[1] | 1 | SUBROUTINE prandtl_fluxes |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
[760] | 6 | ! |
---|
[1] | 7 | ! |
---|
[668] | 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
| 10 | ! $Id: prandtl_fluxes.f90 760 2011-09-15 14:37:54Z letzel $ |
---|
| 11 | ! |
---|
[760] | 12 | ! 759 2011-09-15 13:58:31Z raasch |
---|
| 13 | ! Bugfix for ts limitation |
---|
| 14 | ! |
---|
[710] | 15 | ! 709 2011-03-30 09:31:40Z raasch |
---|
| 16 | ! formatting adjustments |
---|
| 17 | ! |
---|
[668] | 18 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
[709] | 19 | ! Changed surface boundary conditions for u and v from mirror to Dirichlet. |
---|
| 20 | ! Therefore u(uzb,:,:) and v(nzb,:,:) are now representative for height z0. |
---|
[667] | 21 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng |
---|
| 22 | ! |
---|
[392] | 23 | ! 315 2009-05-13 10:57:59Z raasch |
---|
| 24 | ! Saturation condition at (sea) surface is not used in precursor runs (only |
---|
| 25 | ! in the following coupled runs) |
---|
| 26 | ! Bugfix: qsws was calculated in case of constant heatflux = .FALSE. |
---|
| 27 | ! |
---|
[198] | 28 | ! 187 2008-08-06 16:25:09Z letzel |
---|
| 29 | ! Bugfix: modification of the calculation of the vertical turbulent momentum |
---|
| 30 | ! fluxes u'w' and v'w' |
---|
| 31 | ! Bugfix: change definition of us_wall from 1D to 2D |
---|
| 32 | ! Change: modification of the integrated version of the profile function for |
---|
| 33 | ! momentum for unstable stratification (does not effect results) |
---|
| 34 | ! |
---|
[110] | 35 | ! 108 2007-08-24 15:10:38Z letzel |
---|
| 36 | ! assume saturation at k=nzb_s_inner(j,i) for atmosphere coupled to ocean |
---|
| 37 | ! |
---|
[77] | 38 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 39 | ! moisture renamed humidity |
---|
| 40 | ! |
---|
[3] | 41 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 42 | ! |
---|
[1] | 43 | ! Revision 1.19 2006/04/26 12:24:35 raasch |
---|
| 44 | ! +OpenMP directives and optimization (array assignments replaced by DO loops) |
---|
| 45 | ! |
---|
| 46 | ! Revision 1.1 1998/01/23 10:06:06 raasch |
---|
| 47 | ! Initial revision |
---|
| 48 | ! |
---|
| 49 | ! |
---|
| 50 | ! Description: |
---|
| 51 | ! ------------ |
---|
| 52 | ! Diagnostic computation of vertical fluxes in the Prandtl layer from the |
---|
| 53 | ! values of the variables at grid point k=1 |
---|
| 54 | !------------------------------------------------------------------------------! |
---|
| 55 | |
---|
| 56 | USE arrays_3d |
---|
| 57 | USE control_parameters |
---|
| 58 | USE grid_variables |
---|
| 59 | USE indices |
---|
| 60 | |
---|
| 61 | IMPLICIT NONE |
---|
| 62 | |
---|
| 63 | INTEGER :: i, j, k |
---|
[108] | 64 | REAL :: a, b, e_q, rifm, uv_total, z_p |
---|
[1] | 65 | |
---|
[667] | 66 | ! |
---|
[1] | 67 | !-- Compute theta* |
---|
| 68 | IF ( constant_heatflux ) THEN |
---|
| 69 | ! |
---|
| 70 | !-- For a given heat flux in the Prandtl layer: |
---|
| 71 | !-- for u* use the value from the previous time step |
