[1] | 1 | SUBROUTINE prandtl_fluxes |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[77] | 6 | ! |
---|
[1] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: prandtl_fluxes.f90 77 2007-03-29 04:26:56Z raasch $ |
---|
[77] | 11 | ! |
---|
| 12 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 13 | ! moisture renamed humidity |
---|
| 14 | ! |
---|
[3] | 15 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 16 | ! |
---|
[1] | 17 | ! Revision 1.19 2006/04/26 12:24:35 raasch |
---|
| 18 | ! +OpenMP directives and optimization (array assignments replaced by DO loops) |
---|
| 19 | ! |
---|
| 20 | ! Revision 1.1 1998/01/23 10:06:06 raasch |
---|
| 21 | ! Initial revision |
---|
| 22 | ! |
---|
| 23 | ! |
---|
| 24 | ! Description: |
---|
| 25 | ! ------------ |
---|
| 26 | ! Diagnostic computation of vertical fluxes in the Prandtl layer from the |
---|
| 27 | ! values of the variables at grid point k=1 |
---|
| 28 | !------------------------------------------------------------------------------! |
---|
| 29 | |
---|
| 30 | USE arrays_3d |
---|
| 31 | USE control_parameters |
---|
| 32 | USE grid_variables |
---|
| 33 | USE indices |
---|
| 34 | |
---|
| 35 | IMPLICIT NONE |
---|
| 36 | |
---|
| 37 | INTEGER :: i, j, k |
---|
| 38 | REAL :: a, b, rifm, uv_total, z_p |
---|
| 39 | |
---|
| 40 | ! |
---|
| 41 | !-- Compute theta* |
---|
| 42 | IF ( constant_heatflux ) THEN |
---|
| 43 | ! |
---|
| 44 | !-- For a given heat flux in the Prandtl layer: |
---|
| 45 | !-- for u* use the value from the previous time step |
---|
| 46 | !$OMP PARALLEL DO |
---|
| 47 | DO i = nxl-1, nxr+1 |
---|
| 48 | DO j = nys-1, nyn+1 |
---|
| 49 | ts(j,i) = -shf(j,i) / ( us(j,i) + 1E-30 ) |
---|
| 50 | ! |
---|
| 51 | !-- ts must be limited, because otherwise overflow may occur in case of |
---|
| 52 | !-- us=0 when computing rif further below |
---|
| 53 | IF ( ts(j,i) < -1.05E5 ) ts = -1.0E5 |
---|
| 54 | IF ( ts(j,i) > 1.0E5 ) ts = 1.0E5 |
---|
| 55 | ENDDO |
---|
| 56 | ENDDO |
---|
| 57 | |
---|
| 58 | ELSE |
---|
| 59 | ! |
---|
| 60 | !-- For a given surface temperature: |
---|
| 61 | !-- (the Richardson number is still the one from the previous time step) |
---|
| 62 | !$OMP PARALLEL DO PRIVATE( a, b, k, z_p ) |
---|
| 63 | DO i = nxl-1, nxr+1 |
---|
| 64 | DO j = nys-1, nyn+1 |
---|
| 65 | |
---|
| 66 | k = nzb_s_inner(j,i) |
---|
| 67 | z_p = zu(k+1) - zw(k) |
---|
| 68 | |
---|
| 69 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
| 70 | ! |
---|
| 71 | !-- Stable stratification |
---|
| 72 | ts(j,i) = kappa * ( pt(k+1,j,i) - pt(k,j,i) ) / ( & |
---|
| 73 | LOG( z_p / z0(j,i) ) + & |
---|
| 74 | 5.0 * rif(j,i) * ( z_p - z0(j,i) ) / z_p & |
---|
| 75 | ) |
---|
| 76 | ELSE |
---|
| 77 | ! |
---|
| 78 | !-- Unstable stratification |
---|
| 79 | a = SQRT( 1.0 - 16.0 * rif(j,i) ) |
---|
| 80 | b = SQRT( 1.0 - 16.0 * rif(j,i) / z_p * z0(j,i) ) |
---|
| 81 | ! |
---|
| 82 | !-- If a borderline case occurs, the formula for stable |
