1 | !> @file poismg.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: poismg_mod.f90 2298 2017-06-29 09:28:18Z knoop $ |
---|
27 | ! sendrecv_in_background related parts removed |
---|
28 | ! |
---|
29 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
30 | ! |
---|
31 | ! 2073 2016-11-30 14:34:05Z raasch |
---|
32 | ! change of openmp directives in restrict |
---|
33 | ! |
---|
34 | ! 2037 2016-10-26 11:15:40Z knoop |
---|
35 | ! Anelastic approximation implemented (stll error in optimized multigrid) |
---|
36 | ! |
---|
37 | ! 2021 2016-10-07 14:08:57Z suehring |
---|
38 | ! Bugfix: restore nest_bound_(l/r/s/n) in case of mg_switch_to_pe0 |
---|
39 | ! |
---|
40 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
41 | ! Forced header and separation lines into 80 columns |
---|
42 | ! |
---|
43 | ! 1934 2016-06-13 09:46:57Z hellstea |
---|
44 | ! Rename subroutines and cpu-measure log points to indicate default version |
---|
45 | ! |
---|
46 | ! 1904 2016-05-11 13:06:12Z suehring |
---|
47 | ! Bugfix: enable special_exchange_horiz only for finer grid levels. |
---|
48 | ! Some formatting adjustments and variable descriptions. |
---|
49 | ! |
---|
50 | ! 1898 2016-05-03 11:27:17Z suehring |
---|
51 | ! Bugfix: bottom and top boundary condition in resid_fast |
---|
52 | ! Bugfix: restriction at nzb+1 |
---|
53 | ! formatting adjustments, variable descriptions added in some declaration blocks |
---|
54 | ! |
---|
55 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
56 | ! Module renamed |
---|
57 | ! |
---|
58 | ! |
---|
59 | ! 1762 2016-02-25 12:31:13Z hellstea |
---|
60 | ! Introduction of nested domain feature |
---|
61 | ! |
---|
62 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
63 | ! Code annotations made doxygen readable |
---|
64 | ! |
---|
65 | ! 1609 2015-07-03 15:37:58Z maronga |
---|
66 | ! Bugfix: allow compilation without __parallel. |
---|
67 | ! |
---|
68 | ! 1575 2015-03-27 09:56:27Z raasch |
---|
69 | ! Initial revision. |
---|
70 | ! Routine re-written and optimised based on poismg. |
---|
71 | ! |
---|
72 | ! Following optimisations have been made: |
---|
73 | ! - vectorisation (for Intel-CPUs) of the red-black algorithm by resorting |
---|
74 | ! array elements with even and odd indices |
---|
75 | ! - explicit boundary conditions for building walls removed (solver is |
---|
76 | ! running through the buildings |
---|
77 | ! - reduced data transfer in case of ghost point exchange, because only |
---|
78 | ! "red" or "black" data points need to be exchanged. This is not applied |
---|
79 | ! for coarser grid levels, since for then the transfer time is latency bound |
---|
80 | ! |
---|
81 | ! |
---|
82 | ! Description: |
---|
83 | ! ------------ |
---|
84 | !> Solves the Poisson equation for the perturbation pressure with a multigrid |
---|
85 | !> V- or W-Cycle scheme. |
---|
86 | !> |
---|
87 | !> This multigrid method was originally developed for PALM by Joerg Uhlenbrock, |
---|
88 | !> September 2000 - July 2001. It has been optimised for speed by Klaus |
---|
89 | !> Ketelsen in November 2014. |
---|
90 | !> |
---|
91 | !> @attention Loop unrolling and cache optimization in SOR-Red/Black method |
---|
92 | !> still does not give the expected speedup! |
---|
93 | !> |
---|
94 | !> @todo Further work required. |
---|
95 | !------------------------------------------------------------------------------! |
---|
96 | MODULE poismg_mod |
---|
97 | |
---|
98 | |
---|
99 | USE cpulog, & |
---|
100 | ONLY: cpu_log, log_point_s |
---|
101 | |