---|
| 72 | !$OMP PARALLEL DO |
---|
[667] | 73 | DO i = nxlg, nxrg |
---|
| 74 | DO j = nysg, nyng |
---|
[1] | 75 | ts(j,i) = -shf(j,i) / ( us(j,i) + 1E-30 ) |
---|
| 76 | ! |
---|
| 77 | !-- ts must be limited, because otherwise overflow may occur in case of |
---|
| 78 | !-- us=0 when computing rif further below |
---|
[759] | 79 | IF ( ts(j,i) < -1.05E5 ) ts(j,i) = -1.0E5 |
---|
| 80 | IF ( ts(j,i) > 1.0E5 ) ts(j,i) = 1.0E5 |
---|
[1] | 81 | ENDDO |
---|
| 82 | ENDDO |
---|
| 83 | |
---|
| 84 | ELSE |
---|
| 85 | ! |
---|
| 86 | !-- For a given surface temperature: |
---|
| 87 | !-- (the Richardson number is still the one from the previous time step) |
---|
| 88 | !$OMP PARALLEL DO PRIVATE( a, b, k, z_p ) |
---|
[667] | 89 | DO i = nxlg, nxrg |
---|
| 90 | DO j = nysg, nyng |
---|
[1] | 91 | |
---|
| 92 | k = nzb_s_inner(j,i) |
---|
| 93 | z_p = zu(k+1) - zw(k) |
---|
| 94 | |
---|
| 95 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
| 96 | ! |
---|
| 97 | !-- Stable stratification |
---|
| 98 | ts(j,i) = kappa * ( pt(k+1,j,i) - pt(k,j,i) ) / ( & |
---|
| 99 | LOG( z_p / z0(j,i) ) + & |
---|
| 100 | 5.0 * rif(j,i) * ( z_p - z0(j,i) ) / z_p & |
---|
| 101 | ) |
---|
| 102 | ELSE |
---|
| 103 | ! |
---|
| 104 | !-- Unstable stratification |
---|
| 105 | a = SQRT( 1.0 - 16.0 * rif(j,i) ) |
---|
[187] | 106 | b = SQRT( 1.0 - 16.0 * rif(j,i) * z0(j,i) / z_p ) |
---|
| 107 | |
---|
| 108 | ts(j,i) = kappa * ( pt(k+1,j,i) - pt(k,j,i) ) / ( & |
---|
| 109 | LOG( z_p / z0(j,i) ) - & |
---|
| 110 | 2.0 * LOG( ( 1.0 + a ) / ( 1.0 + b ) ) ) |
---|
[1] | 111 | ENDIF |
---|
| 112 | |
---|
| 113 | ENDDO |
---|
| 114 | ENDDO |
---|
| 115 | ENDIF |
---|
| 116 | |
---|
| 117 | ! |
---|
| 118 | !-- Compute z_p/L (corresponds to the Richardson-flux number) |
---|
[75] | 119 | IF ( .NOT. humidity ) THEN |
---|
[1] | 120 | !$OMP PARALLEL DO PRIVATE( k, z_p ) |
---|
[667] | 121 | DO i = nxlg, nxrg |
---|
| 122 | DO j = nysg, nyng |
---|
[1] | 123 | k = nzb_s_inner(j,i) |
---|
| 124 | z_p = zu(k+1) - zw(k) |
---|
| 125 | rif(j,i) = z_p * kappa * g * ts(j,i) / & |
---|
| 126 | ( pt(k+1,j,i) * ( us(j,i)**2 + 1E-30 ) ) |
---|
| 127 | ! |
---|
| 128 | !-- Limit the value range of the Richardson numbers. |
---|
| 129 | !-- This is necessary for very small velocities (u,v --> 0), because |
---|
| 130 | !-- the absolute value of rif can then become very large, which in |
---|
| 131 | !-- consequence would result in very large shear stresses and very |
---|
| 132 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 133 | IF ( rif(j,i) < rif_min ) rif(j,i) = rif_min |
---|
| 134 | IF ( rif(j,i) > rif_max ) rif(j,i) = rif_max |
---|
| 135 | ENDDO |
---|
| 136 | ENDDO |
---|
| 137 | ELSE |
---|
| 138 | !$OMP PARALLEL DO PRIVATE( k, z_p ) |
---|
[667] | 139 | DO i = nxlg, nxrg |
---|
| 140 | DO j = nysg, nyng |
---|
[1] | 141 | k = nzb_s_inner(j,i) |
---|
| 142 | z_p = zu(k+1) - zw(k) |
---|
| 143 | rif(j,i) = z_p * kappa * g * & |
---|
| 144 | ( ts(j,i) + 0.61 * pt(k+1,j,i) * qs(j,i) ) / & |
---|