---|
| 83 | !-- stratification must be used anyway, or else a zero division |
---|
| 84 | !-- would occur in the argument of the logarithm |
---|
| 85 | IF ( a == 1.0 .OR. b == 1.0 ) THEN |
---|
| 86 | ts(j,i) = kappa * ( pt(k+1,j,i) - pt(k,j,i) ) / ( & |
---|
| 87 | LOG( z_p / z0(j,i) ) + & |
---|
| 88 | 5.0 * rif(j,i) * ( z_p - z0(j,i) ) / z_p & |
---|
| 89 | ) |
---|
| 90 | ELSE |
---|
| 91 | ts(j,i) = kappa * ( pt(k+1,j,i) - pt(k,j,i) ) / ( & |
---|
| 92 | LOG( (1.0+b) / (1.0-b) * (1.0-a) / (1.0+a) ) & |
---|
| 93 | ) |
---|
| 94 | ENDIF |
---|
| 95 | ENDIF |
---|
| 96 | |
---|
| 97 | ENDDO |
---|
| 98 | ENDDO |
---|
| 99 | ENDIF |
---|
| 100 | |
---|
| 101 | ! |
---|
| 102 | !-- Compute z_p/L (corresponds to the Richardson-flux number) |
---|
[75] | 103 | IF ( .NOT. humidity ) THEN |
---|
[1] | 104 | !$OMP PARALLEL DO PRIVATE( k, z_p ) |
---|
| 105 | DO i = nxl-1, nxr+1 |
---|
| 106 | DO j = nys-1, nyn+1 |
---|
| 107 | k = nzb_s_inner(j,i) |
---|
| 108 | z_p = zu(k+1) - zw(k) |
---|
| 109 | rif(j,i) = z_p * kappa * g * ts(j,i) / & |
---|
| 110 | ( pt(k+1,j,i) * ( us(j,i)**2 + 1E-30 ) ) |
---|
| 111 | ! |
---|
| 112 | !-- Limit the value range of the Richardson numbers. |
---|
| 113 | !-- This is necessary for very small velocities (u,v --> 0), because |
---|
| 114 | !-- the absolute value of rif can then become very large, which in |
---|
| 115 | !-- consequence would result in very large shear stresses and very |
---|
| 116 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 117 | IF ( rif(j,i) < rif_min ) rif(j,i) = rif_min |
---|
| 118 | IF ( rif(j,i) > rif_max ) rif(j,i) = rif_max |
---|
| 119 | ENDDO |
---|
| 120 | ENDDO |
---|
| 121 | ELSE |
---|
| 122 | !$OMP PARALLEL DO PRIVATE( k, z_p ) |
---|
| 123 | DO i = nxl-1, nxr+1 |
---|
| 124 | DO j = nys-1, nyn+1 |
---|
| 125 | k = nzb_s_inner(j,i) |
---|
| 126 | z_p = zu(k+1) - zw(k) |
---|
| 127 | rif(j,i) = z_p * kappa * g * & |
---|
| 128 | ( ts(j,i) + 0.61 * pt(k+1,j,i) * qs(j,i) ) / & |
---|
| 129 | ( vpt(k+1,j,i) * ( us(j,i)**2 + 1E-30 ) ) |
---|
| 130 | ! |
---|
| 131 | !-- Limit the value range of the Richardson numbers. |
---|
| 132 | !-- This is necessary for very small velocities (u,v --> 0), because |
---|
| 133 | !-- the absolute value of rif can then become very large, which in |
---|
| 134 | !-- consequence would result in very large shear stresses and very |
---|
| 135 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 136 | IF ( rif(j,i) < rif_min ) rif(j,i) = rif_min |
---|
| 137 | IF ( rif(j,i) > rif_max ) rif(j,i) = rif_max |
---|
| 138 | ENDDO |
---|
| 139 | ENDDO |
---|
| 140 | ENDIF |
---|
| 141 | |
---|
| 142 | ! |
---|
| 143 | !-- Compute u* at the scalars' grid points |
---|
| 144 | !$OMP PARALLEL DO PRIVATE( a, b, k, uv_total, z_p ) |
---|
| 145 | DO i = nxl, nxr |
---|
| 146 | DO j = nys, nyn |
---|
| 147 | |
---|
| 148 | k = nzb_s_inner(j,i) |
---|
| 149 | z_p = zu(k+1) - zw(k) |
---|
| 150 | |
---|
| 151 | ! |
---|
