[1682] | 1 | !> @file prandtl_fluxes.f90 |
---|
[1036] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1310] | 16 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
[484] | 19 | ! Current revisions: |
---|
[1] | 20 | ! ----------------- |
---|
[1552] | 21 | ! |
---|
[1683] | 22 | ! |
---|
[1552] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: prandtl_fluxes.f90 1683 2015-10-07 23:57:51Z knoop $ |
---|
| 26 | ! |
---|
[1683] | 27 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 28 | ! Code annotations made doxygen readable |
---|
| 29 | ! |
---|
[1552] | 30 | ! 1551 2015-03-03 14:18:16Z maronga |
---|
[1551] | 31 | ! Removed land surface model part. The surface fluxes are now always calculated |
---|
| 32 | ! within prandtl_fluxes, based on the given surface temperature/humidity (which |
---|
| 33 | ! is either provided by the land surface model, by large scale forcing data, or |
---|
| 34 | ! directly prescribed by the user. |
---|
[1341] | 35 | ! |
---|
[1497] | 36 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
| 37 | ! Adapted for land surface model |
---|
| 38 | ! |
---|
[1495] | 39 | ! 1494 2014-11-21 17:14:03Z maronga |
---|
| 40 | ! Bugfixes: qs is now calculated before calculation of Rif. Ccalculation of |
---|
| 41 | ! buoyancy flux in Rif corrected (added missing humidity term), allow use of |
---|
| 42 | ! topography for coupled runs (not tested) |
---|
| 43 | ! |
---|
[1362] | 44 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 45 | ! Bugfix: calculation of turbulent fluxes of rain water content (qrsws) and rain |
---|
| 46 | ! drop concentration (nrsws) added |
---|
| 47 | ! |
---|
[1341] | 48 | ! 1340 2014-03-25 19:45:13Z kanani |
---|
| 49 | ! REAL constants defined as wp-kind |
---|
| 50 | ! |
---|
[1321] | 51 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 52 | ! ONLY-attribute added to USE-statements, |
---|
| 53 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 54 | ! kinds are defined in new module kinds, |
---|
| 55 | ! old module precision_kind is removed, |
---|
| 56 | ! revision history before 2012 removed, |
---|
| 57 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 58 | ! all variable declaration statements |
---|
[1] | 59 | ! |
---|
[1277] | 60 | ! 1276 2014-01-15 13:40:41Z heinze |
---|
| 61 | ! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars |
---|
| 62 | ! |
---|
[1258] | 63 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 64 | ! openACC "kernels do" replaced by "kernels loop", "loop independent" added |
---|
| 65 | ! |
---|
[1037] | 66 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 67 | ! code put under GPL (PALM 3.9) |
---|
| 68 | ! |
---|
[1017] | 69 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 70 | ! OpenACC statements added |
---|
| 71 | ! |
---|