| 145 | ( vpt(k+1,j,i) * ( us(j,i)**2 + 1E-30 ) ) |
---|
| 146 | ! |
---|
| 147 | !-- Limit the value range of the Richardson numbers. |
---|
| 148 | !-- This is necessary for very small velocities (u,v --> 0), because |
---|
| 149 | !-- the absolute value of rif can then become very large, which in |
---|
| 150 | !-- consequence would result in very large shear stresses and very |
---|
| 151 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 152 | IF ( rif(j,i) < rif_min ) rif(j,i) = rif_min |
---|
| 153 | IF ( rif(j,i) > rif_max ) rif(j,i) = rif_max |
---|
| 154 | ENDDO |
---|
| 155 | ENDDO |
---|
| 156 | ENDIF |
---|
| 157 | |
---|
| 158 | ! |
---|
| 159 | !-- Compute u* at the scalars' grid points |
---|
| 160 | !$OMP PARALLEL DO PRIVATE( a, b, k, uv_total, z_p ) |
---|
| 161 | DO i = nxl, nxr |
---|
| 162 | DO j = nys, nyn |
---|
| 163 | |
---|
| 164 | k = nzb_s_inner(j,i) |
---|
| 165 | z_p = zu(k+1) - zw(k) |
---|
| 166 | |
---|
| 167 | ! |
---|
[667] | 168 | !-- Compute the absolute value of the horizontal velocity |
---|
| 169 | !-- (relative to the surface) |
---|
| 170 | uv_total = SQRT( ( 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) & |
---|
| 171 | - u(k,j,i) - u(k,j,i+1) ) )**2 + & |
---|
| 172 | ( 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) & |
---|
| 173 | - v(k,j,i) - v(k,j+1,i) ) )**2 ) |
---|
[1] | 174 | |
---|
[667] | 175 | |
---|
[1] | 176 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
| 177 | ! |
---|
| 178 | !-- Stable stratification |
---|
| 179 | us(j,i) = kappa * uv_total / ( & |
---|
| 180 | LOG( z_p / z0(j,i) ) + & |
---|
| 181 | 5.0 * rif(j,i) * ( z_p - z0(j,i) ) / z_p & |
---|
| 182 | ) |
---|
| 183 | ELSE |
---|
| 184 | ! |
---|
| 185 | !-- Unstable stratification |
---|
[187] | 186 | a = SQRT( SQRT( 1.0 - 16.0 * rif(j,i) ) ) |
---|
| 187 | b = SQRT( SQRT( 1.0 - 16.0 * rif(j,i) / z_p * z0(j,i) ) ) |
---|
| 188 | |
---|
| 189 | us(j,i) = kappa * uv_total / ( & |
---|
| 190 | LOG( z_p / z0(j,i) ) - & |
---|
| 191 | LOG( ( 1.0 + a )**2 * ( 1.0 + a**2 ) / ( & |
---|
| 192 | ( 1.0 + b )**2 * ( 1.0 + b**2 ) ) ) + & |
---|
| 193 | 2.0 * ( ATAN( a ) - ATAN( b ) ) & |
---|
| 194 | ) |
---|
[1] | 195 | ENDIF |
---|
| 196 | ENDDO |
---|
| 197 | ENDDO |
---|
| 198 | |
---|
| 199 | ! |
---|
[187] | 200 | !-- Values of us at ghost point locations are needed for the evaluation of usws |
---|
| 201 | !-- and vsws. |
---|
| 202 | CALL exchange_horiz_2d( us ) |
---|
| 203 | ! |
---|
[1] | 204 | !-- Compute u'w' for the total model domain. |
---|
| 205 | !-- First compute the corresponding component of u* and square it. |
---|
| 206 | !$OMP PARALLEL DO PRIVATE( a, b, k, rifm, z_p ) |
---|
| 207 | DO i = nxl, nxr |
---|
| 208 | DO j = nys, nyn |
---|
| 209 | |
---|
| 210 | k = nzb_u_inner(j,i) |
---|
| 211 | z_p = zu(k+1) - zw(k) |
---|
| 212 | |
---|
| 213 | ! |
---|
| 214 | !-- Compute Richardson-flux number for this point |
---|
| 215 | rifm = 0.5 * ( rif(j,i-1) + rif(j,i) ) |
---|
| 216 | IF ( rifm >= 0.0 ) THEN |
---|
| 217 | ! |
---|
