[1] | 1 | SUBROUTINE prandtl_fluxes |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1341] | 22 | ! |
---|
[1362] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: prandtl_fluxes.f90 1362 2014-04-16 15:19:12Z raasch $ |
---|
| 27 | ! |
---|
[1362] | 28 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 29 | ! Bugfix: calculation of turbulent fluxes of rain water content (qrsws) and rain |
---|
| 30 | ! drop concentration (nrsws) added |
---|
| 31 | ! |
---|
[1341] | 32 | ! 1340 2014-03-25 19:45:13Z kanani |
---|
| 33 | ! REAL constants defined as wp-kind |
---|
| 34 | ! |
---|
[1321] | 35 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 36 | ! ONLY-attribute added to USE-statements, |
---|
| 37 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 38 | ! kinds are defined in new module kinds, |
---|
| 39 | ! old module precision_kind is removed, |
---|
| 40 | ! revision history before 2012 removed, |
---|
| 41 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 42 | ! all variable declaration statements |
---|
[1] | 43 | ! |
---|
[1277] | 44 | ! 1276 2014-01-15 13:40:41Z heinze |
---|
| 45 | ! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars |
---|
| 46 | ! |
---|
[1258] | 47 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 48 | ! openACC "kernels do" replaced by "kernels loop", "loop independent" added |
---|
| 49 | ! |
---|
[1037] | 50 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 51 | ! code put under GPL (PALM 3.9) |
---|
| 52 | ! |
---|
[1017] | 53 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 54 | ! OpenACC statements added |
---|
| 55 | ! |
---|
[979] | 56 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 57 | ! roughness length for scalar quantities z0h added |
---|
| 58 | ! |
---|
[1] | 59 | ! Revision 1.1 1998/01/23 10:06:06 raasch |
---|
| 60 | ! Initial revision |
---|
| 61 | ! |
---|
| 62 | ! |
---|
| 63 | ! Description: |
---|
| 64 | ! ------------ |
---|
| 65 | ! Diagnostic computation of vertical fluxes in the Prandtl layer from the |
---|
| 66 | ! values of the variables at grid point k=1 |
---|
| 67 | !------------------------------------------------------------------------------! |
---|
| 68 | |
---|
[1320] | 69 | USE arrays_3d, & |
---|
[1361] | 70 | ONLY: e, nr, nrs, nrsws, pt, q, qr, qrs, qrsws, qs, qsws, rif, shf, & |
---|
| 71 | ts, u, us, usws, v, vpt, vsws, zu, zw, z0, z0h |
---|
[1] | 72 | |
---|
[1320] | 73 | USE control_parameters, & |
---|
[1361] | 74 | ONLY: cloud_physics, constant_heatflux, constant_waterflux, & |
---|
