1 | !> @file poismg.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: poismg_mod.f90 2696 2017-12-14 17:12:51Z maronga $ |
---|
27 | ! - Large-scale forcing implemented (MS) |
---|
28 | ! |
---|
29 | ! 2298 2017-06-29 09:28:18Z raasch |
---|
30 | ! sendrecv_in_background related parts removed |
---|
31 | ! |
---|
32 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
33 | ! |
---|
34 | ! 2073 2016-11-30 14:34:05Z raasch |
---|
35 | ! change of openmp directives in restrict |
---|
36 | ! |
---|
37 | ! 2037 2016-10-26 11:15:40Z knoop |
---|
38 | ! Anelastic approximation implemented (stll error in optimized multigrid) |
---|
39 | ! |
---|
40 | ! 2021 2016-10-07 14:08:57Z suehring |
---|
41 | ! Bugfix: restore nest_bound_(l/r/s/n) in case of mg_switch_to_pe0 |
---|
42 | ! |
---|
43 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
44 | ! Forced header and separation lines into 80 columns |
---|
45 | ! |
---|
46 | ! 1934 2016-06-13 09:46:57Z hellstea |
---|
47 | ! Rename subroutines and cpu-measure log points to indicate default version |
---|
48 | ! |
---|
49 | ! 1904 2016-05-11 13:06:12Z suehring |
---|
50 | ! Bugfix: enable special_exchange_horiz only for finer grid levels. |
---|
51 | ! Some formatting adjustments and variable descriptions. |
---|
52 | ! |
---|
53 | ! 1898 2016-05-03 11:27:17Z suehring |
---|
54 | ! Bugfix: bottom and top boundary condition in resid_fast |
---|
55 | ! Bugfix: restriction at nzb+1 |
---|
56 | ! formatting adjustments, variable descriptions added in some declaration blocks |
---|
57 | ! |
---|
58 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
59 | ! Module renamed |
---|
60 | ! |
---|
61 | ! |
---|
62 | ! 1762 2016-02-25 12:31:13Z hellstea |
---|
63 | ! Introduction of nested domain feature |
---|
64 | ! |
---|
65 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
66 | ! Code annotations made doxygen readable |
---|
67 | ! |
---|
68 | ! 1609 2015-07-03 15:37:58Z maronga |
---|
69 | ! Bugfix: allow compilation without __parallel. |
---|
70 | ! |
---|
71 | ! 1575 2015-03-27 09:56:27Z raasch |
---|
72 | ! Initial revision. |
---|
73 | ! Routine re-written and optimised based on poismg. |
---|
74 | ! |
---|
75 | ! Following optimisations have been made: |
---|
76 | ! - vectorisation (for Intel-CPUs) of the red-black algorithm by resorting |
---|
77 | ! array elements with even and odd indices |
---|
78 | ! - explicit boundary conditions for building walls removed (solver is |
---|
79 | ! running through the buildings |
---|
80 | ! - reduced data transfer in case of ghost point exchange, because only |
---|
81 | ! "red" or "black" data points need to be exchanged. This is not applied |
---|
82 | ! for coarser grid levels, since for then the transfer time is latency bound |
---|
83 | ! |
---|
84 | ! |
---|
85 | ! Description: |
---|
86 | ! ------------ |
---|
87 | !> Solves the Poisson equation for the perturbation pressure with a multigrid |
---|
88 | !> V- or W-Cycle scheme. |
---|
89 | !> |
---|
90 | !> This multigrid method was originally developed for PALM by Joerg Uhlenbrock, |
---|
91 | !> September 2000 - July 2001. It has been optimised for speed by Klaus |
---|
92 | !> Ketelsen in November 2014. |
---|
93 | !> |
---|
94 | !> @attention Loop unrolling and cache optimization in SOR-Red/Black method |
---|
95 | !> still does not give the expected speedup! |
---|
96 | !> |
---|
97 | !> @todo Further work required. |
---|
98 | !------------------------------------------------------------------------------! |
---|
99 | MODULE poismg_mod |
---|
100 | |
---|
101 | USE control_parameters, & |
---|
102 | ONLY: grid_level, force_bound_l, force_bound_n, force_bound_r, & |
---|
103 | force_bound_s, forcing, inflow_l, inflow_n, inflow_r, inflow_s, & |
---|
104 | nest_bound_l, nest_bound_n, nest_bound_r, nest_bound_s, & |
---|
105 | outflow_l, outflow_n, outflow_r, outflow_s |
---|
106 | |
---|
107 | USE cpulog, & |
---|
108 | ONLY: cpu_log, log_point_s |
---|
109 | |
---|
110 | USE kinds |
---|
111 | |
---|
112 | USE pegrid |
---|
113 | |
---|
114 | PRIVATE |
---|
115 | |
---|
116 | INTEGER, SAVE :: ind_even_odd !< border index between even and odd k index |
---|
117 | INTEGER, DIMENSION(:), SAVE, ALLOCATABLE :: even_odd_level !< stores ind_even_odd for all MG levels |
---|
118 | |
---|
119 | REAL(wp), DIMENSION(:,:), SAVE, ALLOCATABLE :: f1_mg_b, f2_mg_b, f3_mg_b !< blocked version of f1_mg ... |
---|
120 | |
---|
121 | INTERFACE poismg |
---|
122 | MODULE PROCEDURE poismg |
---|
123 | END INTERFACE poismg |
---|
124 | |
---|
125 | INTERFACE sort_k_to_even_odd_blocks |
---|
126 | MODULE PROCEDURE sort_k_to_even_odd_blocks |
---|
127 | MODULE PROCEDURE sort_k_to_even_odd_blocks_int |
---|
128 | MODULE PROCEDURE sort_k_to_even_odd_blocks_1d |
---|
129 | END INTERFACE sort_k_to_even_odd_blocks |
---|
130 | |
---|
131 | PUBLIC poismg |
---|
132 | |
---|
133 | CONTAINS |
---|
134 | |
---|
135 | !------------------------------------------------------------------------------! |
---|
136 | ! Description: |
---|
137 | ! ------------ |
---|
138 | !> Solves the Poisson equation for the perturbation pressure with a multigrid |
---|
139 | !> V- or W-Cycle scheme. |
---|
140 | !------------------------------------------------------------------------------! |
---|
141 | SUBROUTINE poismg( r ) |
---|
142 | |
---|
143 | USE arrays_3d, & |
---|
144 | ONLY: d, p_loc |
---|
145 | |
---|
146 | USE control_parameters, & |
---|
147 | ONLY: gathered_size, grid_level, grid_level_count, & |
---|
148 | maximum_grid_level, message_string, mgcycles, mg_cycles, & |
---|
149 | mg_switch_to_pe0_level, residual_limit, subdomain_size |
---|
150 | |
---|
151 | USE cpulog, & |
---|
152 | ONLY: cpu_log, log_point_s |
---|
153 | |
---|
154 | USE indices, & |
---|
155 | ONLY: nxl, nxlg, nxl_mg, nxr, nxrg, nxr_mg, nys, nysg, nys_mg, nyn,& |
---|
156 | nyng, nyn_mg, nzb, nzt, nzt_mg |
---|
157 | |
---|
158 | IMPLICIT NONE |
---|
159 | |
---|
160 | REAL(wp) :: maxerror !< |
---|
161 | REAL(wp) :: maximum_mgcycles !< |
---|
162 | REAL(wp) :: residual_norm !< |
---|
163 | |
---|
164 | REAL(wp), DIMENSION(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) :: r !< |
---|
165 | |
---|
166 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: p3 !< |
---|
167 | |
---|
168 | |
---|
169 | CALL cpu_log( log_point_s(29), 'poismg', 'start' ) |
---|
170 | ! |
---|
171 | !-- Initialize arrays and variables used in this subroutine |
---|
172 | |
---|
173 | !-- If the number of grid points of the gathered grid, which is collected |
---|
174 | !-- on PE0, is larger than the number of grid points of an PE, than array |
---|
175 | !-- p3 will be enlarged. |
---|
176 | IF ( gathered_size > subdomain_size ) THEN |
---|
177 | ALLOCATE( p3(nzb:nzt_mg(mg_switch_to_pe0_level)+1,nys_mg( & |
---|
178 | mg_switch_to_pe0_level)-1:nyn_mg(mg_switch_to_pe0_level)+1,& |
---|
179 | nxl_mg(mg_switch_to_pe0_level)-1:nxr_mg( & |
---|
180 | mg_switch_to_pe0_level)+1) ) |
---|
181 | ELSE |
---|
182 | ALLOCATE ( p3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
183 | ENDIF |
---|
184 | |
---|
185 | p3 = 0.0_wp |
---|
186 | |
---|
187 | |
---|
188 | ! |
---|
189 | !-- Ghost boundaries have to be added to divergence array. |
---|
190 | !-- Exchange routine needs to know the grid level! |
---|
191 | grid_level = maximum_grid_level |
---|
192 | CALL exchange_horiz( d, 1) |
---|
193 | d(nzb,:,:) = d(nzb+1,:,:) |
---|
194 | |
---|
195 | ! |
---|
196 | !-- Initiation of the multigrid scheme. Does n cycles until the |
---|
197 | !-- residual is smaller than the given limit. The accuracy of the solution |
---|
198 | !-- of the poisson equation will increase with the number of cycles. |
---|
199 | !-- If the number of cycles is preset by the user, this number will be |
---|
200 | !-- carried out regardless of the accuracy. |
---|
201 | grid_level_count = 0 |
---|
202 | mgcycles = 0 |
---|
203 | IF ( mg_cycles == -1 ) THEN |
---|
204 | maximum_mgcycles = 0 |
---|
205 | residual_norm = 1.0_wp |
---|
206 | ELSE |
---|
207 | maximum_mgcycles = mg_cycles |
---|
208 | residual_norm = 0.0_wp |
---|
209 | ENDIF |
---|
210 | |
---|
211 | ! |
---|
212 | !-- Initial settings for sorting k-dimension from sequential order (alternate |
---|
213 | !-- even/odd) into blocks of even and odd or vice versa |
---|
214 | CALL init_even_odd_blocks |
---|
215 | |
---|
216 | ! |
---|
217 | !-- Sort input arrays in even/odd blocks along k-dimension |
---|
218 | CALL sort_k_to_even_odd_blocks( d, grid_level ) |
---|
219 | CALL sort_k_to_even_odd_blocks( p_loc, grid_level ) |
---|
220 | |
---|
221 | ! |
---|
222 | !-- The complete multigrid cycles are running in block mode, i.e. over |
---|
223 | !-- seperate data blocks of even and odd indices |
---|
224 | DO WHILE ( residual_norm > residual_limit .OR. & |
---|
225 | mgcycles < maximum_mgcycles ) |
---|
226 | |
---|
227 | CALL next_mg_level( d, p_loc, p3, r) |
---|
228 | |
---|
229 | ! |
---|
230 | !-- Calculate the residual if the user has not preset the number of |
---|
231 | !-- cycles to be performed |
---|
232 | IF ( maximum_mgcycles == 0 ) THEN |
---|
233 | CALL resid( d, p_loc, r ) |
---|
234 | maxerror = SUM( r(nzb+1:nzt,nys:nyn,nxl:nxr)**2 ) |
---|
235 | |
---|
236 | #if defined( __parallel ) |
---|
237 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
238 | CALL MPI_ALLREDUCE( maxerror, residual_norm, 1, MPI_REAL, & |
---|
239 | MPI_SUM, comm2d, ierr) |
---|
240 | #else |
---|
241 | residual_norm = maxerror |
---|
242 | #endif |
---|
243 | residual_norm = SQRT( residual_norm ) |
---|
244 | ENDIF |
---|
245 | |
---|
246 | mgcycles = mgcycles + 1 |
---|
247 | |
---|
248 | ! |
---|
249 | !-- If the user has not limited the number of cycles, stop the run in case |
---|
250 | !-- of insufficient convergence |
---|
251 | IF ( mgcycles > 1000 .AND. mg_cycles == -1 ) THEN |
---|
252 | message_string = 'no sufficient convergence within 1000 cycles' |
---|
253 | CALL message( 'poismg', 'PA0283', 1, 2, 0, 6, 0 ) |
---|
254 | ENDIF |
---|
255 | |
---|
256 | ENDDO |
---|
257 | |
---|
258 | DEALLOCATE( p3 ) |
---|
259 | ! |
---|
260 | !-- Result has to be sorted back from even/odd blocks to sequential order |
---|
261 | CALL sort_k_to_sequential( p_loc ) |
---|
262 | ! |
---|
263 | !-- Unset the grid level. Variable is used to determine the MPI datatypes for |
---|
264 | !-- ghost point exchange |
---|
265 | grid_level = 0 |
---|
266 | |
---|
267 | CALL cpu_log( log_point_s(29), 'poismg', 'stop' ) |
---|
268 | |
---|
269 | END SUBROUTINE poismg |
---|
270 | |
---|
271 | |
---|
272 | !------------------------------------------------------------------------------! |
---|
273 | ! Description: |
---|
274 | ! ------------ |
---|
275 | !> Computes the residual of the perturbation pressure. |
---|
276 | !------------------------------------------------------------------------------! |
---|
277 | SUBROUTINE resid( f_mg, p_mg, r ) |
---|
278 | |
---|
279 | |
---|
280 | USE arrays_3d, & |
---|
281 | ONLY: f1_mg, f2_mg, f3_mg, rho_air_mg |
---|
282 | |
---|
283 | USE control_parameters, & |
---|
284 | ONLY: bc_lr_cyc, bc_ns_cyc, ibc_p_b, ibc_p_t |
---|
285 | USE grid_variables, & |
---|
286 | ONLY: ddx2_mg, ddy2_mg |
---|
287 | |
---|
288 | USE indices, & |
---|
289 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
290 | |
---|
291 | IMPLICIT NONE |
---|
292 | |
---|
293 | INTEGER(iwp) :: i !< index variable along x |
---|
294 | INTEGER(iwp) :: j !< index variable along y |
---|
295 | INTEGER(iwp) :: k !< index variable along z |
---|
296 | INTEGER(iwp) :: l !< index indicating grid level |
