[1] | 1 | SUBROUTINE prandtl_fluxes |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[187] | 6 | ! Bugfix: change definition of us_wall from 1D to 2D: |
---|
| 7 | ! Modification of the evaluation of the vertical turbulent momentum |
---|
| 8 | ! fluxes u'w' and v'w'; the first usws that is computed corresponds |
---|
| 9 | ! to -u'w'/u* and not as priorily assumed to (-u'w')**0.5, the first |
---|
| 10 | ! vsws that is computed corresponds to -v'w'/u* and not as priorily |
---|
| 11 | ! assumed to (-v'w')**0.5. Therefore, the intermediate result for |
---|
| 12 | ! usws has to be multiplied by -u* instead by itself in order to |
---|
| 13 | ! get u'w'. Accordingly, the intermediate result for vsws has to be |
---|
| 14 | ! multiplied by -u* instead by itself in order to get v'w'. As u* |
---|
| 15 | ! is calculated for the position of a scalar an additional |
---|
| 16 | ! interpolation of u* to the position of u and v, respectively, |
---|
| 17 | ! is necessary. As u* is not determined for the ghost points on |
---|
| 18 | ! each PE, an additional exchange of information from neighbouring |
---|
| 19 | ! PEs is necessary.! |
---|
| 20 | ! Change: Modification of the integrated version of the profile function for |
---|
| 21 | ! momentum for unstable stratification |
---|
[1] | 22 | ! |
---|
| 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
[3] | 25 | ! $Id: prandtl_fluxes.f90 187 2008-08-06 16:25:09Z letzel $ |
---|
[77] | 26 | ! |
---|
[110] | 27 | ! 108 2007-08-24 15:10:38Z letzel |
---|
| 28 | ! assume saturation at k=nzb_s_inner(j,i) for atmosphere coupled to ocean |
---|
| 29 | ! |
---|
[77] | 30 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 31 | ! moisture renamed humidity |
---|
| 32 | ! |
---|
[3] | 33 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 34 | ! |
---|
[1] | 35 | ! Revision 1.19 2006/04/26 12:24:35 raasch |
---|
| 36 | ! +OpenMP directives and optimization (array assignments replaced by DO loops) |
---|
| 37 | ! |
---|
| 38 | ! Revision 1.1 1998/01/23 10:06:06 raasch |
---|
| 39 | ! Initial revision |
---|
| 40 | ! |
---|
| 41 | ! |
---|
| 42 | ! Description: |
---|
| 43 | ! ------------ |
---|
| 44 | ! Diagnostic computation of vertical fluxes in the Prandtl layer from the |
---|
| 45 | ! values of the variables at grid point k=1 |
---|
| 46 | !------------------------------------------------------------------------------! |
---|
| 47 | |
---|
| 48 | USE arrays_3d |
---|
| 49 | USE control_parameters |
---|
| 50 | USE grid_variables |
---|
| 51 | USE indices |
---|
| 52 | |
---|
| 53 | IMPLICIT NONE |
---|
| 54 | |
---|
| 55 | INTEGER :: i, j, k |
---|
[108] | 56 | REAL :: a, b, e_q, rifm, uv_total, z_p |
---|
[1] | 57 | |
---|
| 58 | ! |
---|
| 59 | !-- Compute theta* |
---|
| 60 | IF ( constant_heatflux ) THEN |
---|
| 61 | ! |
---|
| 62 | !-- For a given heat flux in the Prandtl layer: |
---|
| 63 | !-- for u* use the value from the previous time step |
