1 | !> @file poismg.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: poismg_mod.f90 4360 2020-01-07 11:25:50Z knoop $ |
---|
27 | ! Corrected "Former revisions" section |
---|
28 | ! |
---|
29 | ! 3725 2019-02-07 10:11:02Z raasch |
---|
30 | ! unused subroutine removed |
---|
31 | ! |
---|
32 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
33 | ! unnecessary check eliminated |
---|
34 | ! |
---|
35 | ! Following optimisations have been made: |
---|
36 | ! - vectorisation (for Intel-CPUs) of the red-black algorithm by resorting |
---|
37 | ! array elements with even and odd indices |
---|
38 | ! - explicit boundary conditions for building walls removed (solver is |
---|
39 | ! running through the buildings |
---|
40 | ! - reduced data transfer in case of ghost point exchange, because only |
---|
41 | ! "red" or "black" data points need to be exchanged. This is not applied |
---|
42 | ! for coarser grid levels, since for then the transfer time is latency bound |
---|
43 | ! |
---|
44 | ! |
---|
45 | ! Description: |
---|
46 | ! ------------ |
---|
47 | !> Solves the Poisson equation for the perturbation pressure with a multigrid |
---|
48 | !> V- or W-Cycle scheme. |
---|
49 | !> |
---|
50 | !> This multigrid method was originally developed for PALM by Joerg Uhlenbrock, |
---|
51 | !> September 2000 - July 2001. It has been optimised for speed by Klaus |
---|
52 | !> Ketelsen in November 2014. |
---|
53 | !> |
---|
54 | !> @attention Loop unrolling and cache optimization in SOR-Red/Black method |
---|
55 | !> still does not give the expected speedup! |
---|
56 | !> |
---|
57 | !> @todo Further work required. |
---|
58 | !------------------------------------------------------------------------------! |
---|
59 | MODULE poismg_mod |
---|
60 | |
---|
61 | USE control_parameters, & |
---|
62 | ONLY: bc_dirichlet_l, bc_dirichlet_n, bc_dirichlet_r, & |
---|
63 | bc_dirichlet_s, bc_radiation_l, bc_radiation_n, bc_radiation_r, & |
---|
64 | bc_radiation_s, grid_level, nesting_offline |
---|
65 | |
---|
66 | USE cpulog, & |
---|
67 | ONLY: cpu_log, log_point_s |
---|
68 | |
---|
69 | USE kinds |
---|
70 | |
---|
71 | USE pegrid |
---|
72 | |
---|
73 | PRIVATE |
---|
74 | |
---|
75 | INTEGER, SAVE :: ind_even_odd !< border index between even and odd k index |
---|
76 | INTEGER, DIMENSION(:), SAVE, ALLOCATABLE :: even_odd_level !< stores ind_even_odd for all MG levels |
---|
77 | |
---|
78 | REAL(wp), DIMENSION(:,:), SAVE, ALLOCATABLE :: f1_mg_b, f2_mg_b, f3_mg_b !< blocked version of f1_mg ... |
---|
79 | |
---|
80 | INTERFACE poismg |
---|
81 | MODULE PROCEDURE poismg |
---|
82 | END INTERFACE poismg |
---|
83 | |
---|
84 | INTERFACE sort_k_to_even_odd_blocks |
---|
85 | MODULE PROCEDURE sort_k_to_even_odd_blocks |
---|
86 | ! MODULE PROCEDURE sort_k_to_even_odd_blocks_int |
---|
87 | MODULE PROCEDURE sort_k_to_even_odd_blocks_1d |
---|
88 | END INTERFACE sort_k_to_even_odd_blocks |
---|
89 | |
---|
90 | PUBLIC poismg |
---|
91 | |
---|
92 | CONTAINS |
---|
93 | |
---|
94 | !------------------------------------------------------------------------------! |
---|
95 | ! Description: |
---|
96 | ! ------------ |
---|
97 | !> Solves the Poisson equation for the perturbation pressure with a multigrid |
---|
98 | !> V- or W-Cycle scheme. |
---|
99 | !------------------------------------------------------------------------------! |
---|
100 | SUBROUTINE poismg( r ) |
---|
101 | |
---|
102 | USE arrays_3d, & |
---|
103 | ONLY: d, p_loc |
---|
104 | |
---|
105 | USE control_parameters, & |
---|
106 | ONLY: bc_lr_cyc, bc_ns_cyc, gathered_size, grid_level, & |
---|
107 | grid_level_count, ibc_p_t, & |
---|
108 | maximum_grid_level, message_string, mgcycles, mg_cycles, & |
---|
109 | mg_switch_to_pe0_level, residual_limit, subdomain_size |
---|
110 | |
---|
111 | USE cpulog, & |
---|
112 | ONLY: cpu_log, log_point_s |
---|
113 | |
---|
114 | USE indices, & |
---|
115 | ONLY: nxl, nxlg, nxl_mg, nxr, nxrg, nxr_mg, nys, nysg, nys_mg, nyn,& |
---|
116 | nyng, nyn_mg, nzb, nzt, nzt_mg |
---|
117 | |
---|
118 | IMPLICIT NONE |
---|
119 | |
---|
120 | REAL(wp) :: maxerror !< |
---|
121 | REAL(wp) :: maximum_mgcycles !< |
---|
122 | REAL(wp) :: residual_norm !< |
---|
123 | |
---|
124 | REAL(wp), DIMENSION(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) :: r !< |
---|
125 | |
---|
126 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: p3 !< |
---|
127 | |
---|
128 | |
---|
129 | CALL cpu_log( log_point_s(29), 'poismg', 'start' ) |
---|
130 | ! |
---|
131 | !-- Initialize arrays and variables used in this subroutine |
---|
132 | |
---|
133 | !-- If the number of grid points of the gathered grid, which is collected |
---|
134 | !-- on PE0, is larger than the number of grid points of an PE, than array |
---|
135 | !-- p3 will be enlarged. |
---|
136 | IF ( gathered_size > subdomain_size ) THEN |
---|
137 | ALLOCATE( p3(nzb:nzt_mg(mg_switch_to_pe0_level)+1,nys_mg( & |
---|
138 | mg_switch_to_pe0_level)-1:nyn_mg(mg_switch_to_pe0_level)+1,& |
---|
139 | nxl_mg(mg_switch_to_pe0_level)-1:nxr_mg( & |
---|
140 | mg_switch_to_pe0_level)+1) ) |
---|
141 | ELSE |
---|
142 | ALLOCATE ( p3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
143 | ENDIF |
---|
144 | |
---|
145 | p3 = 0.0_wp |
---|
146 | |
---|
147 | |
---|
148 | ! |
---|
149 | !-- Ghost boundaries have to be added to divergence array. |
---|
150 | !-- Exchange routine needs to know the grid level! |
---|
151 | grid_level = maximum_grid_level |
---|
152 | CALL exchange_horiz( d, 1) |
---|
153 | ! |
---|
154 | !-- Set bottom and top boundary conditions |
---|
155 | d(nzb,:,:) = d(nzb+1,:,:) |
---|
156 | IF ( ibc_p_t == 1 ) d(nzt+1,:,: ) = d(nzt,:,:) |
---|
157 | ! |
---|
158 | !-- Set lateral boundary conditions in non-cyclic case |
---|
159 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
160 | IF ( bc_dirichlet_l .OR. bc_radiation_l ) & |
---|
161 | d(:,:,nxl-1) = d(:,:,nxl) |
---|
162 | IF ( bc_dirichlet_r .OR. bc_radiation_r ) & |
---|
163 | d(:,:,nxr+1) = d(:,:,nxr) |
---|
164 | ENDIF |
---|
165 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
166 | IF ( bc_dirichlet_n .OR. bc_radiation_n ) & |
---|
167 | d(:,nyn+1,:) = d(:,nyn,:) |
---|
168 | IF ( bc_dirichlet_s .OR. bc_radiation_s ) & |
---|
169 | d(:,nys-1,:) = d(:,nys,:) |
---|
170 | ENDIF |
---|
171 | ! |
---|
172 | !-- Initiation of the multigrid scheme. Does n cycles until the |
---|
173 | !-- residual is smaller than the given limit. The accuracy of the solution |
---|
174 | !-- of the poisson equation will increase with the number of cycles. |
---|
175 | !-- If the number of cycles is preset by the user, this number will be |
---|
176 | !-- carried out regardless of the accuracy. |
---|
177 | grid_level_count = 0 |
---|
178 | mgcycles = 0 |
---|
179 | IF ( mg_cycles == -1 ) THEN |
---|
180 | maximum_mgcycles = 0 |
---|
181 | residual_norm = 1.0_wp |
---|
182 | ELSE |
---|
183 | maximum_mgcycles = mg_cycles |
---|
184 | residual_norm = 0.0_wp |
---|
185 | ENDIF |
---|
186 | |
---|
187 | ! |
---|
188 | !-- Initial settings for sorting k-dimension from sequential order (alternate |
---|
189 | !-- even/odd) into blocks of even and odd or vice versa |
---|
190 | CALL init_even_odd_blocks |
---|
191 | |
---|
192 | ! |
---|
193 | !-- Sort input arrays in even/odd blocks along k-dimension |
---|
194 | CALL sort_k_to_even_odd_blocks( d, grid_level ) |
---|
195 | CALL sort_k_to_even_odd_blocks( p_loc, grid_level ) |
---|
196 | |
---|
197 | ! |
---|
198 | !-- The complete multigrid cycles are running in block mode, i.e. over |
---|
199 | !-- seperate data blocks of even and odd indices |
---|
200 | DO WHILE ( residual_norm > residual_limit .OR. & |
---|
201 | mgcycles < maximum_mgcycles ) |
---|
202 | |
---|
203 | CALL next_mg_level( d, p_loc, p3, r) |
---|
204 | |
---|
205 | ! |
---|
206 | !-- Calculate the residual if the user has not preset the number of |
---|
207 | !-- cycles to be performed |
---|
208 | IF ( maximum_mgcycles == 0 ) THEN |
---|
209 | CALL resid( d, p_loc, r ) |
---|
210 | maxerror = SUM( r(nzb+1:nzt,nys:nyn,nxl:nxr)**2 ) |
---|
211 | |
---|
212 | #if defined( __parallel ) |
---|
213 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
214 | CALL MPI_ALLREDUCE( maxerror, residual_norm, 1, MPI_REAL, & |
---|
215 | MPI_SUM, comm2d, ierr) |
---|
216 | #else |
---|
217 | residual_norm = maxerror |
---|
218 | #endif |
---|
219 | residual_norm = SQRT( residual_norm ) |
---|
220 | ENDIF |
---|
221 | |
---|
222 | mgcycles = mgcycles + 1 |
---|
223 | |
---|
224 | ! |
---|
225 | !-- If the user has not limited the number of cycles, stop the run in case |
---|
226 | !-- of insufficient convergence |
---|
227 | IF ( mgcycles > 1000 .AND. mg_cycles == -1 ) THEN |
---|
228 | message_string = 'no sufficient convergence within 1000 cycles' |
---|
229 | CALL message( 'poismg', 'PA0283', 1, 2, 0, 6, 0 ) |
---|
230 | ENDIF |
---|
231 | |
---|
232 | ENDDO |
---|
233 | |
---|
234 | DEALLOCATE( p3 ) |
---|
235 | ! |
---|
236 | !-- Result has to be sorted back from even/odd blocks to sequential order |
---|
237 | CALL sort_k_to_sequential( p_loc ) |
---|
238 | ! |
---|
239 | !-- Unset the grid level. Variable is used to determine the MPI datatypes for |
---|
240 | !-- ghost point exchange |
---|
241 | grid_level = 0 |
---|
242 | |
---|
243 | CALL cpu_log( log_point_s(29), 'poismg', 'stop' ) |
---|
244 | |
---|
245 | END SUBROUTINE poismg |
---|
246 | |
---|
247 | |
---|
248 | !------------------------------------------------------------------------------! |
---|
249 | ! Description: |
---|
250 | ! ------------ |
---|
251 | !> Computes the residual of the perturbation pressure. |
---|
252 | !------------------------------------------------------------------------------! |
---|
253 | SUBROUTINE resid( f_mg, p_mg, r ) |
---|
254 | |
---|
255 | |
---|
256 | USE arrays_3d, & |
---|
257 | ONLY: rho_air_mg |
---|
258 | |
---|
259 | USE control_parameters, & |
---|
260 | ONLY: bc_lr_cyc, bc_ns_cyc, ibc_p_b, ibc_p_t |
---|
261 | USE grid_variables, & |
---|
262 | ONLY: ddx2_mg, ddy2_mg |
---|
263 | |
---|
264 | USE indices, & |
---|
265 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
266 | |
---|
267 | IMPLICIT NONE |
---|
268 | |
---|
269 | INTEGER(iwp) :: i !< index variable along x |
---|
270 | INTEGER(iwp) :: j !< index variable along y |
---|
271 | INTEGER(iwp) :: k !< index variable along z |
---|
272 | INTEGER(iwp) :: l !< index indicating grid level |
---|
273 | INTEGER(iwp) :: km1 !< index variable along z dimension (k-1) |
---|
274 | INTEGER(iwp) :: kp1 !< index variable along z dimension (k+1) |
---|
275 | |
---|
276 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
277 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
278 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f_mg !< velocity divergence |
---|
279 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
280 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
281 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: p_mg !< perturbation pressure |
---|
282 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
283 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