---|
297 | INTEGER(iwp) :: km1 !< index variable along z dimension (k-1) |
---|
298 | INTEGER(iwp) :: kp1 !< index variable along z dimension (k+1) |
---|
299 | |
---|
300 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
301 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
302 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f_mg !< velocity divergence |
---|
303 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
304 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
305 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: p_mg !< perturbation pressure |
---|
306 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
307 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
308 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: r !< residuum of perturbation pressure |
---|
309 | |
---|
310 | ! |
---|
311 | !-- Calculate the residual |
---|
312 | l = grid_level |
---|
313 | |
---|
314 | CALL cpu_log( log_point_s(53), 'resid', 'start' ) |
---|
315 | !$OMP PARALLEL PRIVATE (i,j,k,km1,kp1) |
---|
316 | !$OMP DO |
---|
317 | DO i = nxl_mg(l), nxr_mg(l) |
---|
318 | DO j = nys_mg(l), nyn_mg(l) |
---|
319 | !DIR$ IVDEP |
---|
320 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
321 | km1 = k-ind_even_odd-1 |
---|
322 | kp1 = k-ind_even_odd |
---|
323 | r(k,j,i) = f_mg(k,j,i) & |
---|
324 | - rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
325 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
326 | - rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
327 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
328 | - f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
329 | - f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
330 | + f1_mg_b(k,l) * p_mg(k,j,i) |
---|
331 | ENDDO |
---|
332 | !DIR$ IVDEP |
---|
333 | DO k = nzb+1, ind_even_odd |
---|
334 | km1 = k+ind_even_odd |
---|
335 | kp1 = k+ind_even_odd+1 |
---|
336 | r(k,j,i) = f_mg(k,j,i) & |
---|
337 | - rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
338 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
339 | - rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
340 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
341 | - f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
342 | - f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
343 | + f1_mg_b(k,l) * p_mg(k,j,i) |
---|
344 | ENDDO |
---|
345 | ENDDO |
---|
346 | ENDDO |
---|
347 | !$OMP END PARALLEL |
---|
348 | ! |
---|
349 | !-- Horizontal boundary conditions |
---|
350 | CALL exchange_horiz( r, 1) |
---|
351 | |
---|
352 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
353 | IF ( inflow_l .OR. outflow_l .OR. nest_bound_l .OR. & |
---|
354 | force_bound_l ) THEN |
---|
355 | r(:,:,nxl_mg(l)-1) = r(:,:,nxl_mg(l)) |
---|
356 | ENDIF |
---|
357 | IF ( inflow_r .OR. outflow_r .OR. nest_bound_r .OR. & |
---|
358 | force_bound_r ) THEN |
---|
359 | r(:,:,nxr_mg(l)+1) = r(:,:,nxr_mg(l)) |
---|
360 | ENDIF |
---|
361 | ENDIF |
---|
362 | |
---|
363 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
364 | IF ( inflow_n .OR. outflow_n .OR. nest_bound_n .OR. & |
---|
365 | force_bound_n ) THEN |
---|
366 | r(:,nyn_mg(l)+1,:) = r(:,nyn_mg(l),:) |
---|
367 | ENDIF |
---|
368 | IF ( inflow_s .OR. outflow_s .OR. nest_bound_s .OR. & |
---|
369 | force_bound_s ) THEN |
---|
370 | r(:,nys_mg(l)-1,:) = r(:,nys_mg(l),:) |
---|
371 | ENDIF |
---|
372 | ENDIF |
---|
373 | |
---|
374 | ! |
---|
375 | !-- Boundary conditions at bottom and top of the domain. Points may be within |
---|
376 | !-- buildings, but that doesn't matter. |
---|
377 | IF ( ibc_p_b == 1 ) THEN |
---|
378 | ! |
---|
379 | !-- equivalent to r(nzb,:,: ) = r(nzb+1,:,:) |
---|
380 | r(nzb,:,: ) = r(ind_even_odd+1,:,:) |
---|
381 | ELSE |
---|
382 | r(nzb,:,: ) = 0.0_wp |
---|
383 | ENDIF |
---|
384 | |
---|
385 | IF ( ibc_p_t == 1 ) THEN |
---|
386 | ! |
---|
387 | !-- equivalent to r(nzt_mg(l)+1,:,: ) = r(nzt_mg(l),:,:) |
---|
388 | r(nzt_mg(l)+1,:,: ) = r(ind_even_odd,:,:) |
---|
389 | ELSE |
---|
390 | r(nzt_mg(l)+1,:,: ) = 0.0_wp |
---|
391 | ENDIF |
---|
392 | |
---|
393 | CALL cpu_log( log_point_s(53), 'resid', 'stop' ) |
---|
394 | |
---|
395 | END SUBROUTINE resid |
---|
396 | |
---|
397 | |
---|
398 | !------------------------------------------------------------------------------! |
---|
399 | ! Description: |
---|
400 | ! ------------ |
---|
401 | !> Interpolates the residual on the next coarser grid with "full weighting" |
---|
402 | !> scheme |
---|
403 | !------------------------------------------------------------------------------! |
---|
404 | SUBROUTINE restrict( f_mg, r ) |
---|
405 | |
---|
406 | |
---|
407 | USE control_parameters, & |
---|
408 | ONLY: bc_lr_cyc, bc_ns_cyc, ibc_p_b, ibc_p_t |
---|
409 | |
---|
410 | USE indices, & |
---|
411 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
412 | |
---|
413 | IMPLICIT NONE |
---|
414 | |
---|
415 | INTEGER(iwp) :: i !< index variable along x on finer grid |
---|
416 | INTEGER(iwp) :: ic !< index variable along x on coarser grid |
---|
417 | INTEGER(iwp) :: j !< index variable along y on finer grid |
---|
418 | INTEGER(iwp) :: jc !< index variable along y on coarser grid |
---|
419 | INTEGER(iwp) :: k !< index variable along z on finer grid |
---|
420 | INTEGER(iwp) :: kc !< index variable along z on coarser grid |
---|
421 | INTEGER(iwp) :: l !< index indicating finer grid level |
---|
422 | INTEGER(iwp) :: km1 !< index variable along z dimension (k-1 on finer level) |
---|
423 | INTEGER(iwp) :: kp1 !< index variable along z dimension (k+1 on finer level) |
---|
424 | |
---|
425 | |
---|
426 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
427 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
428 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
429 | f_mg !< Residual on coarser grid level |
---|
430 | |
---|
431 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level+1)+1, & |
---|
432 | nys_mg(grid_level+1)-1:nyn_mg(grid_level+1)+1, & |
---|
433 | nxl_mg(grid_level+1)-1:nxr_mg(grid_level+1)+1) :: & |
---|
434 | r !< Residual on finer grid level |
---|
435 | |
---|
436 | ! |
---|
437 | !-- Interpolate the residual |
---|
438 | l = grid_level |
---|
439 | |
---|
440 | CALL cpu_log( log_point_s(54), 'restrict', 'start' ) |
---|
441 | ! |
---|
442 | !-- No wall treatment |
---|
443 | !$OMP PARALLEL PRIVATE (i,j,k,ic,jc,kc,km1,kp1) |
---|
444 | !$OMP DO SCHEDULE( STATIC ) |
---|
445 | DO ic = nxl_mg(l), nxr_mg(l) |
---|
446 | i = 2*ic |
---|
447 | DO jc = nys_mg(l), nyn_mg(l) |
---|
448 | ! |
---|
449 | !-- Calculation for the first point along k |
---|
450 | j = 2*jc |
---|
451 | ! |
---|
452 | !-- Calculation for the other points along k |
---|
453 | !DIR$ IVDEP |
---|
454 | DO k = ind_even_odd+1, nzt_mg(l+1) ! Fine grid at this point |
---|
455 | km1 = k-ind_even_odd-1 |
---|
456 | kp1 = k-ind_even_odd |
---|
457 | kc = k-ind_even_odd ! Coarse grid index |
---|
458 | |
---|
459 | f_mg(kc,jc,ic) = 1.0_wp / 64.0_wp * ( & |
---|
460 | 8.0_wp * r(k,j,i) & |
---|
461 | + 4.0_wp * ( r(k,j,i-1) + r(k,j,i+1) + & |
---|
462 | r(k,j+1,i) + r(k,j-1,i) ) & |
---|
463 | + 2.0_wp * ( r(k,j-1,i-1) + r(k,j+1,i-1) + & |
---|
464 | r(k,j-1,i+1) + r(k,j+1,i+1) ) & |
---|
465 | + 4.0_wp * r(km1,j,i) & |
---|
466 | + 2.0_wp * ( r(km1,j,i-1) + r(km1,j,i+1) + & |
---|
467 | r(km1,j+1,i) + r(km1,j-1,i) ) & |
---|
468 | + ( r(km1,j-1,i-1) + r(km1,j+1,i-1) + & |
---|
469 | r(km1,j-1,i+1) + r(km1,j+1,i+1) ) & |
---|
470 | + 4.0_wp * r(kp1,j,i) & |
---|
471 | + 2.0_wp * ( r(kp1,j,i-1) + r(kp1,j,i+1) + & |
---|
472 | r(kp1,j+1,i) + r(kp1,j-1,i) ) & |
---|
473 | + ( r(kp1,j-1,i-1) + r(kp1,j+1,i-1) + & |
---|
474 | r(kp1,j-1,i+1) + r(kp1,j+1,i+1) ) & |
---|
475 | ) |
---|
476 | ENDDO |
---|
477 | ENDDO |
---|
478 | ENDDO |
---|
479 | !$OMP ENDDO |
---|
480 | !$OMP END PARALLEL |
---|
481 | |
---|
482 | ! |
---|
483 | !-- Ghost point exchange |
---|
484 | CALL exchange_horiz( f_mg, 1) |
---|
485 | ! |
---|
486 | !-- Horizontal boundary conditions |
---|
487 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
488 | IF ( inflow_l .OR. outflow_l .OR. nest_bound_l .OR. & |
---|
489 | force_bound_l ) THEN |
---|
490 | f_mg(:,:,nxl_mg(l)-1) = f_mg(:,:,nxl_mg(l)) |
---|
491 | ENDIF |
---|
492 | IF ( inflow_r .OR. outflow_r .OR. nest_bound_r .OR. & |
---|
493 | force_bound_r ) THEN |
---|
494 | f_mg(:,:,nxr_mg(l)+1) = f_mg(:,:,nxr_mg(l)) |
---|
495 | ENDIF |
---|
496 | ENDIF |
---|
497 | |
---|
498 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
499 | IF ( inflow_n .OR. outflow_n .OR. nest_bound_n .OR. & |
---|
500 | force_bound_n ) THEN |
---|
501 | f_mg(:,nyn_mg(l)+1,:) = f_mg(:,nyn_mg(l),:) |
---|
502 | ENDIF |
---|
503 | IF ( inflow_s .OR. outflow_s .OR. nest_bound_s .OR. & |
---|
504 | force_bound_s ) THEN |
---|
505 | f_mg(:,nys_mg(l)-1,:) = f_mg(:,nys_mg(l),:) |
---|
506 | ENDIF |
---|
507 | ENDIF |
---|
508 | |
---|
509 | ! |
---|
510 | !-- Boundary conditions at bottom and top of the domain. |
---|
511 | !-- These points are not handled by the above loop. Points may be within |
---|
512 | !-- buildings, but that doesn't matter. Remark: f_mg is ordered sequentielly |
---|
513 | !-- after interpolation on coarse grid (is ordered in odd-even blocks further |
---|
514 | !-- below). |
---|
515 | IF ( ibc_p_b == 1 ) THEN |
---|
516 | f_mg(nzb,:,: ) = f_mg(nzb+1,:,:) |
---|
517 | ELSE |
---|
518 | f_mg(nzb,:,: ) = 0.0_wp |
---|
519 | ENDIF |
---|
520 | |
---|
521 | IF ( ibc_p_t == 1 ) THEN |
---|
522 | f_mg(nzt_mg(l)+1,:,: ) = f_mg(nzt_mg(l),:,:) |
---|
523 | ELSE |
---|
524 | f_mg(nzt_mg(l)+1,:,: ) = 0.0_wp |
---|
525 | ENDIF |
---|
526 | |
---|
527 | CALL cpu_log( log_point_s(54), 'restrict', 'stop' ) |
---|
528 | ! |
---|
529 | !-- Since residual is in sequential order after interpolation, an additional |
---|
530 | !-- sorting in odd-even blocks along z dimension is required at this point. |
---|
531 | CALL sort_k_to_even_odd_blocks( f_mg , l) |
---|
532 | |
---|
533 | END SUBROUTINE restrict |
---|
534 | |
---|
535 | |
---|
536 | !------------------------------------------------------------------------------! |
---|
537 | ! Description: |
---|
538 | ! ------------ |
---|
539 | !> Interpolates the correction of the perturbation pressure |
---|
540 | !> to the next finer grid. |
---|
541 | !------------------------------------------------------------------------------! |
---|
542 | SUBROUTINE prolong( p, temp ) |
---|
543 | |
---|
544 | |
---|
545 | USE control_parameters, & |
---|
546 | ONLY: bc_lr_cyc, bc_ns_cyc, ibc_p_b, ibc_p_t |
---|
547 | USE indices, & |
---|
548 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
549 | |
---|
550 | IMPLICIT NONE |
---|
551 | |
---|
552 | INTEGER(iwp) :: i !< index variable along x on coarser grid level |
---|
553 | INTEGER(iwp) :: j !< index variable along y on coarser grid level |
---|
554 | INTEGER(iwp) :: k !< index variable along z on coarser grid level |
---|
555 | INTEGER(iwp) :: l !< index indicating finer grid level |
---|
556 | INTEGER(iwp) :: kp1 !< index variable along z |
---|
557 | INTEGER(iwp) :: ke !< index for prolog even |
---|
558 | INTEGER(iwp) :: ko !< index for prolog odd |
---|
559 | |
---|
560 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level-1)+1, & |
---|
561 | nys_mg(grid_level-1)-1:nyn_mg(grid_level-1)+1, & |
---|
562 | nxl_mg(grid_level-1)-1:nxr_mg(grid_level-1)+1 ) :: & |
---|
563 | p !< perturbation pressure on coarser grid level |
---|
564 | |
---|
565 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
566 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