| 152 | !-- Compute the absolute value of the horizontal velocity |
---|
| 153 | uv_total = SQRT( ( 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) ) )**2 + & |
---|
| 154 | ( 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) ) )**2 & |
---|
| 155 | ) |
---|
| 156 | |
---|
| 157 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
| 158 | ! |
---|
| 159 | !-- Stable stratification |
---|
| 160 | us(j,i) = kappa * uv_total / ( & |
---|
| 161 | LOG( z_p / z0(j,i) ) + & |
---|
| 162 | 5.0 * rif(j,i) * ( z_p - z0(j,i) ) / z_p & |
---|
| 163 | ) |
---|
| 164 | ELSE |
---|
| 165 | ! |
---|
| 166 | !-- Unstable stratification |
---|
| 167 | a = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rif(j,i) ) ) |
---|
| 168 | b = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rif(j,i) / z_p * z0(j,i) ) ) |
---|
| 169 | ! |
---|
| 170 | !-- If a borderline case occurs, the formula for stable stratification |
---|
| 171 | !-- must be used anyway, or else a zero division would occur in the |
---|
| 172 | !-- argument of the logarithm. |
---|
| 173 | IF ( a == 1.0 .OR. b == 1.0 ) THEN |
---|
| 174 | us(j,i) = kappa * uv_total / ( & |
---|
| 175 | LOG( z_p / z0(j,i) ) + & |
---|
| 176 | 5.0 * rif(j,i) * ( z_p - z0(j,i) ) / z_p & |
---|
| 177 | ) |
---|
| 178 | ELSE |
---|
| 179 | us(j,i) = kappa * uv_total / ( & |
---|
| 180 | LOG( (1.0+b) / (1.0-b) * (1.0-a) / (1.0+a) ) + & |
---|
| 181 | 2.0 * ( ATAN( b ) - ATAN( a ) ) & |
---|
| 182 | ) |
---|
| 183 | ENDIF |
---|
| 184 | ENDIF |
---|
| 185 | ENDDO |
---|
| 186 | ENDDO |
---|
| 187 | |
---|
| 188 | ! |
---|
| 189 | !-- Compute u'w' for the total model domain. |
---|
| 190 | !-- First compute the corresponding component of u* and square it. |
---|
| 191 | !$OMP PARALLEL DO PRIVATE( a, b, k, rifm, z_p ) |
---|
| 192 | DO i = nxl, nxr |
---|
| 193 | DO j = nys, nyn |
---|
| 194 | |
---|
| 195 | k = nzb_u_inner(j,i) |
---|
| 196 | z_p = zu(k+1) - zw(k) |
---|
| 197 | |
---|
| 198 | ! |
---|
| 199 | !-- Compute Richardson-flux number for this point |
---|
| 200 | rifm = 0.5 * ( rif(j,i-1) + rif(j,i) ) |
---|
| 201 | IF ( rifm >= 0.0 ) THEN |
---|
| 202 | ! |
---|
| 203 | !-- Stable stratification |
---|
| 204 | usws(j,i) = kappa * u(k+1,j,i) / ( & |
---|
| 205 | LOG( z_p / z0(j,i) ) + & |
---|
| 206 | 5.0 * rifm * ( z_p - z0(j,i) ) / z_p & |
---|
| 207 | ) |
---|
| 208 | ELSE |
---|
| 209 | ! |
---|
| 210 | !-- Unstable stratification |
---|
| 211 | a = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rifm ) ) |
---|
| 212 | b = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rifm / z_p * z0(j,i) ) ) |
---|
| 213 | ! |
---|
| 214 | !-- If a borderline case occurs, the formula for stable stratification |
---|
| 215 | !-- must be used anyway, or else a zero division would occur in the |
---|
| 216 | !-- argument of the logarithm. |
---|
| 217 | IF ( a == 1.0 .OR. B == 1.0 ) THEN |
---|
| 218 | usws(j,i) = kappa * u(k+1,j,i) / ( & |
---|
| 219 | LOG( z_p / z0(j,i) ) + & |
---|
| 220 | 5.0 * rifm * ( z_p - z0(j,i) ) / z_p & |