284 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: r !< residuum of perturbation pressure |
---|
285 | |
---|
286 | ! |
---|
287 | !-- Calculate the residual |
---|
288 | l = grid_level |
---|
289 | |
---|
290 | CALL cpu_log( log_point_s(53), 'resid', 'start' ) |
---|
291 | !$OMP PARALLEL PRIVATE (i,j,k,km1,kp1) |
---|
292 | !$OMP DO |
---|
293 | DO i = nxl_mg(l), nxr_mg(l) |
---|
294 | DO j = nys_mg(l), nyn_mg(l) |
---|
295 | !DIR$ IVDEP |
---|
296 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
297 | km1 = k-ind_even_odd-1 |
---|
298 | kp1 = k-ind_even_odd |
---|
299 | r(k,j,i) = f_mg(k,j,i) & |
---|
300 | - rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
301 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
302 | - rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
303 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
304 | - f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
305 | - f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
306 | + f1_mg_b(k,l) * p_mg(k,j,i) |
---|
307 | ENDDO |
---|
308 | !DIR$ IVDEP |
---|
309 | DO k = nzb+1, ind_even_odd |
---|
310 | km1 = k+ind_even_odd |
---|
311 | kp1 = k+ind_even_odd+1 |
---|
312 | r(k,j,i) = f_mg(k,j,i) & |
---|
313 | - rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
314 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
315 | - rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
316 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
317 | - f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
318 | - f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
319 | + f1_mg_b(k,l) * p_mg(k,j,i) |
---|
320 | ENDDO |
---|
321 | ENDDO |
---|
322 | ENDDO |
---|
323 | !$OMP END PARALLEL |
---|
324 | ! |
---|
325 | !-- Horizontal boundary conditions |
---|
326 | CALL exchange_horiz( r, 1) |
---|
327 | |
---|
328 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
329 | IF ( bc_dirichlet_l .OR. bc_radiation_l ) THEN |
---|
330 | r(:,:,nxl_mg(l)-1) = r(:,:,nxl_mg(l)) |
---|
331 | ENDIF |
---|
332 | IF ( bc_dirichlet_r .OR. bc_radiation_r ) THEN |
---|
333 | r(:,:,nxr_mg(l)+1) = r(:,:,nxr_mg(l)) |
---|
334 | ENDIF |
---|
335 | ENDIF |
---|
336 | |
---|
337 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
338 | IF ( bc_dirichlet_n .OR. bc_radiation_n ) THEN |
---|
339 | r(:,nyn_mg(l)+1,:) = r(:,nyn_mg(l),:) |
---|
340 | ENDIF |
---|
341 | IF ( bc_dirichlet_s .OR. bc_radiation_s ) THEN |
---|
342 | r(:,nys_mg(l)-1,:) = r(:,nys_mg(l),:) |
---|
343 | ENDIF |
---|
344 | ENDIF |
---|
345 | |
---|
346 | ! |
---|
347 | !-- Boundary conditions at bottom and top of the domain. Points may be within |
---|
348 | !-- buildings, but that doesn't matter. |
---|
349 | IF ( ibc_p_b == 1 ) THEN |
---|
350 | ! |
---|
351 | !-- equivalent to r(nzb,:,: ) = r(nzb+1,:,:) |
---|
352 | r(nzb,:,: ) = r(ind_even_odd+1,:,:) |
---|
353 | ELSE |
---|
354 | r(nzb,:,: ) = 0.0_wp |
---|
355 | ENDIF |
---|
356 | |
---|
357 | IF ( ibc_p_t == 1 ) THEN |
---|
358 | ! |
---|
359 | !-- equivalent to r(nzt_mg(l)+1,:,: ) = r(nzt_mg(l),:,:) |
---|
360 | r(nzt_mg(l)+1,:,: ) = r(ind_even_odd,:,:) |
---|
361 | ELSE |
---|
362 | r(nzt_mg(l)+1,:,: ) = 0.0_wp |
---|
363 | ENDIF |
---|
364 | |
---|
365 | CALL cpu_log( log_point_s(53), 'resid', 'stop' ) |
---|
366 | |
---|
367 | END SUBROUTINE resid |
---|
368 | |
---|
369 | |
---|
370 | !------------------------------------------------------------------------------! |
---|
371 | ! Description: |
---|
372 | ! ------------ |
---|
373 | !> Interpolates the residual on the next coarser grid with "full weighting" |
---|
374 | !> scheme |
---|
375 | !------------------------------------------------------------------------------! |
---|
376 | SUBROUTINE restrict( f_mg, r ) |
---|
377 | |
---|
378 | |
---|
379 | USE control_parameters, & |
---|
380 | ONLY: bc_lr_cyc, bc_ns_cyc, ibc_p_b, ibc_p_t |
---|
381 | |
---|
382 | USE indices, & |
---|
383 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
384 | |
---|
385 | IMPLICIT NONE |
---|
386 | |
---|
387 | INTEGER(iwp) :: i !< index variable along x on finer grid |
---|
388 | INTEGER(iwp) :: ic !< index variable along x on coarser grid |
---|
389 | INTEGER(iwp) :: j !< index variable along y on finer grid |
---|
390 | INTEGER(iwp) :: jc !< index variable along y on coarser grid |
---|
391 | INTEGER(iwp) :: k !< index variable along z on finer grid |
---|
392 | INTEGER(iwp) :: kc !< index variable along z on coarser grid |
---|
393 | INTEGER(iwp) :: l !< index indicating finer grid level |
---|
394 | INTEGER(iwp) :: km1 !< index variable along z dimension (k-1 on finer level) |
---|
395 | INTEGER(iwp) :: kp1 !< index variable along z dimension (k+1 on finer level) |
---|
396 | |
---|
397 | |
---|
398 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
399 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
400 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
401 | f_mg !< Residual on coarser grid level |
---|
402 | |
---|
403 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level+1)+1, & |
---|
404 | nys_mg(grid_level+1)-1:nyn_mg(grid_level+1)+1, & |
---|
405 | nxl_mg(grid_level+1)-1:nxr_mg(grid_level+1)+1) :: & |
---|
406 | r !< Residual on finer grid level |
---|
407 | |
---|
408 | ! |
---|
409 | !-- Interpolate the residual |
---|
410 | l = grid_level |
---|
411 | |
---|
412 | CALL cpu_log( log_point_s(54), 'restrict', 'start' ) |
---|
413 | ! |
---|
414 | !-- No wall treatment |
---|
415 | !$OMP PARALLEL PRIVATE (i,j,k,ic,jc,kc,km1,kp1) |
---|
416 | !$OMP DO SCHEDULE( STATIC ) |
---|
417 | DO ic = nxl_mg(l), nxr_mg(l) |
---|
418 | i = 2*ic |
---|
419 | DO jc = nys_mg(l), nyn_mg(l) |
---|
420 | ! |
---|
421 | !-- Calculation for the first point along k |
---|
422 | j = 2*jc |
---|
423 | ! |
---|
424 | !-- Calculation for the other points along k |
---|
425 | !DIR$ IVDEP |
---|
426 | DO k = ind_even_odd+1, nzt_mg(l+1) ! Fine grid at this point |
---|
427 | km1 = k-ind_even_odd-1 |
---|
428 | kp1 = k-ind_even_odd |
---|
429 | kc = k-ind_even_odd ! Coarse grid index |
---|
430 | |
---|
431 | f_mg(kc,jc,ic) = 1.0_wp / 64.0_wp * ( & |
---|
432 | 8.0_wp * r(k,j,i) & |
---|
433 | + 4.0_wp * ( r(k,j,i-1) + r(k,j,i+1) + & |
---|
434 | r(k,j+1,i) + r(k,j-1,i) ) & |
---|
435 | + 2.0_wp * ( r(k,j-1,i-1) + r(k,j+1,i-1) + & |
---|
436 | r(k,j-1,i+1) + r(k,j+1,i+1) ) & |
---|
437 | + 4.0_wp * r(km1,j,i) & |
---|
438 | + 2.0_wp * ( r(km1,j,i-1) + r(km1,j,i+1) + & |
---|
439 | r(km1,j+1,i) + r(km1,j-1,i) ) & |
---|
440 | + ( r(km1,j-1,i-1) + r(km1,j+1,i-1) + & |
---|
441 | r(km1,j-1,i+1) + r(km1,j+1,i+1) ) & |
---|
442 | + 4.0_wp * r(kp1,j,i) & |
---|
443 | + 2.0_wp * ( r(kp1,j,i-1) + r(kp1,j,i+1) + & |
---|
444 | r(kp1,j+1,i) + r(kp1,j-1,i) ) & |
---|
445 | + ( r(kp1,j-1,i-1) + r(kp1,j+1,i-1) + & |
---|
446 | r(kp1,j-1,i+1) + r(kp1,j+1,i+1) ) & |
---|
447 | ) |
---|
448 | ENDDO |
---|
449 | ENDDO |
---|
450 | ENDDO |
---|
451 | !$OMP ENDDO |
---|
452 | !$OMP END PARALLEL |
---|
453 | |
---|
454 | ! |
---|
455 | !-- Ghost point exchange |
---|
456 | CALL exchange_horiz( f_mg, 1) |
---|
457 | ! |
---|
458 | !-- Horizontal boundary conditions |
---|
459 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
460 | IF ( bc_dirichlet_l .OR. bc_radiation_l ) THEN |
---|
461 | f_mg(:,:,nxl_mg(l)-1) = f_mg(:,:,nxl_mg(l)) |
---|
462 | ENDIF |
---|
463 | IF ( bc_dirichlet_r .OR. bc_radiation_r ) THEN |
---|
464 | f_mg(:,:,nxr_mg(l)+1) = f_mg(:,:,nxr_mg(l)) |
---|
465 | ENDIF |
---|
466 | ENDIF |
---|
467 | |
---|
468 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
469 | IF ( bc_dirichlet_n .OR. bc_radiation_n ) THEN |
---|
470 | f_mg(:,nyn_mg(l)+1,:) = f_mg(:,nyn_mg(l),:) |
---|
471 | ENDIF |
---|
472 | IF ( bc_dirichlet_s .OR. bc_radiation_s ) THEN |
---|
473 | f_mg(:,nys_mg(l)-1,:) = f_mg(:,nys_mg(l),:) |
---|
474 | ENDIF |
---|
475 | ENDIF |
---|
476 | |
---|
477 | ! |
---|
478 | !-- Boundary conditions at bottom and top of the domain. |
---|
479 | !-- These points are not handled by the above loop. Points may be within |
---|
480 | !-- buildings, but that doesn't matter. Remark: f_mg is ordered sequentielly |
---|
481 | !-- after interpolation on coarse grid (is ordered in odd-even blocks further |
---|
482 | !-- below). |
---|
483 | IF ( ibc_p_b == 1 ) THEN |
---|
484 | f_mg(nzb,:,: ) = f_mg(nzb+1,:,:) |
---|
485 | ELSE |
---|
486 | f_mg(nzb,:,: ) = 0.0_wp |
---|
487 | ENDIF |
---|
488 | |
---|
489 | IF ( ibc_p_t == 1 ) THEN |
---|
490 | f_mg(nzt_mg(l)+1,:,: ) = f_mg(nzt_mg(l),:,:) |
---|
491 | ELSE |
---|
492 | f_mg(nzt_mg(l)+1,:,: ) = 0.0_wp |
---|
493 | ENDIF |
---|
494 | |
---|
495 | CALL cpu_log( log_point_s(54), 'restrict', 'stop' ) |
---|
496 | ! |
---|
497 | !-- Since residual is in sequential order after interpolation, an additional |
---|
498 | !-- sorting in odd-even blocks along z dimension is required at this point. |
---|
499 | CALL sort_k_to_even_odd_blocks( f_mg , l) |
---|
500 | |
---|
501 | END SUBROUTINE restrict |
---|
502 | |
---|
503 | |
---|
504 | !------------------------------------------------------------------------------! |
---|
505 | ! Description: |
---|
506 | ! ------------ |
---|
507 | !> Interpolates the correction of the perturbation pressure |
---|
508 | !> to the next finer grid. |
---|
509 | !------------------------------------------------------------------------------! |
---|
510 | SUBROUTINE prolong( p, temp ) |
---|
511 | |
---|
512 | |
---|
513 | USE control_parameters, & |
---|
514 | ONLY: bc_lr_cyc, bc_ns_cyc, ibc_p_b, ibc_p_t |
---|
515 | USE indices, & |
---|
516 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
517 | |
---|
518 | IMPLICIT NONE |
---|
519 | |
---|
520 | INTEGER(iwp) :: i !< index variable along x on coarser grid level |
---|
521 | INTEGER(iwp) :: j !< index variable along y on coarser grid level |
---|
522 | INTEGER(iwp) :: k !< index variable along z on coarser grid level |
---|
523 | INTEGER(iwp) :: l !< index indicating finer grid level |
---|
524 | INTEGER(iwp) :: kp1 !< index variable along z |
---|
525 | INTEGER(iwp) :: ke !< index for prolog even |
---|
526 | INTEGER(iwp) :: ko !< index for prolog odd |
---|
527 | |
---|
528 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level-1)+1, & |
---|
529 | nys_mg(grid_level-1)-1:nyn_mg(grid_level-1)+1, & |
---|
530 | nxl_mg(grid_level-1)-1:nxr_mg(grid_level-1)+1 ) :: & |
---|
531 | p !< perturbation pressure on coarser grid level |
---|
532 | |
---|
533 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
534 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
535 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
536 | temp !< perturbation pressure on finer grid level |
---|
537 | |
---|
538 | |
---|
539 | CALL cpu_log( log_point_s(55), 'prolong', 'start' ) |
---|
540 | |
---|
541 | ! |
---|
542 | !-- First, store elements of the coarser grid on the next finer grid |
---|
543 | l = grid_level |
---|
544 | ind_even_odd = even_odd_level(grid_level-1) |
---|
545 | |
---|
546 | !$OMP PARALLEL PRIVATE (i,j,k,kp1,ke,ko) |
---|
547 | !$OMP DO |
---|
548 | DO i = nxl_mg(l-1), nxr_mg(l-1) |
---|
549 | DO j = nys_mg(l-1), nyn_mg(l-1) |
---|
550 | |
---|