567 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
568 | temp !< perturbation pressure on finer grid level |
---|
569 | |
---|
570 | |
---|
571 | CALL cpu_log( log_point_s(55), 'prolong', 'start' ) |
---|
572 | |
---|
573 | ! |
---|
574 | !-- First, store elements of the coarser grid on the next finer grid |
---|
575 | l = grid_level |
---|
576 | ind_even_odd = even_odd_level(grid_level-1) |
---|
577 | |
---|
578 | !$OMP PARALLEL PRIVATE (i,j,k,kp1,ke,ko) |
---|
579 | !$OMP DO |
---|
580 | DO i = nxl_mg(l-1), nxr_mg(l-1) |
---|
581 | DO j = nys_mg(l-1), nyn_mg(l-1) |
---|
582 | |
---|
583 | !DIR$ IVDEP |
---|
584 | DO k = ind_even_odd+1, nzt_mg(l-1) |
---|
585 | kp1 = k - ind_even_odd |
---|
586 | ke = 2 * ( k-ind_even_odd - 1 ) + 1 |
---|
587 | ko = 2 * k - 1 |
---|
588 | ! |
---|
589 | !-- Points of the coarse grid are directly stored on the next finer |
---|
590 | !-- grid |
---|
591 | temp(ko,2*j,2*i) = p(k,j,i) |
---|
592 | ! |
---|
593 | !-- Points between two coarse-grid points |
---|
594 | temp(ko,2*j,2*i+1) = 0.5_wp * ( p(k,j,i) + p(k,j,i+1) ) |
---|
595 | temp(ko,2*j+1,2*i) = 0.5_wp * ( p(k,j,i) + p(k,j+1,i) ) |
---|
596 | temp(ke,2*j,2*i) = 0.5_wp * ( p(k,j,i) + p(kp1,j,i) ) |
---|
597 | ! |
---|
598 | !-- Points in the center of the planes stretched by four points |
---|
599 | !-- of the coarse grid cube |
---|
600 | temp(ko,2*j+1,2*i+1) = 0.25_wp * ( p(k,j,i) + p(k,j,i+1) + & |
---|
601 | p(k,j+1,i) + p(k,j+1,i+1) ) |
---|
602 | temp(ke,2*j,2*i+1) = 0.25_wp * ( p(k,j,i) + p(k,j,i+1) + & |
---|
603 | p(kp1,j,i) + p(kp1,j,i+1) ) |
---|
604 | temp(ke,2*j+1,2*i) = 0.25_wp * ( p(k,j,i) + p(k,j+1,i) + & |
---|
605 | p(kp1,j,i) + p(kp1,j+1,i) ) |
---|
606 | ! |
---|
607 | !-- Points in the middle of coarse grid cube |
---|
608 | temp(ke,2*j+1,2*i+1) = 0.125_wp * & |
---|
609 | ( p(k,j,i) + p(k,j,i+1) + & |
---|
610 | p(k,j+1,i) + p(k,j+1,i+1) + & |
---|
611 | p(kp1,j,i) + p(kp1,j,i+1) + & |
---|
612 | p(kp1,j+1,i) + p(kp1,j+1,i+1) ) |
---|
613 | |
---|
614 | ENDDO |
---|
615 | |
---|
616 | !DIR$ IVDEP |
---|
617 | DO k = nzb+1, ind_even_odd |
---|
618 | kp1 = k + ind_even_odd + 1 |
---|
619 | ke = 2 * k |
---|
620 | ko = 2 * ( k + ind_even_odd ) |
---|
621 | ! |
---|
622 | !-- Points of the coarse grid are directly stored on the next finer |
---|
623 | !-- grid |
---|
624 | temp(ko,2*j,2*i) = p(k,j,i) |
---|
625 | ! |
---|
626 | !-- Points between two coarse-grid points |
---|
627 | temp(ko,2*j,2*i+1) = 0.5_wp * ( p(k,j,i) + p(k,j,i+1) ) |
---|
628 | temp(ko,2*j+1,2*i) = 0.5_wp * ( p(k,j,i) + p(k,j+1,i) ) |
---|
629 | temp(ke,2*j,2*i) = 0.5_wp * ( p(k,j,i) + p(kp1,j,i) ) |
---|
630 | ! |
---|
631 | !-- Points in the center of the planes stretched by four points |
---|
632 | !-- of the coarse grid cube |
---|
633 | temp(ko,2*j+1,2*i+1) = 0.25_wp * ( p(k,j,i) + p(k,j,i+1) + & |
---|
634 | p(k,j+1,i) + p(k,j+1,i+1) ) |
---|
635 | temp(ke,2*j,2*i+1) = 0.25_wp * ( p(k,j,i) + p(k,j,i+1) + & |
---|
636 | p(kp1,j,i) + p(kp1,j,i+1) ) |
---|
637 | temp(ke,2*j+1,2*i) = 0.25_wp * ( p(k,j,i) + p(k,j+1,i) + & |
---|
638 | p(kp1,j,i) + p(kp1,j+1,i) ) |
---|
639 | ! |
---|
640 | !-- Points in the middle of coarse grid cube |
---|
641 | temp(ke,2*j+1,2*i+1) = 0.125_wp * & |
---|
642 | ( p(k,j,i) + p(k,j,i+1) + & |
---|
643 | p(k,j+1,i) + p(k,j+1,i+1) + & |
---|
644 | p(kp1,j,i) + p(kp1,j,i+1) + & |
---|
645 | p(kp1,j+1,i) + p(kp1,j+1,i+1) ) |
---|
646 | |
---|
647 | ENDDO |
---|
648 | |
---|
649 | ENDDO |
---|
650 | ENDDO |
---|
651 | !$OMP END PARALLEL |
---|
652 | |
---|
653 | ind_even_odd = even_odd_level(grid_level) |
---|
654 | ! |
---|
655 | !-- Horizontal boundary conditions |
---|
656 | CALL exchange_horiz( temp, 1) |
---|
657 | |
---|
658 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
659 | IF ( inflow_l .OR. outflow_l .OR. nest_bound_l .OR. & |
---|
660 | force_bound_l ) THEN |
---|
661 | temp(:,:,nxl_mg(l)-1) = temp(:,:,nxl_mg(l)) |
---|
662 | ENDIF |
---|
663 | IF ( inflow_r .OR. outflow_r .OR. nest_bound_r .OR. & |
---|
664 | force_bound_r ) THEN |
---|
665 | temp(:,:,nxr_mg(l)+1) = temp(:,:,nxr_mg(l)) |
---|
666 | ENDIF |
---|
667 | ENDIF |
---|
668 | |
---|
669 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
670 | IF ( inflow_n .OR. outflow_n .OR. nest_bound_n .OR. & |
---|
671 | force_bound_n ) THEN |
---|
672 | temp(:,nyn_mg(l)+1,:) = temp(:,nyn_mg(l),:) |
---|
673 | ENDIF |
---|
674 | IF ( inflow_s .OR. outflow_s .OR. nest_bound_s .OR. & |
---|
675 | force_bound_s ) THEN |
---|
676 | temp(:,nys_mg(l)-1,:) = temp(:,nys_mg(l),:) |
---|
677 | ENDIF |
---|
678 | ENDIF |
---|
679 | |
---|
680 | ! |
---|
681 | !-- Bottom and top boundary conditions |
---|
682 | IF ( ibc_p_b == 1 ) THEN |
---|
683 | ! |
---|
684 | !-- equivalent to temp(nzb,:,: ) = temp(nzb+1,:,:) |
---|
685 | temp(nzb,:,: ) = temp(ind_even_odd+1,:,:) |
---|
686 | ELSE |
---|
687 | temp(nzb,:,: ) = 0.0_wp |
---|
688 | ENDIF |
---|
689 | |
---|
690 | IF ( ibc_p_t == 1 ) THEN |
---|
691 | ! |
---|
692 | !-- equivalent to temp(nzt_mg(l)+1,:,: ) = temp(nzt_mg(l),:,:) |
---|
693 | temp(nzt_mg(l)+1,:,: ) = temp(ind_even_odd,:,:) |
---|
694 | ELSE |
---|
695 | temp(nzt_mg(l)+1,:,: ) = 0.0_wp |
---|
696 | ENDIF |
---|
697 | |
---|
698 | CALL cpu_log( log_point_s(55), 'prolong', 'stop' ) |
---|
699 | |
---|
700 | END SUBROUTINE prolong |
---|
701 | |
---|
702 | |
---|
703 | !------------------------------------------------------------------------------! |
---|
704 | ! Description: |
---|
705 | ! ------------ |
---|
706 | !> Relaxation method for the multigrid scheme. A Gauss-Seidel iteration with |
---|
707 | !> 3D-Red-Black decomposition (GS-RB) is used. |
---|
708 | !------------------------------------------------------------------------------! |
---|
709 | SUBROUTINE redblack( f_mg, p_mg ) |
---|
710 | |
---|
711 | |
---|
712 | USE arrays_3d, & |
---|
713 | ONLY: f1_mg, f2_mg, f3_mg, rho_air_mg |
---|
714 | |
---|
715 | USE control_parameters, & |
---|
716 | ONLY: bc_lr_cyc, bc_ns_cyc, ibc_p_b, ibc_p_t, ngsrb |
---|
717 | |
---|
718 | USE grid_variables, & |
---|
719 | ONLY: ddx2_mg, ddy2_mg |
---|
720 | |
---|
721 | USE indices, & |
---|
722 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
723 | |
---|
724 | IMPLICIT NONE |
---|
725 | |
---|
726 | INTEGER(iwp) :: color !< grid point color, either red or black |
---|
727 | INTEGER(iwp) :: i !< index variable along x |
---|
728 | INTEGER(iwp) :: ic !< index variable along x |
---|
729 | INTEGER(iwp) :: j !< index variable along y |
---|
730 | INTEGER(iwp) :: jc !< index variable along y |
---|
731 | INTEGER(iwp) :: jj !< index variable along y |
---|
732 | INTEGER(iwp) :: k !< index variable along z |
---|
733 | INTEGER(iwp) :: l !< grid level |
---|
734 | INTEGER(iwp) :: n !< loop variable GauÃ-Seidel iterations |
---|
735 | INTEGER(iwp) :: km1 !< index variable (k-1) |
---|
736 | INTEGER(iwp) :: kp1 !< index variable (k+1) |
---|
737 | |
---|
738 | LOGICAL :: unroll !< flag indicating whether loop unrolling is possible |
---|
739 | |
---|
740 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
741 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
742 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
743 | f_mg !< residual of perturbation pressure |
---|
744 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
745 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
746 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
747 | p_mg !< perturbation pressure |
---|
748 | |
---|
749 | l = grid_level |
---|
750 | |
---|
751 | unroll = ( MOD( nyn_mg(l)-nys_mg(l)+1, 4 ) == 0 .AND. & |
---|
752 | MOD( nxr_mg(l)-nxl_mg(l)+1, 2 ) == 0 ) |
---|
753 | |
---|
754 | DO n = 1, ngsrb |
---|
755 | |
---|
756 | DO color = 1, 2 |
---|
757 | |
---|
758 | IF ( .NOT. unroll ) THEN |
---|
759 | |
---|
760 | CALL cpu_log( log_point_s(36), 'redblack_no_unroll_f', 'start' ) |
---|
761 | ! |
---|
762 | !-- Without unrolling of loops, no cache optimization |
---|
763 | !$OMP PARALLEL PRIVATE (i,j,k,km1,kp1) |
---|
764 | !$OMP DO |
---|
765 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
766 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
767 | !DIR$ IVDEP |
---|
768 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
769 | km1 = k-ind_even_odd-1 |
---|
770 | kp1 = k-ind_even_odd |
---|
771 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
772 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
773 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
774 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
775 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
776 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
777 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
778 | - f_mg(k,j,i) ) |
---|
779 | ENDDO |
---|
780 | ENDDO |
---|
781 | ENDDO |
---|
782 | |
---|
783 | !$OMP DO |
---|
784 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
785 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
786 | !DIR$ IVDEP |
---|
787 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
788 | km1 = k-ind_even_odd-1 |
---|
789 | kp1 = k-ind_even_odd |
---|
790 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
791 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
792 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
793 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
794 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
795 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
796 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
797 | - f_mg(k,j,i) ) |
---|
798 | ENDDO |
---|
799 | ENDDO |
---|
800 | ENDDO |
---|
801 | |
---|
802 | !$OMP DO |
---|
803 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
804 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
805 | !DIR$ IVDEP |
---|
806 | DO k = nzb+1, ind_even_odd |
---|
807 | km1 = k+ind_even_odd |
---|
808 | kp1 = k+ind_even_odd+1 |
---|
809 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
810 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
811 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
812 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
813 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
814 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
815 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
816 | - f_mg(k,j,i) ) |
---|
817 | ENDDO |
---|
818 | ENDDO |
---|
819 | ENDDO |
---|
820 | |
---|
821 | !$OMP DO |
---|
822 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
823 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
824 | !DIR$ IVDEP |
---|
825 | DO k = nzb+1, ind_even_odd |
---|
826 | km1 = k+ind_even_odd |
---|
827 | kp1 = k+ind_even_odd+1 |
---|
828 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
829 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
830 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
831 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
832 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
833 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
834 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
835 | - f_mg(k,j,i) ) |
---|
836 | ENDDO |
---|
837 | ENDDO |
---|
838 | ENDDO |
---|
839 | !$OMP END PARALLEL |
---|
840 | |
---|
841 | CALL cpu_log( log_point_s(36), 'redblack_no_unroll_f', 'stop' ) |
---|
842 | |
---|
843 | ELSE |
---|
844 | ! |
---|
845 | !-- Loop unrolling along y, only one i loop for better cache use |
---|
846 | CALL cpu_log( log_point_s(38), 'redblack_unroll_f', 'start' ) |
---|
847 | |
---|
848 | !$OMP PARALLEL PRIVATE (i,j,k,ic,jc,km1,kp1,jj) |
---|
849 | !$OMP DO |
---|
850 | DO ic = nxl_mg(l), nxr_mg(l), 2 |