| 75 | coupling_mode, g, humidity, ibc_e_b, icloud_scheme, kappa, & |
---|
| 76 | large_scale_forcing, lsf_surf, passive_scalar, precipitation, & |
---|
| 77 | pt_surface, q_surface, rif_max, rif_min, run_coupled, & |
---|
| 78 | surface_pressure |
---|
[1320] | 79 | |
---|
| 80 | USE indices, & |
---|
| 81 | ONLY: nxl, nxlg, nxr, nxrg, nys, nysg, nyn, nyng, nzb_s_inner, & |
---|
| 82 | nzb_u_inner, nzb_v_inner |
---|
| 83 | |
---|
| 84 | USE kinds |
---|
| 85 | |
---|
[1] | 86 | IMPLICIT NONE |
---|
| 87 | |
---|
[1320] | 88 | INTEGER(iwp) :: i !: |
---|
| 89 | INTEGER(iwp) :: j !: |
---|
| 90 | INTEGER(iwp) :: k !: |
---|
[1] | 91 | |
---|
[1320] | 92 | LOGICAL :: coupled_run !: |
---|
| 93 | |
---|
| 94 | REAL(wp) :: a !: |
---|
| 95 | REAL(wp) :: b !: |
---|
| 96 | REAL(wp) :: e_q !: |
---|
| 97 | REAL(wp) :: rifm !: |
---|
| 98 | REAL(wp) :: uv_total !: |
---|
| 99 | REAL(wp) :: z_p !: |
---|
| 100 | |
---|
[1015] | 101 | ! |
---|
| 102 | !-- Data information for accelerators |
---|
[1361] | 103 | !$acc data present( e, nrsws, nzb_u_inner, nzb_v_inner, nzb_s_inner, pt ) & |
---|
| 104 | !$acc present( q, qs, qsws, qrsws, rif, shf, ts, u, us, usws, v ) & |
---|
| 105 | !$acc present( vpt, vsws, zu, zw, z0, z0h ) |
---|
[667] | 106 | ! |
---|
[1] | 107 | !-- Compute theta* |
---|
| 108 | IF ( constant_heatflux ) THEN |
---|
| 109 | ! |
---|
| 110 | !-- For a given heat flux in the Prandtl layer: |
---|
| 111 | !-- for u* use the value from the previous time step |
---|
| 112 | !$OMP PARALLEL DO |
---|
[1257] | 113 | !$acc kernels loop |
---|
[667] | 114 | DO i = nxlg, nxrg |
---|
| 115 | DO j = nysg, nyng |
---|
[1340] | 116 | ts(j,i) = -shf(j,i) / ( us(j,i) + 1E-30_wp ) |
---|
[1] | 117 | ! |
---|
| 118 | !-- ts must be limited, because otherwise overflow may occur in case of |
---|
| 119 | !-- us=0 when computing rif further below |
---|
[1340] | 120 | IF ( ts(j,i) < -1.05E5_wp ) ts(j,i) = -1.0E5_wp |
---|
| 121 | IF ( ts(j,i) > 1.0E5_wp ) ts(j,i) = 1.0E5_wp |
---|
[1] | 122 | ENDDO |
---|
| 123 | ENDDO |
---|
| 124 | |
---|
| 125 | ELSE |
---|
| 126 | ! |
---|
| 127 | !-- For a given surface temperature: |
---|
| 128 | !-- (the Richardson number is still the one from the previous time step) |
---|
[1276] | 129 | |
---|
| 130 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
| 131 | pt(0,:,:) = pt_surface |
---|
| 132 | ENDIF |
---|
| 133 | |
---|
[1] | 134 | !$OMP PARALLEL DO PRIVATE( a, b, k, z_p ) |
---|
[1257] | 135 | !$acc kernels loop |
---|
[667] | 136 | DO i = nxlg, nxrg |
---|
| 137 | DO j = nysg, nyng |
---|
[1] | 138 | |
---|
| 139 | k = nzb_s_inner(j,i) |