[979] | 72 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 73 | ! roughness length for scalar quantities z0h added |
---|
| 74 | ! |
---|
[1] | 75 | ! Revision 1.1 1998/01/23 10:06:06 raasch |
---|
| 76 | ! Initial revision |
---|
| 77 | ! |
---|
| 78 | ! |
---|
| 79 | ! Description: |
---|
| 80 | ! ------------ |
---|
[1682] | 81 | !> Diagnostic computation of vertical fluxes in the Prandtl layer from the |
---|
| 82 | !> values of the variables at grid point k=1 |
---|
[1] | 83 | !------------------------------------------------------------------------------! |
---|
[1682] | 84 | SUBROUTINE prandtl_fluxes |
---|
| 85 | |
---|
[1] | 86 | |
---|
[1320] | 87 | USE arrays_3d, & |
---|
[1361] | 88 | ONLY: e, nr, nrs, nrsws, pt, q, qr, qrs, qrsws, qs, qsws, rif, shf, & |
---|
| 89 | ts, u, us, usws, v, vpt, vsws, zu, zw, z0, z0h |
---|
[1] | 90 | |
---|
[1320] | 91 | USE control_parameters, & |
---|
[1361] | 92 | ONLY: cloud_physics, constant_heatflux, constant_waterflux, & |
---|
| 93 | coupling_mode, g, humidity, ibc_e_b, icloud_scheme, kappa, & |
---|
| 94 | large_scale_forcing, lsf_surf, passive_scalar, precipitation, & |
---|
| 95 | pt_surface, q_surface, rif_max, rif_min, run_coupled, & |
---|
| 96 | surface_pressure |
---|
[1320] | 97 | |
---|
| 98 | USE indices, & |
---|
| 99 | ONLY: nxl, nxlg, nxr, nxrg, nys, nysg, nyn, nyng, nzb_s_inner, & |
---|
| 100 | nzb_u_inner, nzb_v_inner |
---|
| 101 | |
---|
| 102 | USE kinds |
---|
| 103 | |
---|
[1] | 104 | IMPLICIT NONE |
---|
| 105 | |
---|
[1682] | 106 | INTEGER(iwp) :: i !< |
---|
| 107 | INTEGER(iwp) :: j !< |
---|
| 108 | INTEGER(iwp) :: k !< |
---|
[1] | 109 | |
---|
[1682] | 110 | LOGICAL :: coupled_run !< |
---|
[1320] | 111 | |
---|
[1682] | 112 | REAL(wp) :: a !< |
---|
| 113 | REAL(wp) :: b !< |
---|
| 114 | REAL(wp) :: e_q !< |
---|
| 115 | REAL(wp) :: rifm !< |
---|
| 116 | REAL(wp) :: uv_total !< |
---|
| 117 | REAL(wp) :: z_p !< |
---|
[1320] | 118 | |
---|
[1015] | 119 | ! |
---|
| 120 | !-- Data information for accelerators |
---|
[1361] | 121 | !$acc data present( e, nrsws, nzb_u_inner, nzb_v_inner, nzb_s_inner, pt ) & |
---|
| 122 | !$acc present( q, qs, qsws, qrsws, rif, shf, ts, u, us, usws, v ) & |
---|
| 123 | !$acc present( vpt, vsws, zu, zw, z0, z0h ) |
---|
[667] | 124 | ! |
---|
[1] | 125 | !-- Compute theta* |
---|
| 126 | IF ( constant_heatflux ) THEN |
---|
[1496] | 127 | |
---|
[1] | 128 | ! |
---|
| 129 | !-- For a given heat flux in the Prandtl layer: |
---|
| 130 | !-- for u* use the value from the previous time step |
---|
| 131 | !$OMP PARALLEL DO |
---|
[1257] | 132 | !$acc kernels loop |
---|
[667] | 133 | DO i = nxlg, nxrg |
---|
| 134 | DO j = nysg, nyng |
---|
[1340] | 135 | ts(j,i) = -shf(j,i) / ( us(j,i) + 1E-30_wp ) |
---|
[1] | 136 | ! |
---|