---|
851 | DO jc = nys_mg(l), nyn_mg(l), 4 |
---|
852 | i = ic |
---|
853 | jj = jc+2-color |
---|
854 | !DIR$ IVDEP |
---|
855 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
856 | km1 = k-ind_even_odd-1 |
---|
857 | kp1 = k-ind_even_odd |
---|
858 | j = jj |
---|
859 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
860 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
861 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
862 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
863 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
864 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
865 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
866 | - f_mg(k,j,i) ) |
---|
867 | j = jj+2 |
---|
868 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
869 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
870 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
871 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
872 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
873 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
874 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
875 | - f_mg(k,j,i) ) |
---|
876 | ENDDO |
---|
877 | |
---|
878 | i = ic+1 |
---|
879 | jj = jc+color-1 |
---|
880 | !DIR$ IVDEP |
---|
881 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
882 | km1 = k-ind_even_odd-1 |
---|
883 | kp1 = k-ind_even_odd |
---|
884 | j = jj |
---|
885 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
886 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
887 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
888 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
889 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
890 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
891 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
892 | - f_mg(k,j,i) ) |
---|
893 | j = jj+2 |
---|
894 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
895 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
896 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
897 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
898 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
899 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
900 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
901 | - f_mg(k,j,i) ) |
---|
902 | ENDDO |
---|
903 | |
---|
904 | i = ic |
---|
905 | jj = jc+color-1 |
---|
906 | !DIR$ IVDEP |
---|
907 | DO k = nzb+1, ind_even_odd |
---|
908 | km1 = k+ind_even_odd |
---|
909 | kp1 = k+ind_even_odd+1 |
---|
910 | j = jj |
---|
911 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
912 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
913 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
914 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
915 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
916 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
917 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
918 | - f_mg(k,j,i) ) |
---|
919 | j = jj+2 |
---|
920 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
921 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
922 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
923 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
924 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
925 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
926 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
927 | - f_mg(k,j,i) ) |
---|
928 | ENDDO |
---|
929 | |
---|
930 | i = ic+1 |
---|
931 | jj = jc+2-color |
---|
932 | !DIR$ IVDEP |
---|
933 | DO k = nzb+1, ind_even_odd |
---|
934 | km1 = k+ind_even_odd |
---|
935 | kp1 = k+ind_even_odd+1 |
---|
936 | j = jj |
---|
937 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
938 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
939 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
940 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
941 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
942 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
943 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
944 | - f_mg(k,j,i) ) |
---|
945 | j = jj+2 |
---|
946 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
947 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
948 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
949 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
950 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
951 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
952 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
953 | - f_mg(k,j,i) ) |
---|
954 | ENDDO |
---|
955 | |
---|
956 | ENDDO |
---|
957 | ENDDO |
---|
958 | !$OMP END PARALLEL |
---|
959 | |
---|
960 | CALL cpu_log( log_point_s(38), 'redblack_unroll_f', 'stop' ) |
---|
961 | |
---|
962 | ENDIF |
---|
963 | |
---|
964 | ! |
---|
965 | !-- Horizontal boundary conditions |
---|
966 | CALL special_exchange_horiz( p_mg, color ) |
---|
967 | |
---|
968 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
969 | IF ( inflow_l .OR. outflow_l .OR. nest_bound_l .OR. & |
---|
970 | force_bound_l ) THEN |
---|
971 | p_mg(:,:,nxl_mg(l)-1) = p_mg(:,:,nxl_mg(l)) |
---|
972 | ENDIF |
---|
973 | IF ( inflow_r .OR. outflow_r .OR. nest_bound_r .OR. & |
---|
974 | force_bound_r ) THEN |
---|
975 | p_mg(:,:,nxr_mg(l)+1) = p_mg(:,:,nxr_mg(l)) |
---|
976 | ENDIF |
---|
977 | ENDIF |
---|
978 | |
---|
979 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
980 | IF ( inflow_n .OR. outflow_n .OR. nest_bound_n .OR. & |
---|
981 | force_bound_n ) THEN |
---|
982 | p_mg(:,nyn_mg(l)+1,:) = p_mg(:,nyn_mg(l),:) |
---|
983 | ENDIF |
---|
984 | IF ( inflow_s .OR. outflow_s .OR. nest_bound_s .OR. & |
---|
985 | force_bound_s ) THEN |
---|
986 | p_mg(:,nys_mg(l)-1,:) = p_mg(:,nys_mg(l),:) |
---|
987 | ENDIF |
---|
988 | ENDIF |
---|
989 | |
---|
990 | ! |
---|
991 | !-- Bottom and top boundary conditions |
---|
992 | IF ( ibc_p_b == 1 ) THEN |
---|
993 | ! |
---|
994 | !-- equivalent to p_mg(nzb,:,: ) = p_mg(nzb+1,:,:) |
---|
995 | p_mg(nzb,:,: ) = p_mg(ind_even_odd+1,:,:) |
---|
996 | ELSE |
---|
997 | p_mg(nzb,:,: ) = 0.0_wp |
---|
998 | ENDIF |
---|
999 | |
---|
1000 | IF ( ibc_p_t == 1 ) THEN |
---|
1001 | ! |
---|
1002 | !-- equivalent to p_mg(nzt_mg(l)+1,:,: ) = p_mg(nzt_mg(l),:,:) |
---|
1003 | p_mg(nzt_mg(l)+1,:,: ) = p_mg(ind_even_odd,:,:) |
---|
1004 | ELSE |
---|
1005 | p_mg(nzt_mg(l)+1,:,: ) = 0.0_wp |
---|
1006 | ENDIF |
---|
1007 | |
---|
1008 | ENDDO |
---|
1009 | |
---|
1010 | ENDDO |
---|
1011 | |
---|
1012 | END SUBROUTINE redblack |
---|
1013 | |
---|
1014 | |
---|
1015 | !------------------------------------------------------------------------------! |
---|
1016 | ! Description: |
---|
1017 | ! ------------ |
---|
1018 | !> Sort k-Dimension from sequential into blocks of even and odd. |
---|
1019 | !> This is required to vectorize the red-black subroutine. |
---|
1020 | !> Version for 3D-REAL arrays |
---|
1021 | !------------------------------------------------------------------------------! |
---|
1022 | SUBROUTINE sort_k_to_even_odd_blocks( p_mg , glevel ) |
---|
1023 | |
---|
1024 | |
---|
1025 | USE control_parameters, & |
---|
1026 | ONLY: grid_level |
---|
1027 | |
---|
1028 | USE indices, & |
---|
1029 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
1030 | |
---|
1031 | IMPLICIT NONE |
---|
1032 | |
---|
1033 | INTEGER(iwp), INTENT(IN) :: glevel !< grid level |
---|
1034 | |
---|
1035 | REAL(wp), DIMENSION(nzb:nzt_mg(glevel)+1, & |
---|
1036 | nys_mg(glevel)-1:nyn_mg(glevel)+1, & |
---|
1037 | nxl_mg(glevel)-1:nxr_mg(glevel)+1) :: & |
---|
1038 | p_mg !< array to be sorted |
---|
1039 | ! |
---|
1040 | !-- Local variables |
---|
1041 | INTEGER(iwp) :: i !< index variable along x |
---|
1042 | INTEGER(iwp) :: j !< index variable along y |
---|
1043 | INTEGER(iwp) :: k !< index variable along z |
---|
1044 | INTEGER(iwp) :: l !< grid level |
---|
1045 | INTEGER(iwp) :: ind !< index variable along z |
---|
1046 | REAL(wp), DIMENSION(nzb:nzt_mg(glevel)+1) :: tmp !< odd-even sorted temporary array |
---|
1047 | |
---|
1048 | |
---|
1049 | CALL cpu_log( log_point_s(52), 'sort_k_to_even_odd', 'start' ) |
---|
1050 | |
---|
1051 | l = glevel |
---|
1052 | ind_even_odd = even_odd_level(l) |
---|
1053 | |
---|
1054 | !$OMP PARALLEL PRIVATE (i,j,k,ind,tmp) |
---|
1055 | !$OMP DO |
---|
1056 | DO i = nxl_mg(l)-1, nxr_mg(l)+1 |
---|
1057 | DO j = nys_mg(l)-1, nyn_mg(l)+1 |
---|
1058 | |
---|
1059 | ! |
---|
1060 | !-- Sort the data with even k index |
---|
1061 | ind = nzb-1 |
---|
1062 | DO k = nzb, nzt_mg(l), 2 |
---|
1063 | ind = ind + 1 |
---|
1064 | tmp(ind) = p_mg(k,j,i) |
---|
1065 | ENDDO |
---|
1066 | ! |
---|
1067 | !-- Sort the data with odd k index |
---|
1068 | DO k = nzb+1, nzt_mg(l)+1, 2 |
---|
1069 | ind = ind + 1 |
---|
1070 | tmp(ind) = p_mg(k,j,i) |
---|
1071 | ENDDO |
---|
1072 | |
---|
1073 | p_mg(:,j,i) = tmp |
---|
1074 | |
---|
1075 | ENDDO |
---|
1076 | ENDDO |
---|
1077 | !$OMP END PARALLEL |
---|
1078 | |
---|
1079 | CALL cpu_log( log_point_s(52), 'sort_k_to_even_odd', 'stop' ) |
---|
1080 | |
---|
1081 | END SUBROUTINE sort_k_to_even_odd_blocks |
---|
1082 | |
---|
1083 | |
---|
1084 | !------------------------------------------------------------------------------! |
---|
1085 | ! Description: |
---|
1086 | ! ------------ |
---|
1087 | !> Sort k-Dimension from sequential into blocks of even and odd. |
---|
1088 | !> This is required to vectorize the red-black subroutine. |
---|
1089 | !> Version for 1D-REAL arrays |
---|
1090 | !------------------------------------------------------------------------------! |
---|
1091 | SUBROUTINE sort_k_to_even_odd_blocks_1d( f_mg, f_mg_b, glevel ) |
---|
1092 | |
---|
1093 | |
---|
1094 | USE indices, & |
---|
1095 | ONLY: nzb, nzt_mg |
---|
1096 | |
---|
1097 | IMPLICIT NONE |
---|
1098 | |
---|
1099 | INTEGER(iwp), INTENT(IN) :: glevel !< grid level |
---|
1100 | |
---|
1101 | REAL(wp), DIMENSION(nzb+1:nzt_mg(glevel)) :: f_mg !< 1D input array |
---|
1102 | REAL(wp), DIMENSION(nzb:nzt_mg(glevel)+1) :: f_mg_b !< 1D output array |
---|
1103 | |
---|
1104 | ! |
---|
1105 | !-- Local variables |
---|
1106 | INTEGER(iwp) :: ind !< index variable along z |
---|
1107 | INTEGER(iwp) :: k !< index variable along z |
---|
1108 | |
---|
1109 | |
---|
1110 | ind = nzb - 1 |
---|
1111 | ! |
---|
1112 | !-- Sort the data with even k index |
---|
1113 | DO k = nzb, nzt_mg(glevel), 2 |
---|
1114 | ind = ind + 1 |
---|
1115 | IF ( k >= nzb+1 .AND. k <= nzt_mg(glevel) ) THEN |
---|
1116 | f_mg_b(ind) = f_mg(k) |
---|
1117 | ENDIF |
---|
1118 | ENDDO |
---|
1119 | ! |
---|
1120 | !-- Sort the data with odd k index |
---|
1121 | DO k = nzb+1, nzt_mg(glevel)+1, 2 |
---|
1122 | ind = ind + 1 |
---|
1123 | IF( k >= nzb+1 .AND. k <= nzt_mg(glevel) ) THEN |
---|
1124 | f_mg_b(ind) = f_mg(k) |
---|
1125 | ENDIF |
---|
1126 | ENDDO |
---|
1127 | |
---|
1128 | END SUBROUTINE sort_k_to_even_odd_blocks_1d |
---|
1129 | |
---|
1130 | |
---|
1131 | !------------------------------------------------------------------------------! |
---|
1132 | ! Description: |
---|
1133 | ! ------------ |
---|
1134 | !> Sort k-Dimension from sequential into blocks of even and odd. |
---|
1135 | !> This is required to vectorize the red-black subroutine. |
---|
1136 | !> Version for 2D-INTEGER arrays |
---|
1137 | !------------------------------------------------------------------------------! |
---|
1138 | SUBROUTINE sort_k_to_even_odd_blocks_int( i_mg , glevel ) |
---|
1139 | |
---|
1140 | |
---|
1141 | USE control_parameters, & |
