[1] | 1 | SUBROUTINE prandtl_fluxes |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[198] | 6 | ! |
---|
[1] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: prandtl_fluxes.f90 198 2008-09-17 08:55:28Z letzel $ |
---|
[77] | 11 | ! |
---|
[198] | 12 | ! 187 2008-08-06 16:25:09Z letzel |
---|
| 13 | ! Bugfix: modification of the calculation of the vertical turbulent momentum |
---|
| 14 | ! fluxes u'w' and v'w' |
---|
| 15 | ! Bugfix: change definition of us_wall from 1D to 2D |
---|
| 16 | ! Change: modification of the integrated version of the profile function for |
---|
| 17 | ! momentum for unstable stratification (does not effect results) |
---|
| 18 | ! |
---|
[110] | 19 | ! 108 2007-08-24 15:10:38Z letzel |
---|
| 20 | ! assume saturation at k=nzb_s_inner(j,i) for atmosphere coupled to ocean |
---|
| 21 | ! |
---|
[77] | 22 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 23 | ! moisture renamed humidity |
---|
| 24 | ! |
---|
[3] | 25 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 26 | ! |
---|
[1] | 27 | ! Revision 1.19 2006/04/26 12:24:35 raasch |
---|
| 28 | ! +OpenMP directives and optimization (array assignments replaced by DO loops) |
---|
| 29 | ! |
---|
| 30 | ! Revision 1.1 1998/01/23 10:06:06 raasch |
---|
| 31 | ! Initial revision |
---|
| 32 | ! |
---|
| 33 | ! |
---|
| 34 | ! Description: |
---|
| 35 | ! ------------ |
---|
| 36 | ! Diagnostic computation of vertical fluxes in the Prandtl layer from the |
---|
| 37 | ! values of the variables at grid point k=1 |
---|
| 38 | !------------------------------------------------------------------------------! |
---|
| 39 | |
---|
| 40 | USE arrays_3d |
---|
| 41 | USE control_parameters |
---|
| 42 | USE grid_variables |
---|
| 43 | USE indices |
---|
| 44 | |
---|
| 45 | IMPLICIT NONE |
---|
| 46 | |
---|
| 47 | INTEGER :: i, j, k |
---|
[108] | 48 | REAL :: a, b, e_q, rifm, uv_total, z_p |
---|
[1] | 49 | |
---|
| 50 | ! |
---|
| 51 | !-- Compute theta* |
---|
| 52 | IF ( constant_heatflux ) THEN |
---|
| 53 | ! |
---|
| 54 | !-- For a given heat flux in the Prandtl layer: |
---|
| 55 | !-- for u* use the value from the previous time step |
---|
| 56 | !$OMP PARALLEL DO |
---|
| 57 | DO i = nxl-1, nxr+1 |
---|
| 58 | DO j = nys-1, nyn+1 |
---|
| 59 | ts(j,i) = -shf(j,i) / ( us(j,i) + 1E-30 ) |
---|
| 60 | ! |
---|
| 61 | !-- ts must be limited, because otherwise overflow may occur in case of |
---|
| 62 | !-- us=0 when computing rif further below |
---|
| 63 | IF ( ts(j,i) < -1.05E5 ) ts = -1.0E5 |
---|
| 64 | IF ( ts(j,i) > 1.0E5 ) ts = 1.0E5 |
---|
| 65 | ENDDO |
---|
| 66 | ENDDO |
---|
| 67 | |
---|
| 68 | ELSE |
---|
| 69 | ! |
---|
| 70 | !-- For a given surface temperature: |
---|
| 71 | !-- (the Richardson number is still the one from the previous time step) |