---|
102 | USE kinds |
---|
103 | |
---|
104 | USE pegrid |
---|
105 | |
---|
106 | PRIVATE |
---|
107 | |
---|
108 | INTEGER, SAVE :: ind_even_odd !< border index between even and odd k index |
---|
109 | INTEGER, DIMENSION(:), SAVE, ALLOCATABLE :: even_odd_level !< stores ind_even_odd for all MG levels |
---|
110 | |
---|
111 | REAL(wp), DIMENSION(:,:), SAVE, ALLOCATABLE :: f1_mg_b, f2_mg_b, f3_mg_b !< blocked version of f1_mg ... |
---|
112 | |
---|
113 | INTERFACE poismg |
---|
114 | MODULE PROCEDURE poismg |
---|
115 | END INTERFACE poismg |
---|
116 | |
---|
117 | INTERFACE sort_k_to_even_odd_blocks |
---|
118 | MODULE PROCEDURE sort_k_to_even_odd_blocks |
---|
119 | MODULE PROCEDURE sort_k_to_even_odd_blocks_int |
---|
120 | MODULE PROCEDURE sort_k_to_even_odd_blocks_1d |
---|
121 | END INTERFACE sort_k_to_even_odd_blocks |
---|
122 | |
---|
123 | PUBLIC poismg |
---|
124 | |
---|
125 | CONTAINS |
---|
126 | |
---|
127 | !------------------------------------------------------------------------------! |
---|
128 | ! Description: |
---|
129 | ! ------------ |
---|
130 | !> Solves the Poisson equation for the perturbation pressure with a multigrid |
---|
131 | !> V- or W-Cycle scheme. |
---|
132 | !------------------------------------------------------------------------------! |
---|
133 | SUBROUTINE poismg( r ) |
---|
134 | |
---|
135 | USE arrays_3d, & |
---|
136 | ONLY: d, p_loc |
---|
137 | |
---|
138 | USE control_parameters, & |
---|
139 | ONLY: gathered_size, grid_level, grid_level_count, & |
---|
140 | maximum_grid_level, message_string, mgcycles, mg_cycles, & |
---|
141 | mg_switch_to_pe0_level, residual_limit, subdomain_size |
---|
142 | |
---|
143 | USE cpulog, & |
---|
144 | ONLY: cpu_log, log_point_s |
---|
145 | |
---|
146 | USE indices, & |
---|
147 | ONLY: nxl, nxlg, nxl_mg, nxr, nxrg, nxr_mg, nys, nysg, nys_mg, nyn,& |
---|
148 | nyng, nyn_mg, nzb, nzt, nzt_mg |
---|
149 | |
---|
150 | IMPLICIT NONE |
---|
151 | |
---|
152 | REAL(wp) :: maxerror !< |
---|
153 | REAL(wp) :: maximum_mgcycles !< |
---|
154 | REAL(wp) :: residual_norm !< |
---|
155 | |
---|
156 | REAL(wp), DIMENSION(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) :: r !< |
---|
157 | |
---|
158 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: p3 !< |
---|
159 | |
---|
160 | |
---|
161 | CALL cpu_log( log_point_s(29), 'poismg', 'start' ) |
---|
162 | ! |
---|
163 | !-- Initialize arrays and variables used in this subroutine |
---|
164 | |
---|
165 | !-- If the number of grid points of the gathered grid, which is collected |
---|
166 | !-- on PE0, is larger than the number of grid points of an PE, than array |
---|
167 | !-- p3 will be enlarged. |
---|
168 | IF ( gathered_size > subdomain_size ) THEN |
---|
169 | ALLOCATE( p3(nzb:nzt_mg(mg_switch_to_pe0_level)+1,nys_mg( & |
---|
170 | mg_switch_to_pe0_level)-1:nyn_mg(mg_switch_to_pe0_level)+1,& |
---|
171 | nxl_mg(mg_switch_to_pe0_level)-1:nxr_mg( & |
---|
172 | mg_switch_to_pe0_level)+1) ) |
---|
173 | ELSE |
---|
174 | ALLOCATE ( p3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
175 | ENDIF |
---|
176 | |
---|
177 | p3 = 0.0_wp |
---|
178 | |
---|
179 | |
---|
180 | ! |
---|
181 | !-- Ghost boundaries have to be added to divergence array. |
---|
182 | !-- Exchange routine needs to know the grid level! |
---|
183 | grid_level = maximum_grid_level |
---|
184 | CALL exchange_horiz( d, 1) |
---|
185 | d(nzb,:,:) = d(nzb+1,:,:) |
---|
186 | |
---|
187 | ! |
---|
188 | !-- Initiation of the multigrid scheme. Does n cycles until the |