---|
| 64 | !$OMP PARALLEL DO |
---|
| 65 | DO i = nxl-1, nxr+1 |
---|
| 66 | DO j = nys-1, nyn+1 |
---|
| 67 | ts(j,i) = -shf(j,i) / ( us(j,i) + 1E-30 ) |
---|
| 68 | ! |
---|
| 69 | !-- ts must be limited, because otherwise overflow may occur in case of |
---|
| 70 | !-- us=0 when computing rif further below |
---|
| 71 | IF ( ts(j,i) < -1.05E5 ) ts = -1.0E5 |
---|
| 72 | IF ( ts(j,i) > 1.0E5 ) ts = 1.0E5 |
---|
| 73 | ENDDO |
---|
| 74 | ENDDO |
---|
| 75 | |
---|
| 76 | ELSE |
---|
| 77 | ! |
---|
| 78 | !-- For a given surface temperature: |
---|
| 79 | !-- (the Richardson number is still the one from the previous time step) |
---|
| 80 | !$OMP PARALLEL DO PRIVATE( a, b, k, z_p ) |
---|
| 81 | DO i = nxl-1, nxr+1 |
---|
| 82 | DO j = nys-1, nyn+1 |
---|
| 83 | |
---|
| 84 | k = nzb_s_inner(j,i) |
---|
| 85 | z_p = zu(k+1) - zw(k) |
---|
| 86 | |
---|
| 87 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
| 88 | ! |
---|
| 89 | !-- Stable stratification |
---|
| 90 | ts(j,i) = kappa * ( pt(k+1,j,i) - pt(k,j,i) ) / ( & |
---|
| 91 | LOG( z_p / z0(j,i) ) + & |
---|
| 92 | 5.0 * rif(j,i) * ( z_p - z0(j,i) ) / z_p & |
---|
| 93 | ) |
---|
| 94 | ELSE |
---|
| 95 | ! |
---|
| 96 | !-- Unstable stratification |
---|
| 97 | a = SQRT( 1.0 - 16.0 * rif(j,i) ) |
---|
[187] | 98 | b = SQRT( 1.0 - 16.0 * rif(j,i) * z0(j,i) / z_p ) |
---|
| 99 | |
---|
| 100 | ts(j,i) = kappa * ( pt(k+1,j,i) - pt(k,j,i) ) / ( & |
---|
| 101 | LOG( z_p / z0(j,i) ) - & |
---|
| 102 | 2.0 * LOG( ( 1.0 + a ) / ( 1.0 + b ) ) ) |
---|
[1] | 103 | ENDIF |
---|
| 104 | |
---|
| 105 | ENDDO |
---|
| 106 | ENDDO |
---|
| 107 | ENDIF |
---|
| 108 | |
---|
| 109 | ! |
---|
| 110 | !-- Compute z_p/L (corresponds to the Richardson-flux number) |
---|
[75] | 111 | IF ( .NOT. humidity ) THEN |
---|
[1] | 112 | !$OMP PARALLEL DO PRIVATE( k, z_p ) |
---|
| 113 | DO i = nxl-1, nxr+1 |
---|
| 114 | DO j = nys-1, nyn+1 |
---|
| 115 | k = nzb_s_inner(j,i) |
---|
| 116 | z_p = zu(k+1) - zw(k) |
---|
| 117 | rif(j,i) = z_p * kappa * g * ts(j,i) / & |
---|
| 118 | ( pt(k+1,j,i) * ( us(j,i)**2 + 1E-30 ) ) |
---|
| 119 | ! |
---|
| 120 | !-- Limit the value range of the Richardson numbers. |
---|
| 121 | !-- This is necessary for very small velocities (u,v --> 0), because |
---|
| 122 | !-- the absolute value of rif can then become very large, which in |
---|
| 123 | !-- consequence would result in very large shear stresses and very |
---|
| 124 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 125 | IF ( rif(j,i) < rif_min ) rif(j,i) = rif_min |
---|
| 126 | IF ( rif(j,i) > rif_max ) rif(j,i) = rif_max |
---|
| 127 | ENDDO |
---|
| 128 | ENDDO |
---|
| 129 | ELSE |
---|
| 130 | !$OMP PARALLEL DO PRIVATE( k, z_p ) |
---|
| 131 | DO i = nxl-1, nxr+1 |
---|
| 132 | DO j = nys-1, nyn+1 |
---|
| 133 | k = nzb_s_inner(j,i) |
---|
| 134 | z_p = zu(k+1) - zw(k) |
---|
| 135 | rif(j,i) = z_p * kappa * g * & |