| 137 | !-- ts must be limited, because otherwise overflow may occur in case of |
---|
| 138 | !-- us=0 when computing rif further below |
---|
[1340] | 139 | IF ( ts(j,i) < -1.05E5_wp ) ts(j,i) = -1.0E5_wp |
---|
| 140 | IF ( ts(j,i) > 1.0E5_wp ) ts(j,i) = 1.0E5_wp |
---|
[1] | 141 | ENDDO |
---|
| 142 | ENDDO |
---|
| 143 | |
---|
| 144 | ELSE |
---|
| 145 | ! |
---|
| 146 | !-- For a given surface temperature: |
---|
[1496] | 147 | !-- (the Richardson number is still the one from the previous time step) |
---|
[1276] | 148 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[1496] | 149 | !$OMP PARALLEL DO |
---|
| 150 | !$acc kernels loop |
---|
| 151 | DO i = nxlg, nxrg |
---|
| 152 | DO j = nysg, nyng |
---|
| 153 | k = nzb_s_inner(j,i) |
---|
| 154 | pt(k,j,i) = pt_surface |
---|
| 155 | ENDDO |
---|
| 156 | ENDDO |
---|
[1276] | 157 | ENDIF |
---|
| 158 | |
---|
[1] | 159 | !$OMP PARALLEL DO PRIVATE( a, b, k, z_p ) |
---|
[1257] | 160 | !$acc kernels loop |
---|
[667] | 161 | DO i = nxlg, nxrg |
---|
| 162 | DO j = nysg, nyng |
---|
[1] | 163 | |
---|
| 164 | k = nzb_s_inner(j,i) |
---|
| 165 | z_p = zu(k+1) - zw(k) |
---|
| 166 | |
---|
[1340] | 167 | IF ( rif(j,i) >= 0.0_wp ) THEN |
---|
[1] | 168 | ! |
---|
| 169 | !-- Stable stratification |
---|
[978] | 170 | ts(j,i) = kappa * ( pt(k+1,j,i) - pt(k,j,i) ) / ( & |
---|
| 171 | LOG( z_p / z0h(j,i) ) + & |
---|
[1340] | 172 | 5.0_wp * rif(j,i) * ( z_p - z0h(j,i) ) / z_p & |
---|
[1] | 173 | ) |
---|
| 174 | ELSE |
---|
| 175 | ! |
---|
| 176 | !-- Unstable stratification |
---|
[1340] | 177 | a = SQRT( 1.0_wp - 16.0_wp * rif(j,i) ) |
---|
| 178 | b = SQRT( 1.0_wp - 16.0_wp * rif(j,i) * z0h(j,i) / z_p ) |
---|
[187] | 179 | |
---|
[1494] | 180 | ts(j,i) = kappa * ( pt(k+1,j,i) - pt(k,j,i) ) / ( & |
---|
| 181 | LOG( z_p / z0h(j,i) ) - & |
---|
[1340] | 182 | 2.0_wp * LOG( ( 1.0_wp + a ) / ( 1.0_wp + b ) ) ) |
---|
[1] | 183 | ENDIF |
---|
| 184 | |
---|
| 185 | ENDDO |
---|
| 186 | ENDDO |
---|
| 187 | ENDIF |
---|
| 188 | |
---|
| 189 | ! |
---|
[1494] | 190 | !-- If required compute q* |
---|
| 191 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 192 | IF ( constant_waterflux ) THEN |
---|
| 193 | ! |
---|
| 194 | !-- For a given water flux in the Prandtl layer: |
---|
| 195 | !$OMP PARALLEL DO |
---|
| 196 | !$acc kernels loop |
---|
| 197 | DO i = nxlg, nxrg |
---|
| 198 | DO j = nysg, nyng |
---|
| 199 | qs(j,i) = -qsws(j,i) / ( us(j,i) + 1E-30_wp ) |
---|
| 200 | ENDDO |
---|
| 201 | ENDDO |
---|
| 202 | |
---|
| 203 | ELSE |
---|
| 204 | coupled_run = ( coupling_mode == 'atmosphere_to_ocean' .AND. run_coupled ) |
---|
| 205 | |
---|
| 206 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[1496] | 207 | !$OMP PARALLEL DO |
---|
| 208 | !$acc kernels loop |
---|
| 209 | DO i = nxlg, nxrg |
---|