551 | !DIR$ IVDEP |
---|
552 | DO k = ind_even_odd+1, nzt_mg(l-1) |
---|
553 | kp1 = k - ind_even_odd |
---|
554 | ke = 2 * ( k-ind_even_odd - 1 ) + 1 |
---|
555 | ko = 2 * k - 1 |
---|
556 | ! |
---|
557 | !-- Points of the coarse grid are directly stored on the next finer |
---|
558 | !-- grid |
---|
559 | temp(ko,2*j,2*i) = p(k,j,i) |
---|
560 | ! |
---|
561 | !-- Points between two coarse-grid points |
---|
562 | temp(ko,2*j,2*i+1) = 0.5_wp * ( p(k,j,i) + p(k,j,i+1) ) |
---|
563 | temp(ko,2*j+1,2*i) = 0.5_wp * ( p(k,j,i) + p(k,j+1,i) ) |
---|
564 | temp(ke,2*j,2*i) = 0.5_wp * ( p(k,j,i) + p(kp1,j,i) ) |
---|
565 | ! |
---|
566 | !-- Points in the center of the planes stretched by four points |
---|
567 | !-- of the coarse grid cube |
---|
568 | temp(ko,2*j+1,2*i+1) = 0.25_wp * ( p(k,j,i) + p(k,j,i+1) + & |
---|
569 | p(k,j+1,i) + p(k,j+1,i+1) ) |
---|
570 | temp(ke,2*j,2*i+1) = 0.25_wp * ( p(k,j,i) + p(k,j,i+1) + & |
---|
571 | p(kp1,j,i) + p(kp1,j,i+1) ) |
---|
572 | temp(ke,2*j+1,2*i) = 0.25_wp * ( p(k,j,i) + p(k,j+1,i) + & |
---|
573 | p(kp1,j,i) + p(kp1,j+1,i) ) |
---|
574 | ! |
---|
575 | !-- Points in the middle of coarse grid cube |
---|
576 | temp(ke,2*j+1,2*i+1) = 0.125_wp * & |
---|
577 | ( p(k,j,i) + p(k,j,i+1) + & |
---|
578 | p(k,j+1,i) + p(k,j+1,i+1) + & |
---|
579 | p(kp1,j,i) + p(kp1,j,i+1) + & |
---|
580 | p(kp1,j+1,i) + p(kp1,j+1,i+1) ) |
---|
581 | |
---|
582 | ENDDO |
---|
583 | |
---|
584 | !DIR$ IVDEP |
---|
585 | DO k = nzb+1, ind_even_odd |
---|
586 | kp1 = k + ind_even_odd + 1 |
---|
587 | ke = 2 * k |
---|
588 | ko = 2 * ( k + ind_even_odd ) |
---|
589 | ! |
---|
590 | !-- Points of the coarse grid are directly stored on the next finer |
---|
591 | !-- grid |
---|
592 | temp(ko,2*j,2*i) = p(k,j,i) |
---|
593 | ! |
---|
594 | !-- Points between two coarse-grid points |
---|
595 | temp(ko,2*j,2*i+1) = 0.5_wp * ( p(k,j,i) + p(k,j,i+1) ) |
---|
596 | temp(ko,2*j+1,2*i) = 0.5_wp * ( p(k,j,i) + p(k,j+1,i) ) |
---|
597 | temp(ke,2*j,2*i) = 0.5_wp * ( p(k,j,i) + p(kp1,j,i) ) |
---|
598 | ! |
---|
599 | !-- Points in the center of the planes stretched by four points |
---|
600 | !-- of the coarse grid cube |
---|
601 | temp(ko,2*j+1,2*i+1) = 0.25_wp * ( p(k,j,i) + p(k,j,i+1) + & |
---|
602 | p(k,j+1,i) + p(k,j+1,i+1) ) |
---|
603 | temp(ke,2*j,2*i+1) = 0.25_wp * ( p(k,j,i) + p(k,j,i+1) + & |
---|
604 | p(kp1,j,i) + p(kp1,j,i+1) ) |
---|
605 | temp(ke,2*j+1,2*i) = 0.25_wp * ( p(k,j,i) + p(k,j+1,i) + & |
---|
606 | p(kp1,j,i) + p(kp1,j+1,i) ) |
---|
607 | ! |
---|
608 | !-- Points in the middle of coarse grid cube |
---|
609 | temp(ke,2*j+1,2*i+1) = 0.125_wp * & |
---|
610 | ( p(k,j,i) + p(k,j,i+1) + & |
---|
611 | p(k,j+1,i) + p(k,j+1,i+1) + & |
---|
612 | p(kp1,j,i) + p(kp1,j,i+1) + & |
---|
613 | p(kp1,j+1,i) + p(kp1,j+1,i+1) ) |
---|
614 | |
---|
615 | ENDDO |
---|
616 | |
---|
617 | ENDDO |
---|
618 | ENDDO |
---|
619 | !$OMP END PARALLEL |
---|
620 | |
---|
621 | ind_even_odd = even_odd_level(grid_level) |
---|
622 | ! |
---|
623 | !-- Horizontal boundary conditions |
---|
624 | CALL exchange_horiz( temp, 1) |
---|
625 | |
---|
626 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
627 | IF ( bc_dirichlet_l .OR. bc_radiation_l ) THEN |
---|
628 | temp(:,:,nxl_mg(l)-1) = temp(:,:,nxl_mg(l)) |
---|
629 | ENDIF |
---|
630 | IF ( bc_dirichlet_r .OR. bc_radiation_r ) THEN |
---|
631 | temp(:,:,nxr_mg(l)+1) = temp(:,:,nxr_mg(l)) |
---|
632 | ENDIF |
---|
633 | ENDIF |
---|
634 | |
---|
635 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
636 | IF ( bc_dirichlet_n .OR. bc_radiation_n ) THEN |
---|
637 | temp(:,nyn_mg(l)+1,:) = temp(:,nyn_mg(l),:) |
---|
638 | ENDIF |
---|
639 | IF ( bc_dirichlet_s .OR. bc_radiation_s ) THEN |
---|
640 | temp(:,nys_mg(l)-1,:) = temp(:,nys_mg(l),:) |
---|
641 | ENDIF |
---|
642 | ENDIF |
---|
643 | |
---|
644 | ! |
---|
645 | !-- Bottom and top boundary conditions |
---|
646 | IF ( ibc_p_b == 1 ) THEN |
---|
647 | ! |
---|
648 | !-- equivalent to temp(nzb,:,: ) = temp(nzb+1,:,:) |
---|
649 | temp(nzb,:,: ) = temp(ind_even_odd+1,:,:) |
---|
650 | ELSE |
---|
651 | temp(nzb,:,: ) = 0.0_wp |
---|
652 | ENDIF |
---|
653 | |
---|
654 | IF ( ibc_p_t == 1 ) THEN |
---|
655 | ! |
---|
656 | !-- equivalent to temp(nzt_mg(l)+1,:,: ) = temp(nzt_mg(l),:,:) |
---|
657 | temp(nzt_mg(l)+1,:,: ) = temp(ind_even_odd,:,:) |
---|
658 | ELSE |
---|
659 | temp(nzt_mg(l)+1,:,: ) = 0.0_wp |
---|
660 | ENDIF |
---|
661 | |
---|
662 | CALL cpu_log( log_point_s(55), 'prolong', 'stop' ) |
---|
663 | |
---|
664 | END SUBROUTINE prolong |
---|
665 | |
---|
666 | |
---|
667 | !------------------------------------------------------------------------------! |
---|
668 | ! Description: |
---|
669 | ! ------------ |
---|
670 | !> Relaxation method for the multigrid scheme. A Gauss-Seidel iteration with |
---|
671 | !> 3D-Red-Black decomposition (GS-RB) is used. |
---|
672 | !------------------------------------------------------------------------------! |
---|
673 | SUBROUTINE redblack( f_mg, p_mg ) |
---|
674 | |
---|
675 | |
---|
676 | USE arrays_3d, & |
---|
677 | ONLY: rho_air_mg |
---|
678 | |
---|
679 | USE control_parameters, & |
---|
680 | ONLY: bc_lr_cyc, bc_ns_cyc, ibc_p_b, ibc_p_t, ngsrb |
---|
681 | |
---|
682 | USE grid_variables, & |
---|
683 | ONLY: ddx2_mg, ddy2_mg |
---|
684 | |
---|
685 | USE indices, & |
---|
686 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
687 | |
---|
688 | IMPLICIT NONE |
---|
689 | |
---|
690 | INTEGER(iwp) :: color !< grid point color, either red or black |
---|
691 | INTEGER(iwp) :: i !< index variable along x |
---|
692 | INTEGER(iwp) :: ic !< index variable along x |
---|
693 | INTEGER(iwp) :: j !< index variable along y |
---|
694 | INTEGER(iwp) :: jc !< index variable along y |
---|
695 | INTEGER(iwp) :: jj !< index variable along y |
---|
696 | INTEGER(iwp) :: k !< index variable along z |
---|
697 | INTEGER(iwp) :: l !< grid level |
---|
698 | INTEGER(iwp) :: n !< loop variable GauÃ-Seidel iterations |
---|
699 | INTEGER(iwp) :: km1 !< index variable (k-1) |
---|
700 | INTEGER(iwp) :: kp1 !< index variable (k+1) |
---|
701 | |
---|
702 | LOGICAL :: unroll !< flag indicating whether loop unrolling is possible |
---|
703 | |
---|
704 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
705 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
706 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
707 | f_mg !< residual of perturbation pressure |
---|
708 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
709 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
710 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
711 | p_mg !< perturbation pressure |
---|
712 | |
---|
713 | l = grid_level |
---|
714 | |
---|
715 | unroll = ( MOD( nyn_mg(l)-nys_mg(l)+1, 4 ) == 0 .AND. & |
---|
716 | MOD( nxr_mg(l)-nxl_mg(l)+1, 2 ) == 0 ) |
---|
717 | |
---|
718 | DO n = 1, ngsrb |
---|
719 | |
---|
720 | DO color = 1, 2 |
---|
721 | |
---|
722 | IF ( .NOT. unroll ) THEN |
---|
723 | |
---|
724 | CALL cpu_log( log_point_s(36), 'redblack_no_unroll_f', 'start' ) |
---|
725 | ! |
---|
726 | !-- Without unrolling of loops, no cache optimization |
---|
727 | !$OMP PARALLEL PRIVATE (i,j,k,km1,kp1) |
---|
728 | !$OMP DO |
---|
729 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
730 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
731 | !DIR$ IVDEP |
---|
732 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
733 | km1 = k-ind_even_odd-1 |
---|
734 | kp1 = k-ind_even_odd |
---|
735 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
736 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
737 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
738 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
739 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
740 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
741 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
742 | - f_mg(k,j,i) ) |
---|
743 | ENDDO |
---|
744 | ENDDO |
---|
745 | ENDDO |
---|
746 | |
---|
747 | !$OMP DO |
---|
748 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
749 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
750 | !DIR$ IVDEP |
---|
751 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
752 | km1 = k-ind_even_odd-1 |
---|
753 | kp1 = k-ind_even_odd |
---|
754 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
755 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
756 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
757 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
758 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
759 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
760 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
761 | - f_mg(k,j,i) ) |
---|
762 | ENDDO |
---|
763 | ENDDO |
---|
764 | ENDDO |
---|
765 | |
---|
766 | !$OMP DO |
---|
767 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
768 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
769 | !DIR$ IVDEP |
---|
770 | DO k = nzb+1, ind_even_odd |
---|
771 | km1 = k+ind_even_odd |
---|
772 | kp1 = k+ind_even_odd+1 |
---|
773 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
774 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
775 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
776 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
777 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
778 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
779 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
780 | - f_mg(k,j,i) ) |
---|
781 | ENDDO |
---|
782 | ENDDO |
---|
783 | ENDDO |
---|
784 | |
---|
785 | !$OMP DO |
---|
786 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
787 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
788 | !DIR$ IVDEP |
---|
789 | DO k = nzb+1, ind_even_odd |
---|
790 | km1 = k+ind_even_odd |
---|
791 | kp1 = k+ind_even_odd+1 |
---|
792 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
793 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
794 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
795 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
796 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
797 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
798 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
799 | - f_mg(k,j,i) ) |
---|
800 | ENDDO |
---|
801 | ENDDO |
---|
802 | ENDDO |
---|
803 | !$OMP END PARALLEL |
---|
804 | |
---|
805 | CALL cpu_log( log_point_s(36), 'redblack_no_unroll_f', 'stop' ) |
---|
806 | |
---|
807 | ELSE |
---|
808 | ! |
---|
809 | !-- Loop unrolling along y, only one i loop for better cache use |
---|
810 | CALL cpu_log( log_point_s(38), 'redblack_unroll_f', 'start' ) |
---|
811 | |
---|
812 | !$OMP PARALLEL PRIVATE (i,j,k,ic,jc,km1,kp1,jj) |
---|
813 | !$OMP DO |
---|
814 | DO ic = nxl_mg(l), nxr_mg(l), 2 |
---|
815 | DO jc = nys_mg(l), nyn_mg(l), 4 |
---|
816 | i = ic |
---|
817 | jj = jc+2-color |
---|
818 | !DIR$ IVDEP |
---|
819 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
820 | km1 = k-ind_even_odd-1 |
---|
821 | kp1 = k-ind_even_odd |
---|
822 | j = jj |
---|
823 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
824 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