---|
| 136 | ( ts(j,i) + 0.61 * pt(k+1,j,i) * qs(j,i) ) / & |
---|
| 137 | ( vpt(k+1,j,i) * ( us(j,i)**2 + 1E-30 ) ) |
---|
| 138 | ! |
---|
| 139 | !-- Limit the value range of the Richardson numbers. |
---|
| 140 | !-- This is necessary for very small velocities (u,v --> 0), because |
---|
| 141 | !-- the absolute value of rif can then become very large, which in |
---|
| 142 | !-- consequence would result in very large shear stresses and very |
---|
| 143 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 144 | IF ( rif(j,i) < rif_min ) rif(j,i) = rif_min |
---|
| 145 | IF ( rif(j,i) > rif_max ) rif(j,i) = rif_max |
---|
| 146 | ENDDO |
---|
| 147 | ENDDO |
---|
| 148 | ENDIF |
---|
| 149 | |
---|
| 150 | ! |
---|
| 151 | !-- Compute u* at the scalars' grid points |
---|
| 152 | !$OMP PARALLEL DO PRIVATE( a, b, k, uv_total, z_p ) |
---|
| 153 | DO i = nxl, nxr |
---|
| 154 | DO j = nys, nyn |
---|
| 155 | |
---|
| 156 | k = nzb_s_inner(j,i) |
---|
| 157 | z_p = zu(k+1) - zw(k) |
---|
| 158 | |
---|
| 159 | ! |
---|
| 160 | !-- Compute the absolute value of the horizontal velocity |
---|
| 161 | uv_total = SQRT( ( 0.5 * ( u(k+1,j,i) + u(k+1,j,i+1) ) )**2 + & |
---|
| 162 | ( 0.5 * ( v(k+1,j,i) + v(k+1,j+1,i) ) )**2 & |
---|
| 163 | ) |
---|
| 164 | |
---|
| 165 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
| 166 | ! |
---|
| 167 | !-- Stable stratification |
---|
| 168 | us(j,i) = kappa * uv_total / ( & |
---|
| 169 | LOG( z_p / z0(j,i) ) + & |
---|
| 170 | 5.0 * rif(j,i) * ( z_p - z0(j,i) ) / z_p & |
---|
| 171 | ) |
---|
| 172 | ELSE |
---|
| 173 | ! |
---|
| 174 | !-- Unstable stratification |
---|
[187] | 175 | a = SQRT( SQRT( 1.0 - 16.0 * rif(j,i) ) ) |
---|
| 176 | b = SQRT( SQRT( 1.0 - 16.0 * rif(j,i) / z_p * z0(j,i) ) ) |
---|
| 177 | |
---|
| 178 | us(j,i) = kappa * uv_total / ( & |
---|
| 179 | LOG( z_p / z0(j,i) ) - & |
---|
| 180 | LOG( ( 1.0 + a )**2 * ( 1.0 + a**2 ) / ( & |
---|
| 181 | ( 1.0 + b )**2 * ( 1.0 + b**2 ) ) ) + & |
---|
| 182 | 2.0 * ( ATAN( a ) - ATAN( b ) ) & |
---|
| 183 | ) |
---|
[1] | 184 | ENDIF |
---|
| 185 | ENDDO |
---|
| 186 | ENDDO |
---|
| 187 | |
---|
| 188 | ! |
---|
[187] | 189 | !-- Values of us at ghost point locations are needed for the evaluation of usws |
---|
| 190 | !-- and vsws. |
---|
| 191 | CALL exchange_horiz_2d( us ) |
---|
| 192 | ! |
---|
[1] | 193 | !-- Compute u'w' for the total model domain. |
---|
| 194 | !-- First compute the corresponding component of u* and square it. |
---|
| 195 | !$OMP PARALLEL DO PRIVATE( a, b, k, rifm, z_p ) |
---|
| 196 | DO i = nxl, nxr |
---|
| 197 | DO j = nys, nyn |
---|
| 198 | |
---|
| 199 | k = nzb_u_inner(j,i) |
---|
| 200 | z_p = zu(k+1) - zw(k) |
---|
| 201 | |
---|
| 202 | ! |
---|
| 203 | !-- Compute Richardson-flux number for this point |
---|
| 204 | rifm = 0.5 * ( rif(j,i-1) + rif(j,i) ) |
---|
| 205 | IF ( rifm >= 0.0 ) THEN |
---|
| 206 | ! |
---|