---|
| 140 | z_p = zu(k+1) - zw(k) |
---|
| 141 | |
---|
[1340] | 142 | IF ( rif(j,i) >= 0.0_wp ) THEN |
---|
[1] | 143 | ! |
---|
| 144 | !-- Stable stratification |
---|
[978] | 145 | ts(j,i) = kappa * ( pt(k+1,j,i) - pt(k,j,i) ) / ( & |
---|
| 146 | LOG( z_p / z0h(j,i) ) + & |
---|
[1340] | 147 | 5.0_wp * rif(j,i) * ( z_p - z0h(j,i) ) / z_p & |
---|
[1] | 148 | ) |
---|
| 149 | ELSE |
---|
| 150 | ! |
---|
| 151 | !-- Unstable stratification |
---|
[1340] | 152 | a = SQRT( 1.0_wp - 16.0_wp * rif(j,i) ) |
---|
| 153 | b = SQRT( 1.0_wp - 16.0_wp * rif(j,i) * z0h(j,i) / z_p ) |
---|
[187] | 154 | |
---|
[978] | 155 | ts(j,i) = kappa * ( pt(k+1,j,i) - pt(k,j,i) ) / ( & |
---|
| 156 | LOG( z_p / z0h(j,i) ) - & |
---|
[1340] | 157 | 2.0_wp * LOG( ( 1.0_wp + a ) / ( 1.0_wp + b ) ) ) |
---|
[1] | 158 | ENDIF |
---|
| 159 | |
---|
| 160 | ENDDO |
---|
| 161 | ENDDO |
---|
| 162 | ENDIF |
---|
| 163 | |
---|
| 164 | ! |
---|
| 165 | !-- Compute z_p/L (corresponds to the Richardson-flux number) |
---|
[75] | 166 | IF ( .NOT. humidity ) THEN |
---|
[1] | 167 | !$OMP PARALLEL DO PRIVATE( k, z_p ) |
---|
[1257] | 168 | !$acc kernels loop |
---|
[667] | 169 | DO i = nxlg, nxrg |
---|
| 170 | DO j = nysg, nyng |
---|
[1] | 171 | k = nzb_s_inner(j,i) |
---|
| 172 | z_p = zu(k+1) - zw(k) |
---|
| 173 | rif(j,i) = z_p * kappa * g * ts(j,i) / & |
---|
[1340] | 174 | ( pt(k+1,j,i) * ( us(j,i)**2 + 1E-30_wp ) ) |
---|
[1] | 175 | ! |
---|
| 176 | !-- Limit the value range of the Richardson numbers. |
---|
| 177 | !-- This is necessary for very small velocities (u,v --> 0), because |
---|
| 178 | !-- the absolute value of rif can then become very large, which in |
---|
| 179 | !-- consequence would result in very large shear stresses and very |
---|
| 180 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 181 | IF ( rif(j,i) < rif_min ) rif(j,i) = rif_min |
---|
| 182 | IF ( rif(j,i) > rif_max ) rif(j,i) = rif_max |
---|
| 183 | ENDDO |
---|
| 184 | ENDDO |
---|
| 185 | ELSE |
---|
| 186 | !$OMP PARALLEL DO PRIVATE( k, z_p ) |
---|
[1257] | 187 | !$acc kernels loop |
---|
[667] | 188 | DO i = nxlg, nxrg |
---|
| 189 | DO j = nysg, nyng |
---|
[1] | 190 | k = nzb_s_inner(j,i) |
---|
| 191 | z_p = zu(k+1) - zw(k) |
---|
| 192 | rif(j,i) = z_p * kappa * g * & |
---|
[1340] | 193 | ( ts(j,i) + 0.61_wp * pt(k+1,j,i) * qs(j,i) ) / & |
---|
| 194 | ( vpt(k+1,j,i) * ( us(j,i)**2 + 1E-30_wp ) ) |
---|
[1] | 195 | ! |
---|
| 196 | !-- Limit the value range of the Richardson numbers. |
---|
| 197 | !-- This is necessary for very small velocities (u,v --> 0), because |
