1:7) == 'poisfft' ) THEN |
---|
| 489 | DO j = nys-1, nyn+1 |
---|
| 490 | DO k = nzb, nzt+1 |
---|
| 491 | p(k,j,i) = tend(k,j,i) |
---|
| 492 | ENDDO |
---|
| 493 | ENDDO |
---|
| 494 | ENDIF |
---|
| 495 | DO j = nys, nyn |
---|
| 496 | DO k = nzb_w_inner(j,i)+1, nzt |
---|
| 497 | w(k,j,i) = w(k,j,i) - dt_3d * & |
---|
| 498 | ( tend(k+1,j,i) - tend(k,j,i) ) * ddzu(k+1) |
---|
| 499 | ENDDO |
---|
| 500 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
| 501 | u(k,j,i) = u(k,j,i) - dt_3d * ( tend(k,j,i) - tend(k,j,i-1) ) * ddx |
---|
| 502 | ENDDO |
---|
| 503 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
| 504 | v(k,j,i) = v(k,j,i) - dt_3d * ( tend(k,j,i) - tend(k,j-1,i) ) * ddy |
---|
| 505 | ENDDO |
---|
| 506 | |
---|
| 507 | ! |
---|
| 508 | !-- Sum up the volume flow through the right and north boundary |
---|
[75] | 509 | IF ( conserve_volume_flow .AND. bc_lr == 'cyclic' .AND. & |
---|
| 510 | i == nx ) THEN |
---|
[1] | 511 | !$OMP CRITICAL |
---|
| 512 | DO k = nzb_2d(j,i) + 1, nzt |
---|
| 513 | volume_flow_l(1) = volume_flow_l(1) + u(k,j,i) * dzu(k) |
---|
| 514 | ENDDO |
---|
| 515 | !$OMP END CRITICAL |
---|
| 516 | ENDIF |
---|
[75] | 517 | IF ( conserve_volume_flow .AND. bc_ns == 'cyclic' .AND. & |
---|
| 518 | j == ny ) THEN |
---|
[1] | 519 | !$OMP CRITICAL |
---|
| 520 | DO k = nzb_2d(j,i) + 1, nzt |
---|
| 521 | volume_flow_l(2) = volume_flow_l(2) + v(k,j,i) * dzu(k) |
---|
| 522 | ENDDO |
---|
| 523 | !$OMP END CRITICAL |
---|
| 524 | ENDIF |
---|
| 525 | |
---|
| 526 | ENDDO |
---|
| 527 | ENDDO |
---|
| 528 | !$OMP END PARALLEL |
---|
| 529 | |
---|
| 530 | ! |
---|
| 531 | !-- Conserve the volume flow |
---|
[75] | 532 | IF ( conserve_volume_flow .AND. & |
---|
| 533 | ( bc_lr == 'cyclic' .OR. bc_ns == 'cyclic' ) ) THEN |
---|
[1] | 534 | |
---|
| 535 | #if defined( __parallel ) |
---|
| 536 | CALL MPI_ALLREDUCE( volume_flow_l(1), volume_flow(1), 2, MPI_REAL, & |
---|
| 537 | MPI_SUM, comm2d, ierr ) |
---|
| 538 | #else |
---|
| 539 | volume_flow = volume_flow_l |
---|
| 540 | #endif |
---|
| 541 | |
---|
| 542 | volume_flow_offset = ( volume_flow_initial - volume_flow ) / & |
---|
| 543 | volume_flow_area |
---|
| 544 | |
---|
| 545 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
| 546 | !$OMP DO |
---|
| 547 | DO i = nxl, nxr |
---|
| 548 | DO j = nys, nyn |
---|
[75] | 549 | IF ( bc_lr == 'cyclic' ) THEN |
---|
| 550 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
| 551 | u(k,j,i) = u(k,j,i) + volume_flow_offset(1) |
---|
| 552 | ENDDO |
---|
| 553 | ENDIF |
---|
| 554 | IF ( bc_ns == 'cyclic' ) THEN |
---|
| 555 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