| 207 | !-- Stable stratification |
---|
| 208 | usws(j,i) = kappa * u(k+1,j,i) / ( & |
---|
| 209 | LOG( z_p / z0(j,i) ) + & |
---|
| 210 | 5.0 * rifm * ( z_p - z0(j,i) ) / z_p & |
---|
| 211 | ) |
---|
| 212 | ELSE |
---|
| 213 | ! |
---|
| 214 | !-- Unstable stratification |
---|
[187] | 215 | a = SQRT( SQRT( 1.0 - 16.0 * rifm ) ) |
---|
| 216 | b = SQRT( SQRT( 1.0 - 16.0 * rifm / z_p * z0(j,i) ) ) |
---|
| 217 | |
---|
| 218 | usws(j,i) = kappa * u(k+1,j,i) / ( & |
---|
| 219 | LOG( z_p / z0(j,i) ) - & |
---|
| 220 | LOG( (1.0 + a )**2 * ( 1.0 + a**2 ) / ( & |
---|
| 221 | (1.0 + b )**2 * ( 1.0 + b**2 ) ) ) + & |
---|
| 222 | 2.0 * ( ATAN( a ) - ATAN( b ) ) & |
---|
[1] | 223 | ) |
---|
| 224 | ENDIF |
---|
[187] | 225 | usws(j,i) = -usws(j,i) * 0.5 * ( us(j,i-1) + us(j,i) ) |
---|
[1] | 226 | ENDDO |
---|
| 227 | ENDDO |
---|
| 228 | |
---|
| 229 | ! |
---|
| 230 | !-- Compute v'w' for the total model domain. |
---|
| 231 | !-- First compute the corresponding component of u* and square it. |
---|
| 232 | !$OMP PARALLEL DO PRIVATE( a, b, k, rifm, z_p ) |
---|
| 233 | DO i = nxl, nxr |
---|
| 234 | DO j = nys, nyn |
---|
| 235 | |
---|
| 236 | k = nzb_v_inner(j,i) |
---|
| 237 | z_p = zu(k+1) - zw(k) |
---|
| 238 | |
---|
| 239 | ! |
---|
| 240 | !-- Compute Richardson-flux number for this point |
---|
| 241 | rifm = 0.5 * ( rif(j-1,i) + rif(j,i) ) |
---|
| 242 | IF ( rifm >= 0.0 ) THEN |
---|
| 243 | ! |
---|
| 244 | !-- Stable stratification |
---|
| 245 | vsws(j,i) = kappa * v(k+1,j,i) / ( & |
---|
| 246 | LOG( z_p / z0(j,i) ) + & |
---|
| 247 | 5.0 * rifm * ( z_p - z0(j,i) ) / z_p & |
---|
| 248 | ) |
---|
| 249 | ELSE |
---|
| 250 | ! |
---|
| 251 | !-- Unstable stratification |
---|
[187] | 252 | a = SQRT( SQRT( 1.0 - 16.0 * rifm ) ) |
---|
| 253 | b = SQRT( SQRT( 1.0 - 16.0 * rifm / z_p * z0(j,i) ) ) |
---|
| 254 | |
---|
| 255 | vsws(j,i) = kappa * v(k+1,j,i) / ( & |
---|
| 256 | LOG( z_p / z0(j,i) ) - & |
---|
| 257 | LOG( (1.0 + a )**2 * ( 1.0 + a**2 ) / ( & |
---|
| 258 | (1.0 + b )**2 * ( 1.0 + b**2 ) ) ) + & |
---|
| 259 | 2.0 * ( ATAN( a ) - ATAN( b ) ) & |
---|
[1] | 260 | ) |
---|
| 261 | ENDIF |
---|
[187] | 262 | vsws(j,i) = -vsws(j,i) * 0.5 * ( us(j-1,i) + us(j,i) ) |
---|
[1] | 263 | ENDDO |
---|
| 264 | ENDDO |
---|
| 265 | |
---|
| 266 | ! |
---|
| 267 | !-- If required compute q* |
---|
[75] | 268 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 269 | IF ( constant_waterflux ) THEN |
---|
| 270 | ! |
---|
| 271 | !-- For a given water flux in the Prandtl layer: |
---|
| 272 | !$OMP PARALLEL DO |
---|
| 273 | DO i = nxl-1, nxr+1 |
---|
| 274 | DO j = nys-1, nyn+1 |
---|
| 275 | qs(j,i) = -qsws(j,i) / ( us(j,i) + 1E-30 ) |
---|
| 276 | ENDDO |
---|
| 277 | ENDDO |
---|
| 278 | |
---|
| 279 | ELSE |
---|
| 280 | !$OMP PARALLEL DO PRIVATE( a, b, k, z_p ) |
---|
| 281 | DO i = nxl-1, nxr+1 |
---|
| 282 | DO j = nys-1, nyn+1 |
---|
| 283 | |
---|
| 284 | k = nzb_s_inner(j,i) |