825 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
826 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
827 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
828 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
829 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
830 | - f_mg(k,j,i) ) |
---|
831 | j = jj+2 |
---|
832 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
833 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
834 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
835 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
836 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
837 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
838 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
839 | - f_mg(k,j,i) ) |
---|
840 | ENDDO |
---|
841 | |
---|
842 | i = ic+1 |
---|
843 | jj = jc+color-1 |
---|
844 | !DIR$ IVDEP |
---|
845 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
846 | km1 = k-ind_even_odd-1 |
---|
847 | kp1 = k-ind_even_odd |
---|
848 | j = jj |
---|
849 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
850 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
851 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
852 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
853 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
854 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
855 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
856 | - f_mg(k,j,i) ) |
---|
857 | j = jj+2 |
---|
858 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
859 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
860 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
861 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
862 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
863 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
864 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
865 | - f_mg(k,j,i) ) |
---|
866 | ENDDO |
---|
867 | |
---|
868 | i = ic |
---|
869 | jj = jc+color-1 |
---|
870 | !DIR$ IVDEP |
---|
871 | DO k = nzb+1, ind_even_odd |
---|
872 | km1 = k+ind_even_odd |
---|
873 | kp1 = k+ind_even_odd+1 |
---|
874 | j = jj |
---|
875 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
876 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
877 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
878 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
879 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
880 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
881 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
882 | - f_mg(k,j,i) ) |
---|
883 | j = jj+2 |
---|
884 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
885 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
886 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
887 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
888 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
889 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
890 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
891 | - f_mg(k,j,i) ) |
---|
892 | ENDDO |
---|
893 | |
---|
894 | i = ic+1 |
---|
895 | jj = jc+2-color |
---|
896 | !DIR$ IVDEP |
---|
897 | DO k = nzb+1, ind_even_odd |
---|
898 | km1 = k+ind_even_odd |
---|
899 | kp1 = k+ind_even_odd+1 |
---|
900 | j = jj |
---|
901 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
902 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
903 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
904 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
905 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
906 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
907 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
908 | - f_mg(k,j,i) ) |
---|
909 | j = jj+2 |
---|
910 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
911 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
912 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
913 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
914 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
915 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
916 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
917 | - f_mg(k,j,i) ) |
---|
918 | ENDDO |
---|
919 | |
---|
920 | ENDDO |
---|
921 | ENDDO |
---|
922 | !$OMP END PARALLEL |
---|
923 | |
---|
924 | CALL cpu_log( log_point_s(38), 'redblack_unroll_f', 'stop' ) |
---|
925 | |
---|
926 | ENDIF |
---|
927 | |
---|
928 | ! |
---|
929 | !-- Horizontal boundary conditions |
---|
930 | CALL special_exchange_horiz( p_mg, color ) |
---|
931 | |
---|
932 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
933 | IF ( bc_dirichlet_l .OR. bc_radiation_l ) THEN |
---|
934 | p_mg(:,:,nxl_mg(l)-1) = p_mg(:,:,nxl_mg(l)) |
---|
935 | ENDIF |
---|
936 | IF ( bc_dirichlet_r .OR. bc_radiation_r ) THEN |
---|
937 | p_mg(:,:,nxr_mg(l)+1) = p_mg(:,:,nxr_mg(l)) |
---|
938 | ENDIF |
---|
939 | ENDIF |
---|
940 | |
---|
941 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
942 | IF ( bc_dirichlet_n .OR. bc_radiation_n ) THEN |
---|
943 | p_mg(:,nyn_mg(l)+1,:) = p_mg(:,nyn_mg(l),:) |
---|
944 | ENDIF |
---|
945 | IF ( bc_dirichlet_s .OR. bc_radiation_s ) THEN |
---|
946 | p_mg(:,nys_mg(l)-1,:) = p_mg(:,nys_mg(l),:) |
---|
947 | ENDIF |
---|
948 | ENDIF |
---|
949 | |
---|
950 | ! |
---|
951 | !-- Bottom and top boundary conditions |
---|
952 | IF ( ibc_p_b == 1 ) THEN |
---|
953 | ! |
---|
954 | !-- equivalent to p_mg(nzb,:,: ) = p_mg(nzb+1,:,:) |
---|
955 | p_mg(nzb,:,: ) = p_mg(ind_even_odd+1,:,:) |
---|
956 | ELSE |
---|
957 | p_mg(nzb,:,: ) = 0.0_wp |
---|
958 | ENDIF |
---|
959 | |
---|
960 | IF ( ibc_p_t == 1 ) THEN |
---|
961 | ! |
---|
962 | !-- equivalent to p_mg(nzt_mg(l)+1,:,: ) = p_mg(nzt_mg(l),:,:) |
---|
963 | p_mg(nzt_mg(l)+1,:,: ) = p_mg(ind_even_odd,:,:) |
---|
964 | ELSE |
---|
965 | p_mg(nzt_mg(l)+1,:,: ) = 0.0_wp |
---|
966 | ENDIF |
---|
967 | |
---|
968 | ENDDO |
---|
969 | |
---|
970 | ENDDO |
---|
971 | |
---|
972 | END SUBROUTINE redblack |
---|
973 | |
---|
974 | |
---|
975 | !------------------------------------------------------------------------------! |
---|
976 | ! Description: |
---|
977 | ! ------------ |
---|
978 | !> Sort k-Dimension from sequential into blocks of even and odd. |
---|
979 | !> This is required to vectorize the red-black subroutine. |
---|
980 | !> Version for 3D-REAL arrays |
---|
981 | !------------------------------------------------------------------------------! |
---|
982 | SUBROUTINE sort_k_to_even_odd_blocks( p_mg , glevel ) |
---|
983 | |
---|
984 | |
---|
985 | USE indices, & |
---|
986 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
987 | |
---|
988 | IMPLICIT NONE |
---|
989 | |
---|
990 | INTEGER(iwp), INTENT(IN) :: glevel !< grid level |
---|
991 | |
---|
992 | REAL(wp), DIMENSION(nzb:nzt_mg(glevel)+1, & |
---|
993 | nys_mg(glevel)-1:nyn_mg(glevel)+1, & |
---|
994 | nxl_mg(glevel)-1:nxr_mg(glevel)+1) :: & |
---|
995 | p_mg !< array to be sorted |
---|
996 | ! |
---|
997 | !-- Local variables |
---|
998 | INTEGER(iwp) :: i !< index variable along x |
---|
999 | INTEGER(iwp) :: j !< index variable along y |
---|
1000 | INTEGER(iwp) :: k !< index variable along z |
---|
1001 | INTEGER(iwp) :: l !< grid level |
---|
1002 | INTEGER(iwp) :: ind !< index variable along z |
---|
1003 | REAL(wp), DIMENSION(nzb:nzt_mg(glevel)+1) :: tmp !< odd-even sorted temporary array |
---|
1004 | |
---|
1005 | |
---|
1006 | CALL cpu_log( log_point_s(52), 'sort_k_to_even_odd', 'start' ) |
---|
1007 | |
---|
1008 | l = glevel |
---|
1009 | ind_even_odd = even_odd_level(l) |
---|
1010 | |
---|
1011 | !$OMP PARALLEL PRIVATE (i,j,k,ind,tmp) |
---|
1012 | !$OMP DO |
---|
1013 | DO i = nxl_mg(l)-1, nxr_mg(l)+1 |
---|
1014 | DO j = nys_mg(l)-1, nyn_mg(l)+1 |
---|
1015 | |
---|
1016 | ! |
---|
1017 | !-- Sort the data with even k index |
---|
1018 | ind = nzb-1 |
---|
1019 | DO k = nzb, nzt_mg(l), 2 |
---|
1020 | ind = ind + 1 |
---|
1021 | tmp(ind) = p_mg(k,j,i) |
---|
1022 | ENDDO |
---|
1023 | ! |
---|
1024 | !-- Sort the data with odd k index |
---|
1025 | DO k = nzb+1, nzt_mg(l)+1, 2 |
---|
1026 | ind = ind + 1 |
---|
1027 | tmp(ind) = p_mg(k,j,i) |
---|
1028 | ENDDO |
---|
1029 | |
---|
1030 | p_mg(:,j,i) = tmp |
---|
1031 | |
---|
1032 | ENDDO |
---|
1033 | ENDDO |
---|
1034 | !$OMP END PARALLEL |
---|
1035 | |
---|
1036 | CALL cpu_log( log_point_s(52), 'sort_k_to_even_odd', 'stop' ) |
---|
1037 | |
---|
1038 | END SUBROUTINE sort_k_to_even_odd_blocks |
---|
1039 | |
---|
1040 | |
---|
1041 | !------------------------------------------------------------------------------! |
---|
1042 | ! Description: |
---|
1043 | ! ------------ |
---|
1044 | !> Sort k-Dimension from sequential into blocks of even and odd. |
---|
1045 | !> This is required to vectorize the red-black subroutine. |
---|
1046 | !> Version for 1D-REAL arrays |
---|
1047 | !------------------------------------------------------------------------------! |
---|
1048 | SUBROUTINE sort_k_to_even_odd_blocks_1d( f_mg, f_mg_b, glevel ) |
---|
1049 | |
---|
1050 | |
---|
1051 | USE indices, & |
---|
1052 | ONLY: nzb, nzt_mg |
---|
1053 | |
---|
1054 | IMPLICIT NONE |
---|
1055 | |
---|
1056 | INTEGER(iwp), INTENT(IN) :: glevel !< grid level |
---|
1057 | |
---|
1058 | REAL(wp), DIMENSION(nzb+1:nzt_mg(glevel)) :: f_mg !< 1D input array |
---|
1059 | REAL(wp), DIMENSION(nzb:nzt_mg(glevel)+1) :: f_mg_b !< 1D output array |
---|
1060 | |
---|
1061 | ! |
---|
1062 | !-- Local variables |
---|
1063 | INTEGER(iwp) :: ind !< index variable along z |
---|
1064 | INTEGER(iwp) :: k !< index variable along z |
---|
1065 | |
---|
1066 | |
---|
1067 | ind = nzb - 1 |
---|
1068 | ! |
---|
1069 | !-- Sort the data with even k index |
---|
1070 | DO k = nzb, nzt_mg(glevel), 2 |
---|
1071 | ind = ind + 1 |
---|
1072 | IF ( k >= nzb+1 .AND. k <= nzt_mg(glevel) ) THEN |
---|
1073 | f_mg_b(ind) = f_mg(k) |
---|
1074 | ENDIF |
---|
1075 | ENDDO |
---|
1076 | ! |
---|
1077 | !-- Sort the data with odd k index |
---|
1078 | DO k = nzb+1, nzt_mg(glevel)+1, 2 |
---|
1079 | ind = ind + 1 |
---|
1080 | IF( k >= nzb+1 .AND. k <= nzt_mg(glevel) ) THEN |
---|
1081 | f_mg_b(ind) = f_mg(k) |
---|
1082 | ENDIF |
---|
1083 | ENDDO |
---|
1084 | |
---|
1085 | END SUBROUTINE sort_k_to_even_odd_blocks_1d |
---|
1086 | |
---|
1087 | |
---|
1088 | !------------------------------------------------------------------------------! |
---|
1089 | ! Description: |
---|
1090 | ! ------------ |
---|
1091 | !> Sort k-Dimension from sequential into blocks of even and odd. |
---|
1092 | !> This is required to vectorize the red-black subroutine. |
---|
1093 | !> Version for 2D-INTEGER arrays |
---|
1094 | !------------------------------------------------------------------------------! |
---|
1095 | ! SUBROUTINE sort_k_to_even_odd_blocks_int( i_mg , glevel ) |
---|
1096 | ! |
---|
1097 | ! |
---|
1098 | ! USE indices, & |
---|
1099 | ! ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
1100 | ! |
---|
1101 | ! IMPLICIT NONE |
---|
1102 | ! |
---|
1103 | ! INTEGER(iwp), INTENT(IN) :: glevel !< grid level |
---|
1104 | ! |
---|
1105 | ! INTEGER(iwp), DIMENSION(nzb:nzt_mg(glevel)+1, & |