| 210 | DO j = nysg, nyng |
---|
| 211 | k = nzb_s_inner(j,i) |
---|
| 212 | q(k,j,i) = q_surface |
---|
| 213 | ENDDO |
---|
| 214 | ENDDO |
---|
[1494] | 215 | ENDIF |
---|
| 216 | |
---|
| 217 | !$OMP PARALLEL DO PRIVATE( a, b, k, z_p ) |
---|
| 218 | !$acc kernels loop independent |
---|
| 219 | DO i = nxlg, nxrg |
---|
| 220 | !$acc loop independent |
---|
| 221 | DO j = nysg, nyng |
---|
| 222 | |
---|
| 223 | k = nzb_s_inner(j,i) |
---|
| 224 | z_p = zu(k+1) - zw(k) |
---|
| 225 | |
---|
| 226 | ! |
---|
| 227 | !-- Assume saturation for atmosphere coupled to ocean (but not |
---|
| 228 | !-- in case of precursor runs) |
---|
| 229 | IF ( coupled_run ) THEN |
---|
| 230 | e_q = 6.1_wp * & |
---|
| 231 | EXP( 0.07_wp * ( MIN(pt(k,j,i),pt(k+1,j,i)) - 273.15_wp ) ) |
---|
| 232 | q(k,j,i) = 0.622_wp * e_q / ( surface_pressure - e_q ) |
---|
| 233 | ENDIF |
---|
| 234 | IF ( rif(j,i) >= 0.0_wp ) THEN |
---|
| 235 | ! |
---|
| 236 | !-- Stable stratification |
---|
| 237 | qs(j,i) = kappa * ( q(k+1,j,i) - q(k,j,i) ) / ( & |
---|
| 238 | LOG( z_p / z0h(j,i) ) + & |
---|
| 239 | 5.0_wp * rif(j,i) * ( z_p - z0h(j,i) ) / z_p & |
---|
| 240 | ) |
---|
| 241 | ELSE |
---|
| 242 | ! |
---|
| 243 | !-- Unstable stratification |
---|
| 244 | a = SQRT( 1.0_wp - 16.0_wp * rif(j,i) ) |
---|
| 245 | b = SQRT( 1.0_wp - 16.0_wp * rif(j,i) * z0h(j,i) / z_p ) |
---|
| 246 | |
---|
| 247 | qs(j,i) = kappa * ( q(k+1,j,i) - q(k,j,i) ) / ( & |
---|
| 248 | LOG( z_p / z0h(j,i) ) - & |
---|
| 249 | 2.0_wp * LOG( (1.0_wp + a ) / ( 1.0_wp + b ) ) ) |
---|
| 250 | ENDIF |
---|
| 251 | |
---|
| 252 | ENDDO |
---|
| 253 | ENDDO |
---|
| 254 | ENDIF |
---|
| 255 | ENDIF |
---|
| 256 | |
---|
| 257 | ! |
---|
[1] | 258 | !-- Compute z_p/L (corresponds to the Richardson-flux number) |
---|
[75] | 259 | IF ( .NOT. humidity ) THEN |
---|
[1] | 260 | !$OMP PARALLEL DO PRIVATE( k, z_p ) |
---|
[1257] | 261 | !$acc kernels loop |
---|
[667] | 262 | DO i = nxlg, nxrg |
---|
| 263 | DO j = nysg, nyng |
---|
[1] | 264 | k = nzb_s_inner(j,i) |
---|
| 265 | z_p = zu(k+1) - zw(k) |
---|
| 266 | rif(j,i) = z_p * kappa * g * ts(j,i) / & |
---|
[1340] | 267 | ( pt(k+1,j,i) * ( us(j,i)**2 + 1E-30_wp ) ) |
---|
[1] | 268 | ! |
---|
| 269 | !-- Limit the value range of the Richardson numbers. |
---|
| 270 | !-- This is necessary for very small velocities (u,v --> 0), because |
---|
| 271 | !-- the absolute value of rif can then become very large, which in |
---|
| 272 | !-- consequence would result in very large shear stresses and very |
---|
| 273 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 274 | IF ( rif(j,i) < rif_min ) rif(j,i) = rif_min |
---|
| 275 | IF ( rif(j,i) > rif_max ) rif(j,i) = rif_max |
---|
| 276 | ENDDO |
---|
| 277 | ENDDO |
---|
| 278 | ELSE |
---|
| 279 | !$OMP PARALLEL DO PRIVATE( k, z_p ) |