---|
1142 | ONLY: grid_level |
---|
1143 | |
---|
1144 | USE indices, & |
---|
1145 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
1146 | |
---|
1147 | IMPLICIT NONE |
---|
1148 | |
---|
1149 | INTEGER(iwp), INTENT(IN) :: glevel !< grid level |
---|
1150 | |
---|
1151 | INTEGER(iwp), DIMENSION(nzb:nzt_mg(glevel)+1, & |
---|
1152 | nys_mg(glevel)-1:nyn_mg(glevel)+1, & |
---|
1153 | nxl_mg(glevel)-1:nxr_mg(glevel)+1) :: & |
---|
1154 | i_mg !< array to be sorted |
---|
1155 | ! |
---|
1156 | !-- Local variables |
---|
1157 | INTEGER(iwp) :: i !< index variabel along x |
---|
1158 | INTEGER(iwp) :: j !< index variable along y |
---|
1159 | INTEGER(iwp) :: k !< index variable along z |
---|
1160 | INTEGER(iwp) :: l !< grid level |
---|
1161 | INTEGER(iwp) :: ind !< index variable along z |
---|
1162 | INTEGER(iwp),DIMENSION(nzb:nzt_mg(glevel)+1) :: tmp !< temporary odd-even sorted array |
---|
1163 | |
---|
1164 | |
---|
1165 | CALL cpu_log( log_point_s(52), 'sort_k_to_even_odd', 'start' ) |
---|
1166 | |
---|
1167 | l = glevel |
---|
1168 | ind_even_odd = even_odd_level(l) |
---|
1169 | |
---|
1170 | DO i = nxl_mg(l)-1, nxr_mg(l)+1 |
---|
1171 | DO j = nys_mg(l)-1, nyn_mg(l)+1 |
---|
1172 | |
---|
1173 | ! |
---|
1174 | !-- Sort the data with even k index |
---|
1175 | ind = nzb-1 |
---|
1176 | DO k = nzb, nzt_mg(l), 2 |
---|
1177 | ind = ind + 1 |
---|
1178 | tmp(ind) = i_mg(k,j,i) |
---|
1179 | ENDDO |
---|
1180 | ! |
---|
1181 | !++ ATTENTION: Check reason for this error. Remove it or replace WRITE |
---|
1182 | !++ by PALM message |
---|
1183 | #if defined ( __parallel ) |
---|
1184 | IF ( ind /= ind_even_odd ) THEN |
---|
1185 | WRITE (0,*) 'ERROR ==> illegal ind_even_odd ',ind,ind_even_odd,l |
---|
1186 | CALL MPI_ABORT(MPI_COMM_WORLD,i,j) |
---|
1187 | ENDIF |
---|
1188 | #endif |
---|
1189 | ! |
---|
1190 | !-- Sort the data with odd k index |
---|
1191 | DO k = nzb+1, nzt_mg(l)+1, 2 |
---|
1192 | ind = ind + 1 |
---|
1193 | tmp(ind) = i_mg(k,j,i) |
---|
1194 | ENDDO |
---|
1195 | |
---|
1196 | i_mg(:,j,i) = tmp |
---|
1197 | |
---|
1198 | ENDDO |
---|
1199 | ENDDO |
---|
1200 | |
---|
1201 | CALL cpu_log( log_point_s(52), 'sort_k_to_even_odd', 'stop' ) |
---|
1202 | |
---|
1203 | END SUBROUTINE sort_k_to_even_odd_blocks_int |
---|
1204 | |
---|
1205 | |
---|
1206 | !------------------------------------------------------------------------------! |
---|
1207 | ! Description: |
---|
1208 | ! ------------ |
---|
1209 | !> Sort k-dimension from blocks of even and odd into sequential |
---|
1210 | !------------------------------------------------------------------------------! |
---|
1211 | SUBROUTINE sort_k_to_sequential( p_mg ) |
---|
1212 | |
---|
1213 | |
---|
1214 | USE control_parameters, & |
---|
1215 | ONLY: grid_level |
---|
1216 | |
---|
1217 | USE indices, & |
---|
1218 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
1219 | |
---|
1220 | IMPLICIT NONE |
---|
1221 | |
---|
1222 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1223 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1224 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
1225 | p_mg !< array to be sorted |
---|
1226 | ! |
---|
1227 | !-- Local variables |
---|
1228 | INTEGER(iwp) :: i !< index variable along x |
---|
1229 | INTEGER(iwp) :: j !< index variable along y |
---|
1230 | INTEGER(iwp) :: k !< index variable along z |
---|
1231 | INTEGER(iwp) :: l !< grid level |
---|
1232 | INTEGER(iwp) :: ind !< index variable along z |
---|
1233 | |
---|
1234 | REAL(wp),DIMENSION(nzb:nzt_mg(grid_level)+1) :: tmp |
---|
1235 | |
---|
1236 | |
---|
1237 | l = grid_level |
---|
1238 | |
---|
1239 | !$OMP PARALLEL PRIVATE (i,j,k,ind,tmp) |
---|
1240 | !$OMP DO |
---|
1241 | DO i = nxl_mg(l)-1, nxr_mg(l)+1 |
---|
1242 | DO j = nys_mg(l)-1, nyn_mg(l)+1 |
---|
1243 | |
---|
1244 | ind = nzb - 1 |
---|
1245 | tmp = p_mg(:,j,i) |
---|
1246 | DO k = nzb, nzt_mg(l), 2 |
---|
1247 | ind = ind + 1 |
---|
1248 | p_mg(k,j,i) = tmp(ind) |
---|
1249 | ENDDO |
---|
1250 | |
---|
1251 | DO k = nzb+1, nzt_mg(l)+1, 2 |
---|
1252 | ind = ind + 1 |
---|
1253 | p_mg(k,j,i) = tmp(ind) |
---|
1254 | ENDDO |
---|
1255 | ENDDO |
---|
1256 | ENDDO |
---|
1257 | !$OMP END PARALLEL |
---|
1258 | |
---|
1259 | END SUBROUTINE sort_k_to_sequential |
---|
1260 | |
---|
1261 | |
---|
1262 | !------------------------------------------------------------------------------! |
---|
1263 | ! Description: |
---|
1264 | ! ------------ |
---|
1265 | !> Gather subdomain data from all PEs. |
---|
1266 | !------------------------------------------------------------------------------! |
---|
1267 | SUBROUTINE mg_gather( f2, f2_sub ) |
---|
1268 | |
---|
1269 | USE control_parameters, & |
---|
1270 | ONLY: grid_level |
---|
1271 | |
---|
1272 | USE cpulog, & |
---|
1273 | ONLY: cpu_log, log_point_s |
---|
1274 | |
---|
1275 | USE indices, & |
---|
1276 | ONLY: mg_loc_ind, nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
1277 | |
---|
1278 | IMPLICIT NONE |
---|
1279 | |
---|
1280 | INTEGER(iwp) :: i !< |
---|
1281 | INTEGER(iwp) :: il !< |
---|
1282 | INTEGER(iwp) :: ir !< |
---|
1283 | INTEGER(iwp) :: j !< |
---|
1284 | INTEGER(iwp) :: jn !< |
---|
1285 | INTEGER(iwp) :: js !< |
---|
1286 | INTEGER(iwp) :: k !< |
---|
1287 | INTEGER(iwp) :: nwords !< |
---|
1288 | |
---|
1289 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1290 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1291 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f2 !< |
---|
1292 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1293 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1294 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f2_l !< |
---|
1295 | |
---|
1296 | REAL(wp), DIMENSION(nzb:mg_loc_ind(5,myid)+1, & |
---|
1297 | mg_loc_ind(3,myid)-1:mg_loc_ind(4,myid)+1, & |
---|
1298 | mg_loc_ind(1,myid)-1:mg_loc_ind(2,myid)+1) :: f2_sub !< |
---|
1299 | |
---|
1300 | |
---|
1301 | #if defined( __parallel ) |
---|
1302 | CALL cpu_log( log_point_s(34), 'mg_gather', 'start' ) |
---|
1303 | |
---|
1304 | f2_l = 0.0_wp |
---|
1305 | |
---|
1306 | ! |
---|
1307 | !-- Store the local subdomain array on the total array |
---|
1308 | js = mg_loc_ind(3,myid) |
---|
1309 | IF ( south_border_pe ) js = js - 1 |
---|
1310 | jn = mg_loc_ind(4,myid) |
---|
1311 | IF ( north_border_pe ) jn = jn + 1 |
---|
1312 | il = mg_loc_ind(1,myid) |
---|
1313 | IF ( left_border_pe ) il = il - 1 |
---|
1314 | ir = mg_loc_ind(2,myid) |
---|
1315 | IF ( right_border_pe ) ir = ir + 1 |
---|
1316 | DO i = il, ir |
---|
1317 | DO j = js, jn |
---|
1318 | DO k = nzb, nzt_mg(grid_level)+1 |
---|
1319 | f2_l(k,j,i) = f2_sub(k,j,i) |
---|
1320 | ENDDO |
---|
1321 | ENDDO |
---|
1322 | ENDDO |
---|
1323 | |
---|
1324 | ! |
---|
1325 | !-- Find out the number of array elements of the total array |
---|
1326 | nwords = SIZE( f2 ) |
---|
1327 | |
---|
1328 | ! |
---|
1329 | !-- Gather subdomain data from all PEs |
---|
1330 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1331 | CALL MPI_ALLREDUCE( f2_l(nzb,nys_mg(grid_level)-1,nxl_mg(grid_level)-1), & |
---|
1332 | f2(nzb,nys_mg(grid_level)-1,nxl_mg(grid_level)-1), & |
---|
1333 | nwords, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1334 | |
---|
1335 | CALL cpu_log( log_point_s(34), 'mg_gather', 'stop' ) |
---|
1336 | #endif |
---|
1337 | |
---|
1338 | END SUBROUTINE mg_gather |
---|
1339 | |
---|
1340 | |
---|
1341 | |
---|
1342 | !------------------------------------------------------------------------------! |
---|
1343 | ! Description: |
---|
1344 | ! ------------ |
---|
1345 | !> @todo It might be possible to improve the speed of this routine by using |
---|
1346 | !> non-blocking communication |
---|
1347 | !------------------------------------------------------------------------------! |
---|
1348 | SUBROUTINE mg_scatter( p2, p2_sub ) |
---|
1349 | |
---|
1350 | USE control_parameters, & |
---|
1351 | ONLY: grid_level |
---|
1352 | |
---|
1353 | USE cpulog, & |
---|
1354 | ONLY: cpu_log, log_point_s |
---|
1355 | |
---|
1356 | USE indices, & |
---|
1357 | ONLY: mg_loc_ind, nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
1358 | |
---|
1359 | IMPLICIT NONE |
---|
1360 | |
---|
1361 | INTEGER(iwp) :: nwords !< |
---|
1362 | |
---|
1363 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level-1)+1, & |
---|
1364 | nys_mg(grid_level-1)-1:nyn_mg(grid_level-1)+1, & |
---|
1365 | nxl_mg(grid_level-1)-1:nxr_mg(grid_level-1)+1) :: p2 !< |
---|
1366 | |
---|
1367 | REAL(wp), DIMENSION(nzb:mg_loc_ind(5,myid)+1, & |
---|
1368 | mg_loc_ind(3,myid)-1:mg_loc_ind(4,myid)+1, & |
---|
1369 | mg_loc_ind(1,myid)-1:mg_loc_ind(2,myid)+1) :: p2_sub !< |
---|
1370 | |
---|
1371 | ! |
---|
1372 | !-- Find out the number of array elements of the subdomain array |
---|
1373 | nwords = SIZE( p2_sub ) |
---|
1374 | |
---|
1375 | #if defined( __parallel ) |
---|
1376 | CALL cpu_log( log_point_s(35), 'mg_scatter', 'start' ) |
---|
1377 | |
---|
1378 | p2_sub = p2(:,mg_loc_ind(3,myid)-1:mg_loc_ind(4,myid)+1, & |
---|
1379 | mg_loc_ind(1,myid)-1:mg_loc_ind(2,myid)+1) |
---|
1380 | |
---|
1381 | CALL cpu_log( log_point_s(35), 'mg_scatter', 'stop' ) |
---|
1382 | #endif |
---|
1383 | |
---|
1384 | END SUBROUTINE mg_scatter |
---|
1385 | |
---|
1386 | |
---|
1387 | !------------------------------------------------------------------------------! |
---|
1388 | ! Description: |
---|
1389 | ! ------------ |
---|
1390 | !> This is where the multigrid technique takes place. V- and W- Cycle are |
---|
1391 | !> implemented and steered by the parameter "gamma". Parameter "nue" determines |
---|
1392 | !> the convergence of the multigrid iterative solution. There are nue times |
---|
1393 | !> RB-GS iterations. It should be set to "1" or "2", considering the time effort |
---|
1394 | !> one would like to invest. Last choice shows a very good converging factor, |
---|
1395 | !> but leads to an increase in computing time. |
---|
1396 | !------------------------------------------------------------------------------! |
---|
1397 | RECURSIVE SUBROUTINE next_mg_level( f_mg, p_mg, p3, r ) |
---|
1398 | |
---|
1399 | USE control_parameters, & |
---|
1400 | ONLY: bc_lr_dirrad, bc_lr_raddir, bc_ns_dirrad, bc_ns_raddir, & |
---|
1401 | gamma_mg, grid_level_count, ibc_p_b, ibc_p_t, & |
---|
1402 | maximum_grid_level, mg_switch_to_pe0_level, & |
---|
1403 | mg_switch_to_pe0, nest_domain, ngsrb |
---|
1404 | |
---|
1405 | USE indices, & |
---|
1406 | ONLY: mg_loc_ind, nxl, nxl_mg, nxr, nxr_mg, nys, nys_mg, nyn, & |
---|
1407 | nyn_mg, nzb, nzt, nzt_mg |
---|
1408 | |
---|
1409 | IMPLICIT NONE |
---|
1410 | |
---|
1411 | INTEGER(iwp) :: i !< index variable along x |
---|
1412 | INTEGER(iwp) :: j !< index variable along y |
---|
1413 | INTEGER(iwp) :: k !< index variable along z |
---|
1414 | INTEGER(iwp) :: nxl_mg_save !< |
---|
1415 | INTEGER(iwp) :: nxr_mg_save !< |
---|
1416 | INTEGER(iwp) :: nyn_mg_save !< |
---|
1417 | INTEGER(iwp) :: nys_mg_save !< |
---|
1418 | INTEGER(iwp) :: nzt_mg_save !< |
---|
1419 | |
---|
1420 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1421 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1422 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f_mg !< |
---|
1423 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1424 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1425 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: p_mg !< |
---|
1426 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1427 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1428 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: p3 !< |