---|
| 72 | !$OMP PARALLEL DO PRIVATE( a, b, k, z_p ) |
---|
| 73 | DO i = nxl-1, nxr+1 |
---|
| 74 | DO j = nys-1, nyn+1 |
---|
| 75 | |
---|
| 76 | k = nzb_s_inner(j,i) |
---|
| 77 | z_p = zu(k+1) - zw(k) |
---|
| 78 | |
---|
| 79 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
| 80 | ! |
---|
| 81 | !-- Stable stratification |
---|
| 82 | ts(j,i) = kappa * ( pt(k+1,j,i) - pt(k,j,i) ) / ( & |
---|
| 83 | LOG( z_p / z0(j,i) ) + & |
---|
| 84 | 5.0 * rif(j,i) * ( z_p - z0(j,i) ) / z_p & |
---|
| 85 | ) |
---|
| 86 | ELSE |
---|
| 87 | ! |
---|
| 88 | !-- Unstable stratification |
---|
| 89 | a = SQRT( 1.0 - 16.0 * rif(j,i) ) |
---|
[187] | 90 | b = SQRT( 1.0 - 16.0 * rif(j,i) * z0(j,i) / z_p ) |
---|
| 91 | |
---|
| 92 | ts(j,i) = kappa * ( pt(k+1,j,i) - pt(k,j,i) ) / ( & |
---|
| 93 | LOG( z_p / z0(j,i) ) - & |
---|
| 94 | 2.0 * LOG( ( 1.0 + a ) / ( 1.0 + b ) ) ) |
---|
[1] | 95 | ENDIF |
---|
| 96 | |
---|
| 97 | ENDDO |
---|
| 98 | ENDDO |
---|
| 99 | ENDIF |
---|
| 100 | |
---|
| 101 | ! |
---|
| 102 | !-- Compute z_p/L (corresponds to the Richardson-flux number) |
---|
[75] | 103 | IF ( .NOT. humidity ) THEN |
---|
[1] | 104 | !$OMP PARALLEL DO PRIVATE( k, z_p ) |
---|
| 105 | DO i = nxl-1, nxr+1 |
---|
| 106 | DO j = nys-1, nyn+1 |
---|
| 107 | k = nzb_s_inner(j,i) |
---|
| 108 | z_p = zu(k+1) - zw(k) |
---|
| 109 | rif(j,i) = z_p * kappa * g * ts(j,i) / & |
---|
| 110 | ( pt(k+1,j,i) * ( us(j,i)**2 + 1E-30 ) ) |
---|
| 111 | ! |
---|
| 112 | !-- Limit the value range of the Richardson numbers. |
---|
| 113 | !-- This is necessary for very small velocities (u,v --> 0), because |
---|
| 114 | !-- the absolute value of rif can then become very large, which in |
---|
| 115 | !-- consequence would result in very large shear stresses and very |
---|
| 116 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 117 | IF ( rif(j,i) < rif_min ) rif(j,i) = rif_min |
---|
| 118 | IF ( rif(j,i) > rif_max ) rif(j,i) = rif_max |
---|
| 119 | ENDDO |
---|
| 120 | ENDDO |
---|
| 121 | ELSE |
---|
| 122 | !$OMP PARALLEL DO PRIVATE( k, z_p ) |
---|
| 123 | DO i = nxl-1, nxr+1 |
---|
| 124 | DO j = nys-1, nyn+1 |
---|
| 125 | k = nzb_s_inner(j,i) |
---|
| 126 | z_p = zu(k+1) - zw(k) |
---|
| 127 | rif(j,i) = z_p * kappa * g * & |
---|
| 128 | ( ts(j,i) + 0.61 * pt(k+1,j,i) * qs(j,i) ) / & |
---|
| 129 | ( vpt(k+1,j,i) * ( us(j,i)**2 + 1E-30 ) ) |
---|
| 130 | ! |
---|
| 131 | !-- Limit the value range of the Richardson numbers. |
---|
| 132 | !-- This is necessary for very small velocities (u,v --> 0), because |
---|
| 133 | !-- the absolute value of rif can then become very large, which in |
---|
| 134 | !-- consequence would result in very large shear stresses and very |
---|