---|
| 285 | z_p = zu(k+1) - zw(k) |
---|
| 286 | |
---|
[108] | 287 | ! |
---|
| 288 | !-- assume saturation for atmosphere coupled to ocean |
---|
| 289 | IF ( coupling_mode == 'atmosphere_to_ocean' ) THEN |
---|
| 290 | e_q = 6.1 * & |
---|
| 291 | EXP( 0.07 * ( MIN(pt(0,j,i),pt(1,j,i)) - 273.15 ) ) |
---|
| 292 | q(k,j,i) = 0.622 * e_q / ( surface_pressure - e_q ) |
---|
| 293 | ENDIF |
---|
[1] | 294 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
| 295 | ! |
---|
| 296 | !-- Stable stratification |
---|
| 297 | qs(j,i) = kappa * ( q(k+1,j,i) - q(k,j,i) ) / ( & |
---|
| 298 | LOG( z_p / z0(j,i) ) + & |
---|
| 299 | 5.0 * rif(j,i) * ( z_p - z0(j,i) ) / z_p & |
---|
| 300 | ) |
---|
| 301 | ELSE |
---|
| 302 | ! |
---|
| 303 | !-- Unstable stratification |
---|
[187] | 304 | a = SQRT( 1.0 - 16.0 * rif(j,i) ) |
---|
| 305 | b = SQRT( 1.0 - 16.0 * rif(j,i) * z0(j,i) / z_p ) |
---|
| 306 | |
---|
| 307 | qs(j,i) = kappa * ( q(k+1,j,i) - q(k,j,i) ) / ( & |
---|
| 308 | LOG( z_p / z0(j,i) ) - & |
---|
| 309 | 2.0 * LOG( (1.0 + a ) / ( 1.0 + b ) ) ) |
---|
[1] | 310 | ENDIF |
---|
| 311 | |
---|
| 312 | ENDDO |
---|
| 313 | ENDDO |
---|
| 314 | ENDIF |
---|
| 315 | ENDIF |
---|
| 316 | |
---|
| 317 | ! |
---|
[187] | 318 | !-- Exchange the boundaries for the momentum fluxes (only for sake of |
---|
| 319 | !-- completeness) |
---|
[1] | 320 | CALL exchange_horiz_2d( usws ) |
---|
| 321 | CALL exchange_horiz_2d( vsws ) |
---|
[75] | 322 | IF ( humidity .OR. passive_scalar ) CALL exchange_horiz_2d( qsws ) |
---|
[1] | 323 | |
---|
| 324 | ! |
---|
| 325 | !-- Compute the vertical kinematic heat flux |
---|
| 326 | IF ( .NOT. constant_heatflux ) THEN |
---|
| 327 | !$OMP PARALLEL DO |
---|
| 328 | DO i = nxl-1, nxr+1 |
---|
| 329 | DO j = nys-1, nyn+1 |
---|
| 330 | shf(j,i) = -ts(j,i) * us(j,i) |
---|
| 331 | ENDDO |
---|
| 332 | ENDDO |
---|
| 333 | ENDIF |
---|
| 334 | |
---|
| 335 | ! |
---|
| 336 | !-- Compute the vertical water/scalar flux |
---|
[75] | 337 | IF ( .NOT. constant_heatflux .AND. ( humidity .OR. passive_scalar ) ) THEN |
---|
[1] | 338 | !$OMP PARALLEL DO |
---|
| 339 | DO i = nxl-1, nxr+1 |
---|
| 340 | DO j = nys-1, nyn+1 |
---|
| 341 | qsws(j,i) = -qs(j,i) * us(j,i) |
---|
| 342 | ENDDO |
---|
| 343 | ENDDO |
---|
| 344 | ENDIF |
---|
| 345 | |
---|
| 346 | ! |
---|
| 347 | !-- Bottom boundary condition for the TKE |
---|
| 348 | IF ( ibc_e_b == 2 ) THEN |
---|
| 349 | !$OMP PARALLEL DO |
---|
| 350 | DO i = nxl-1, nxr+1 |
---|
| 351 | DO j = nys-1, nyn+1 |
---|
| 352 | e(nzb_s_inner(j,i)+1,j,i) = ( us(j,i) / 0.1 )**2 |
---|
| 353 | ! |
---|
| 354 | !-- As a test: cm = 0.4 |
---|
| 355 | ! e(nzb_s_inner(j,i)+1,j,i) = ( us(j,i) / 0.4 )**2 |
---|
| 356 | e(nzb_s_inner(j,i),j,i) = e(nzb_s_inner(j,i)+1,j,i) |
---|
| 357 | ENDDO |
---|
| 358 | ENDDO |
---|
| 359 | ENDIF |
---|
| 360 | |
---|
| 361 | |
---|
| 362 | END SUBROUTINE prandtl_fluxes |
---|