---|
1106 | ! nys_mg(glevel)-1:nyn_mg(glevel)+1, & |
---|
1107 | ! nxl_mg(glevel)-1:nxr_mg(glevel)+1) :: & |
---|
1108 | ! i_mg !< array to be sorted |
---|
1109 | ! |
---|
1110 | !-- Local variables |
---|
1111 | ! INTEGER(iwp) :: i !< index variabel along x |
---|
1112 | ! INTEGER(iwp) :: j !< index variable along y |
---|
1113 | ! INTEGER(iwp) :: k !< index variable along z |
---|
1114 | ! INTEGER(iwp) :: l !< grid level |
---|
1115 | ! INTEGER(iwp) :: ind !< index variable along z |
---|
1116 | ! INTEGER(iwp),DIMENSION(nzb:nzt_mg(glevel)+1) :: tmp !< temporary odd-even sorted array |
---|
1117 | ! |
---|
1118 | ! |
---|
1119 | ! CALL cpu_log( log_point_s(52), 'sort_k_to_even_odd', 'start' ) |
---|
1120 | ! |
---|
1121 | ! l = glevel |
---|
1122 | ! ind_even_odd = even_odd_level(l) |
---|
1123 | ! |
---|
1124 | ! DO i = nxl_mg(l)-1, nxr_mg(l)+1 |
---|
1125 | ! DO j = nys_mg(l)-1, nyn_mg(l)+1 |
---|
1126 | ! |
---|
1127 | ! |
---|
1128 | !-- Sort the data with even k index |
---|
1129 | ! ind = nzb-1 |
---|
1130 | ! DO k = nzb, nzt_mg(l), 2 |
---|
1131 | ! ind = ind + 1 |
---|
1132 | ! tmp(ind) = i_mg(k,j,i) |
---|
1133 | ! ENDDO |
---|
1134 | ! |
---|
1135 | !-- Sort the data with odd k index |
---|
1136 | ! DO k = nzb+1, nzt_mg(l)+1, 2 |
---|
1137 | ! ind = ind + 1 |
---|
1138 | ! tmp(ind) = i_mg(k,j,i) |
---|
1139 | ! ENDDO |
---|
1140 | ! |
---|
1141 | ! i_mg(:,j,i) = tmp |
---|
1142 | ! |
---|
1143 | ! ENDDO |
---|
1144 | ! ENDDO |
---|
1145 | ! |
---|
1146 | ! CALL cpu_log( log_point_s(52), 'sort_k_to_even_odd', 'stop' ) |
---|
1147 | ! |
---|
1148 | ! END SUBROUTINE sort_k_to_even_odd_blocks_int |
---|
1149 | |
---|
1150 | |
---|
1151 | !------------------------------------------------------------------------------! |
---|
1152 | ! Description: |
---|
1153 | ! ------------ |
---|
1154 | !> Sort k-dimension from blocks of even and odd into sequential |
---|
1155 | !------------------------------------------------------------------------------! |
---|
1156 | SUBROUTINE sort_k_to_sequential( p_mg ) |
---|
1157 | |
---|
1158 | |
---|
1159 | USE control_parameters, & |
---|
1160 | ONLY: grid_level |
---|
1161 | |
---|
1162 | USE indices, & |
---|
1163 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
1164 | |
---|
1165 | IMPLICIT NONE |
---|
1166 | |
---|
1167 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1168 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1169 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
1170 | p_mg !< array to be sorted |
---|
1171 | ! |
---|
1172 | !-- Local variables |
---|
1173 | INTEGER(iwp) :: i !< index variable along x |
---|
1174 | INTEGER(iwp) :: j !< index variable along y |
---|
1175 | INTEGER(iwp) :: k !< index variable along z |
---|
1176 | INTEGER(iwp) :: l !< grid level |
---|
1177 | INTEGER(iwp) :: ind !< index variable along z |
---|
1178 | |
---|
1179 | REAL(wp),DIMENSION(nzb:nzt_mg(grid_level)+1) :: tmp |
---|
1180 | |
---|
1181 | |
---|
1182 | l = grid_level |
---|
1183 | |
---|
1184 | !$OMP PARALLEL PRIVATE (i,j,k,ind,tmp) |
---|
1185 | !$OMP DO |
---|
1186 | DO i = nxl_mg(l)-1, nxr_mg(l)+1 |
---|
1187 | DO j = nys_mg(l)-1, nyn_mg(l)+1 |
---|
1188 | |
---|
1189 | ind = nzb - 1 |
---|
1190 | tmp = p_mg(:,j,i) |
---|
1191 | DO k = nzb, nzt_mg(l), 2 |
---|
1192 | ind = ind + 1 |
---|
1193 | p_mg(k,j,i) = tmp(ind) |
---|
1194 | ENDDO |
---|
1195 | |
---|
1196 | DO k = nzb+1, nzt_mg(l)+1, 2 |
---|
1197 | ind = ind + 1 |
---|
1198 | p_mg(k,j,i) = tmp(ind) |
---|
1199 | ENDDO |
---|
1200 | ENDDO |
---|
1201 | ENDDO |
---|
1202 | !$OMP END PARALLEL |
---|
1203 | |
---|
1204 | END SUBROUTINE sort_k_to_sequential |
---|
1205 | |
---|
1206 | |
---|
1207 | !------------------------------------------------------------------------------! |
---|
1208 | ! Description: |
---|
1209 | ! ------------ |
---|
1210 | !> Gather subdomain data from all PEs. |
---|
1211 | !------------------------------------------------------------------------------! |
---|
1212 | SUBROUTINE mg_gather( f2, f2_sub ) |
---|
1213 | |
---|
1214 | USE control_parameters, & |
---|
1215 | ONLY: grid_level |
---|
1216 | |
---|
1217 | USE cpulog, & |
---|
1218 | ONLY: cpu_log, log_point_s |
---|
1219 | |
---|
1220 | USE indices, & |
---|
1221 | ONLY: mg_loc_ind, nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
1222 | |
---|
1223 | IMPLICIT NONE |
---|
1224 | |
---|
1225 | INTEGER(iwp) :: i !< |
---|
1226 | INTEGER(iwp) :: il !< |
---|
1227 | INTEGER(iwp) :: ir !< |
---|
1228 | INTEGER(iwp) :: j !< |
---|
1229 | INTEGER(iwp) :: jn !< |
---|
1230 | INTEGER(iwp) :: js !< |
---|
1231 | INTEGER(iwp) :: k !< |
---|
1232 | INTEGER(iwp) :: nwords !< |
---|
1233 | |
---|
1234 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1235 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1236 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f2 !< |
---|
1237 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1238 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1239 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f2_l !< |
---|
1240 | |
---|
1241 | REAL(wp), DIMENSION(nzb:mg_loc_ind(5,myid)+1, & |
---|
1242 | mg_loc_ind(3,myid)-1:mg_loc_ind(4,myid)+1, & |
---|
1243 | mg_loc_ind(1,myid)-1:mg_loc_ind(2,myid)+1) :: f2_sub !< |
---|
1244 | |
---|
1245 | |
---|
1246 | #if defined( __parallel ) |
---|
1247 | CALL cpu_log( log_point_s(34), 'mg_gather', 'start' ) |
---|
1248 | |
---|
1249 | f2_l = 0.0_wp |
---|
1250 | |
---|
1251 | ! |
---|
1252 | !-- Store the local subdomain array on the total array |
---|
1253 | js = mg_loc_ind(3,myid) |
---|
1254 | IF ( south_border_pe ) js = js - 1 |
---|
1255 | jn = mg_loc_ind(4,myid) |
---|
1256 | IF ( north_border_pe ) jn = jn + 1 |
---|
1257 | il = mg_loc_ind(1,myid) |
---|
1258 | IF ( left_border_pe ) il = il - 1 |
---|
1259 | ir = mg_loc_ind(2,myid) |
---|
1260 | IF ( right_border_pe ) ir = ir + 1 |
---|
1261 | DO i = il, ir |
---|
1262 | DO j = js, jn |
---|
1263 | DO k = nzb, nzt_mg(grid_level)+1 |
---|
1264 | f2_l(k,j,i) = f2_sub(k,j,i) |
---|
1265 | ENDDO |
---|
1266 | ENDDO |
---|
1267 | ENDDO |
---|
1268 | |
---|
1269 | ! |
---|
1270 | !-- Find out the number of array elements of the total array |
---|
1271 | nwords = SIZE( f2 ) |
---|
1272 | |
---|
1273 | ! |
---|
1274 | !-- Gather subdomain data from all PEs |
---|
1275 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1276 | CALL MPI_ALLREDUCE( f2_l(nzb,nys_mg(grid_level)-1,nxl_mg(grid_level)-1), & |
---|
1277 | f2(nzb,nys_mg(grid_level)-1,nxl_mg(grid_level)-1), & |
---|
1278 | nwords, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1279 | |
---|
1280 | CALL cpu_log( log_point_s(34), 'mg_gather', 'stop' ) |
---|
1281 | #endif |
---|
1282 | |
---|
1283 | END SUBROUTINE mg_gather |
---|
1284 | |
---|
1285 | |
---|
1286 | |
---|
1287 | !------------------------------------------------------------------------------! |
---|
1288 | ! Description: |
---|
1289 | ! ------------ |
---|
1290 | !> @todo It might be possible to improve the speed of this routine by using |
---|
1291 | !> non-blocking communication |
---|
1292 | !------------------------------------------------------------------------------! |
---|
1293 | SUBROUTINE mg_scatter( p2, p2_sub ) |
---|
1294 | |
---|
1295 | USE control_parameters, & |
---|
1296 | ONLY: grid_level |
---|
1297 | |
---|
1298 | USE cpulog, & |
---|
1299 | ONLY: cpu_log, log_point_s |
---|
1300 | |
---|
1301 | USE indices, & |
---|
1302 | ONLY: mg_loc_ind, nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
1303 | |
---|
1304 | IMPLICIT NONE |
---|
1305 | |
---|
1306 | INTEGER(iwp) :: nwords !< |
---|
1307 | |
---|
1308 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level-1)+1, & |
---|
1309 | nys_mg(grid_level-1)-1:nyn_mg(grid_level-1)+1, & |
---|
1310 | nxl_mg(grid_level-1)-1:nxr_mg(grid_level-1)+1) :: p2 !< |
---|
1311 | |
---|
1312 | REAL(wp), DIMENSION(nzb:mg_loc_ind(5,myid)+1, & |
---|
1313 | mg_loc_ind(3,myid)-1:mg_loc_ind(4,myid)+1, & |
---|
1314 | mg_loc_ind(1,myid)-1:mg_loc_ind(2,myid)+1) :: p2_sub !< |
---|
1315 | |
---|
1316 | ! |
---|
1317 | !-- Find out the number of array elements of the subdomain array |
---|
1318 | nwords = SIZE( p2_sub ) |
---|
1319 | |
---|
1320 | #if defined( __parallel ) |
---|
1321 | CALL cpu_log( log_point_s(35), 'mg_scatter', 'start' ) |
---|
1322 | |
---|
1323 | p2_sub = p2(:,mg_loc_ind(3,myid)-1:mg_loc_ind(4,myid)+1, & |
---|
1324 | mg_loc_ind(1,myid)-1:mg_loc_ind(2,myid)+1) |
---|
1325 | |
---|
1326 | CALL cpu_log( log_point_s(35), 'mg_scatter', 'stop' ) |
---|
1327 | #endif |
---|
1328 | |
---|
1329 | END SUBROUTINE mg_scatter |
---|
1330 | |
---|
1331 | |
---|
1332 | !------------------------------------------------------------------------------! |
---|
1333 | ! Description: |
---|
1334 | ! ------------ |
---|
1335 | !> This is where the multigrid technique takes place. V- and W- Cycle are |
---|
1336 | !> implemented and steered by the parameter "gamma". Parameter "nue" determines |
---|
1337 | !> the convergence of the multigrid iterative solution. There are nue times |
---|
1338 | !> RB-GS iterations. It should be set to "1" or "2", considering the time effort |
---|
1339 | !> one would like to invest. Last choice shows a very good converging factor, |
---|
1340 | !> but leads to an increase in computing time. |
---|
1341 | !------------------------------------------------------------------------------! |
---|
1342 | RECURSIVE SUBROUTINE next_mg_level( f_mg, p_mg, p3, r ) |
---|
1343 | |
---|
1344 | USE control_parameters, & |
---|
1345 | ONLY: bc_lr_dirrad, bc_lr_raddir, bc_ns_dirrad, bc_ns_raddir, & |
---|
1346 | child_domain, gamma_mg, grid_level_count, maximum_grid_level,& |
---|
1347 | mg_switch_to_pe0_level, mg_switch_to_pe0, ngsrb |
---|
1348 | |
---|
1349 | USE indices, & |
---|
1350 | ONLY: mg_loc_ind, nxl, nxl_mg, nxr, nxr_mg, nys, nys_mg, nyn, & |
---|
1351 | nyn_mg, nzb, nzt, nzt_mg |
---|
1352 | |
---|
1353 | IMPLICIT NONE |
---|
1354 | |
---|
1355 | INTEGER(iwp) :: i !< index variable along x |
---|
1356 | INTEGER(iwp) :: j !< index variable along y |
---|
1357 | INTEGER(iwp) :: k !< index variable along z |
---|
1358 | INTEGER(iwp) :: nxl_mg_save !< |
---|
1359 | INTEGER(iwp) :: nxr_mg_save !< |
---|
1360 | INTEGER(iwp) :: nyn_mg_save !< |
---|
1361 | INTEGER(iwp) :: nys_mg_save !< |
---|
1362 | INTEGER(iwp) :: nzt_mg_save !< |
---|
1363 | |
---|
1364 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1365 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1366 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f_mg !< |
---|
1367 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1368 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1369 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: p_mg !< |
---|
1370 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1371 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1372 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: p3 !< |
---|
1373 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1374 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1375 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: r !< |
---|