| 556 | v(k,j,i) = v(k,j,i) + volume_flow_offset(2) |
---|
| 557 | ENDDO |
---|
| 558 | ENDIF |
---|
[1] | 559 | ENDDO |
---|
| 560 | ENDDO |
---|
| 561 | !$OMP END PARALLEL |
---|
| 562 | |
---|
| 563 | ENDIF |
---|
| 564 | |
---|
| 565 | ! |
---|
| 566 | !-- Exchange of boundaries for the velocities |
---|
[75] | 567 | CALL exchange_horiz( u ) |
---|
| 568 | CALL exchange_horiz( v ) |
---|
| 569 | CALL exchange_horiz( w ) |
---|
[1] | 570 | |
---|
| 571 | ! |
---|
| 572 | !-- Compute the divergence of the corrected velocity field, |
---|
| 573 | !-- a possible PE-sum is computed in flow_statistics |
---|
| 574 | CALL cpu_log( log_point_s(1), 'divergence', 'start' ) |
---|
| 575 | sums_divnew_l = 0.0 |
---|
| 576 | |
---|
| 577 | ! |
---|
| 578 | !-- d must be reset to zero because it can contain nonzero values below the |
---|
| 579 | !-- topography |
---|
| 580 | IF ( topography /= 'flat' ) d = 0.0 |
---|
| 581 | |
---|
| 582 | localsum = 0.0 |
---|
| 583 | threadsum = 0.0 |
---|
| 584 | |
---|
| 585 | !$OMP PARALLEL PRIVATE (i,j,k) FIRSTPRIVATE(threadsum) REDUCTION(+:localsum) |
---|
| 586 | !$OMP DO SCHEDULE( STATIC ) |
---|
| 587 | #if defined( __ibm ) |
---|
| 588 | DO i = nxl, nxr |
---|
| 589 | DO j = nys, nyn |
---|
| 590 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 591 | d(k,j,i) = ( u(k,j,i+1) - u(k,j,i) ) * ddx + & |
---|
| 592 | ( v(k,j+1,i) - v(k,j,i) ) * ddy + & |
---|
| 593 | ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 594 | ENDDO |
---|
| 595 | DO k = nzb+1, nzt |
---|
| 596 | threadsum = threadsum + ABS( d(k,j,i) ) |
---|
| 597 | ENDDO |
---|
| 598 | ENDDO |
---|
| 599 | ENDDO |
---|
| 600 | #else |
---|
| 601 | DO i = nxl, nxr |
---|
| 602 | DO j = nys, nyn |
---|
| 603 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 604 | d(k,j,i) = ( u(k,j,i+1) - u(k,j,i) ) * ddx + & |
---|
| 605 | ( v(k,j+1,i) - v(k,j,i) ) * ddy + & |
---|
| 606 | ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
| 607 | threadsum = threadsum + ABS( d(k,j,i) ) |
---|
| 608 | ENDDO |
---|
| 609 | ENDDO |
---|
| 610 | ENDDO |
---|
| 611 | #endif |
---|
| 612 | localsum = localsum + threadsum |
---|
| 613 | !$OMP END PARALLEL |
---|
| 614 | |
---|
| 615 | ! |
---|
| 616 | !-- For completeness, set the divergence sum of all statistic regions to those |
---|
| 617 | !-- of the total domain |
---|
| 618 | sums_divnew_l(0:statistic_regions) = localsum |
---|
| 619 | |
---|
| 620 | CALL cpu_log( log_point_s(1), 'divergence', 'stop' ) |
---|
| 621 | |
---|
| 622 | CALL cpu_log( log_point(8), 'pres', 'stop' ) |
---|
| 623 | |
---|
| 624 | |
---|
| 625 | END SUBROUTINE pres |
---|