| 135 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 136 | IF ( rif(j,i) < rif_min ) rif(j,i) = rif_min |
---|
| 137 | IF ( rif(j,i) > rif_max ) rif(j,i) = rif_max |
---|
| 138 | ENDDO |
---|
| 139 | ENDDO |
---|
| 140 | ENDIF |
---|
| 141 | |
---|
| 142 | ! |
---|
| 143 | !-- Compute u* at the scalars' grid points |
---|
| 144 | !$OMP PARALLEL DO PRIVATE( a, b, k, uv_total, z_p ) |
---|
| 145 | DO i = nxl, nxr |
---|
| 146 | DO j = nys, nyn |
---|
| 147 | |
---|
| 148 | k = nzb_s_inner(j,i) |
---|
| 149 | z_p = zu(k+1) - zw(k) |
---|
| 150 | |
---|
| 151 | ! |
---|
| 152 | !-- Compute the absolute value of the horizontal velocity |
---|
| 153 | uv_total = SQRT( ( 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) ) )**2 + & |
---|
| 154 | ( 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) ) )**2 & |
---|
| 155 | ) |
---|
| 156 | |
---|
| 157 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
| 158 | ! |
---|
| 159 | !-- Stable stratification |
---|
| 160 | us(j,i) = kappa * uv_total / ( & |
---|
| 161 | LOG( z_p / z0(j,i) ) + & |
---|
| 162 | 5.0 * rif(j,i) * ( z_p - z0(j,i) ) / z_p & |
---|
| 163 | ) |
---|
| 164 | ELSE |
---|
| 165 | ! |
---|
| 166 | !-- Unstable stratification |
---|
[187] | 167 | a = SQRT( SQRT( 1.0 - 16.0 * rif(j,i) ) ) |
---|
| 168 | b = SQRT( SQRT( 1.0 - 16.0 * rif(j,i) / z_p * z0(j,i) ) ) |
---|
| 169 | |
---|
| 170 | us(j,i) = kappa * uv_total / ( & |
---|
| 171 | LOG( z_p / z0(j,i) ) - & |
---|
| 172 | LOG( ( 1.0 + a )**2 * ( 1.0 + a**2 ) / ( & |
---|
| 173 | ( 1.0 + b )**2 * ( 1.0 + b**2 ) ) ) + & |
---|
| 174 | 2.0 * ( ATAN( a ) - ATAN( b ) ) & |
---|
| 175 | ) |
---|
[1] | 176 | ENDIF |
---|
| 177 | ENDDO |
---|
| 178 | ENDDO |
---|
| 179 | |
---|
| 180 | ! |
---|
[187] | 181 | !-- Values of us at ghost point locations are needed for the evaluation of usws |
---|
| 182 | !-- and vsws. |
---|
| 183 | CALL exchange_horiz_2d( us ) |
---|
| 184 | ! |
---|
[1] | 185 | !-- Compute u'w' for the total model domain. |
---|
| 186 | !-- First compute the corresponding component of u* and square it. |
---|
| 187 | !$OMP PARALLEL DO PRIVATE( a, b, k, rifm, z_p ) |
---|
| 188 | DO i = nxl, nxr |
---|
| 189 | DO j = nys, nyn |
---|
| 190 | |
---|
| 191 | k = nzb_u_inner(j,i) |
---|
| 192 | z_p = zu(k+1) - zw(k) |
---|
| 193 | |
---|
| 194 | ! |
---|
| 195 | !-- Compute Richardson-flux number for this point |
---|
| 196 | rifm = 0.5 * ( rif(j,i-1) + rif(j,i) ) |
---|
| 197 | IF ( rifm >= 0.0 ) THEN |
---|
| 198 | ! |
---|
| 199 | !-- Stable stratification |
---|
| 200 | usws(j,i) = kappa * u(k+1,j,i) / ( & |
---|
| 201 | LOG( z_p / z0(j,i) ) + & |
---|
| 202 | 5.0 * rifm * ( z_p - z0(j,i) ) / z_p & |
---|
| 203 | ) |
---|
| 204 | ELSE |
---|
| 205 | ! |
---|
| 206 | !-- Unstable stratification |
---|
[187] | 207 | a = SQRT( SQRT( 1.0 - 16.0 * rifm ) ) |