1376 | |
---|
1377 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level-1)+1, & |
---|
1378 | nys_mg(grid_level-1)-1:nyn_mg(grid_level-1)+1, & |
---|
1379 | nxl_mg(grid_level-1)-1:nxr_mg(grid_level-1)+1) :: f2 !< |
---|
1380 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level-1)+1, & |
---|
1381 | nys_mg(grid_level-1)-1:nyn_mg(grid_level-1)+1, & |
---|
1382 | nxl_mg(grid_level-1)-1:nxr_mg(grid_level-1)+1) :: p2 !< |
---|
1383 | |
---|
1384 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f2_sub !< |
---|
1385 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: p2_sub !< |
---|
1386 | |
---|
1387 | ! |
---|
1388 | !-- Restriction to the coarsest grid |
---|
1389 | 10 IF ( grid_level == 1 ) THEN |
---|
1390 | |
---|
1391 | ! |
---|
1392 | !-- Solution on the coarsest grid. Double the number of Gauss-Seidel |
---|
1393 | !-- iterations in order to get a more accurate solution. |
---|
1394 | ngsrb = 2 * ngsrb |
---|
1395 | |
---|
1396 | ind_even_odd = even_odd_level(grid_level) |
---|
1397 | |
---|
1398 | CALL redblack( f_mg, p_mg ) |
---|
1399 | |
---|
1400 | ngsrb = ngsrb / 2 |
---|
1401 | |
---|
1402 | |
---|
1403 | ELSEIF ( grid_level /= 1 ) THEN |
---|
1404 | |
---|
1405 | grid_level_count(grid_level) = grid_level_count(grid_level) + 1 |
---|
1406 | |
---|
1407 | ! |
---|
1408 | !-- Solution on the actual grid level |
---|
1409 | ind_even_odd = even_odd_level(grid_level) |
---|
1410 | |
---|
1411 | CALL redblack( f_mg, p_mg ) |
---|
1412 | |
---|
1413 | ! |
---|
1414 | !-- Determination of the actual residual |
---|
1415 | CALL resid( f_mg, p_mg, r ) |
---|
1416 | |
---|
1417 | !-- Restriction of the residual (finer grid values!) to the next coarser |
---|
1418 | !-- grid. Therefore, the grid level has to be decremented now. nxl..nzt have |
---|
1419 | !-- to be set to the coarse grid values, because these variables are needed |
---|
1420 | !-- for the exchange of ghost points in routine exchange_horiz |
---|
1421 | grid_level = grid_level - 1 |
---|
1422 | |
---|
1423 | nxl = nxl_mg(grid_level) |
---|
1424 | nys = nys_mg(grid_level) |
---|
1425 | nxr = nxr_mg(grid_level) |
---|
1426 | nyn = nyn_mg(grid_level) |
---|
1427 | nzt = nzt_mg(grid_level) |
---|
1428 | |
---|
1429 | IF ( grid_level == mg_switch_to_pe0_level ) THEN |
---|
1430 | |
---|
1431 | ! |
---|
1432 | !-- From this level on, calculations are done on PE0 only. |
---|
1433 | !-- First, carry out restriction on the subdomain. |
---|
1434 | !-- Therefore, indices of the level have to be changed to subdomain |
---|
1435 | !-- values in between (otherwise, the restrict routine would expect |
---|
1436 | !-- the gathered array) |
---|
1437 | |
---|
1438 | nxl_mg_save = nxl_mg(grid_level) |
---|
1439 | nxr_mg_save = nxr_mg(grid_level) |
---|
1440 | nys_mg_save = nys_mg(grid_level) |
---|
1441 | nyn_mg_save = nyn_mg(grid_level) |
---|
1442 | nzt_mg_save = nzt_mg(grid_level) |
---|
1443 | nxl_mg(grid_level) = mg_loc_ind(1,myid) |
---|
1444 | nxr_mg(grid_level) = mg_loc_ind(2,myid) |
---|
1445 | nys_mg(grid_level) = mg_loc_ind(3,myid) |
---|
1446 | nyn_mg(grid_level) = mg_loc_ind(4,myid) |
---|
1447 | nzt_mg(grid_level) = mg_loc_ind(5,myid) |
---|
1448 | nxl = mg_loc_ind(1,myid) |
---|
1449 | nxr = mg_loc_ind(2,myid) |
---|
1450 | nys = mg_loc_ind(3,myid) |
---|
1451 | nyn = mg_loc_ind(4,myid) |
---|
1452 | nzt = mg_loc_ind(5,myid) |
---|
1453 | |
---|
1454 | ALLOCATE( f2_sub(nzb:nzt_mg(grid_level)+1, & |
---|
1455 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1456 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) ) |
---|
1457 | |
---|
1458 | CALL restrict( f2_sub, r ) |
---|
1459 | |
---|
1460 | ! |
---|
1461 | !-- Restore the correct indices of this level |
---|
1462 | nxl_mg(grid_level) = nxl_mg_save |
---|
1463 | nxr_mg(grid_level) = nxr_mg_save |
---|
1464 | nys_mg(grid_level) = nys_mg_save |
---|
1465 | nyn_mg(grid_level) = nyn_mg_save |
---|
1466 | nzt_mg(grid_level) = nzt_mg_save |
---|
1467 | nxl = nxl_mg(grid_level) |
---|
1468 | nxr = nxr_mg(grid_level) |
---|
1469 | nys = nys_mg(grid_level) |
---|
1470 | nyn = nyn_mg(grid_level) |
---|
1471 | nzt = nzt_mg(grid_level) |
---|
1472 | ! |
---|
1473 | !-- Gather all arrays from the subdomains on PE0 |
---|
1474 | CALL mg_gather( f2, f2_sub ) |
---|
1475 | |
---|
1476 | ! |
---|
1477 | !-- Set switch for routine exchange_horiz, that no ghostpoint exchange |
---|
1478 | !-- has to be carried out from now on |
---|
1479 | mg_switch_to_pe0 = .TRUE. |
---|
1480 | |
---|
1481 | ! |
---|
1482 | !-- In case of non-cyclic lateral boundary conditions, both in- and |
---|
1483 | !-- outflow conditions have to be used on all PEs after the switch, |
---|
1484 | !-- because then they have the total domain. |
---|
1485 | IF ( bc_lr_dirrad ) THEN |
---|
1486 | bc_dirichlet_l = .TRUE. |
---|
1487 | bc_dirichlet_r = .FALSE. |
---|
1488 | bc_radiation_l = .FALSE. |
---|
1489 | bc_radiation_r = .TRUE. |
---|
1490 | ELSEIF ( bc_lr_raddir ) THEN |
---|
1491 | bc_dirichlet_l = .FALSE. |
---|
1492 | bc_dirichlet_r = .TRUE. |
---|
1493 | bc_radiation_l = .TRUE. |
---|
1494 | bc_radiation_r = .FALSE. |
---|
1495 | ELSEIF ( child_domain .OR. nesting_offline ) THEN |
---|
1496 | bc_dirichlet_l = .TRUE. |
---|
1497 | bc_dirichlet_r = .TRUE. |
---|
1498 | ENDIF |
---|
1499 | |
---|
1500 | IF ( bc_ns_dirrad ) THEN |
---|
1501 | bc_dirichlet_n = .TRUE. |
---|
1502 | bc_dirichlet_s = .FALSE. |
---|
1503 | bc_radiation_n = .FALSE. |
---|
1504 | bc_radiation_s = .TRUE. |
---|
1505 | ELSEIF ( bc_ns_raddir ) THEN |
---|
1506 | bc_dirichlet_n = .FALSE. |
---|
1507 | bc_dirichlet_s = .TRUE. |
---|
1508 | bc_radiation_n = .TRUE. |
---|
1509 | bc_radiation_s = .FALSE. |
---|
1510 | ELSEIF ( child_domain .OR. nesting_offline) THEN |
---|
1511 | bc_dirichlet_s = .TRUE. |
---|
1512 | bc_dirichlet_n = .TRUE. |
---|
1513 | ENDIF |
---|
1514 | |
---|
1515 | DEALLOCATE( f2_sub ) |
---|
1516 | |
---|
1517 | ELSE |
---|
1518 | |
---|
1519 | CALL restrict( f2, r ) |
---|
1520 | |
---|
1521 | ind_even_odd = even_odd_level(grid_level) ! must be after restrict |
---|
1522 | |
---|
1523 | ENDIF |
---|
1524 | |
---|
1525 | p2 = 0.0_wp |
---|
1526 | |
---|
1527 | ! |
---|
1528 | !-- Repeat the same procedure till the coarsest grid is reached |
---|
1529 | CALL next_mg_level( f2, p2, p3, r ) |
---|
1530 | |
---|
1531 | ENDIF |
---|
1532 | |
---|
1533 | ! |
---|
1534 | !-- Now follows the prolongation |
---|
1535 | IF ( grid_level >= 2 ) THEN |
---|
1536 | |
---|
1537 | ! |
---|
1538 | !-- Prolongation of the new residual. The values are transferred |
---|
1539 | !-- from the coarse to the next finer grid. |
---|
1540 | IF ( grid_level == mg_switch_to_pe0_level+1 ) THEN |
---|
1541 | |
---|
1542 | #if defined( __parallel ) |
---|
1543 | ! |
---|
1544 | !-- At this level, the new residual first has to be scattered from |
---|
1545 | !-- PE0 to the other PEs |
---|
1546 | ALLOCATE( p2_sub(nzb:mg_loc_ind(5,myid)+1, & |
---|
1547 | mg_loc_ind(3,myid)-1:mg_loc_ind(4,myid)+1, & |
---|
1548 | mg_loc_ind(1,myid)-1:mg_loc_ind(2,myid)+1) ) |
---|
1549 | |
---|
1550 | CALL mg_scatter( p2, p2_sub ) |
---|
1551 | |
---|
1552 | ! |
---|
1553 | !-- Therefore, indices of the previous level have to be changed to |
---|
1554 | !-- subdomain values in between (otherwise, the prolong routine would |
---|
1555 | !-- expect the gathered array) |
---|
1556 | nxl_mg_save = nxl_mg(grid_level-1) |
---|
1557 | nxr_mg_save = nxr_mg(grid_level-1) |
---|
1558 | nys_mg_save = nys_mg(grid_level-1) |
---|
1559 | nyn_mg_save = nyn_mg(grid_level-1) |
---|
1560 | nzt_mg_save = nzt_mg(grid_level-1) |
---|
1561 | nxl_mg(grid_level-1) = mg_loc_ind(1,myid) |
---|
1562 | nxr_mg(grid_level-1) = mg_loc_ind(2,myid) |
---|
1563 | nys_mg(grid_level-1) = mg_loc_ind(3,myid) |
---|
1564 | nyn_mg(grid_level-1) = mg_loc_ind(4,myid) |
---|
1565 | nzt_mg(grid_level-1) = mg_loc_ind(5,myid) |
---|
1566 | |
---|
1567 | ! |
---|
1568 | !-- Set switch for routine exchange_horiz, that ghostpoint exchange |
---|
1569 | !-- has to be carried again out from now on |
---|
1570 | mg_switch_to_pe0 = .FALSE. |
---|
1571 | |
---|
1572 | ! |
---|
1573 | !-- For non-cyclic lateral boundary conditions and in case of nesting, |
---|
1574 | !-- restore the in-/outflow conditions. |
---|
1575 | bc_dirichlet_l = .FALSE.; bc_dirichlet_r = .FALSE. |
---|
1576 | bc_dirichlet_n = .FALSE.; bc_dirichlet_s = .FALSE. |
---|
1577 | bc_radiation_l = .FALSE.; bc_radiation_r = .FALSE. |
---|
1578 | bc_radiation_n = .FALSE.; bc_radiation_s = .FALSE. |
---|
1579 | |
---|
1580 | IF ( pleft == MPI_PROC_NULL ) THEN |
---|
1581 | IF ( bc_lr_dirrad .OR. child_domain .OR. nesting_offline ) & |
---|
1582 | THEN |
---|
1583 | bc_dirichlet_l = .TRUE. |
---|
1584 | ELSEIF ( bc_lr_raddir ) THEN |
---|
1585 | bc_radiation_l = .TRUE. |
---|
1586 | ENDIF |
---|
1587 | ENDIF |
---|
1588 | |
---|
1589 | IF ( pright == MPI_PROC_NULL ) THEN |
---|
1590 | IF ( bc_lr_dirrad ) THEN |
---|
1591 | bc_radiation_r = .TRUE. |
---|
1592 | ELSEIF ( bc_lr_raddir .OR. child_domain .OR. & |
---|
1593 | nesting_offline ) THEN |
---|
1594 | bc_dirichlet_r = .TRUE. |
---|
1595 | ENDIF |
---|
1596 | ENDIF |
---|
1597 | |
---|
1598 | IF ( psouth == MPI_PROC_NULL ) THEN |
---|
1599 | IF ( bc_ns_dirrad ) THEN |
---|
1600 | bc_radiation_s = .TRUE. |
---|
1601 | ELSEIF ( bc_ns_raddir .OR. child_domain .OR. & |
---|
1602 | nesting_offline ) THEN |
---|
1603 | bc_dirichlet_s = .TRUE. |
---|
1604 | ENDIF |
---|
1605 | ENDIF |
---|
1606 | |
---|
1607 | IF ( pnorth == MPI_PROC_NULL ) THEN |
---|
1608 | IF ( bc_ns_dirrad .OR. child_domain .OR. nesting_offline ) & |
---|
1609 | THEN |
---|
1610 | bc_dirichlet_n = .TRUE. |
---|
1611 | ELSEIF ( bc_ns_raddir ) THEN |
---|
1612 | bc_radiation_n = .TRUE. |
---|
1613 | ENDIF |
---|
1614 | ENDIF |
---|
1615 | |
---|
1616 | CALL prolong( p2_sub, p3 ) |
---|
1617 | |
---|
1618 | ! |
---|
1619 | !-- Restore the correct indices of the previous level |
---|
1620 | nxl_mg(grid_level-1) = nxl_mg_save |
---|
1621 | nxr_mg(grid_level-1) = nxr_mg_save |
---|
1622 | nys_mg(grid_level-1) = nys_mg_save |
---|
1623 | nyn_mg(grid_level-1) = nyn_mg_save |
---|
1624 | nzt_mg(grid_level-1) = nzt_mg_save |
---|
1625 | |
---|
1626 | DEALLOCATE( p2_sub ) |
---|
1627 | #endif |
---|
1628 | |
---|
1629 | ELSE |
---|
1630 | |
---|
1631 | CALL prolong( p2, p3 ) |
---|
1632 | |
---|
1633 | ENDIF |
---|
1634 | |
---|
1635 | ! |
---|
1636 | !-- Computation of the new pressure correction. Therefore, |
---|
1637 | !-- values from prior grids are added up automatically stage by stage. |
---|
1638 | DO i = nxl_mg(grid_level)-1, nxr_mg(grid_level)+1 |
---|
1639 | DO j = nys_mg(grid_level)-1, nyn_mg(grid_level)+1 |
---|
1640 | DO k = nzb, nzt_mg(grid_level)+1 |
---|
1641 | p_mg(k,j,i) = p_mg(k,j,i) + p3(k,j,i) |
---|
1642 | ENDDO |
---|
1643 | ENDDO |
---|
1644 | ENDDO |
---|
1645 | |
---|
1646 | ! |
---|
1647 | !-- Relaxation of the new solution |
---|
1648 | CALL redblack( f_mg, p_mg ) |
---|
1649 | |
---|
1650 | ENDIF |
---|
1651 | |
---|
1652 | |
---|
1653 | ! |
---|
1654 | !-- The following few lines serve the steering of the multigrid scheme |
---|