---|
189 | !-- residual is smaller than the given limit. The accuracy of the solution |
---|
190 | !-- of the poisson equation will increase with the number of cycles. |
---|
191 | !-- If the number of cycles is preset by the user, this number will be |
---|
192 | !-- carried out regardless of the accuracy. |
---|
193 | grid_level_count = 0 |
---|
194 | mgcycles = 0 |
---|
195 | IF ( mg_cycles == -1 ) THEN |
---|
196 | maximum_mgcycles = 0 |
---|
197 | residual_norm = 1.0_wp |
---|
198 | ELSE |
---|
199 | maximum_mgcycles = mg_cycles |
---|
200 | residual_norm = 0.0_wp |
---|
201 | ENDIF |
---|
202 | |
---|
203 | ! |
---|
204 | !-- Initial settings for sorting k-dimension from sequential order (alternate |
---|
205 | !-- even/odd) into blocks of even and odd or vice versa |
---|
206 | CALL init_even_odd_blocks |
---|
207 | |
---|
208 | ! |
---|
209 | !-- Sort input arrays in even/odd blocks along k-dimension |
---|
210 | CALL sort_k_to_even_odd_blocks( d, grid_level ) |
---|
211 | CALL sort_k_to_even_odd_blocks( p_loc, grid_level ) |
---|
212 | |
---|
213 | ! |
---|
214 | !-- The complete multigrid cycles are running in block mode, i.e. over |
---|
215 | !-- seperate data blocks of even and odd indices |
---|
216 | DO WHILE ( residual_norm > residual_limit .OR. & |
---|
217 | mgcycles < maximum_mgcycles ) |
---|
218 | |
---|
219 | CALL next_mg_level( d, p_loc, p3, r) |
---|
220 | |
---|
221 | ! |
---|
222 | !-- Calculate the residual if the user has not preset the number of |
---|
223 | !-- cycles to be performed |
---|
224 | IF ( maximum_mgcycles == 0 ) THEN |
---|
225 | CALL resid( d, p_loc, r ) |
---|
226 | maxerror = SUM( r(nzb+1:nzt,nys:nyn,nxl:nxr)**2 ) |
---|
227 | |
---|
228 | #if defined( __parallel ) |
---|
229 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
230 | CALL MPI_ALLREDUCE( maxerror, residual_norm, 1, MPI_REAL, & |
---|
231 | MPI_SUM, comm2d, ierr) |
---|
232 | #else |
---|
233 | residual_norm = maxerror |
---|
234 | #endif |
---|
235 | residual_norm = SQRT( residual_norm ) |
---|
236 | ENDIF |
---|
237 | |
---|
238 | mgcycles = mgcycles + 1 |
---|
239 | |
---|
240 | ! |
---|
241 | !-- If the user has not limited the number of cycles, stop the run in case |
---|
242 | !-- of insufficient convergence |
---|
243 | IF ( mgcycles > 1000 .AND. mg_cycles == -1 ) THEN |
---|
244 | message_string = 'no sufficient convergence within 1000 cycles' |
---|
245 | CALL message( 'poismg', 'PA0283', 1, 2, 0, 6, 0 ) |
---|
246 | ENDIF |
---|
247 | |
---|
248 | ENDDO |
---|
249 | |
---|
250 | DEALLOCATE( p3 ) |
---|
251 | ! |
---|
252 | !-- Result has to be sorted back from even/odd blocks to sequential order |
---|
253 | CALL sort_k_to_sequential( p_loc ) |
---|
254 | ! |
---|
255 | !-- Unset the grid level. Variable is used to determine the MPI datatypes for |
---|
256 | !-- ghost point exchange |
---|
257 | grid_level = 0 |
---|
258 | |
---|
259 | CALL cpu_log( log_point_s(29), 'poismg', 'stop' ) |
---|
260 | |
---|
261 | END SUBROUTINE poismg |
---|
262 | |
---|
263 | |
---|
264 | !------------------------------------------------------------------------------! |
---|
265 | ! Description: |
---|
266 | ! ------------ |
---|
267 | !> Computes the residual of the perturbation pressure. |
---|
268 | !------------------------------------------------------------------------------! |
---|
269 | SUBROUTINE resid( f_mg, p_mg, r ) |
---|
270 | |
---|
271 | |
---|
272 | USE arrays_3d, & |
---|
273 | ONLY: f1_mg, f2_mg, f3_mg, rho_air_mg |
---|
274 | |
---|