---|
| 198 | !-- the absolute value of rif can then become very large, which in |
---|
| 199 | !-- consequence would result in very large shear stresses and very |
---|
| 200 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 201 | IF ( rif(j,i) < rif_min ) rif(j,i) = rif_min |
---|
| 202 | IF ( rif(j,i) > rif_max ) rif(j,i) = rif_max |
---|
| 203 | ENDDO |
---|
| 204 | ENDDO |
---|
| 205 | ENDIF |
---|
| 206 | |
---|
| 207 | ! |
---|
| 208 | !-- Compute u* at the scalars' grid points |
---|
| 209 | !$OMP PARALLEL DO PRIVATE( a, b, k, uv_total, z_p ) |
---|
[1257] | 210 | !$acc kernels loop |
---|
[1] | 211 | DO i = nxl, nxr |
---|
| 212 | DO j = nys, nyn |
---|
| 213 | |
---|
| 214 | k = nzb_s_inner(j,i) |
---|
| 215 | z_p = zu(k+1) - zw(k) |
---|
| 216 | |
---|
| 217 | ! |
---|
[667] | 218 | !-- Compute the absolute value of the horizontal velocity |
---|
| 219 | !-- (relative to the surface) |
---|
[1340] | 220 | uv_total = SQRT( ( 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) & |
---|
| 221 | - u(k,j,i) - u(k,j,i+1) ) )**2 + & |
---|
| 222 | ( 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) & |
---|
| 223 | - v(k,j,i) - v(k,j+1,i) ) )**2 ) |
---|
[1] | 224 | |
---|
[667] | 225 | |
---|
[1340] | 226 | IF ( rif(j,i) >= 0.0_wp ) THEN |
---|
[1] | 227 | ! |
---|
| 228 | !-- Stable stratification |
---|
| 229 | us(j,i) = kappa * uv_total / ( & |
---|
| 230 | LOG( z_p / z0(j,i) ) + & |
---|
[1340] | 231 | 5.0_wp * rif(j,i) * ( z_p - z0(j,i) ) / z_p & |
---|
[1] | 232 | ) |
---|
| 233 | ELSE |
---|
| 234 | ! |
---|
| 235 | !-- Unstable stratification |
---|
[1340] | 236 | a = SQRT( SQRT( 1.0_wp - 16.0_wp * rif(j,i) ) ) |
---|
| 237 | b = SQRT( SQRT( 1.0_wp - 16.0_wp * rif(j,i) / z_p * z0(j,i) ) ) |
---|
[187] | 238 | |
---|
| 239 | us(j,i) = kappa * uv_total / ( & |
---|
| 240 | LOG( z_p / z0(j,i) ) - & |
---|
[1340] | 241 | LOG( ( 1.0_wp + a )**2 * ( 1.0_wp + a**2 ) / ( & |
---|
| 242 | ( 1.0_wp + b )**2 * ( 1.0_wp + b**2 ) ) ) + & |
---|
| 243 | 2.0_wp * ( ATAN( a ) - ATAN( b ) ) & |
---|
[187] | 244 | ) |
---|
[1] | 245 | ENDIF |
---|
| 246 | ENDDO |
---|
| 247 | ENDDO |
---|
| 248 | |
---|
| 249 | ! |
---|
[187] | 250 | !-- Values of us at ghost point locations are needed for the evaluation of usws |
---|
| 251 | !-- and vsws. |
---|
[1015] | 252 | !$acc update host( us ) |
---|
[187] | 253 | CALL exchange_horiz_2d( us ) |
---|
[1015] | 254 | !$acc update device( us ) |
---|
| 255 | |
---|
[187] | 256 | ! |
---|
[1] | 257 | !-- Compute u'w' for the total model domain. |
---|