| 218 | !-- Stable stratification |
---|
[667] | 219 | usws(j,i) = kappa * ( u(k+1,j,i) - u(k,j,i) )/ ( & |
---|
[1] | 220 | LOG( z_p / z0(j,i) ) + & |
---|
| 221 | 5.0 * rifm * ( z_p - z0(j,i) ) / z_p & |
---|
| 222 | ) |
---|
| 223 | ELSE |
---|
| 224 | ! |
---|
| 225 | !-- Unstable stratification |
---|
[187] | 226 | a = SQRT( SQRT( 1.0 - 16.0 * rifm ) ) |
---|
| 227 | b = SQRT( SQRT( 1.0 - 16.0 * rifm / z_p * z0(j,i) ) ) |
---|
| 228 | |
---|
[667] | 229 | usws(j,i) = kappa * ( u(k+1,j,i) - u(k,j,i) ) / ( & |
---|
[187] | 230 | LOG( z_p / z0(j,i) ) - & |
---|
| 231 | LOG( (1.0 + a )**2 * ( 1.0 + a**2 ) / ( & |
---|
| 232 | (1.0 + b )**2 * ( 1.0 + b**2 ) ) ) + & |
---|
| 233 | 2.0 * ( ATAN( a ) - ATAN( b ) ) & |
---|
[1] | 234 | ) |
---|
| 235 | ENDIF |
---|
[187] | 236 | usws(j,i) = -usws(j,i) * 0.5 * ( us(j,i-1) + us(j,i) ) |
---|
[1] | 237 | ENDDO |
---|
| 238 | ENDDO |
---|
| 239 | |
---|
| 240 | ! |
---|
| 241 | !-- Compute v'w' for the total model domain. |
---|
| 242 | !-- First compute the corresponding component of u* and square it. |
---|
| 243 | !$OMP PARALLEL DO PRIVATE( a, b, k, rifm, z_p ) |
---|
| 244 | DO i = nxl, nxr |
---|
| 245 | DO j = nys, nyn |
---|
| 246 | |
---|
| 247 | k = nzb_v_inner(j,i) |
---|
| 248 | z_p = zu(k+1) - zw(k) |
---|
| 249 | |
---|
| 250 | ! |
---|
| 251 | !-- Compute Richardson-flux number for this point |
---|
| 252 | rifm = 0.5 * ( rif(j-1,i) + rif(j,i) ) |
---|
| 253 | IF ( rifm >= 0.0 ) THEN |
---|
| 254 | ! |
---|
| 255 | !-- Stable stratification |
---|
[667] | 256 | vsws(j,i) = kappa * ( v(k+1,j,i) - v(k,j,i) ) / ( & |
---|
[1] | 257 | LOG( z_p / z0(j,i) ) + & |
---|
| 258 | 5.0 * rifm * ( z_p - z0(j,i) ) / z_p & |
---|
| 259 | ) |
---|
| 260 | ELSE |
---|
| 261 | ! |
---|
| 262 | !-- Unstable stratification |
---|
[187] | 263 | a = SQRT( SQRT( 1.0 - 16.0 * rifm ) ) |
---|
| 264 | b = SQRT( SQRT( 1.0 - 16.0 * rifm / z_p * z0(j,i) ) ) |
---|
| 265 | |
---|
[667] | 266 | vsws(j,i) = kappa * ( v(k+1,j,i) - v(k,j,i) ) / ( & |
---|
[187] | 267 | LOG( z_p / z0(j,i) ) - & |
---|
| 268 | LOG( (1.0 + a )**2 * ( 1.0 + a**2 ) / ( & |
---|
| 269 | (1.0 + b )**2 * ( 1.0 + b**2 ) ) ) + & |
---|
| 270 | 2.0 * ( ATAN( a ) - ATAN( b ) ) & |
---|
[1] | 271 | ) |
---|
| 272 | ENDIF |
---|
[187] | 273 | vsws(j,i) = -vsws(j,i) * 0.5 * ( us(j-1,i) + us(j,i) ) |
---|
[1] | 274 | ENDDO |
---|
| 275 | ENDDO |
---|
| 276 | |
---|
| 277 | ! |
---|
| 278 | !-- If required compute q* |
---|
[75] | 279 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 280 | IF ( constant_waterflux ) THEN |
---|
| 281 | ! |
---|
| 282 | !-- For a given water flux in the Prandtl layer: |
---|
| 283 | !$OMP PARALLEL DO |
---|
[667] | 284 | DO i = nxlg, nxrg |
---|
| 285 | DO j = nysg, nyng |
---|
[1] | 286 | qs(j,i) = -qsws(j,i) / ( us(j,i) + 1E-30 ) |
---|
| 287 | ENDDO |
---|
| 288 | ENDDO |
---|
| 289 | |
---|
| 290 | ELSE |
---|
| 291 | !$OMP PARALLEL DO PRIVATE( a, b, k, z_p ) |
---|
[667] | 292 | DO i = nxlg, nxrg |
---|
| 293 | DO j = nysg, nyng |
---|
[1] | 294 | |
---|
| 295 | k = nzb_s_inner(j,i) |