---|
[1257] | 280 | !$acc kernels loop |
---|
[667] | 281 | DO i = nxlg, nxrg |
---|
| 282 | DO j = nysg, nyng |
---|
[1] | 283 | k = nzb_s_inner(j,i) |
---|
| 284 | z_p = zu(k+1) - zw(k) |
---|
[1494] | 285 | rif(j,i) = z_p * kappa * g * & |
---|
| 286 | ( ts(j,i) + 0.61_wp * pt(k+1,j,i) * qs(j,i) + 0.61_wp & |
---|
| 287 | * q(k+1,j,i) * ts(j,i)) / & |
---|
[1340] | 288 | ( vpt(k+1,j,i) * ( us(j,i)**2 + 1E-30_wp ) ) |
---|
[1] | 289 | ! |
---|
| 290 | !-- Limit the value range of the Richardson numbers. |
---|
| 291 | !-- This is necessary for very small velocities (u,v --> 0), because |
---|
| 292 | !-- the absolute value of rif can then become very large, which in |
---|
| 293 | !-- consequence would result in very large shear stresses and very |
---|
| 294 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 295 | IF ( rif(j,i) < rif_min ) rif(j,i) = rif_min |
---|
| 296 | IF ( rif(j,i) > rif_max ) rif(j,i) = rif_max |
---|
| 297 | ENDDO |
---|
| 298 | ENDDO |
---|
| 299 | ENDIF |
---|
| 300 | |
---|
| 301 | ! |
---|
| 302 | !-- Compute u* at the scalars' grid points |
---|
| 303 | !$OMP PARALLEL DO PRIVATE( a, b, k, uv_total, z_p ) |
---|
[1257] | 304 | !$acc kernels loop |
---|
[1] | 305 | DO i = nxl, nxr |
---|
| 306 | DO j = nys, nyn |
---|
| 307 | |
---|
| 308 | k = nzb_s_inner(j,i) |
---|
| 309 | z_p = zu(k+1) - zw(k) |
---|
| 310 | |
---|
| 311 | ! |
---|
[667] | 312 | !-- Compute the absolute value of the horizontal velocity |
---|
| 313 | !-- (relative to the surface) |
---|
[1494] | 314 | uv_total = SQRT( ( 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) & |
---|
| 315 | - u(k,j,i) - u(k,j,i+1) ) )**2 + & |
---|
| 316 | ( 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) & |
---|
[1340] | 317 | - v(k,j,i) - v(k,j+1,i) ) )**2 ) |
---|
[1] | 318 | |
---|
[667] | 319 | |
---|
[1340] | 320 | IF ( rif(j,i) >= 0.0_wp ) THEN |
---|
[1] | 321 | ! |
---|
| 322 | !-- Stable stratification |
---|
[1494] | 323 | us(j,i) = kappa * uv_total / ( & |
---|
| 324 | LOG( z_p / z0(j,i) ) + & |
---|
| 325 | 5.0_wp * rif(j,i) * ( z_p - z0(j,i) ) / z_p & |
---|
[1] | 326 | ) |
---|
| 327 | ELSE |
---|
| 328 | ! |
---|
| 329 | !-- Unstable stratification |
---|
[1340] | 330 | a = SQRT( SQRT( 1.0_wp - 16.0_wp * rif(j,i) ) ) |
---|
| 331 | b = SQRT( SQRT( 1.0_wp - 16.0_wp * rif(j,i) / z_p * z0(j,i) ) ) |
---|
[187] | 332 | |
---|
[1494] | 333 | us(j,i) = kappa * uv_total / ( & |
---|
| 334 | LOG( z_p / z0(j,i) ) - & |
---|
| 335 | LOG( ( 1.0_wp + a )**2 * ( 1.0_wp + a**2 ) / ( & |
---|
| 336 | ( 1.0_wp + b )**2 * ( 1.0_wp + b**2 ) ) ) + & |
---|
| 337 | 2.0_wp * ( ATAN( a ) - ATAN( b ) ) & |
---|
[187] | 338 | ) |
---|
[1] | 339 | ENDIF |
---|
| 340 | ENDDO |
---|
| 341 | ENDDO |
---|
| 342 | |
---|
| 343 | ! |
---|