| 258 | !-- First compute the corresponding component of u* and square it. |
---|
| 259 | !$OMP PARALLEL DO PRIVATE( a, b, k, rifm, z_p ) |
---|
[1257] | 260 | !$acc kernels loop |
---|
[1] | 261 | DO i = nxl, nxr |
---|
| 262 | DO j = nys, nyn |
---|
| 263 | |
---|
| 264 | k = nzb_u_inner(j,i) |
---|
| 265 | z_p = zu(k+1) - zw(k) |
---|
| 266 | |
---|
| 267 | ! |
---|
| 268 | !-- Compute Richardson-flux number for this point |
---|
[1340] | 269 | rifm = 0.5_wp * ( rif(j,i-1) + rif(j,i) ) |
---|
| 270 | IF ( rifm >= 0.0_wp ) THEN |
---|
[1] | 271 | ! |
---|
| 272 | !-- Stable stratification |
---|
[667] | 273 | usws(j,i) = kappa * ( u(k+1,j,i) - u(k,j,i) )/ ( & |
---|
[1] | 274 | LOG( z_p / z0(j,i) ) + & |
---|
[1340] | 275 | 5.0_wp * rifm * ( z_p - z0(j,i) ) / z_p & |
---|
| 276 | ) |
---|
[1] | 277 | ELSE |
---|
| 278 | ! |
---|
| 279 | !-- Unstable stratification |
---|
[1340] | 280 | a = SQRT( SQRT( 1.0_wp - 16.0_wp * rifm ) ) |
---|
| 281 | b = SQRT( SQRT( 1.0_wp - 16.0_wp * rifm / z_p * z0(j,i) ) ) |
---|
[187] | 282 | |
---|
[667] | 283 | usws(j,i) = kappa * ( u(k+1,j,i) - u(k,j,i) ) / ( & |
---|
[187] | 284 | LOG( z_p / z0(j,i) ) - & |
---|
[1340] | 285 | LOG( (1.0_wp + a )**2 * ( 1.0_wp + a**2 ) / ( & |
---|
| 286 | (1.0_wp + b )**2 * ( 1.0_wp + b**2 ) ) ) + & |
---|
| 287 | 2.0_wp * ( ATAN( a ) - ATAN( b ) ) & |
---|
[1] | 288 | ) |
---|
| 289 | ENDIF |
---|
[1340] | 290 | usws(j,i) = -usws(j,i) * 0.5_wp * ( us(j,i-1) + us(j,i) ) |
---|
[1] | 291 | ENDDO |
---|
| 292 | ENDDO |
---|
| 293 | |
---|
| 294 | ! |
---|
| 295 | !-- Compute v'w' for the total model domain. |
---|
| 296 | !-- First compute the corresponding component of u* and square it. |
---|
| 297 | !$OMP PARALLEL DO PRIVATE( a, b, k, rifm, z_p ) |
---|
[1257] | 298 | !$acc kernels loop |
---|
[1] | 299 | DO i = nxl, nxr |
---|
| 300 | DO j = nys, nyn |
---|
| 301 | |
---|
| 302 | k = nzb_v_inner(j,i) |
---|
| 303 | z_p = zu(k+1) - zw(k) |
---|
| 304 | |
---|
| 305 | ! |
---|
| 306 | !-- Compute Richardson-flux number for this point |
---|
[1340] | 307 | rifm = 0.5_wp * ( rif(j-1,i) + rif(j,i) ) |
---|
| 308 | IF ( rifm >= 0.0_wp ) THEN |
---|
[1] | 309 | ! |
---|
| 310 | !-- Stable stratification |
---|
[667] | 311 | vsws(j,i) = kappa * ( v(k+1,j,i) - v(k,j,i) ) / ( & |
---|
[1] | 312 | LOG( z_p / z0(j,i) ) + & |
---|
[1340] | 313 | 5.0_wp * rifm * ( z_p - z0(j,i) ) / z_p & |
---|
| 314 | ) |
---|
[1] | 315 | ELSE |
---|
| 316 | ! |
---|
| 317 | !-- Unstable stratification |
---|
[1340] | 318 | a = SQRT( SQRT( 1.0_wp - 16.0_wp * rifm ) ) |
---|
| 319 | b = SQRT( SQRT( 1.0_wp - 16.0_wp * rifm / z_p * z0(j,i) ) ) |