---|
1429 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1430 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1431 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: r !< |
---|
1432 | |
---|
1433 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level-1)+1, & |
---|
1434 | nys_mg(grid_level-1)-1:nyn_mg(grid_level-1)+1, & |
---|
1435 | nxl_mg(grid_level-1)-1:nxr_mg(grid_level-1)+1) :: f2 !< |
---|
1436 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level-1)+1, & |
---|
1437 | nys_mg(grid_level-1)-1:nyn_mg(grid_level-1)+1, & |
---|
1438 | nxl_mg(grid_level-1)-1:nxr_mg(grid_level-1)+1) :: p2 !< |
---|
1439 | |
---|
1440 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f2_sub !< |
---|
1441 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: p2_sub !< |
---|
1442 | |
---|
1443 | ! |
---|
1444 | !-- Restriction to the coarsest grid |
---|
1445 | 10 IF ( grid_level == 1 ) THEN |
---|
1446 | |
---|
1447 | ! |
---|
1448 | !-- Solution on the coarsest grid. Double the number of Gauss-Seidel |
---|
1449 | !-- iterations in order to get a more accurate solution. |
---|
1450 | ngsrb = 2 * ngsrb |
---|
1451 | |
---|
1452 | ind_even_odd = even_odd_level(grid_level) |
---|
1453 | |
---|
1454 | CALL redblack( f_mg, p_mg ) |
---|
1455 | |
---|
1456 | ngsrb = ngsrb / 2 |
---|
1457 | |
---|
1458 | |
---|
1459 | ELSEIF ( grid_level /= 1 ) THEN |
---|
1460 | |
---|
1461 | grid_level_count(grid_level) = grid_level_count(grid_level) + 1 |
---|
1462 | |
---|
1463 | ! |
---|
1464 | !-- Solution on the actual grid level |
---|
1465 | ind_even_odd = even_odd_level(grid_level) |
---|
1466 | |
---|
1467 | CALL redblack( f_mg, p_mg ) |
---|
1468 | |
---|
1469 | ! |
---|
1470 | !-- Determination of the actual residual |
---|
1471 | CALL resid( f_mg, p_mg, r ) |
---|
1472 | |
---|
1473 | !-- Restriction of the residual (finer grid values!) to the next coarser |
---|
1474 | !-- grid. Therefore, the grid level has to be decremented now. nxl..nzt have |
---|
1475 | !-- to be set to the coarse grid values, because these variables are needed |
---|
1476 | !-- for the exchange of ghost points in routine exchange_horiz |
---|
1477 | grid_level = grid_level - 1 |
---|
1478 | |
---|
1479 | nxl = nxl_mg(grid_level) |
---|
1480 | nys = nys_mg(grid_level) |
---|
1481 | nxr = nxr_mg(grid_level) |
---|
1482 | nyn = nyn_mg(grid_level) |
---|
1483 | nzt = nzt_mg(grid_level) |
---|
1484 | |
---|
1485 | IF ( grid_level == mg_switch_to_pe0_level ) THEN |
---|
1486 | |
---|
1487 | ! |
---|
1488 | !-- From this level on, calculations are done on PE0 only. |
---|
1489 | !-- First, carry out restriction on the subdomain. |
---|
1490 | !-- Therefore, indices of the level have to be changed to subdomain |
---|
1491 | !-- values in between (otherwise, the restrict routine would expect |
---|
1492 | !-- the gathered array) |
---|
1493 | |
---|
1494 | nxl_mg_save = nxl_mg(grid_level) |
---|
1495 | nxr_mg_save = nxr_mg(grid_level) |
---|
1496 | nys_mg_save = nys_mg(grid_level) |
---|
1497 | nyn_mg_save = nyn_mg(grid_level) |
---|
1498 | nzt_mg_save = nzt_mg(grid_level) |
---|
1499 | nxl_mg(grid_level) = mg_loc_ind(1,myid) |
---|
1500 | nxr_mg(grid_level) = mg_loc_ind(2,myid) |
---|
1501 | nys_mg(grid_level) = mg_loc_ind(3,myid) |
---|
1502 | nyn_mg(grid_level) = mg_loc_ind(4,myid) |
---|
1503 | nzt_mg(grid_level) = mg_loc_ind(5,myid) |
---|
1504 | nxl = mg_loc_ind(1,myid) |
---|
1505 | nxr = mg_loc_ind(2,myid) |
---|
1506 | nys = mg_loc_ind(3,myid) |
---|
1507 | nyn = mg_loc_ind(4,myid) |
---|
1508 | nzt = mg_loc_ind(5,myid) |
---|
1509 | |
---|
1510 | ALLOCATE( f2_sub(nzb:nzt_mg(grid_level)+1, & |
---|
1511 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1512 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) ) |
---|
1513 | |
---|
1514 | CALL restrict( f2_sub, r ) |
---|
1515 | |
---|
1516 | ! |
---|
1517 | !-- Restore the correct indices of this level |
---|
1518 | nxl_mg(grid_level) = nxl_mg_save |
---|
1519 | nxr_mg(grid_level) = nxr_mg_save |
---|
1520 | nys_mg(grid_level) = nys_mg_save |
---|
1521 | nyn_mg(grid_level) = nyn_mg_save |
---|
1522 | nzt_mg(grid_level) = nzt_mg_save |
---|
1523 | nxl = nxl_mg(grid_level) |
---|
1524 | nxr = nxr_mg(grid_level) |
---|
1525 | nys = nys_mg(grid_level) |
---|
1526 | nyn = nyn_mg(grid_level) |
---|
1527 | nzt = nzt_mg(grid_level) |
---|
1528 | ! |
---|
1529 | !-- Gather all arrays from the subdomains on PE0 |
---|
1530 | CALL mg_gather( f2, f2_sub ) |
---|
1531 | |
---|
1532 | ! |
---|
1533 | !-- Set switch for routine exchange_horiz, that no ghostpoint exchange |
---|
1534 | !-- has to be carried out from now on |
---|
1535 | mg_switch_to_pe0 = .TRUE. |
---|
1536 | |
---|
1537 | ! |
---|
1538 | !-- In case of non-cyclic lateral boundary conditions, both in- and |
---|
1539 | !-- outflow conditions have to be used on all PEs after the switch, |
---|
1540 | !-- because then they have the total domain. |
---|
1541 | IF ( bc_lr_dirrad ) THEN |
---|
1542 | inflow_l = .TRUE. |
---|
1543 | inflow_r = .FALSE. |
---|
1544 | outflow_l = .FALSE. |
---|
1545 | outflow_r = .TRUE. |
---|
1546 | ELSEIF ( bc_lr_raddir ) THEN |
---|
1547 | inflow_l = .FALSE. |
---|
1548 | inflow_r = .TRUE. |
---|
1549 | outflow_l = .TRUE. |
---|
1550 | outflow_r = .FALSE. |
---|
1551 | ELSEIF ( nest_domain ) THEN |
---|
1552 | nest_bound_l = .TRUE. |
---|
1553 | nest_bound_r = .TRUE. |
---|
1554 | ELSEIF ( forcing ) THEN |
---|
1555 | force_bound_l = .TRUE. |
---|
1556 | force_bound_r = .TRUE. |
---|
1557 | ENDIF |
---|
1558 | |
---|
1559 | IF ( bc_ns_dirrad ) THEN |
---|
1560 | inflow_n = .TRUE. |
---|
1561 | inflow_s = .FALSE. |
---|
1562 | outflow_n = .FALSE. |
---|
1563 | outflow_s = .TRUE. |
---|
1564 | ELSEIF ( bc_ns_raddir ) THEN |
---|
1565 | inflow_n = .FALSE. |
---|
1566 | inflow_s = .TRUE. |
---|
1567 | outflow_n = .TRUE. |
---|
1568 | outflow_s = .FALSE. |
---|
1569 | ELSEIF ( nest_domain ) THEN |
---|
1570 | nest_bound_s = .TRUE. |
---|
1571 | nest_bound_n = .TRUE. |
---|
1572 | ELSEIF ( forcing ) THEN |
---|
1573 | force_bound_s = .TRUE. |
---|
1574 | force_bound_n = .TRUE. |
---|
1575 | ENDIF |
---|
1576 | |
---|
1577 | DEALLOCATE( f2_sub ) |
---|
1578 | |
---|
1579 | ELSE |
---|
1580 | |
---|
1581 | CALL restrict( f2, r ) |
---|
1582 | |
---|
1583 | ind_even_odd = even_odd_level(grid_level) ! must be after restrict |
---|
1584 | |
---|
1585 | ENDIF |
---|
1586 | |
---|
1587 | p2 = 0.0_wp |
---|
1588 | |
---|
1589 | ! |
---|
1590 | !-- Repeat the same procedure till the coarsest grid is reached |
---|
1591 | CALL next_mg_level( f2, p2, p3, r ) |
---|
1592 | |
---|
1593 | ENDIF |
---|
1594 | |
---|
1595 | ! |
---|
1596 | !-- Now follows the prolongation |
---|
1597 | IF ( grid_level >= 2 ) THEN |
---|
1598 | |
---|
1599 | ! |
---|
1600 | !-- Prolongation of the new residual. The values are transferred |
---|
1601 | !-- from the coarse to the next finer grid. |
---|
1602 | IF ( grid_level == mg_switch_to_pe0_level+1 ) THEN |
---|
1603 | |
---|
1604 | #if defined( __parallel ) |
---|
1605 | ! |
---|
1606 | !-- At this level, the new residual first has to be scattered from |
---|
1607 | !-- PE0 to the other PEs |
---|
1608 | ALLOCATE( p2_sub(nzb:mg_loc_ind(5,myid)+1, & |
---|
1609 | mg_loc_ind(3,myid)-1:mg_loc_ind(4,myid)+1, & |
---|
1610 | mg_loc_ind(1,myid)-1:mg_loc_ind(2,myid)+1) ) |
---|
1611 | |
---|
1612 | CALL mg_scatter( p2, p2_sub ) |
---|
1613 | |
---|
1614 | ! |
---|
1615 | !-- Therefore, indices of the previous level have to be changed to |
---|
1616 | !-- subdomain values in between (otherwise, the prolong routine would |
---|
1617 | !-- expect the gathered array) |
---|
1618 | nxl_mg_save = nxl_mg(grid_level-1) |
---|
1619 | nxr_mg_save = nxr_mg(grid_level-1) |
---|
1620 | nys_mg_save = nys_mg(grid_level-1) |
---|
1621 | nyn_mg_save = nyn_mg(grid_level-1) |
---|
1622 | nzt_mg_save = nzt_mg(grid_level-1) |
---|
1623 | nxl_mg(grid_level-1) = mg_loc_ind(1,myid) |
---|
1624 | nxr_mg(grid_level-1) = mg_loc_ind(2,myid) |
---|
1625 | nys_mg(grid_level-1) = mg_loc_ind(3,myid) |
---|
1626 | nyn_mg(grid_level-1) = mg_loc_ind(4,myid) |
---|
1627 | nzt_mg(grid_level-1) = mg_loc_ind(5,myid) |
---|
1628 | |
---|
1629 | ! |
---|
1630 | !-- Set switch for routine exchange_horiz, that ghostpoint exchange |
---|
1631 | !-- has to be carried again out from now on |
---|
1632 | mg_switch_to_pe0 = .FALSE. |
---|
1633 | |
---|
1634 | ! |
---|
1635 | !-- For non-cyclic lateral boundary conditions and in case of nesting, |
---|
1636 | !-- restore the in-/outflow conditions. |
---|
1637 | inflow_l = .FALSE.; inflow_r = .FALSE. |
---|
1638 | inflow_n = .FALSE.; inflow_s = .FALSE. |
---|
1639 | outflow_l = .FALSE.; outflow_r = .FALSE. |
---|
1640 | outflow_n = .FALSE.; outflow_s = .FALSE. |
---|
1641 | ! |
---|
1642 | !-- In case of nesting or forcing, restore lateral boundary conditions |
---|
1643 | IF ( nest_domain ) THEN |
---|
1644 | nest_bound_l = .FALSE. |
---|
1645 | nest_bound_r = .FALSE. |
---|
1646 | nest_bound_s = .FALSE. |
---|
1647 | nest_bound_n = .FALSE. |
---|
1648 | ENDIF |
---|
1649 | IF ( forcing ) THEN |
---|
1650 | force_bound_l = .FALSE. |
---|
1651 | force_bound_r = .FALSE. |
---|
1652 | force_bound_s = .FALSE. |
---|
1653 | force_bound_n = .FALSE. |
---|
1654 | ENDIF |
---|
1655 | |
---|
1656 | IF ( pleft == MPI_PROC_NULL ) THEN |
---|
1657 | IF ( bc_lr_dirrad ) THEN |
---|
1658 | inflow_l = .TRUE. |
---|
1659 | ELSEIF ( bc_lr_raddir ) THEN |
---|
1660 | outflow_l = .TRUE. |
---|
1661 | ELSEIF ( nest_domain ) THEN |
---|
1662 | nest_bound_l = .TRUE. |
---|
1663 | ELSEIF ( forcing ) THEN |
---|
1664 | force_bound_l = .TRUE. |
---|
1665 | ENDIF |
---|
1666 | ENDIF |
---|
1667 | |
---|
1668 | IF ( pright == MPI_PROC_NULL ) THEN |
---|
1669 | IF ( bc_lr_dirrad ) THEN |
---|
1670 | outflow_r = .TRUE. |
---|
1671 | ELSEIF ( bc_lr_raddir ) THEN |
---|
1672 | inflow_r = .TRUE. |
---|
1673 | ELSEIF ( nest_domain ) THEN |
---|
1674 | nest_bound_r = .TRUE. |
---|
1675 | ELSEIF ( forcing ) THEN |
---|
1676 | force_bound_r = .TRUE. |
---|
1677 | ENDIF |
---|
1678 | ENDIF |
---|
1679 | |
---|
1680 | IF ( psouth == MPI_PROC_NULL ) THEN |
---|
1681 | IF ( bc_ns_dirrad ) THEN |
---|
1682 | outflow_s = .TRUE. |
---|
1683 | ELSEIF ( bc_ns_raddir ) THEN |
---|
1684 | inflow_s = .TRUE. |
---|
1685 | ELSEIF ( nest_domain ) THEN |
---|
1686 | nest_bound_s = .TRUE. |
---|
1687 | ELSEIF ( forcing ) THEN |
---|
1688 | force_bound_s = .TRUE. |
---|
1689 | ENDIF |
---|
1690 | ENDIF |
---|
1691 | |
---|
1692 | IF ( pnorth == MPI_PROC_NULL ) THEN |
---|
1693 | IF ( bc_ns_dirrad ) THEN |
---|
1694 | inflow_n = .TRUE. |
---|
1695 | ELSEIF ( bc_ns_raddir ) THEN |
---|
1696 | outflow_n = .TRUE. |
---|
1697 | ELSEIF ( nest_domain ) THEN |
---|
1698 | nest_bound_n = .TRUE. |
---|
1699 | ELSEIF ( forcing ) THEN |
---|
1700 | force_bound_n = .TRUE. |
---|
1701 | ENDIF |
---|
1702 | ENDIF |
---|
1703 | |
---|
1704 | CALL prolong( p2_sub, p3 ) |
---|
1705 | |
---|
1706 | ! |
---|
1707 | !-- Restore the correct indices of the previous level |
---|
1708 | nxl_mg(grid_level-1) = nxl_mg_save |
---|
1709 | nxr_mg(grid_level-1) = nxr_mg_save |
---|
1710 | nys_mg(grid_level-1) = nys_mg_save |
---|
1711 | nyn_mg(grid_level-1) = nyn_mg_save |
---|
1712 | nzt_mg(grid_level-1) = nzt_mg_save |
---|
1713 | |
---|
1714 | DEALLOCATE( p2_sub ) |
---|
1715 | #endif |
---|
1716 | |
---|
1717 | ELSE |
---|
1718 | |
---|
1719 | CALL prolong( p2, p3 ) |
---|
1720 | |
---|
1721 | ENDIF |
---|
1722 | |
---|
1723 | ! |
---|
1724 | !-- Computation of the new pressure correction. Therefore, |