275 | USE control_parameters, & |
---|
276 | ONLY: bc_lr_cyc, bc_ns_cyc, grid_level, ibc_p_b, ibc_p_t, inflow_l,& |
---|
277 | inflow_n, inflow_r, inflow_s, nest_bound_l, nest_bound_n, & |
---|
278 | nest_bound_r, nest_bound_s, outflow_l, outflow_n, outflow_r, & |
---|
279 | outflow_s |
---|
280 | |
---|
281 | USE grid_variables, & |
---|
282 | ONLY: ddx2_mg, ddy2_mg |
---|
283 | |
---|
284 | USE indices, & |
---|
285 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
286 | |
---|
287 | IMPLICIT NONE |
---|
288 | |
---|
289 | INTEGER(iwp) :: i !< index variable along x |
---|
290 | INTEGER(iwp) :: j !< index variable along y |
---|
291 | INTEGER(iwp) :: k !< index variable along z |
---|
292 | INTEGER(iwp) :: l !< index indicating grid level |
---|
293 | INTEGER(iwp) :: km1 !< index variable along z dimension (k-1) |
---|
294 | INTEGER(iwp) :: kp1 !< index variable along z dimension (k+1) |
---|
295 | |
---|
296 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
297 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
298 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f_mg !< velocity divergence |
---|
299 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
300 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
301 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: p_mg !< perturbation pressure |
---|
302 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
303 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
304 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: r !< residuum of perturbation pressure |
---|
305 | |
---|
306 | ! |
---|
307 | !-- Calculate the residual |
---|
308 | l = grid_level |
---|
309 | |
---|
310 | CALL cpu_log( log_point_s(53), 'resid', 'start' ) |
---|
311 | !$OMP PARALLEL PRIVATE (i,j,k,km1,kp1) |
---|
312 | !$OMP DO |
---|
313 | DO i = nxl_mg(l), nxr_mg(l) |
---|
314 | DO j = nys_mg(l), nyn_mg(l) |
---|
315 | !DIR$ IVDEP |
---|
316 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
317 | km1 = k-ind_even_odd-1 |
---|
318 | kp1 = k-ind_even_odd |
---|
319 | r(k,j,i) = f_mg(k,j,i) & |
---|
320 | - rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
321 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
322 | - rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
323 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
324 | - f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
325 | - f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
326 | + f1_mg_b(k,l) * p_mg(k,j,i) |
---|
327 | ENDDO |
---|
328 | !DIR$ IVDEP |
---|
329 | DO k = nzb+1, ind_even_odd |
---|
330 | km1 = k+ind_even_odd |
---|
331 | kp1 = k+ind_even_odd+1 |
---|
332 | r(k,j,i) = f_mg(k,j,i) & |
---|
333 | - rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
334 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
335 | - rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
336 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
337 | - f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
338 | - f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
339 | + f1_mg_b(k,l) * p_mg(k,j,i) |
---|
340 | ENDDO |
---|
341 | ENDDO |
---|
342 | ENDDO |
---|
343 | !$OMP END PARALLEL |
---|
344 | ! |
---|
345 | !-- Horizontal boundary conditions |
---|
346 | CALL exchange_horiz( r, 1) |
---|
347 | |
---|
348 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
349 | IF ( inflow_l .OR. outflow_l .OR. nest_bound_l ) THEN |
---|
350 | r(:,:,nxl_mg(l)-1) = r(:,:,nxl_mg(l)) |
---|
351 | ENDIF |
---|
352 | IF ( inflow_r .OR. outflow_r .OR. nest_bound_r ) THEN |