[187] | 344 | !-- Values of us at ghost point locations are needed for the evaluation of usws |
---|
| 345 | !-- and vsws. |
---|
[1015] | 346 | !$acc update host( us ) |
---|
[187] | 347 | CALL exchange_horiz_2d( us ) |
---|
[1015] | 348 | !$acc update device( us ) |
---|
| 349 | |
---|
[187] | 350 | ! |
---|
[1] | 351 | !-- Compute u'w' for the total model domain. |
---|
| 352 | !-- First compute the corresponding component of u* and square it. |
---|
| 353 | !$OMP PARALLEL DO PRIVATE( a, b, k, rifm, z_p ) |
---|
[1257] | 354 | !$acc kernels loop |
---|
[1] | 355 | DO i = nxl, nxr |
---|
| 356 | DO j = nys, nyn |
---|
| 357 | |
---|
| 358 | k = nzb_u_inner(j,i) |
---|
| 359 | z_p = zu(k+1) - zw(k) |
---|
| 360 | |
---|
| 361 | ! |
---|
| 362 | !-- Compute Richardson-flux number for this point |
---|
[1340] | 363 | rifm = 0.5_wp * ( rif(j,i-1) + rif(j,i) ) |
---|
| 364 | IF ( rifm >= 0.0_wp ) THEN |
---|
[1] | 365 | ! |
---|
| 366 | !-- Stable stratification |
---|
[1494] | 367 | usws(j,i) = kappa * ( u(k+1,j,i) - u(k,j,i) )/ ( & |
---|
| 368 | LOG( z_p / z0(j,i) ) + & |
---|
| 369 | 5.0_wp * rifm * ( z_p - z0(j,i) ) / z_p & |
---|
[1340] | 370 | ) |
---|
[1] | 371 | ELSE |
---|
| 372 | ! |
---|
| 373 | !-- Unstable stratification |
---|
[1340] | 374 | a = SQRT( SQRT( 1.0_wp - 16.0_wp * rifm ) ) |
---|
| 375 | b = SQRT( SQRT( 1.0_wp - 16.0_wp * rifm / z_p * z0(j,i) ) ) |
---|
[187] | 376 | |
---|
[1494] | 377 | usws(j,i) = kappa * ( u(k+1,j,i) - u(k,j,i) ) / ( & |
---|
| 378 | LOG( z_p / z0(j,i) ) - & |
---|
| 379 | LOG( (1.0_wp + a )**2 * ( 1.0_wp + a**2 ) / ( & |
---|
| 380 | (1.0_wp + b )**2 * ( 1.0_wp + b**2 ) ) ) + & |
---|
| 381 | 2.0_wp * ( ATAN( a ) - ATAN( b ) ) & |
---|
[1] | 382 | ) |
---|
| 383 | ENDIF |
---|
[1340] | 384 | usws(j,i) = -usws(j,i) * 0.5_wp * ( us(j,i-1) + us(j,i) ) |
---|
[1] | 385 | ENDDO |
---|
| 386 | ENDDO |
---|
| 387 | |
---|
| 388 | ! |
---|
| 389 | !-- Compute v'w' for the total model domain. |
---|
| 390 | !-- First compute the corresponding component of u* and square it. |
---|
| 391 | !$OMP PARALLEL DO PRIVATE( a, b, k, rifm, z_p ) |
---|
[1257] | 392 | !$acc kernels loop |
---|
[1] | 393 | DO i = nxl, nxr |
---|
| 394 | DO j = nys, nyn |
---|
| 395 | |
---|
| 396 | k = nzb_v_inner(j,i) |
---|
| 397 | z_p = zu(k+1) - zw(k) |
---|
| 398 | |
---|
| 399 | ! |
---|
| 400 | !-- Compute Richardson-flux number for this point |
---|
[1340] | 401 | rifm = 0.5_wp * ( rif(j-1,i) + rif(j,i) ) |
---|
| 402 | IF ( rifm >= 0.0_wp ) THEN |
---|
[1] | 403 | ! |
---|
| 404 | !-- Stable stratification |
---|
[1494] | 405 | vsws(j,i) = kappa * ( v(k+1,j,i) - v(k,j,i) ) / ( & |
---|
| 406 | LOG( z_p / z0(j,i) ) + & |
---|
| 407 | 5.0_wp * rifm * ( z_p - z0(j,i) ) / z_p & |
---|
[1340] | 408 | ) |
---|
[1] | 409 | ELSE |
---|
| 410 | ! |
---|