1655 | IF ( grid_level == maximum_grid_level ) THEN |
---|
1656 | |
---|
1657 | GOTO 20 |
---|
1658 | |
---|
1659 | ELSEIF ( grid_level /= maximum_grid_level .AND. grid_level /= 1 .AND. & |
---|
1660 | grid_level_count(grid_level) /= gamma_mg ) THEN |
---|
1661 | |
---|
1662 | GOTO 10 |
---|
1663 | |
---|
1664 | ENDIF |
---|
1665 | |
---|
1666 | ! |
---|
1667 | !-- Reset counter for the next call of poismg |
---|
1668 | grid_level_count(grid_level) = 0 |
---|
1669 | |
---|
1670 | ! |
---|
1671 | !-- Continue with the next finer level. nxl..nzt have to be |
---|
1672 | !-- set to the finer grid values, because these variables are needed for the |
---|
1673 | !-- exchange of ghost points in routine exchange_horiz |
---|
1674 | grid_level = grid_level + 1 |
---|
1675 | ind_even_odd = even_odd_level(grid_level) |
---|
1676 | |
---|
1677 | nxl = nxl_mg(grid_level) |
---|
1678 | nxr = nxr_mg(grid_level) |
---|
1679 | nys = nys_mg(grid_level) |
---|
1680 | nyn = nyn_mg(grid_level) |
---|
1681 | nzt = nzt_mg(grid_level) |
---|
1682 | |
---|
1683 | 20 CONTINUE |
---|
1684 | |
---|
1685 | END SUBROUTINE next_mg_level |
---|
1686 | |
---|
1687 | |
---|
1688 | !------------------------------------------------------------------------------! |
---|
1689 | ! Description: |
---|
1690 | ! ------------ |
---|
1691 | !> Initial settings for sorting k-dimension from sequential order (alternate |
---|
1692 | !> even/odd) into blocks of even and odd or vice versa |
---|
1693 | !------------------------------------------------------------------------------! |
---|
1694 | SUBROUTINE init_even_odd_blocks |
---|
1695 | |
---|
1696 | |
---|
1697 | USE arrays_3d, & |
---|
1698 | ONLY: f1_mg, f2_mg, f3_mg |
---|
1699 | |
---|
1700 | USE control_parameters, & |
---|
1701 | ONLY: grid_level, maximum_grid_level |
---|
1702 | |
---|
1703 | USE indices, & |
---|
1704 | ONLY: nzb, nzt, nzt_mg |
---|
1705 | |
---|
1706 | USE indices, & |
---|
1707 | ONLY: nzb, nzt_mg |
---|
1708 | |
---|
1709 | IMPLICIT NONE |
---|
1710 | ! |
---|
1711 | !-- Local variables |
---|
1712 | INTEGER(iwp) :: i !< |
---|
1713 | INTEGER(iwp) :: l !< |
---|
1714 | |
---|
1715 | LOGICAL, SAVE :: lfirst = .TRUE. |
---|
1716 | |
---|
1717 | |
---|
1718 | IF ( .NOT. lfirst ) RETURN |
---|
1719 | |
---|
1720 | ALLOCATE( even_odd_level(maximum_grid_level) ) |
---|
1721 | |
---|
1722 | ALLOCATE( f1_mg_b(nzb:nzt+1,maximum_grid_level), & |
---|
1723 | f2_mg_b(nzb:nzt+1,maximum_grid_level), & |
---|
1724 | f3_mg_b(nzb:nzt+1,maximum_grid_level) ) |
---|
1725 | |
---|
1726 | ! |
---|
1727 | !-- Set border index between the even and odd block |
---|
1728 | DO i = maximum_grid_level, 1, -1 |
---|
1729 | even_odd_level(i) = nzt_mg(i) / 2 |
---|
1730 | ENDDO |
---|
1731 | |
---|
1732 | ! |
---|
1733 | !-- Sort grid coefficients used in red/black scheme and for calculating the |
---|
1734 | !-- residual to block (even/odd) structure |
---|
1735 | DO l = maximum_grid_level, 1 , -1 |
---|
1736 | CALL sort_k_to_even_odd_blocks( f1_mg(nzb+1:nzt_mg(grid_level),l), & |
---|
1737 | f1_mg_b(nzb:nzt_mg(grid_level)+1,l), & |
---|
1738 | l ) |
---|
1739 | CALL sort_k_to_even_odd_blocks( f2_mg(nzb+1:nzt_mg(grid_level),l), & |
---|
1740 | f2_mg_b(nzb:nzt_mg(grid_level)+1,l), & |
---|
1741 | l ) |
---|
1742 | CALL sort_k_to_even_odd_blocks( f3_mg(nzb+1:nzt_mg(grid_level),l), & |
---|
1743 | f3_mg_b(nzb:nzt_mg(grid_level)+1,l), & |
---|
1744 | l ) |
---|
1745 | ENDDO |
---|
1746 | |
---|
1747 | lfirst = .FALSE. |
---|
1748 | |
---|
1749 | END SUBROUTINE init_even_odd_blocks |
---|
1750 | |
---|
1751 | |
---|
1752 | !------------------------------------------------------------------------------! |
---|
1753 | ! Description: |
---|
1754 | ! ------------ |
---|
1755 | !> Special exchange_horiz subroutine for use in redblack. Transfers only |
---|
1756 | !> "red" or "black" data points. |
---|
1757 | !------------------------------------------------------------------------------! |
---|
1758 | SUBROUTINE special_exchange_horiz( p_mg, color ) |
---|
1759 | |
---|
1760 | |
---|
1761 | USE control_parameters, & |
---|
1762 | ONLY: grid_level, mg_switch_to_pe0_level, synchronous_exchange |
---|
1763 | |
---|
1764 | USE indices, & |
---|
1765 | ONLY: nxl, nxl_mg, nxr, nxr_mg, nys, nys_mg, nyn, & |
---|
1766 | nyn_mg, nzb, nzt, nzt_mg |
---|
1767 | |
---|
1768 | IMPLICIT NONE |
---|
1769 | |
---|
1770 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1771 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1772 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
1773 | p_mg !< treated array |
---|
1774 | |
---|
1775 | INTEGER(iwp), intent(IN) :: color !< flag for grid point type (red or black) |
---|
1776 | ! |
---|
1777 | !-- Local variables |
---|
1778 | INTEGER(iwp) :: i !< index variable along x |
---|
1779 | INTEGER(iwp) :: i1 !< index variable along x on coarse level |
---|
1780 | INTEGER(iwp) :: i2 !< index variable along x on coarse level |
---|
1781 | |
---|
1782 | INTEGER(iwp) :: j !< index variable along y |
---|
1783 | INTEGER(iwp) :: j1 !< index variable along y on coarse level |
---|
1784 | INTEGER(iwp) :: j2 !< index variable along y on coarse level |
---|
1785 | INTEGER(iwp) :: k !< index variable along z |
---|
1786 | INTEGER(iwp) :: l !< short for grid level |
---|
1787 | INTEGER(iwp) :: jys !< index for lower local PE boundary along y |
---|
1788 | INTEGER(iwp) :: jyn !< index for upper local PE boundary along y |
---|
1789 | INTEGER(iwp) :: ixl !< index for lower local PE boundary along x |
---|
1790 | INTEGER(iwp) :: ixr !< index for upper local PE boundary along x |
---|
1791 | |
---|
1792 | LOGICAL :: synchronous_exchange_save !< dummy to reset synchronous_exchange to prescribed value |
---|
1793 | |
---|
1794 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: temp !< temporary array on next coarser grid level |
---|
1795 | |
---|
1796 | #if defined ( __parallel ) |
---|
1797 | synchronous_exchange_save = synchronous_exchange |
---|
1798 | synchronous_exchange = .FALSE. |
---|
1799 | |
---|
1800 | l = grid_level |
---|
1801 | |
---|
1802 | ind_even_odd = even_odd_level(grid_level) |
---|
1803 | |
---|
1804 | ! |
---|
1805 | !-- Restricted transfer only on finer levels with enough data. |
---|
1806 | !-- Restricted transfer is not possible for levels smaller or equal to |
---|
1807 | !-- 'switch to PE0 levels', since array bounds does not fit. Moreover, |
---|
1808 | !-- it is not possible for the coarsest grid level, since the dimensions |
---|
1809 | !-- of temp are not defined. For such cases, normal exchange_horiz is called. |
---|
1810 | IF ( l > 1 .AND. l > mg_switch_to_pe0_level + 1 .AND. & |
---|
1811 | ( ngp_xz(grid_level) >= 900 .OR. ngp_yz(grid_level) >= 900 ) ) THEN |
---|
1812 | |
---|
1813 | jys = nys_mg(grid_level-1) |
---|
1814 | jyn = nyn_mg(grid_level-1) |
---|
1815 | ixl = nxl_mg(grid_level-1) |
---|
1816 | ixr = nxr_mg(grid_level-1) |
---|
1817 | ALLOCATE( temp(nzb:nzt_mg(l-1)+1,jys-1:jyn+1,ixl-1:ixr+1) ) |
---|
1818 | ! |
---|
1819 | !-- Handling the even k Values |
---|
1820 | !-- Collecting data for the north - south exchange |
---|
1821 | !-- Since only every second value has to be transfered, data are stored |
---|
1822 | !-- on the next coarser grid level, because the arrays on that level |
---|
1823 | !-- have just the required size |
---|
1824 | i1 = nxl_mg(grid_level-1) |
---|
1825 | i2 = nxl_mg(grid_level-1) |
---|
1826 | |
---|
1827 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
1828 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
1829 | |
---|
1830 | IF ( j == nys_mg(l) ) THEN |
---|
1831 | !DIR$ IVDEP |
---|
1832 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1833 | temp(k-ind_even_odd,jys,i1) = p_mg(k,j,i) |
---|
1834 | ENDDO |
---|
1835 | i1 = i1 + 1 |
---|
1836 | |
---|
1837 | ENDIF |
---|
1838 | |
---|
1839 | IF ( j == nyn_mg(l) ) THEN |
---|
1840 | !DIR$ IVDEP |
---|
1841 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1842 | temp(k-ind_even_odd,jyn,i2) = p_mg(k,j,i) |
---|
1843 | ENDDO |
---|
1844 | i2 = i2 + 1 |
---|
1845 | |
---|
1846 | ENDIF |
---|
1847 | |
---|
1848 | ENDDO |
---|
1849 | ENDDO |
---|
1850 | |
---|
1851 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
1852 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
1853 | |
---|
1854 | IF ( j == nys_mg(l) ) THEN |
---|
1855 | !DIR$ IVDEP |
---|
1856 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1857 | temp(k-ind_even_odd,jys,i1) = p_mg(k,j,i) |
---|
1858 | ENDDO |
---|
1859 | i1 = i1 + 1 |
---|
1860 | |
---|
1861 | ENDIF |
---|
1862 | |
---|
1863 | IF ( j == nyn_mg(l) ) THEN |
---|
1864 | !DIR$ IVDEP |
---|
1865 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1866 | temp(k-ind_even_odd,jyn,i2) = p_mg(k,j,i) |
---|
1867 | ENDDO |
---|
1868 | i2 = i2 + 1 |
---|
1869 | |
---|
1870 | ENDIF |
---|
1871 | |
---|
1872 | ENDDO |
---|
1873 | ENDDO |
---|
1874 | |
---|
1875 | grid_level = grid_level-1 |
---|
1876 | |
---|
1877 | nxl = nxl_mg(grid_level) |
---|
1878 | nys = nys_mg(grid_level) |
---|
1879 | nxr = nxr_mg(grid_level) |
---|
1880 | nyn = nyn_mg(grid_level) |
---|
1881 | nzt = nzt_mg(grid_level) |
---|
1882 | |
---|
1883 | send_receive = 'ns' |
---|
1884 | CALL exchange_horiz( temp, 1 ) |
---|
1885 | |
---|
1886 | grid_level = grid_level+1 |
---|
1887 | |
---|
1888 | i1 = nxl_mg(grid_level-1) |
---|
1889 | i2 = nxl_mg(grid_level-1) |
---|
1890 | |
---|
1891 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
1892 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
1893 | |
---|
1894 | IF ( j == nys_mg(l) ) THEN |
---|
1895 | !DIR$ IVDEP |
---|
1896 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1897 | p_mg(k,nyn_mg(l)+1,i) = temp(k-ind_even_odd,jyn+1,i1) |
---|
1898 | ENDDO |
---|
1899 | i1 = i1 + 1 |
---|
1900 | |
---|
1901 | ENDIF |
---|
1902 | |
---|
1903 | IF ( j == nyn_mg(l) ) THEN |
---|
1904 | !DIR$ IVDEP |
---|
1905 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1906 | p_mg(k,nys_mg(l)-1,i) = temp(k-ind_even_odd,jys-1,i2) |
---|
1907 | ENDDO |
---|
1908 | i2 = i2 + 1 |
---|
1909 | |
---|
1910 | ENDIF |
---|
1911 | |
---|
1912 | ENDDO |
---|
1913 | ENDDO |
---|
1914 | |
---|
1915 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
1916 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
1917 | |
---|
1918 | IF ( j == nys_mg(l) ) THEN |
---|
1919 | !DIR$ IVDEP |
---|
1920 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1921 | p_mg(k,nyn_mg(l)+1,i) = temp(k-ind_even_odd,jyn+1,i1) |
---|
1922 | ENDDO |
---|
1923 | i1 = i1 + 1 |
---|
1924 | |
---|
1925 | ENDIF |
---|
1926 | |
---|
1927 | IF ( j == nyn_mg(l) ) THEN |
---|
1928 | !DIR$ IVDEP |
---|
1929 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1930 | p_mg(k,nys_mg(l)-1,i) = temp(k-ind_even_odd,jys-1,i2) |
---|
1931 | ENDDO |
---|
1932 | i2 = i2 + 1 |
---|
1933 | |
---|
1934 | ENDIF |
---|
1935 | |
---|
1936 | ENDDO |
---|
1937 | ENDDO |
---|
1938 | |
---|
1939 | ! |
---|
1940 | !-- Collecting data for the left - right exchange |
---|
1941 | !-- Since only every second value has to be transfered, data are stored |
---|
1942 | !-- on the next coarser grid level, because the arrays on that level |
---|