---|
| 221 | ) |
---|
| 222 | ELSE |
---|
| 223 | usws(j,i) = kappa * u(k+1,j,i) / ( & |
---|
| 224 | LOG( (1.0+b) / (1.0-b) * (1.0-a) / (1.0+a) ) + & |
---|
| 225 | 2.0 * ( ATAN( b ) - ATAN( a ) ) & |
---|
| 226 | ) |
---|
| 227 | ENDIF |
---|
| 228 | ENDIF |
---|
| 229 | usws(j,i) = -usws(j,i) * ABS( usws(j,i) ) |
---|
| 230 | ENDDO |
---|
| 231 | ENDDO |
---|
| 232 | |
---|
| 233 | ! |
---|
| 234 | !-- Compute v'w' for the total model domain. |
---|
| 235 | !-- First compute the corresponding component of u* and square it. |
---|
| 236 | !$OMP PARALLEL DO PRIVATE( a, b, k, rifm, z_p ) |
---|
| 237 | DO i = nxl, nxr |
---|
| 238 | DO j = nys, nyn |
---|
| 239 | |
---|
| 240 | k = nzb_v_inner(j,i) |
---|
| 241 | z_p = zu(k+1) - zw(k) |
---|
| 242 | |
---|
| 243 | ! |
---|
| 244 | !-- Compute Richardson-flux number for this point |
---|
| 245 | rifm = 0.5 * ( rif(j-1,i) + rif(j,i) ) |
---|
| 246 | IF ( rifm >= 0.0 ) THEN |
---|
| 247 | ! |
---|
| 248 | !-- Stable stratification |
---|
| 249 | vsws(j,i) = kappa * v(k+1,j,i) / ( & |
---|
| 250 | LOG( z_p / z0(j,i) ) + & |
---|
| 251 | 5.0 * rifm * ( z_p - z0(j,i) ) / z_p & |
---|
| 252 | ) |
---|
| 253 | ELSE |
---|
| 254 | ! |
---|
| 255 | !-- Unstable stratification |
---|
| 256 | a = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rifm ) ) |
---|
| 257 | b = 1.0 / SQRT( SQRT( 1.0 - 16.0 * rifm / z_p * z0(j,i) ) ) |
---|
| 258 | ! |
---|
| 259 | !-- If a borderline case occurs, the formula for stable stratification |
---|
| 260 | !-- must be used anyway, or else a zero division would occur in the |
---|
| 261 | !-- argument of the logarithm. |
---|
| 262 | IF ( a == 1.0 .OR. b == 1.0 ) THEN |
---|
| 263 | vsws(j,i) = kappa * v(k+1,j,i) / ( & |
---|
| 264 | LOG( z_p / z0(j,i) ) + & |
---|
| 265 | 5.0 * rifm * ( z_p - z0(j,i) ) / z_p & |
---|
| 266 | ) |
---|
| 267 | ELSE |
---|
| 268 | vsws(j,i) = kappa * v(k+1,j,i) / ( & |
---|
| 269 | LOG( (1.0+b) / (1.0-b) * (1.0-a) / (1.0+a) ) + & |
---|
| 270 | 2.0 * ( ATAN( b ) - ATAN( a ) ) & |
---|
| 271 | ) |
---|
| 272 | ENDIF |
---|
| 273 | ENDIF |
---|
| 274 | vsws(j,i) = -vsws(j,i) * ABS( vsws(j,i) ) |
---|
| 275 | ENDDO |
---|
| 276 | ENDDO |
---|
| 277 | |
---|
| 278 | ! |
---|
| 279 | !-- If required compute q* |
---|
[75] | 280 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 281 | IF ( constant_waterflux ) THEN |
---|
| 282 | ! |
---|
| 283 | !-- For a given water flux in the Prandtl layer: |
---|
| 284 | !$OMP PARALLEL DO |
---|
| 285 | DO i = nxl-1, nxr+1 |
---|
| 286 | DO j = nys-1, nyn+1 |
---|
| 287 | qs(j,i) = -qsws(j,i) / ( us(j,i) + 1E-30 ) |
---|
| 288 | ENDDO |
---|
| 289 | ENDDO |
---|
| 290 | |
---|
| 291 | ELSE |
---|
| 292 | !$OMP PARALLEL DO PRIVATE( a, b, k, z_p ) |
---|
| 293 | DO i = nxl-1, nxr+1 |
---|
| 294 | DO j = nys-1, nyn+1 |
---|
| 295 | |
---|
| 296 | k = nzb_s_inner(j,i) |
---|
| 297 | z_p = zu(k+1) - zw(k) |
---|
| 298 | |
---|
| 299 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