---|
[187] | 320 | |
---|
[667] | 321 | vsws(j,i) = kappa * ( v(k+1,j,i) - v(k,j,i) ) / ( & |
---|
[187] | 322 | LOG( z_p / z0(j,i) ) - & |
---|
[1340] | 323 | LOG( (1.0_wp + a )**2 * ( 1.0_wp + a**2 ) / ( & |
---|
| 324 | (1.0_wp + b )**2 * ( 1.0_wp + b**2 ) ) ) + & |
---|
| 325 | 2.0_wp * ( ATAN( a ) - ATAN( b ) ) & |
---|
[1] | 326 | ) |
---|
| 327 | ENDIF |
---|
[1340] | 328 | vsws(j,i) = -vsws(j,i) * 0.5_wp * ( us(j-1,i) + us(j,i) ) |
---|
[1] | 329 | ENDDO |
---|
| 330 | ENDDO |
---|
| 331 | |
---|
| 332 | ! |
---|
| 333 | !-- If required compute q* |
---|
[75] | 334 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 335 | IF ( constant_waterflux ) THEN |
---|
| 336 | ! |
---|
| 337 | !-- For a given water flux in the Prandtl layer: |
---|
| 338 | !$OMP PARALLEL DO |
---|
[1257] | 339 | !$acc kernels loop |
---|
[667] | 340 | DO i = nxlg, nxrg |
---|
| 341 | DO j = nysg, nyng |
---|
[1340] | 342 | qs(j,i) = -qsws(j,i) / ( us(j,i) + 1E-30_wp ) |
---|
[1] | 343 | ENDDO |
---|
| 344 | ENDDO |
---|
| 345 | |
---|
[1015] | 346 | ELSE |
---|
| 347 | coupled_run = ( coupling_mode == 'atmosphere_to_ocean' .AND. run_coupled ) |
---|
[1276] | 348 | |
---|
| 349 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
| 350 | q(0,:,:) = q_surface |
---|
| 351 | ENDIF |
---|
| 352 | |
---|
[1] | 353 | !$OMP PARALLEL DO PRIVATE( a, b, k, z_p ) |
---|
[1257] | 354 | !$acc kernels loop independent |
---|
[667] | 355 | DO i = nxlg, nxrg |
---|
[1257] | 356 | !$acc loop independent |
---|
[667] | 357 | DO j = nysg, nyng |
---|
[1] | 358 | |
---|
| 359 | k = nzb_s_inner(j,i) |
---|
| 360 | z_p = zu(k+1) - zw(k) |
---|
| 361 | |
---|
[108] | 362 | ! |
---|
[291] | 363 | !-- Assume saturation for atmosphere coupled to ocean (but not |
---|
| 364 | !-- in case of precursor runs) |
---|
[1015] | 365 | IF ( coupled_run ) THEN |
---|
[1340] | 366 | e_q = 6.1_wp * & |
---|
| 367 | EXP( 0.07_wp * ( MIN(pt(0,j,i),pt(1,j,i)) - 273.15_wp ) ) |
---|
| 368 | q(k,j,i) = 0.622_wp * e_q / ( surface_pressure - e_q ) |
---|
[108] | 369 | ENDIF |
---|
[1340] | 370 | IF ( rif(j,i) >= 0.0_wp ) THEN |
---|
[1] | 371 | ! |
---|
| 372 | !-- Stable stratification |
---|
[978] | 373 | qs(j,i) = kappa * ( q(k+1,j,i) - q(k,j,i) ) / ( & |
---|
| 374 | LOG( z_p / z0h(j,i) ) + & |
---|
[1340] | 375 | 5.0_wp * rif(j,i) * ( z_p - z0h(j,i) ) / z_p & |
---|
[1] | 376 | ) |
---|
| 377 | ELSE |
---|
| 378 | ! |
---|
| 379 | !-- Unstable stratification |
---|
[1340] | 380 | a = SQRT( 1.0_wp - 16.0_wp * rif(j,i) ) |
---|
| 381 | b = SQRT( 1.0_wp - 16.0_wp * rif(j,i) * z0h(j,i) / z_p ) |