---|
| 208 | b = SQRT( SQRT( 1.0 - 16.0 * rifm / z_p * z0(j,i) ) ) |
---|
| 209 | |
---|
| 210 | usws(j,i) = kappa * u(k+1,j,i) / ( & |
---|
| 211 | LOG( z_p / z0(j,i) ) - & |
---|
| 212 | LOG( (1.0 + a )**2 * ( 1.0 + a**2 ) / ( & |
---|
| 213 | (1.0 + b )**2 * ( 1.0 + b**2 ) ) ) + & |
---|
| 214 | 2.0 * ( ATAN( a ) - ATAN( b ) ) & |
---|
[1] | 215 | ) |
---|
| 216 | ENDIF |
---|
[187] | 217 | usws(j,i) = -usws(j,i) * 0.5 * ( us(j,i-1) + us(j,i) ) |
---|
[1] | 218 | ENDDO |
---|
| 219 | ENDDO |
---|
| 220 | |
---|
| 221 | ! |
---|
| 222 | !-- Compute v'w' for the total model domain. |
---|
| 223 | !-- First compute the corresponding component of u* and square it. |
---|
| 224 | !$OMP PARALLEL DO PRIVATE( a, b, k, rifm, z_p ) |
---|
| 225 | DO i = nxl, nxr |
---|
| 226 | DO j = nys, nyn |
---|
| 227 | |
---|
| 228 | k = nzb_v_inner(j,i) |
---|
| 229 | z_p = zu(k+1) - zw(k) |
---|
| 230 | |
---|
| 231 | ! |
---|
| 232 | !-- Compute Richardson-flux number for this point |
---|
| 233 | rifm = 0.5 * ( rif(j-1,i) + rif(j,i) ) |
---|
| 234 | IF ( rifm >= 0.0 ) THEN |
---|
| 235 | ! |
---|
| 236 | !-- Stable stratification |
---|
| 237 | vsws(j,i) = kappa * v(k+1,j,i) / ( & |
---|
| 238 | LOG( z_p / z0(j,i) ) + & |
---|
| 239 | 5.0 * rifm * ( z_p - z0(j,i) ) / z_p & |
---|
| 240 | ) |
---|
| 241 | ELSE |
---|
| 242 | ! |
---|
| 243 | !-- Unstable stratification |
---|
[187] | 244 | a = SQRT( SQRT( 1.0 - 16.0 * rifm ) ) |
---|
| 245 | b = SQRT( SQRT( 1.0 - 16.0 * rifm / z_p * z0(j,i) ) ) |
---|
| 246 | |
---|
| 247 | vsws(j,i) = kappa * v(k+1,j,i) / ( & |
---|
| 248 | LOG( z_p / z0(j,i) ) - & |
---|
| 249 | LOG( (1.0 + a )**2 * ( 1.0 + a**2 ) / ( & |
---|
| 250 | (1.0 + b )**2 * ( 1.0 + b**2 ) ) ) + & |
---|
| 251 | 2.0 * ( ATAN( a ) - ATAN( b ) ) & |
---|
[1] | 252 | ) |
---|
| 253 | ENDIF |
---|
[187] | 254 | vsws(j,i) = -vsws(j,i) * 0.5 * ( us(j-1,i) + us(j,i) ) |
---|
[1] | 255 | ENDDO |
---|
| 256 | ENDDO |
---|
| 257 | |
---|
| 258 | ! |
---|
| 259 | !-- If required compute q* |
---|
[75] | 260 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 261 | IF ( constant_waterflux ) THEN |
---|
| 262 | ! |
---|
| 263 | !-- For a given water flux in the Prandtl layer: |
---|
| 264 | !$OMP PARALLEL DO |
---|
| 265 | DO i = nxl-1, nxr+1 |
---|
| 266 | DO j = nys-1, nyn+1 |
---|
| 267 | qs(j,i) = -qsws(j,i) / ( us(j,i) + 1E-30 ) |
---|
| 268 | ENDDO |
---|
| 269 | ENDDO |
---|
| 270 | |
---|
| 271 | ELSE |
---|
| 272 | !$OMP PARALLEL DO PRIVATE( a, b, k, z_p ) |
---|
| 273 | DO i = nxl-1, nxr+1 |
---|
| 274 | DO j = nys-1, nyn+1 |
---|
| 275 | |
---|
| 276 | k = nzb_s_inner(j,i) |
---|
| 277 | z_p = zu(k+1) - zw(k) |
---|
| 278 | |
---|
[108] | 279 | ! |
---|
| 280 | !-- assume saturation for atmosphere coupled to ocean |