| 300 | ! |
---|
| 301 | !-- Stable stratification |
---|
| 302 | qs(j,i) = kappa * ( q(k+1,j,i) - q(k,j,i) ) / ( & |
---|
| 303 | LOG( z_p / z0(j,i) ) + & |
---|
| 304 | 5.0 * rif(j,i) * ( z_p - z0(j,i) ) / z_p & |
---|
| 305 | ) |
---|
| 306 | ELSE |
---|
| 307 | ! |
---|
| 308 | !-- Unstable stratification |
---|
| 309 | a = SQRT( 1.0 - 16.0 * rif(j,i) ) |
---|
| 310 | b = SQRT( 1.0 - 16.0 * rif(j,i) / z_p * z0(j,i) ) |
---|
| 311 | ! |
---|
| 312 | !-- If a borderline case occurs, the formula for stable |
---|
| 313 | !-- stratification must be used anyway, or else a zero division |
---|
| 314 | !-- would occur in the argument of the logarithm. |
---|
| 315 | IF ( a == 1.0 .OR. b == 1.0 ) THEN |
---|
| 316 | qs(j,i) = kappa * ( q(k+1,j,i) - q(k,j,i) ) / ( & |
---|
| 317 | LOG( z_p / z0(j,i) ) + & |
---|
| 318 | 5.0 * rif(j,i) * ( z_p - z0(j,i) ) / z_p & |
---|
| 319 | ) |
---|
| 320 | ELSE |
---|
| 321 | qs(j,i) = kappa * ( q(k+1,j,i) - q(k,j,i) ) / ( & |
---|
| 322 | LOG( (1.0+b) / (1.0-b) * (1.0-a) / (1.0+a) ) & |
---|
| 323 | ) |
---|
| 324 | ENDIF |
---|
| 325 | ENDIF |
---|
| 326 | |
---|
| 327 | ENDDO |
---|
| 328 | ENDDO |
---|
| 329 | ENDIF |
---|
| 330 | ENDIF |
---|
| 331 | |
---|
| 332 | ! |
---|
| 333 | !-- Exchange the boundaries for u* and the momentum fluxes (fluxes only for |
---|
| 334 | !-- completeness's sake). |
---|
| 335 | CALL exchange_horiz_2d( us ) |
---|
| 336 | CALL exchange_horiz_2d( usws ) |
---|
| 337 | CALL exchange_horiz_2d( vsws ) |
---|
[75] | 338 | IF ( humidity .OR. passive_scalar ) CALL exchange_horiz_2d( qsws ) |
---|
[1] | 339 | |
---|
| 340 | ! |
---|
| 341 | !-- Compute the vertical kinematic heat flux |
---|
| 342 | IF ( .NOT. constant_heatflux ) THEN |
---|
| 343 | !$OMP PARALLEL DO |
---|
| 344 | DO i = nxl-1, nxr+1 |
---|
| 345 | DO j = nys-1, nyn+1 |
---|
| 346 | shf(j,i) = -ts(j,i) * us(j,i) |
---|
| 347 | ENDDO |
---|
| 348 | ENDDO |
---|
| 349 | ENDIF |
---|
| 350 | |
---|
| 351 | ! |
---|
| 352 | !-- Compute the vertical water/scalar flux |
---|
[75] | 353 | IF ( .NOT. constant_heatflux .AND. ( humidity .OR. passive_scalar ) ) THEN |
---|
[1] | 354 | !$OMP PARALLEL DO |
---|
| 355 | DO i = nxl-1, nxr+1 |
---|
| 356 | DO j = nys-1, nyn+1 |
---|
| 357 | qsws(j,i) = -qs(j,i) * us(j,i) |
---|
| 358 | ENDDO |
---|
| 359 | ENDDO |
---|
| 360 | ENDIF |
---|
| 361 | |
---|
| 362 | ! |
---|
| 363 | !-- Bottom boundary condition for the TKE |
---|
| 364 | IF ( ibc_e_b == 2 ) THEN |
---|
| 365 | !$OMP PARALLEL DO |
---|
| 366 | DO i = nxl-1, nxr+1 |
---|
| 367 | DO j = nys-1, nyn+1 |
---|
| 368 | e(nzb_s_inner(j,i)+1,j,i) = ( us(j,i) / 0.1 )**2 |
---|
| 369 | ! |
---|
| 370 | !-- As a test: cm = 0.4 |
---|
| 371 | ! e(nzb_s_inner(j,i)+1,j,i) = ( us(j,i) / 0.4 )**2 |
---|
| 372 | e(nzb_s_inner(j,i),j,i) = e(nzb_s_inner(j,i)+1,j,i) |
---|
| 373 | ENDDO |
---|
| 374 | ENDDO |
---|
| 375 | ENDIF |
---|
| 376 | |
---|
| 377 | |
---|
| 378 | END SUBROUTINE prandtl_fluxes |
---|