---|
[187] | 382 | |
---|
[978] | 383 | qs(j,i) = kappa * ( q(k+1,j,i) - q(k,j,i) ) / ( & |
---|
| 384 | LOG( z_p / z0h(j,i) ) - & |
---|
[1340] | 385 | 2.0_wp * LOG( (1.0_wp + a ) / ( 1.0_wp + b ) ) ) |
---|
[1] | 386 | ENDIF |
---|
| 387 | |
---|
| 388 | ENDDO |
---|
| 389 | ENDDO |
---|
| 390 | ENDIF |
---|
[1361] | 391 | |
---|
| 392 | IF ( cloud_physics .AND. icloud_scheme == 0 & |
---|
| 393 | .AND. precipitation ) THEN |
---|
| 394 | |
---|
| 395 | !$OMP PARALLEL DO PRIVATE( a, b, k, z_p ) |
---|
| 396 | !$acc kernels loop independent |
---|
| 397 | DO i = nxlg, nxrg |
---|
| 398 | !$acc loop independent |
---|
| 399 | DO j = nysg, nyng |
---|
| 400 | |
---|
| 401 | k = nzb_s_inner(j,i) |
---|
| 402 | z_p = zu(k+1) - zw(k) |
---|
| 403 | |
---|
| 404 | IF ( rif(j,i) >= 0.0 ) THEN |
---|
| 405 | ! |
---|
| 406 | !-- Stable stratification |
---|
| 407 | qrs(j,i) = kappa * ( qr(k+1,j,i) - qr(k,j,i) ) / ( & |
---|
| 408 | LOG( z_p / z0h(j,i) ) + & |
---|
| 409 | 5.0 * rif(j,i) * ( z_p - z0h(j,i) ) / z_p ) |
---|
| 410 | nrs(j,i) = kappa * ( nr(k+1,j,i) - nr(k,j,i) ) / ( & |
---|
| 411 | LOG( z_p / z0h(j,i) ) + & |
---|
| 412 | 5.0 * rif(j,i) * ( z_p - z0h(j,i) ) / z_p ) |
---|
| 413 | |
---|
| 414 | ELSE |
---|
| 415 | ! |
---|
| 416 | !-- Unstable stratification |
---|
| 417 | a = SQRT( 1.0 - 16.0 * rif(j,i) ) |
---|
| 418 | b = SQRT( 1.0 - 16.0 * rif(j,i) * z0h(j,i) / z_p ) |
---|
| 419 | |
---|
| 420 | qrs(j,i) = kappa * ( qr(k+1,j,i) - qr(k,j,i) ) / ( & |
---|
| 421 | LOG( z_p / z0h(j,i) ) - & |
---|
| 422 | 2.0 * LOG( (1.0 + a ) / ( 1.0 + b ) ) ) |
---|
| 423 | nrs(j,i) = kappa * ( nr(k+1,j,i) - nr(k,j,i) ) / ( & |
---|
| 424 | LOG( z_p / z0h(j,i) ) - & |
---|
| 425 | 2.0 * LOG( (1.0 + a ) / ( 1.0 + b ) ) ) |
---|
| 426 | |
---|
| 427 | ENDIF |
---|
| 428 | |
---|
| 429 | ENDDO |
---|
| 430 | ENDDO |
---|
| 431 | |
---|
| 432 | ENDIF |
---|
| 433 | |
---|
[1] | 434 | ENDIF |
---|
| 435 | |
---|
| 436 | ! |
---|
[187] | 437 | !-- Exchange the boundaries for the momentum fluxes (only for sake of |
---|
| 438 | !-- completeness) |
---|
[1015] | 439 | !$acc update host( usws, vsws ) |
---|
[1] | 440 | CALL exchange_horiz_2d( usws ) |
---|
| 441 | CALL exchange_horiz_2d( vsws ) |
---|
[1015] | 442 | !$acc update device( usws, vsws ) |
---|
| 443 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 444 | !$acc update host( qsws ) |
---|
| 445 | CALL exchange_horiz_2d( qsws ) |
---|
| 446 | !$acc update device( qsws ) |
---|
[1361] | 447 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 448 | precipitation ) THEN |