---|
| 281 | IF ( coupling_mode == 'atmosphere_to_ocean' ) THEN |
---|
| 282 | e_q = 6.1 * & |
---|
| 283 | EXP( 0.07 * ( MIN(pt(0,j,i),pt(1,j,i)) - 273.15 ) ) |
---|
| 284 | q(k,j,i) = 0.622 * e_q / ( surface_pressure - e_q ) |
---|
| 285 | ENDIF |
---|
[1] | 286 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
| 287 | ! |
---|
| 288 | !-- Stable stratification |
---|
| 289 | qs(j,i) = kappa * ( q(k+1,j,i) - q(k,j,i) ) / ( & |
---|
| 290 | LOG( z_p / z0(j,i) ) + & |
---|
| 291 | 5.0 * rif(j,i) * ( z_p - z0(j,i) ) / z_p & |
---|
| 292 | ) |
---|
| 293 | ELSE |
---|
| 294 | ! |
---|
| 295 | !-- Unstable stratification |
---|
[187] | 296 | a = SQRT( 1.0 - 16.0 * rif(j,i) ) |
---|
| 297 | b = SQRT( 1.0 - 16.0 * rif(j,i) * z0(j,i) / z_p ) |
---|
| 298 | |
---|
| 299 | qs(j,i) = kappa * ( q(k+1,j,i) - q(k,j,i) ) / ( & |
---|
| 300 | LOG( z_p / z0(j,i) ) - & |
---|
| 301 | 2.0 * LOG( (1.0 + a ) / ( 1.0 + b ) ) ) |
---|
[1] | 302 | ENDIF |
---|
| 303 | |
---|
| 304 | ENDDO |
---|
| 305 | ENDDO |
---|
| 306 | ENDIF |
---|
| 307 | ENDIF |
---|
| 308 | |
---|
| 309 | ! |
---|
[187] | 310 | !-- Exchange the boundaries for the momentum fluxes (only for sake of |
---|
| 311 | !-- completeness) |
---|
[1] | 312 | CALL exchange_horiz_2d( usws ) |
---|
| 313 | CALL exchange_horiz_2d( vsws ) |
---|
[75] | 314 | IF ( humidity .OR. passive_scalar ) CALL exchange_horiz_2d( qsws ) |
---|
[1] | 315 | |
---|
| 316 | ! |
---|
| 317 | !-- Compute the vertical kinematic heat flux |
---|
| 318 | IF ( .NOT. constant_heatflux ) THEN |
---|
| 319 | !$OMP PARALLEL DO |
---|
| 320 | DO i = nxl-1, nxr+1 |
---|
| 321 | DO j = nys-1, nyn+1 |
---|
| 322 | shf(j,i) = -ts(j,i) * us(j,i) |
---|
| 323 | ENDDO |
---|
| 324 | ENDDO |
---|
| 325 | ENDIF |
---|
| 326 | |
---|
| 327 | ! |
---|
| 328 | !-- Compute the vertical water/scalar flux |
---|
[75] | 329 | IF ( .NOT. constant_heatflux .AND. ( humidity .OR. passive_scalar ) ) THEN |
---|
[1] | 330 | !$OMP PARALLEL DO |
---|
| 331 | DO i = nxl-1, nxr+1 |
---|
| 332 | DO j = nys-1, nyn+1 |
---|
| 333 | qsws(j,i) = -qs(j,i) * us(j,i) |
---|
| 334 | ENDDO |
---|
| 335 | ENDDO |
---|
| 336 | ENDIF |
---|
| 337 | |
---|
| 338 | ! |
---|
| 339 | !-- Bottom boundary condition for the TKE |
---|
| 340 | IF ( ibc_e_b == 2 ) THEN |
---|
| 341 | !$OMP PARALLEL DO |
---|
| 342 | DO i = nxl-1, nxr+1 |
---|
| 343 | DO j = nys-1, nyn+1 |
---|
| 344 | e(nzb_s_inner(j,i)+1,j,i) = ( us(j,i) / 0.1 )**2 |
---|
| 345 | ! |
---|
| 346 | !-- As a test: cm = 0.4 |
---|
| 347 | ! e(nzb_s_inner(j,i)+1,j,i) = ( us(j,i) / 0.4 )**2 |
---|
| 348 | e(nzb_s_inner(j,i),j,i) = e(nzb_s_inner(j,i)+1,j,i) |
---|
| 349 | ENDDO |
---|
| 350 | ENDDO |
---|
| 351 | ENDIF |
---|
| 352 | |
---|
| 353 | |
---|
| 354 | END SUBROUTINE prandtl_fluxes |
---|