---|
| 296 | z_p = zu(k+1) - zw(k) |
---|
| 297 | |
---|
[108] | 298 | ! |
---|
[291] | 299 | !-- Assume saturation for atmosphere coupled to ocean (but not |
---|
| 300 | !-- in case of precursor runs) |
---|
| 301 | IF ( coupling_mode == 'atmosphere_to_ocean' .AND. run_coupled )& |
---|
| 302 | THEN |
---|
[108] | 303 | e_q = 6.1 * & |
---|
| 304 | EXP( 0.07 * ( MIN(pt(0,j,i),pt(1,j,i)) - 273.15 ) ) |
---|
| 305 | q(k,j,i) = 0.622 * e_q / ( surface_pressure - e_q ) |
---|
| 306 | ENDIF |
---|
[1] | 307 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
| 308 | ! |
---|
| 309 | !-- Stable stratification |
---|
| 310 | qs(j,i) = kappa * ( q(k+1,j,i) - q(k,j,i) ) / ( & |
---|
| 311 | LOG( z_p / z0(j,i) ) + & |
---|
| 312 | 5.0 * rif(j,i) * ( z_p - z0(j,i) ) / z_p & |
---|
| 313 | ) |
---|
| 314 | ELSE |
---|
| 315 | ! |
---|
| 316 | !-- Unstable stratification |
---|
[187] | 317 | a = SQRT( 1.0 - 16.0 * rif(j,i) ) |
---|
| 318 | b = SQRT( 1.0 - 16.0 * rif(j,i) * z0(j,i) / z_p ) |
---|
| 319 | |
---|
| 320 | qs(j,i) = kappa * ( q(k+1,j,i) - q(k,j,i) ) / ( & |
---|
| 321 | LOG( z_p / z0(j,i) ) - & |
---|
| 322 | 2.0 * LOG( (1.0 + a ) / ( 1.0 + b ) ) ) |
---|
[1] | 323 | ENDIF |
---|
| 324 | |
---|
| 325 | ENDDO |
---|
| 326 | ENDDO |
---|
| 327 | ENDIF |
---|
| 328 | ENDIF |
---|
| 329 | |
---|
| 330 | ! |
---|
[187] | 331 | !-- Exchange the boundaries for the momentum fluxes (only for sake of |
---|
| 332 | !-- completeness) |
---|
[1] | 333 | CALL exchange_horiz_2d( usws ) |
---|
| 334 | CALL exchange_horiz_2d( vsws ) |
---|
[75] | 335 | IF ( humidity .OR. passive_scalar ) CALL exchange_horiz_2d( qsws ) |
---|
[1] | 336 | |
---|
| 337 | ! |
---|
| 338 | !-- Compute the vertical kinematic heat flux |
---|
| 339 | IF ( .NOT. constant_heatflux ) THEN |
---|
| 340 | !$OMP PARALLEL DO |
---|
[667] | 341 | DO i = nxlg, nxrg |
---|
| 342 | DO j = nysg, nyng |
---|
[1] | 343 | shf(j,i) = -ts(j,i) * us(j,i) |
---|
| 344 | ENDDO |
---|
| 345 | ENDDO |
---|
| 346 | ENDIF |
---|
| 347 | |
---|
| 348 | ! |
---|
| 349 | !-- Compute the vertical water/scalar flux |
---|
[315] | 350 | IF ( .NOT. constant_waterflux .AND. ( humidity .OR. passive_scalar ) ) THEN |
---|
[1] | 351 | !$OMP PARALLEL DO |
---|
[667] | 352 | DO i = nxlg, nxrg |
---|
| 353 | DO j = nysg, nyng |
---|
[1] | 354 | qsws(j,i) = -qs(j,i) * us(j,i) |
---|
| 355 | ENDDO |
---|
| 356 | ENDDO |
---|
| 357 | ENDIF |
---|
| 358 | |
---|
| 359 | ! |
---|
| 360 | !-- Bottom boundary condition for the TKE |
---|
| 361 | IF ( ibc_e_b == 2 ) THEN |
---|
| 362 | !$OMP PARALLEL DO |
---|
[667] | 363 | DO i = nxlg, nxrg |
---|
| 364 | DO j = nysg, nyng |
---|
[1] | 365 | e(nzb_s_inner(j,i)+1,j,i) = ( us(j,i) / 0.1 )**2 |
---|
| 366 | ! |
---|
| 367 | !-- As a test: cm = 0.4 |
---|
| 368 | ! e(nzb_s_inner(j,i)+1,j,i) = ( us(j,i) / 0.4 )**2 |
---|
| 369 | e(nzb_s_inner(j,i),j,i) = e(nzb_s_inner(j,i)+1,j,i) |
---|
| 370 | ENDDO |
---|
| 371 | ENDDO |
---|
| 372 | ENDIF |
---|
| 373 | |
---|
| 374 | |
---|
| 375 | END SUBROUTINE prandtl_fluxes |
---|