---|
| 449 | !$acc update host( qrsws, nrsws ) |
---|
| 450 | CALL exchange_horiz_2d( qrsws ) |
---|
| 451 | CALL exchange_horiz_2d( nrsws ) |
---|
| 452 | !$acc update device( qrsws, nrsws ) |
---|
| 453 | ENDIF |
---|
[1015] | 454 | ENDIF |
---|
[1] | 455 | |
---|
| 456 | ! |
---|
| 457 | !-- Compute the vertical kinematic heat flux |
---|
| 458 | IF ( .NOT. constant_heatflux ) THEN |
---|
| 459 | !$OMP PARALLEL DO |
---|
[1257] | 460 | !$acc kernels loop independent |
---|
[667] | 461 | DO i = nxlg, nxrg |
---|
[1257] | 462 | !$acc loop independent |
---|
[667] | 463 | DO j = nysg, nyng |
---|
[1] | 464 | shf(j,i) = -ts(j,i) * us(j,i) |
---|
| 465 | ENDDO |
---|
| 466 | ENDDO |
---|
| 467 | ENDIF |
---|
| 468 | |
---|
| 469 | ! |
---|
| 470 | !-- Compute the vertical water/scalar flux |
---|
[315] | 471 | IF ( .NOT. constant_waterflux .AND. ( humidity .OR. passive_scalar ) ) THEN |
---|
[1] | 472 | !$OMP PARALLEL DO |
---|
[1257] | 473 | !$acc kernels loop independent |
---|
[667] | 474 | DO i = nxlg, nxrg |
---|
[1257] | 475 | !$acc loop independent |
---|
[667] | 476 | DO j = nysg, nyng |
---|
[1] | 477 | qsws(j,i) = -qs(j,i) * us(j,i) |
---|
| 478 | ENDDO |
---|
| 479 | ENDDO |
---|
| 480 | ENDIF |
---|
| 481 | |
---|
| 482 | ! |
---|
[1361] | 483 | !-- Compute (turbulent) fluxes of rain water content and rain drop concentartion |
---|
| 484 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 485 | !$OMP PARALLEL DO |
---|
| 486 | !$acc kernels loop independent |
---|
| 487 | DO i = nxlg, nxrg |
---|
| 488 | !$acc loop independent |
---|
| 489 | DO j = nysg, nyng |
---|
| 490 | qrsws(j,i) = -qrs(j,i) * us(j,i) |
---|
| 491 | nrsws(j,i) = -nrs(j,i) * us(j,i) |
---|
| 492 | ENDDO |
---|
| 493 | ENDDO |
---|
| 494 | ENDIF |
---|
| 495 | |
---|
| 496 | ! |
---|
[1] | 497 | !-- Bottom boundary condition for the TKE |
---|
| 498 | IF ( ibc_e_b == 2 ) THEN |
---|
| 499 | !$OMP PARALLEL DO |
---|
[1257] | 500 | !$acc kernels loop independent |
---|
[667] | 501 | DO i = nxlg, nxrg |
---|
[1257] | 502 | !$acc loop independent |
---|
[667] | 503 | DO j = nysg, nyng |
---|
[1340] | 504 | e(nzb_s_inner(j,i)+1,j,i) = ( us(j,i) / 0.1_wp )**2 |
---|
[1] | 505 | ! |
---|
| 506 | !-- As a test: cm = 0.4 |
---|
[1340] | 507 | ! e(nzb_s_inner(j,i)+1,j,i) = ( us(j,i) / 0.4_wp )**2 |
---|
[1] | 508 | e(nzb_s_inner(j,i),j,i) = e(nzb_s_inner(j,i)+1,j,i) |
---|
| 509 | ENDDO |
---|
| 510 | ENDDO |
---|
| 511 | ENDIF |
---|
| 512 | |
---|
[1015] | 513 | !$acc end data |
---|
[1] | 514 | |
---|
| 515 | END SUBROUTINE prandtl_fluxes |
---|