---|
1725 | !-- values from prior grids are added up automatically stage by stage. |
---|
1726 | DO i = nxl_mg(grid_level)-1, nxr_mg(grid_level)+1 |
---|
1727 | DO j = nys_mg(grid_level)-1, nyn_mg(grid_level)+1 |
---|
1728 | DO k = nzb, nzt_mg(grid_level)+1 |
---|
1729 | p_mg(k,j,i) = p_mg(k,j,i) + p3(k,j,i) |
---|
1730 | ENDDO |
---|
1731 | ENDDO |
---|
1732 | ENDDO |
---|
1733 | |
---|
1734 | ! |
---|
1735 | !-- Relaxation of the new solution |
---|
1736 | CALL redblack( f_mg, p_mg ) |
---|
1737 | |
---|
1738 | ENDIF |
---|
1739 | |
---|
1740 | |
---|
1741 | ! |
---|
1742 | !-- The following few lines serve the steering of the multigrid scheme |
---|
1743 | IF ( grid_level == maximum_grid_level ) THEN |
---|
1744 | |
---|
1745 | GOTO 20 |
---|
1746 | |
---|
1747 | ELSEIF ( grid_level /= maximum_grid_level .AND. grid_level /= 1 .AND. & |
---|
1748 | grid_level_count(grid_level) /= gamma_mg ) THEN |
---|
1749 | |
---|
1750 | GOTO 10 |
---|
1751 | |
---|
1752 | ENDIF |
---|
1753 | |
---|
1754 | ! |
---|
1755 | !-- Reset counter for the next call of poismg |
---|
1756 | grid_level_count(grid_level) = 0 |
---|
1757 | |
---|
1758 | ! |
---|
1759 | !-- Continue with the next finer level. nxl..nzt have to be |
---|
1760 | !-- set to the finer grid values, because these variables are needed for the |
---|
1761 | !-- exchange of ghost points in routine exchange_horiz |
---|
1762 | grid_level = grid_level + 1 |
---|
1763 | ind_even_odd = even_odd_level(grid_level) |
---|
1764 | |
---|
1765 | nxl = nxl_mg(grid_level) |
---|
1766 | nxr = nxr_mg(grid_level) |
---|
1767 | nys = nys_mg(grid_level) |
---|
1768 | nyn = nyn_mg(grid_level) |
---|
1769 | nzt = nzt_mg(grid_level) |
---|
1770 | |
---|
1771 | 20 CONTINUE |
---|
1772 | |
---|
1773 | END SUBROUTINE next_mg_level |
---|
1774 | |
---|
1775 | |
---|
1776 | !------------------------------------------------------------------------------! |
---|
1777 | ! Description: |
---|
1778 | ! ------------ |
---|
1779 | !> Initial settings for sorting k-dimension from sequential order (alternate |
---|
1780 | !> even/odd) into blocks of even and odd or vice versa |
---|
1781 | !------------------------------------------------------------------------------! |
---|
1782 | SUBROUTINE init_even_odd_blocks |
---|
1783 | |
---|
1784 | |
---|
1785 | USE arrays_3d, & |
---|
1786 | ONLY: f1_mg, f2_mg, f3_mg |
---|
1787 | |
---|
1788 | USE control_parameters, & |
---|
1789 | ONLY: grid_level, maximum_grid_level |
---|
1790 | |
---|
1791 | USE indices, & |
---|
1792 | ONLY: nzb, nzt, nzt_mg |
---|
1793 | |
---|
1794 | USE indices, & |
---|
1795 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
1796 | |
---|
1797 | IMPLICIT NONE |
---|
1798 | ! |
---|
1799 | !-- Local variables |
---|
1800 | INTEGER(iwp) :: i !< |
---|
1801 | INTEGER(iwp) :: l !< |
---|
1802 | |
---|
1803 | LOGICAL, SAVE :: lfirst = .TRUE. |
---|
1804 | |
---|
1805 | |
---|
1806 | IF ( .NOT. lfirst ) RETURN |
---|
1807 | |
---|
1808 | ALLOCATE( even_odd_level(maximum_grid_level) ) |
---|
1809 | |
---|
1810 | ALLOCATE( f1_mg_b(nzb:nzt+1,maximum_grid_level), & |
---|
1811 | f2_mg_b(nzb:nzt+1,maximum_grid_level), & |
---|
1812 | f3_mg_b(nzb:nzt+1,maximum_grid_level) ) |
---|
1813 | |
---|
1814 | ! |
---|
1815 | !-- Set border index between the even and odd block |
---|
1816 | DO i = maximum_grid_level, 1, -1 |
---|
1817 | even_odd_level(i) = nzt_mg(i) / 2 |
---|
1818 | ENDDO |
---|
1819 | |
---|
1820 | ! |
---|
1821 | !-- Sort grid coefficients used in red/black scheme and for calculating the |
---|
1822 | !-- residual to block (even/odd) structure |
---|
1823 | DO l = maximum_grid_level, 1 , -1 |
---|
1824 | CALL sort_k_to_even_odd_blocks( f1_mg(nzb+1:nzt_mg(grid_level),l), & |
---|
1825 | f1_mg_b(nzb:nzt_mg(grid_level)+1,l), & |
---|
1826 | l ) |
---|
1827 | CALL sort_k_to_even_odd_blocks( f2_mg(nzb+1:nzt_mg(grid_level),l), & |
---|
1828 | f2_mg_b(nzb:nzt_mg(grid_level)+1,l), & |
---|
1829 | l ) |
---|
1830 | CALL sort_k_to_even_odd_blocks( f3_mg(nzb+1:nzt_mg(grid_level),l), & |
---|
1831 | f3_mg_b(nzb:nzt_mg(grid_level)+1,l), & |
---|
1832 | l ) |
---|
1833 | ENDDO |
---|
1834 | |
---|
1835 | lfirst = .FALSE. |
---|
1836 | |
---|
1837 | END SUBROUTINE init_even_odd_blocks |
---|
1838 | |
---|
1839 | |
---|
1840 | !------------------------------------------------------------------------------! |
---|
1841 | ! Description: |
---|
1842 | ! ------------ |
---|
1843 | !> Special exchange_horiz subroutine for use in redblack. Transfers only |
---|
1844 | !> "red" or "black" data points. |
---|
1845 | !------------------------------------------------------------------------------! |
---|
1846 | SUBROUTINE special_exchange_horiz ( p_mg, color ) |
---|
1847 | |
---|
1848 | |
---|
1849 | USE control_parameters, & |
---|
1850 | ONLY: bc_lr_cyc, bc_ns_cyc, grid_level, ibc_p_b, ibc_p_t, & |
---|
1851 | maximum_grid_level, & |
---|
1852 | mg_switch_to_pe0_level, synchronous_exchange |
---|
1853 | |
---|
1854 | USE indices, & |
---|
1855 | ONLY: mg_loc_ind, nxl, nxl_mg, nxr, nxr_mg, nys, nys_mg, nyn, & |
---|
1856 | nyn_mg, nzb, nzt, nzt_mg |
---|
1857 | |
---|
1858 | IMPLICIT NONE |
---|
1859 | |
---|
1860 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1861 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1862 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
1863 | p_mg !< treated array |
---|
1864 | |
---|
1865 | INTEGER(iwp), intent(IN) :: color !< flag for grid point type (red or black) |
---|
1866 | ! |
---|
1867 | !-- Local variables |
---|
1868 | INTEGER(iwp) :: i !< index variable along x |
---|
1869 | INTEGER(iwp) :: i1 !< index variable along x on coarse level |
---|
1870 | INTEGER(iwp) :: i2 !< index variable along x on coarse level |
---|
1871 | |
---|
1872 | INTEGER(iwp) :: j !< index variable along y |
---|
1873 | INTEGER(iwp) :: j1 !< index variable along y on coarse level |
---|
1874 | INTEGER(iwp) :: j2 !< index variable along y on coarse level |
---|
1875 | INTEGER(iwp) :: k !< index variable along z |
---|
1876 | INTEGER(iwp) :: l !< short for grid level |
---|
1877 | INTEGER(iwp) :: jys !< index for lower local PE boundary along y |
---|
1878 | INTEGER(iwp) :: jyn !< index for upper local PE boundary along y |
---|
1879 | INTEGER(iwp) :: ixl !< index for lower local PE boundary along x |
---|
1880 | INTEGER(iwp) :: ixr !< index for upper local PE boundary along x |
---|
1881 | |
---|
1882 | LOGICAL :: synchronous_exchange_save !< dummy to reset synchronous_exchange to prescribed value |
---|
1883 | |
---|
1884 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: temp !< temporary array on next coarser grid level |
---|
1885 | |
---|
1886 | #if defined ( __parallel ) |
---|
1887 | synchronous_exchange_save = synchronous_exchange |
---|
1888 | synchronous_exchange = .FALSE. |
---|
1889 | |
---|
1890 | l = grid_level |
---|
1891 | |
---|
1892 | ind_even_odd = even_odd_level(grid_level) |
---|
1893 | |
---|
1894 | ! |
---|
1895 | !-- Restricted transfer only on finer levels with enough data. |
---|
1896 | !-- Restricted transfer is not possible for levels smaller or equal to |
---|
1897 | !-- 'switch to PE0 levels', since array bounds does not fit. Moreover, |
---|
1898 | !-- it is not possible for the coarsest grid level, since the dimensions |
---|
1899 | !-- of temp are not defined. For such cases, normal exchange_horiz is called. |
---|
1900 | IF ( l > 1 .AND. l > mg_switch_to_pe0_level + 1 .AND. & |
---|
1901 | ( ngp_xz(grid_level) >= 900 .OR. ngp_yz(grid_level) >= 900 ) ) THEN |
---|
1902 | |
---|
1903 | jys = nys_mg(grid_level-1) |
---|
1904 | jyn = nyn_mg(grid_level-1) |
---|
1905 | ixl = nxl_mg(grid_level-1) |
---|
1906 | ixr = nxr_mg(grid_level-1) |
---|
1907 | ALLOCATE( temp(nzb:nzt_mg(l-1)+1,jys-1:jyn+1,ixl-1:ixr+1) ) |
---|
1908 | ! |
---|
1909 | !-- Handling the even k Values |
---|
1910 | !-- Collecting data for the north - south exchange |
---|
1911 | !-- Since only every second value has to be transfered, data are stored |
---|
1912 | !-- on the next coarser grid level, because the arrays on that level |
---|
1913 | !-- have just the required size |
---|
1914 | i1 = nxl_mg(grid_level-1) |
---|
1915 | i2 = nxl_mg(grid_level-1) |
---|
1916 | |
---|
1917 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
1918 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
1919 | |
---|
1920 | IF ( j == nys_mg(l) ) THEN |
---|
1921 | !DIR$ IVDEP |
---|
1922 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1923 | temp(k-ind_even_odd,jys,i1) = p_mg(k,j,i) |
---|
1924 | ENDDO |
---|
1925 | i1 = i1 + 1 |
---|
1926 | |
---|
1927 | ENDIF |
---|
1928 | |
---|
1929 | IF ( j == nyn_mg(l) ) THEN |
---|
1930 | !DIR$ IVDEP |
---|
1931 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1932 | temp(k-ind_even_odd,jyn,i2) = p_mg(k,j,i) |
---|
1933 | ENDDO |
---|
1934 | i2 = i2 + 1 |
---|
1935 | |
---|
1936 | ENDIF |
---|
1937 | |
---|
1938 | ENDDO |
---|
1939 | ENDDO |
---|
1940 | |
---|
1941 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
1942 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
1943 | |
---|
1944 | IF ( j == nys_mg(l) ) THEN |
---|
1945 | !DIR$ IVDEP |
---|
1946 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1947 | temp(k-ind_even_odd,jys,i1) = p_mg(k,j,i) |
---|
1948 | ENDDO |
---|
1949 | i1 = i1 + 1 |
---|
1950 | |
---|
1951 | ENDIF |
---|
1952 | |
---|
1953 | IF ( j == nyn_mg(l) ) THEN |
---|
1954 | !DIR$ IVDEP |
---|
1955 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1956 | temp(k-ind_even_odd,jyn,i2) = p_mg(k,j,i) |
---|
1957 | ENDDO |
---|
1958 | i2 = i2 + 1 |
---|
1959 | |
---|
1960 | ENDIF |
---|
1961 | |
---|
1962 | ENDDO |
---|
1963 | ENDDO |
---|
1964 | |
---|
1965 | grid_level = grid_level-1 |
---|
1966 | |
---|
1967 | nxl = nxl_mg(grid_level) |
---|
1968 | nys = nys_mg(grid_level) |
---|
1969 | nxr = nxr_mg(grid_level) |
---|
1970 | nyn = nyn_mg(grid_level) |
---|
1971 | nzt = nzt_mg(grid_level) |
---|
1972 | |
---|
1973 | send_receive = 'ns' |
---|
1974 | CALL exchange_horiz( temp, 1 ) |
---|
1975 | |
---|
1976 | grid_level = grid_level+1 |
---|
1977 | |
---|
1978 | i1 = nxl_mg(grid_level-1) |
---|
1979 | i2 = nxl_mg(grid_level-1) |
---|
1980 | |
---|
1981 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
1982 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
1983 | |
---|
1984 | IF ( j == nys_mg(l) ) THEN |
---|
1985 | !DIR$ IVDEP |
---|
1986 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1987 | p_mg(k,nyn_mg(l)+1,i) = temp(k-ind_even_odd,jyn+1,i1) |
---|
1988 | ENDDO |
---|
1989 | i1 = i1 + 1 |
---|
1990 | |
---|
1991 | ENDIF |
---|
1992 | |
---|
1993 | IF ( j == nyn_mg(l) ) THEN |
---|
1994 | !DIR$ IVDEP |
---|
1995 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1996 | p_mg(k,nys_mg(l)-1,i) = temp(k-ind_even_odd,jys-1,i2) |
---|
1997 | ENDDO |
---|
1998 | i2 = i2 + 1 |
---|
1999 | |
---|
2000 | ENDIF |
---|
2001 | |
---|
2002 | ENDDO |
---|
2003 | ENDDO |
---|
2004 | |
---|
2005 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
2006 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
2007 | |
---|
2008 | IF ( j == nys_mg(l) ) THEN |
---|
2009 | !DIR$ IVDEP |
---|
2010 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2011 | p_mg(k,nyn_mg(l)+1,i) = temp(k-ind_even_odd,jyn+1,i1) |
---|
2012 | ENDDO |
---|
2013 | i1 = i1 + 1 |
---|
2014 | |
---|
2015 | ENDIF |
---|
2016 | |
---|
2017 | IF ( j == nyn_mg(l) ) THEN |
---|
2018 | !DIR$ IVDEP |
---|
2019 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2020 | p_mg(k,nys_mg(l)-1,i) = temp(k-ind_even_odd,jys-1,i2) |