1943 | !-- have just the required size |
---|
1944 | j1 = nys_mg(grid_level-1) |
---|
1945 | j2 = nys_mg(grid_level-1) |
---|
1946 | |
---|
1947 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
1948 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
1949 | |
---|
1950 | IF ( i == nxl_mg(l) ) THEN |
---|
1951 | !DIR$ IVDEP |
---|
1952 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1953 | temp(k-ind_even_odd,j1,ixl) = p_mg(k,j,i) |
---|
1954 | ENDDO |
---|
1955 | j1 = j1 + 1 |
---|
1956 | |
---|
1957 | ENDIF |
---|
1958 | |
---|
1959 | IF ( i == nxr_mg(l) ) THEN |
---|
1960 | !DIR$ IVDEP |
---|
1961 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1962 | temp(k-ind_even_odd,j2,ixr) = p_mg(k,j,i) |
---|
1963 | ENDDO |
---|
1964 | j2 = j2 + 1 |
---|
1965 | |
---|
1966 | ENDIF |
---|
1967 | |
---|
1968 | ENDDO |
---|
1969 | ENDDO |
---|
1970 | |
---|
1971 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
1972 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
1973 | |
---|
1974 | IF ( i == nxl_mg(l) ) THEN |
---|
1975 | !DIR$ IVDEP |
---|
1976 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1977 | temp(k-ind_even_odd,j1,ixl) = p_mg(k,j,i) |
---|
1978 | ENDDO |
---|
1979 | j1 = j1 + 1 |
---|
1980 | |
---|
1981 | ENDIF |
---|
1982 | |
---|
1983 | IF ( i == nxr_mg(l) ) THEN |
---|
1984 | !DIR$ IVDEP |
---|
1985 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1986 | temp(k-ind_even_odd,j2,ixr) = p_mg(k,j,i) |
---|
1987 | ENDDO |
---|
1988 | j2 = j2 + 1 |
---|
1989 | |
---|
1990 | ENDIF |
---|
1991 | |
---|
1992 | ENDDO |
---|
1993 | ENDDO |
---|
1994 | |
---|
1995 | grid_level = grid_level-1 |
---|
1996 | send_receive = 'lr' |
---|
1997 | |
---|
1998 | CALL exchange_horiz( temp, 1 ) |
---|
1999 | |
---|
2000 | grid_level = grid_level+1 |
---|
2001 | |
---|
2002 | j1 = nys_mg(grid_level-1) |
---|
2003 | j2 = nys_mg(grid_level-1) |
---|
2004 | |
---|
2005 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
2006 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
2007 | |
---|
2008 | IF ( i == nxl_mg(l) ) THEN |
---|
2009 | !DIR$ IVDEP |
---|
2010 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2011 | p_mg(k,j,nxr_mg(l)+1) = temp(k-ind_even_odd,j1,ixr+1) |
---|
2012 | ENDDO |
---|
2013 | j1 = j1 + 1 |
---|
2014 | |
---|
2015 | ENDIF |
---|
2016 | |
---|
2017 | IF ( i == nxr_mg(l) ) THEN |
---|
2018 | !DIR$ IVDEP |
---|
2019 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2020 | p_mg(k,j,nxl_mg(l)-1) = temp(k-ind_even_odd,j2,ixl-1) |
---|
2021 | ENDDO |
---|
2022 | j2 = j2 + 1 |
---|
2023 | |
---|
2024 | ENDIF |
---|
2025 | |
---|
2026 | ENDDO |
---|
2027 | ENDDO |
---|
2028 | |
---|
2029 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
2030 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
2031 | |
---|
2032 | IF ( i == nxl_mg(l) ) THEN |
---|
2033 | !DIR$ IVDEP |
---|
2034 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2035 | p_mg(k,j,nxr_mg(l)+1) = temp(k-ind_even_odd,j1,ixr+1) |
---|
2036 | ENDDO |
---|
2037 | j1 = j1 + 1 |
---|
2038 | |
---|
2039 | ENDIF |
---|
2040 | |
---|
2041 | IF ( i == nxr_mg(l) ) THEN |
---|
2042 | !DIR$ IVDEP |
---|
2043 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2044 | p_mg(k,j,nxl_mg(l)-1) = temp(k-ind_even_odd,j2,ixl-1) |
---|
2045 | ENDDO |
---|
2046 | j2 = j2 + 1 |
---|
2047 | |
---|
2048 | ENDIF |
---|
2049 | |
---|
2050 | ENDDO |
---|
2051 | ENDDO |
---|
2052 | |
---|
2053 | ! |
---|
2054 | !-- Now handling the even k values |
---|
2055 | !-- Collecting data for the north - south exchange |
---|
2056 | !-- Since only every second value has to be transfered, data are stored |
---|
2057 | !-- on the next coarser grid level, because the arrays on that level |
---|
2058 | !-- have just the required size |
---|
2059 | i1 = nxl_mg(grid_level-1) |
---|
2060 | i2 = nxl_mg(grid_level-1) |
---|
2061 | |
---|
2062 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
2063 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
2064 | |
---|
2065 | IF ( j == nys_mg(l) ) THEN |
---|
2066 | !DIR$ IVDEP |
---|
2067 | DO k = nzb+1, ind_even_odd |
---|
2068 | temp(k,jys,i1) = p_mg(k,j,i) |
---|
2069 | ENDDO |
---|
2070 | i1 = i1 + 1 |
---|
2071 | |
---|
2072 | ENDIF |
---|
2073 | |
---|
2074 | IF ( j == nyn_mg(l) ) THEN |
---|
2075 | !DIR$ IVDEP |
---|
2076 | DO k = nzb+1, ind_even_odd |
---|
2077 | temp(k,jyn,i2) = p_mg(k,j,i) |
---|
2078 | ENDDO |
---|
2079 | i2 = i2 + 1 |
---|
2080 | |
---|
2081 | ENDIF |
---|
2082 | |
---|
2083 | ENDDO |
---|
2084 | ENDDO |
---|
2085 | |
---|
2086 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
2087 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
2088 | |
---|
2089 | IF ( j == nys_mg(l) ) THEN |
---|
2090 | !DIR$ IVDEP |
---|
2091 | DO k = nzb+1, ind_even_odd |
---|
2092 | temp(k,jys,i1) = p_mg(k,j,i) |
---|
2093 | ENDDO |
---|
2094 | i1 = i1 + 1 |
---|
2095 | |
---|
2096 | ENDIF |
---|
2097 | |
---|
2098 | IF ( j == nyn_mg(l) ) THEN |
---|
2099 | !DIR$ IVDEP |
---|
2100 | DO k = nzb+1, ind_even_odd |
---|
2101 | temp(k,jyn,i2) = p_mg(k,j,i) |
---|
2102 | ENDDO |
---|
2103 | i2 = i2 + 1 |
---|
2104 | |
---|
2105 | ENDIF |
---|
2106 | |
---|
2107 | ENDDO |
---|
2108 | ENDDO |
---|
2109 | |
---|
2110 | grid_level = grid_level-1 |
---|
2111 | |
---|
2112 | send_receive = 'ns' |
---|
2113 | CALL exchange_horiz( temp, 1 ) |
---|
2114 | |
---|
2115 | grid_level = grid_level+1 |
---|
2116 | |
---|
2117 | i1 = nxl_mg(grid_level-1) |
---|
2118 | i2 = nxl_mg(grid_level-1) |
---|
2119 | |
---|
2120 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
2121 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
2122 | |
---|
2123 | IF ( j == nys_mg(l) ) THEN |
---|
2124 | !DIR$ IVDEP |
---|
2125 | DO k = nzb+1, ind_even_odd |
---|
2126 | p_mg(k,nyn_mg(l)+1,i) = temp(k,jyn+1,i1) |
---|
2127 | ENDDO |
---|
2128 | i1 = i1 + 1 |
---|
2129 | |
---|
2130 | ENDIF |
---|
2131 | |
---|
2132 | IF ( j == nyn_mg(l) ) THEN |
---|
2133 | !DIR$ IVDEP |
---|
2134 | DO k = nzb+1, ind_even_odd |
---|
2135 | p_mg(k,nys_mg(l)-1,i) = temp(k,jys-1,i2) |
---|
2136 | ENDDO |
---|
2137 | i2 = i2 + 1 |
---|
2138 | |
---|
2139 | ENDIF |
---|
2140 | |
---|
2141 | ENDDO |
---|
2142 | ENDDO |
---|
2143 | |
---|
2144 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
2145 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
2146 | |
---|
2147 | IF ( j == nys_mg(l) ) THEN |
---|
2148 | !DIR$ IVDEP |
---|
2149 | DO k = nzb+1, ind_even_odd |
---|
2150 | p_mg(k,nyn_mg(l)+1,i) = temp(k,jyn+1,i1) |
---|
2151 | ENDDO |
---|
2152 | i1 = i1 + 1 |
---|
2153 | |
---|
2154 | ENDIF |
---|
2155 | |
---|
2156 | IF ( j == nyn_mg(l) ) THEN |
---|
2157 | !DIR$ IVDEP |
---|
2158 | DO k = nzb+1, ind_even_odd |
---|
2159 | p_mg(k,nys_mg(l)-1,i) = temp(k,jys-1,i2) |
---|
2160 | ENDDO |
---|
2161 | i2 = i2 + 1 |
---|
2162 | |
---|
2163 | ENDIF |
---|
2164 | |
---|
2165 | ENDDO |
---|
2166 | ENDDO |
---|
2167 | |
---|
2168 | j1 = nys_mg(grid_level-1) |
---|
2169 | j2 = nys_mg(grid_level-1) |
---|
2170 | |
---|
2171 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
2172 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
2173 | |
---|
2174 | IF ( i == nxl_mg(l) ) THEN |
---|
2175 | !DIR$ IVDEP |
---|
2176 | DO k = nzb+1, ind_even_odd |
---|
2177 | temp(k,j1,ixl) = p_mg(k,j,i) |
---|
2178 | ENDDO |
---|
2179 | j1 = j1 + 1 |
---|
2180 | |
---|
2181 | ENDIF |
---|
2182 | |
---|
2183 | IF ( i == nxr_mg(l) ) THEN |
---|
2184 | !DIR$ IVDEP |
---|
2185 | DO k = nzb+1, ind_even_odd |
---|
2186 | temp(k,j2,ixr) = p_mg(k,j,i) |
---|
2187 | ENDDO |
---|
2188 | j2 = j2 + 1 |
---|
2189 | |
---|
2190 | ENDIF |
---|
2191 | |
---|
2192 | ENDDO |
---|
2193 | ENDDO |
---|
2194 | |
---|
2195 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
2196 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
2197 | |
---|
2198 | IF ( i == nxl_mg(l) ) THEN |
---|
2199 | !DIR$ IVDEP |
---|
2200 | DO k = nzb+1, ind_even_odd |
---|
2201 | temp(k,j1,ixl) = p_mg(k,j,i) |
---|
2202 | ENDDO |
---|
2203 | j1 = j1 + 1 |
---|
2204 | |
---|
2205 | ENDIF |
---|
2206 | |
---|
2207 | IF ( i == nxr_mg(l) ) THEN |
---|
2208 | !DIR$ IVDEP |
---|
2209 | DO k = nzb+1, ind_even_odd |
---|
2210 | temp(k,j2,ixr) = p_mg(k,j,i) |
---|
2211 | ENDDO |
---|
2212 | j2 = j2 + 1 |
---|
2213 | |
---|
2214 | ENDIF |
---|
2215 | |
---|
2216 | ENDDO |
---|
2217 | ENDDO |
---|
2218 | |
---|
2219 | grid_level = grid_level-1 |
---|
2220 | |
---|
2221 | send_receive = 'lr' |
---|
2222 | CALL exchange_horiz( temp, 1 ) |
---|
2223 | |
---|
2224 | grid_level = grid_level+1 |
---|
2225 | |
---|
2226 | nxl = nxl_mg(grid_level) |
---|
2227 | nys = nys_mg(grid_level) |
---|
2228 | nxr = nxr_mg(grid_level) |
---|
2229 | nyn = nyn_mg(grid_level) |
---|
2230 | nzt = nzt_mg(grid_level) |
---|
2231 | |
---|
2232 | j1 = nys_mg(grid_level-1) |
---|
2233 | j2 = nys_mg(grid_level-1) |
---|
2234 | |
---|
2235 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
2236 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
2237 | |
---|
2238 | IF ( i == nxl_mg(l) ) THEN |
---|
2239 | !DIR$ IVDEP |
---|
2240 | DO k = nzb+1, ind_even_odd |
---|
2241 | p_mg(k,j,nxr_mg(l)+1) = temp(k,j1,ixr+1) |
---|
2242 | ENDDO |
---|
2243 | j1 = j1 + 1 |
---|
2244 | |
---|
2245 | ENDIF |
---|
2246 | |
---|
2247 | IF ( i == nxr_mg(l) ) THEN |
---|
2248 | !DIR$ IVDEP |
---|
2249 | DO k = nzb+1, ind_even_odd |
---|
2250 | p_mg(k,j,nxl_mg(l)-1) = temp(k,j2,ixl-1) |
---|
2251 | ENDDO |
---|
2252 | j2 = j2 + 1 |
---|
2253 | |
---|
2254 | ENDIF |
---|
2255 | |
---|
2256 | ENDDO |
---|
2257 | ENDDO |
---|
2258 | |
---|
2259 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
2260 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
2261 | |
---|
2262 | IF ( i == nxl_mg(l) ) THEN |
---|
2263 | !DIR$ IVDEP |
---|
2264 | DO k = nzb+1, ind_even_odd |
---|
2265 | p_mg(k,j,nxr_mg(l)+1) = temp(k,j1,ixr+1) |
---|
2266 | ENDDO |
---|
2267 | j1 = j1 + 1 |
---|
2268 | |
---|
2269 | ENDIF |
---|
2270 | |
---|
2271 | IF ( i == nxr_mg(l) ) THEN |
---|
2272 | !DIR$ IVDEP |
---|
2273 | DO k = nzb+1, ind_even_odd |
---|
2274 | p_mg(k,j,nxl_mg(l)-1) = temp(k,j2,ixl-1) |
---|
2275 | ENDDO |
---|
2276 | j2 = j2 + 1 |
---|
2277 | |
---|
2278 | ENDIF |
---|
2279 | |
---|
2280 | ENDDO |
---|
2281 | ENDDO |
---|
2282 | |
---|
2283 | DEALLOCATE( temp ) |
---|
2284 | |
---|
2285 | ELSE |
---|
2286 | |
---|
2287 | ! |
---|
2288 | !-- Standard horizontal ghost boundary exchange for small coarse grid |
---|
2289 | !-- levels, where the transfer time is latency bound |
---|
2290 | CALL exchange_horiz( p_mg, 1 ) |
---|
2291 | |
---|
2292 | ENDIF |
---|
2293 | |
---|
2294 | ! |
---|
2295 | !-- Reset values to default PALM setup |
---|
2296 | synchronous_exchange = synchronous_exchange_save |
---|
2297 | send_receive = 'al' |
---|
2298 | #else |
---|
2299 | |
---|
2300 | ! |
---|
2301 | !-- Standard horizontal ghost boundary exchange for small coarse grid |
---|
2302 | !-- levels, where the transfer time is latency bound |
---|
2303 | CALL exchange_horiz( p_mg, 1 ) |
---|
2304 | #endif |
---|
2305 | |
---|
2306 | END SUBROUTINE special_exchange_horiz |
---|
2307 | |
---|
2308 | END MODULE poismg_mod |
---|