| 411 | !-- Unstable stratification |
---|
[1340] | 412 | a = SQRT( SQRT( 1.0_wp - 16.0_wp * rifm ) ) |
---|
| 413 | b = SQRT( SQRT( 1.0_wp - 16.0_wp * rifm / z_p * z0(j,i) ) ) |
---|
[187] | 414 | |
---|
[1494] | 415 | vsws(j,i) = kappa * ( v(k+1,j,i) - v(k,j,i) ) / ( & |
---|
| 416 | LOG( z_p / z0(j,i) ) - & |
---|
| 417 | LOG( (1.0_wp + a )**2 * ( 1.0_wp + a**2 ) / ( & |
---|
| 418 | (1.0_wp + b )**2 * ( 1.0_wp + b**2 ) ) ) + & |
---|
| 419 | 2.0_wp * ( ATAN( a ) - ATAN( b ) ) & |
---|
[1] | 420 | ) |
---|
| 421 | ENDIF |
---|
[1340] | 422 | vsws(j,i) = -vsws(j,i) * 0.5_wp * ( us(j-1,i) + us(j,i) ) |
---|
[1] | 423 | ENDDO |
---|
| 424 | ENDDO |
---|
| 425 | |
---|
| 426 | ! |
---|
[1494] | 427 | !-- If required compute qr* and nr* |
---|
| 428 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
[1276] | 429 | |
---|
[1494] | 430 | !$OMP PARALLEL DO PRIVATE( a, b, k, z_p ) |
---|
| 431 | !$acc kernels loop independent |
---|
| 432 | DO i = nxlg, nxrg |
---|
| 433 | !$acc loop independent |
---|
| 434 | DO j = nysg, nyng |
---|
[1276] | 435 | |
---|
[1494] | 436 | k = nzb_s_inner(j,i) |
---|
| 437 | z_p = zu(k+1) - zw(k) |
---|
[1] | 438 | |
---|
[1494] | 439 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
[108] | 440 | ! |
---|
[1494] | 441 | !-- Stable stratification |
---|
| 442 | qrs(j,i) = kappa * ( qr(k+1,j,i) - qr(k,j,i) ) / ( & |
---|
| 443 | LOG( z_p / z0h(j,i) ) + & |
---|
| 444 | 5.0 * rif(j,i) * ( z_p - z0h(j,i) ) / z_p ) |
---|
| 445 | nrs(j,i) = kappa * ( nr(k+1,j,i) - nr(k,j,i) ) / ( & |
---|
| 446 | LOG( z_p / z0h(j,i) ) + & |
---|
| 447 | 5.0 * rif(j,i) * ( z_p - z0h(j,i) ) / z_p ) |
---|
[1] | 448 | |
---|
[1494] | 449 | ELSE |
---|
[1361] | 450 | ! |
---|
[1494] | 451 | !-- Unstable stratification |
---|
| 452 | a = SQRT( 1.0 - 16.0 * rif(j,i) ) |
---|
| 453 | b = SQRT( 1.0 - 16.0 * rif(j,i) * z0h(j,i) / z_p ) |
---|
[1361] | 454 | |
---|
[1494] | 455 | qrs(j,i) = kappa * ( qr(k+1,j,i) - qr(k,j,i) ) / ( & |
---|
| 456 | LOG( z_p / z0h(j,i) ) - & |
---|
| 457 | 2.0 * LOG( (1.0 + a ) / ( 1.0 + b ) ) ) |
---|
| 458 | nrs(j,i) = kappa * ( nr(k+1,j,i) - nr(k,j,i) ) / ( & |
---|
| 459 | LOG( z_p / z0h(j,i) ) - & |
---|
| 460 | 2.0 * LOG( (1.0 + a ) / ( 1.0 + b ) ) ) |
---|
[1361] | 461 | |
---|
[1494] | 462 | ENDIF |
---|
[1361] | 463 | |
---|
| 464 | ENDDO |
---|
[1494] | 465 | ENDDO |
---|
[1361] | 466 | |
---|
[1] | 467 | ENDIF |
---|
| 468 | |
---|
| 469 | ! |
---|
[187] | 470 | !-- Exchange the boundaries for the momentum fluxes (only for sake of |
---|
| 471 | !-- completeness) |
---|
[1015] | 472 | !$acc update host( usws, vsws ) |
---|
[1] | 473 | CALL exchange_horiz_2d( usws ) |
---|
| 474 | CALL exchange_horiz_2d( vsws ) |
---|
[1015] | 475 | !$acc update device( usws, vsws ) |
---|
| 476 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 477 | !$acc update host( qsws ) |