---|
2021 | ENDDO |
---|
2022 | i2 = i2 + 1 |
---|
2023 | |
---|
2024 | ENDIF |
---|
2025 | |
---|
2026 | ENDDO |
---|
2027 | ENDDO |
---|
2028 | |
---|
2029 | ! |
---|
2030 | !-- Collecting data for the left - right exchange |
---|
2031 | !-- Since only every second value has to be transfered, data are stored |
---|
2032 | !-- on the next coarser grid level, because the arrays on that level |
---|
2033 | !-- have just the required size |
---|
2034 | j1 = nys_mg(grid_level-1) |
---|
2035 | j2 = nys_mg(grid_level-1) |
---|
2036 | |
---|
2037 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
2038 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
2039 | |
---|
2040 | IF ( i == nxl_mg(l) ) THEN |
---|
2041 | !DIR$ IVDEP |
---|
2042 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2043 | temp(k-ind_even_odd,j1,ixl) = p_mg(k,j,i) |
---|
2044 | ENDDO |
---|
2045 | j1 = j1 + 1 |
---|
2046 | |
---|
2047 | ENDIF |
---|
2048 | |
---|
2049 | IF ( i == nxr_mg(l) ) THEN |
---|
2050 | !DIR$ IVDEP |
---|
2051 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2052 | temp(k-ind_even_odd,j2,ixr) = p_mg(k,j,i) |
---|
2053 | ENDDO |
---|
2054 | j2 = j2 + 1 |
---|
2055 | |
---|
2056 | ENDIF |
---|
2057 | |
---|
2058 | ENDDO |
---|
2059 | ENDDO |
---|
2060 | |
---|
2061 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
2062 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
2063 | |
---|
2064 | IF ( i == nxl_mg(l) ) THEN |
---|
2065 | !DIR$ IVDEP |
---|
2066 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2067 | temp(k-ind_even_odd,j1,ixl) = p_mg(k,j,i) |
---|
2068 | ENDDO |
---|
2069 | j1 = j1 + 1 |
---|
2070 | |
---|
2071 | ENDIF |
---|
2072 | |
---|
2073 | IF ( i == nxr_mg(l) ) THEN |
---|
2074 | !DIR$ IVDEP |
---|
2075 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2076 | temp(k-ind_even_odd,j2,ixr) = p_mg(k,j,i) |
---|
2077 | ENDDO |
---|
2078 | j2 = j2 + 1 |
---|
2079 | |
---|
2080 | ENDIF |
---|
2081 | |
---|
2082 | ENDDO |
---|
2083 | ENDDO |
---|
2084 | |
---|
2085 | grid_level = grid_level-1 |
---|
2086 | send_receive = 'lr' |
---|
2087 | |
---|
2088 | CALL exchange_horiz( temp, 1 ) |
---|
2089 | |
---|
2090 | grid_level = grid_level+1 |
---|
2091 | |
---|
2092 | j1 = nys_mg(grid_level-1) |
---|
2093 | j2 = nys_mg(grid_level-1) |
---|
2094 | |
---|
2095 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
2096 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
2097 | |
---|
2098 | IF ( i == nxl_mg(l) ) THEN |
---|
2099 | !DIR$ IVDEP |
---|
2100 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2101 | p_mg(k,j,nxr_mg(l)+1) = temp(k-ind_even_odd,j1,ixr+1) |
---|
2102 | ENDDO |
---|
2103 | j1 = j1 + 1 |
---|
2104 | |
---|
2105 | ENDIF |
---|
2106 | |
---|
2107 | IF ( i == nxr_mg(l) ) THEN |
---|
2108 | !DIR$ IVDEP |
---|
2109 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2110 | p_mg(k,j,nxl_mg(l)-1) = temp(k-ind_even_odd,j2,ixl-1) |
---|
2111 | ENDDO |
---|
2112 | j2 = j2 + 1 |
---|
2113 | |
---|
2114 | ENDIF |
---|
2115 | |
---|
2116 | ENDDO |
---|
2117 | ENDDO |
---|
2118 | |
---|
2119 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
2120 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
2121 | |
---|
2122 | IF ( i == nxl_mg(l) ) THEN |
---|
2123 | !DIR$ IVDEP |
---|
2124 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2125 | p_mg(k,j,nxr_mg(l)+1) = temp(k-ind_even_odd,j1,ixr+1) |
---|
2126 | ENDDO |
---|
2127 | j1 = j1 + 1 |
---|
2128 | |
---|
2129 | ENDIF |
---|
2130 | |
---|
2131 | IF ( i == nxr_mg(l) ) THEN |
---|
2132 | !DIR$ IVDEP |
---|
2133 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2134 | p_mg(k,j,nxl_mg(l)-1) = temp(k-ind_even_odd,j2,ixl-1) |
---|
2135 | ENDDO |
---|
2136 | j2 = j2 + 1 |
---|
2137 | |
---|
2138 | ENDIF |
---|
2139 | |
---|
2140 | ENDDO |
---|
2141 | ENDDO |
---|
2142 | |
---|
2143 | ! |
---|
2144 | !-- Now handling the even k values |
---|
2145 | !-- Collecting data for the north - south exchange |
---|
2146 | !-- Since only every second value has to be transfered, data are stored |
---|
2147 | !-- on the next coarser grid level, because the arrays on that level |
---|
2148 | !-- have just the required size |
---|
2149 | i1 = nxl_mg(grid_level-1) |
---|
2150 | i2 = nxl_mg(grid_level-1) |
---|
2151 | |
---|
2152 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
2153 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
2154 | |
---|
2155 | IF ( j == nys_mg(l) ) THEN |
---|
2156 | !DIR$ IVDEP |
---|
2157 | DO k = nzb+1, ind_even_odd |
---|
2158 | temp(k,jys,i1) = p_mg(k,j,i) |
---|
2159 | ENDDO |
---|
2160 | i1 = i1 + 1 |
---|
2161 | |
---|
2162 | ENDIF |
---|
2163 | |
---|
2164 | IF ( j == nyn_mg(l) ) THEN |
---|
2165 | !DIR$ IVDEP |
---|
2166 | DO k = nzb+1, ind_even_odd |
---|
2167 | temp(k,jyn,i2) = p_mg(k,j,i) |
---|
2168 | ENDDO |
---|
2169 | i2 = i2 + 1 |
---|
2170 | |
---|
2171 | ENDIF |
---|
2172 | |
---|
2173 | ENDDO |
---|
2174 | ENDDO |
---|
2175 | |
---|
2176 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
2177 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
2178 | |
---|
2179 | IF ( j == nys_mg(l) ) THEN |
---|
2180 | !DIR$ IVDEP |
---|
2181 | DO k = nzb+1, ind_even_odd |
---|
2182 | temp(k,jys,i1) = p_mg(k,j,i) |
---|
2183 | ENDDO |
---|
2184 | i1 = i1 + 1 |
---|
2185 | |
---|
2186 | ENDIF |
---|
2187 | |
---|
2188 | IF ( j == nyn_mg(l) ) THEN |
---|
2189 | !DIR$ IVDEP |
---|
2190 | DO k = nzb+1, ind_even_odd |
---|
2191 | temp(k,jyn,i2) = p_mg(k,j,i) |
---|
2192 | ENDDO |
---|
2193 | i2 = i2 + 1 |
---|
2194 | |
---|
2195 | ENDIF |
---|
2196 | |
---|
2197 | ENDDO |
---|
2198 | ENDDO |
---|
2199 | |
---|
2200 | grid_level = grid_level-1 |
---|
2201 | |
---|
2202 | send_receive = 'ns' |
---|
2203 | CALL exchange_horiz( temp, 1 ) |
---|
2204 | |
---|
2205 | grid_level = grid_level+1 |
---|
2206 | |
---|
2207 | i1 = nxl_mg(grid_level-1) |
---|
2208 | i2 = nxl_mg(grid_level-1) |
---|
2209 | |
---|
2210 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
2211 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
2212 | |
---|
2213 | IF ( j == nys_mg(l) ) THEN |
---|
2214 | !DIR$ IVDEP |
---|
2215 | DO k = nzb+1, ind_even_odd |
---|
2216 | p_mg(k,nyn_mg(l)+1,i) = temp(k,jyn+1,i1) |
---|
2217 | ENDDO |
---|
2218 | i1 = i1 + 1 |
---|
2219 | |
---|
2220 | ENDIF |
---|
2221 | |
---|
2222 | IF ( j == nyn_mg(l) ) THEN |
---|
2223 | !DIR$ IVDEP |
---|
2224 | DO k = nzb+1, ind_even_odd |
---|
2225 | p_mg(k,nys_mg(l)-1,i) = temp(k,jys-1,i2) |
---|
2226 | ENDDO |
---|
2227 | i2 = i2 + 1 |
---|
2228 | |
---|
2229 | ENDIF |
---|
2230 | |
---|
2231 | ENDDO |
---|
2232 | ENDDO |
---|
2233 | |
---|
2234 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
2235 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
2236 | |
---|
2237 | IF ( j == nys_mg(l) ) THEN |
---|
2238 | !DIR$ IVDEP |
---|
2239 | DO k = nzb+1, ind_even_odd |
---|
2240 | p_mg(k,nyn_mg(l)+1,i) = temp(k,jyn+1,i1) |
---|
2241 | ENDDO |
---|
2242 | i1 = i1 + 1 |
---|
2243 | |
---|
2244 | ENDIF |
---|
2245 | |
---|
2246 | IF ( j == nyn_mg(l) ) THEN |
---|
2247 | !DIR$ IVDEP |
---|
2248 | DO k = nzb+1, ind_even_odd |
---|
2249 | p_mg(k,nys_mg(l)-1,i) = temp(k,jys-1,i2) |
---|
2250 | ENDDO |
---|
2251 | i2 = i2 + 1 |
---|
2252 | |
---|
2253 | ENDIF |
---|
2254 | |
---|
2255 | ENDDO |
---|
2256 | ENDDO |
---|
2257 | |
---|
2258 | j1 = nys_mg(grid_level-1) |
---|
2259 | j2 = nys_mg(grid_level-1) |
---|
2260 | |
---|
2261 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
2262 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
2263 | |
---|
2264 | IF ( i == nxl_mg(l) ) THEN |
---|
2265 | !DIR$ IVDEP |
---|
2266 | DO k = nzb+1, ind_even_odd |
---|
2267 | temp(k,j1,ixl) = p_mg(k,j,i) |
---|
2268 | ENDDO |
---|
2269 | j1 = j1 + 1 |
---|
2270 | |
---|
2271 | ENDIF |
---|
2272 | |
---|
2273 | IF ( i == nxr_mg(l) ) THEN |
---|
2274 | !DIR$ IVDEP |
---|
2275 | DO k = nzb+1, ind_even_odd |
---|
2276 | temp(k,j2,ixr) = p_mg(k,j,i) |
---|
2277 | ENDDO |
---|
2278 | j2 = j2 + 1 |
---|
2279 | |
---|
2280 | ENDIF |
---|
2281 | |
---|
2282 | ENDDO |
---|
2283 | ENDDO |
---|
2284 | |
---|
2285 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
2286 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
2287 | |
---|
2288 | IF ( i == nxl_mg(l) ) THEN |
---|
2289 | !DIR$ IVDEP |
---|
2290 | DO k = nzb+1, ind_even_odd |
---|
2291 | temp(k,j1,ixl) = p_mg(k,j,i) |
---|
2292 | ENDDO |
---|
2293 | j1 = j1 + 1 |
---|
2294 | |
---|
2295 | ENDIF |
---|
2296 | |
---|
2297 | IF ( i == nxr_mg(l) ) THEN |
---|
2298 | !DIR$ IVDEP |
---|
2299 | DO k = nzb+1, ind_even_odd |
---|
2300 | temp(k,j2,ixr) = p_mg(k,j,i) |
---|
2301 | ENDDO |
---|
2302 | j2 = j2 + 1 |
---|
2303 | |
---|
2304 | ENDIF |
---|
2305 | |
---|
2306 | ENDDO |
---|
2307 | ENDDO |
---|
2308 | |
---|
2309 | grid_level = grid_level-1 |
---|
2310 | |
---|
2311 | send_receive = 'lr' |
---|
2312 | CALL exchange_horiz( temp, 1 ) |
---|
2313 | |
---|
2314 | grid_level = grid_level+1 |
---|
2315 | |
---|
2316 | nxl = nxl_mg(grid_level) |
---|
2317 | nys = nys_mg(grid_level) |
---|
2318 | nxr = nxr_mg(grid_level) |
---|
2319 | nyn = nyn_mg(grid_level) |
---|
2320 | nzt = nzt_mg(grid_level) |
---|
2321 | |
---|
2322 | j1 = nys_mg(grid_level-1) |
---|
2323 | j2 = nys_mg(grid_level-1) |
---|
2324 | |
---|
2325 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
2326 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
2327 | |
---|
2328 | IF ( i == nxl_mg(l) ) THEN |
---|
2329 | !DIR$ IVDEP |
---|
2330 | DO k = nzb+1, ind_even_odd |
---|
2331 | p_mg(k,j,nxr_mg(l)+1) = temp(k,j1,ixr+1) |
---|
2332 | ENDDO |
---|
2333 | j1 = j1 + 1 |
---|
2334 | |
---|
2335 | ENDIF |
---|
2336 | |
---|
2337 | IF ( i == nxr_mg(l) ) THEN |
---|
2338 | !DIR$ IVDEP |
---|
2339 | DO k = nzb+1, ind_even_odd |
---|
2340 | p_mg(k,j,nxl_mg(l)-1) = temp(k,j2,ixl-1) |
---|
2341 | ENDDO |
---|
2342 | j2 = j2 + 1 |
---|
2343 | |
---|
2344 | ENDIF |
---|
2345 | |
---|
2346 | ENDDO |
---|
2347 | ENDDO |
---|
2348 | |
---|
2349 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
2350 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
2351 | |
---|
2352 | IF ( i == nxl_mg(l) ) THEN |
---|
2353 | !DIR$ IVDEP |
---|
2354 | DO k = nzb+1, ind_even_odd |
---|
2355 | p_mg(k,j,nxr_mg(l)+1) = temp(k,j1,ixr+1) |
---|
2356 | ENDDO |
---|
2357 | j1 = j1 + 1 |
---|
2358 | |
---|
2359 | ENDIF |
---|
2360 | |
---|
2361 | IF ( i == nxr_mg(l) ) THEN |
---|
2362 | !DIR$ IVDEP |
---|
2363 | DO k = nzb+1, ind_even_odd |
---|
2364 | p_mg(k,j,nxl_mg(l)-1) = temp(k,j2,ixl-1) |
---|
2365 | ENDDO |
---|
2366 | j2 = j2 + 1 |
---|
2367 | |
---|
2368 | ENDIF |
---|
2369 | |
---|
2370 | ENDDO |
---|
2371 | ENDDO |
---|
2372 | |
---|
2373 | DEALLOCATE( temp ) |
---|
2374 | |
---|
2375 | ELSE |
---|
2376 | |
---|
2377 | ! |
---|
2378 | !-- Standard horizontal ghost boundary exchange for small coarse grid |
---|
2379 | !-- levels, where the transfer time is latency bound |
---|
2380 | CALL exchange_horiz( p_mg, 1 ) |
---|
2381 | |
---|
2382 | ENDIF |
---|
2383 | |
---|
2384 | ! |
---|
2385 | !-- Reset values to default PALM setup |
---|
2386 | synchronous_exchange = synchronous_exchange_save |
---|
2387 | send_receive = 'al' |
---|
2388 | #else |
---|
2389 | |
---|
2390 | ! |
---|
2391 | !-- Standard horizontal ghost boundary exchange for small coarse grid |
---|
2392 | !-- levels, where the transfer time is latency bound |
---|
2393 | CALL exchange_horiz( p_mg, 1 ) |
---|
2394 | #endif |
---|
2395 | |
---|
2396 | END SUBROUTINE special_exchange_horiz |
---|
2397 | |
---|
2398 | END MODULE poismg_mod |
---|