---|
| 478 | CALL exchange_horiz_2d( qsws ) |
---|
| 479 | !$acc update device( qsws ) |
---|
[1361] | 480 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 481 | precipitation ) THEN |
---|
| 482 | !$acc update host( qrsws, nrsws ) |
---|
| 483 | CALL exchange_horiz_2d( qrsws ) |
---|
| 484 | CALL exchange_horiz_2d( nrsws ) |
---|
| 485 | !$acc update device( qrsws, nrsws ) |
---|
| 486 | ENDIF |
---|
[1015] | 487 | ENDIF |
---|
[1] | 488 | |
---|
| 489 | ! |
---|
| 490 | !-- Compute the vertical kinematic heat flux |
---|
[1551] | 491 | IF ( .NOT. constant_heatflux ) THEN |
---|
[1] | 492 | !$OMP PARALLEL DO |
---|
[1257] | 493 | !$acc kernels loop independent |
---|
[667] | 494 | DO i = nxlg, nxrg |
---|
[1257] | 495 | !$acc loop independent |
---|
[667] | 496 | DO j = nysg, nyng |
---|
[1] | 497 | shf(j,i) = -ts(j,i) * us(j,i) |
---|
| 498 | ENDDO |
---|
| 499 | ENDDO |
---|
| 500 | ENDIF |
---|
| 501 | |
---|
| 502 | ! |
---|
| 503 | !-- Compute the vertical water/scalar flux |
---|
[1551] | 504 | IF ( .NOT. constant_waterflux .AND. ( humidity .OR. passive_scalar ) ) THEN |
---|
[1] | 505 | !$OMP PARALLEL DO |
---|
[1257] | 506 | !$acc kernels loop independent |
---|
[667] | 507 | DO i = nxlg, nxrg |
---|
[1257] | 508 | !$acc loop independent |
---|
[667] | 509 | DO j = nysg, nyng |
---|
[1] | 510 | qsws(j,i) = -qs(j,i) * us(j,i) |
---|
| 511 | ENDDO |
---|
| 512 | ENDDO |
---|
| 513 | ENDIF |
---|
| 514 | |
---|
| 515 | ! |
---|
[1361] | 516 | !-- Compute (turbulent) fluxes of rain water content and rain drop concentartion |
---|
| 517 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 518 | !$OMP PARALLEL DO |
---|
| 519 | !$acc kernels loop independent |
---|
| 520 | DO i = nxlg, nxrg |
---|
| 521 | !$acc loop independent |
---|
| 522 | DO j = nysg, nyng |
---|
| 523 | qrsws(j,i) = -qrs(j,i) * us(j,i) |
---|
| 524 | nrsws(j,i) = -nrs(j,i) * us(j,i) |
---|
| 525 | ENDDO |
---|
| 526 | ENDDO |
---|
| 527 | ENDIF |
---|
| 528 | |
---|
| 529 | ! |
---|
[1] | 530 | !-- Bottom boundary condition for the TKE |
---|
| 531 | IF ( ibc_e_b == 2 ) THEN |
---|
| 532 | !$OMP PARALLEL DO |
---|
[1257] | 533 | !$acc kernels loop independent |
---|
[667] | 534 | DO i = nxlg, nxrg |
---|
[1257] | 535 | !$acc loop independent |
---|
[667] | 536 | DO j = nysg, nyng |
---|
[1340] | 537 | e(nzb_s_inner(j,i)+1,j,i) = ( us(j,i) / 0.1_wp )**2 |
---|
[1] | 538 | ! |
---|
| 539 | !-- As a test: cm = 0.4 |
---|
[1340] | 540 | ! e(nzb_s_inner(j,i)+1,j,i) = ( us(j,i) / 0.4_wp )**2 |
---|
[1] | 541 | e(nzb_s_inner(j,i),j,i) = e(nzb_s_inner(j,i)+1,j,i) |
---|
| 542 | ENDDO |
---|
| 543 | ENDDO |
---|
| 544 | ENDIF |
---|
| 545 | |
---|
[1015] | 546 | !$acc end data |
---|
[1] | 547 | |
---|
| 548 | END SUBROUTINE prandtl_fluxes |
---|