---|
353 | r(:,:,nxr_mg(l)+1) = r(:,:,nxr_mg(l)) |
---|
354 | ENDIF |
---|
355 | ENDIF |
---|
356 | |
---|
357 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
358 | IF ( inflow_n .OR. outflow_n .OR. nest_bound_n ) THEN |
---|
359 | r(:,nyn_mg(l)+1,:) = r(:,nyn_mg(l),:) |
---|
360 | ENDIF |
---|
361 | IF ( inflow_s .OR. outflow_s .OR. nest_bound_s ) THEN |
---|
362 | r(:,nys_mg(l)-1,:) = r(:,nys_mg(l),:) |
---|
363 | ENDIF |
---|
364 | ENDIF |
---|
365 | |
---|
366 | ! |
---|
367 | !-- Boundary conditions at bottom and top of the domain. Points may be within |
---|
368 | !-- buildings, but that doesn't matter. |
---|
369 | IF ( ibc_p_b == 1 ) THEN |
---|
370 | ! |
---|
371 | !-- equivalent to r(nzb,:,: ) = r(nzb+1,:,:) |
---|
372 | r(nzb,:,: ) = r(ind_even_odd+1,:,:) |
---|
373 | ELSE |
---|
374 | r(nzb,:,: ) = 0.0_wp |
---|
375 | ENDIF |
---|
376 | |
---|
377 | IF ( ibc_p_t == 1 ) THEN |
---|
378 | ! |
---|
379 | !-- equivalent to r(nzt_mg(l)+1,:,: ) = r(nzt_mg(l),:,:) |
---|
380 | r(nzt_mg(l)+1,:,: ) = r(ind_even_odd,:,:) |
---|
381 | ELSE |
---|
382 | r(nzt_mg(l)+1,:,: ) = 0.0_wp |
---|
383 | ENDIF |
---|
384 | |
---|
385 | CALL cpu_log( log_point_s(53), 'resid', 'stop' ) |
---|
386 | |
---|
387 | END SUBROUTINE resid |
---|
388 | |
---|
389 | |
---|
390 | !------------------------------------------------------------------------------! |
---|
391 | ! Description: |
---|
392 | ! ------------ |
---|
393 | !> Interpolates the residual on the next coarser grid with "full weighting" |
---|
394 | !> scheme |
---|
395 | !------------------------------------------------------------------------------! |
---|
396 | SUBROUTINE restrict( f_mg, r ) |
---|
397 | |
---|
398 | |
---|
399 | USE control_parameters, & |
---|
400 | ONLY: bc_lr_cyc, bc_ns_cyc, grid_level, ibc_p_b, ibc_p_t, inflow_l,& |
---|
401 | inflow_n, inflow_r, inflow_s, nest_bound_l, nest_bound_n, & |
---|
402 | nest_bound_r, nest_bound_s, outflow_l, outflow_n, outflow_r, & |
---|
403 | outflow_s |
---|
404 | |
---|
405 | USE indices, & |
---|
406 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
407 | |
---|
408 | IMPLICIT NONE |
---|
409 | |
---|
410 | INTEGER(iwp) :: i !< index variable along x on finer grid |
---|
411 | INTEGER(iwp) :: ic !< index variable along x on coarser grid |
---|
412 | INTEGER(iwp) :: j !< index variable along y on finer grid |
---|
413 | INTEGER(iwp) :: jc !< index variable along y on coarser grid |
---|
414 | INTEGER(iwp) :: k !< index variable along z on finer grid |
---|
415 | INTEGER(iwp) :: kc !< index variable along z on coarser grid |
---|
416 | INTEGER(iwp) :: l !< index indicating finer grid level |
---|
417 | INTEGER(iwp) :: km1 !< index variable along z dimension (k-1 on finer level) |
---|
418 | INTEGER(iwp) :: kp1 !< index variable along z dimension (k+1 on finer level) |
---|
419 | |
---|
420 | |
---|
421 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
422 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
423 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
424 | f_mg !< Residual on coarser grid level |
---|
425 | |
---|
426 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level+1)+1, & |
---|
427 | nys_mg(grid_level+1)-1:nyn_mg(grid_level+1)+1, & |
---|
428 | nxl_mg(grid_level+1)-1:nxr_mg(grid_level+1)+1) :: & |
---|
429 | r !< Residual on finer grid level |
---|
430 | |
---|
431 | ! |
---|
432 | !-- Interpolate the residual |
---|
433 | l = grid_level |
---|
434 | |
---|
435 | CALL cpu_log( log_point_s(54), 'restrict', 'start' ) |
---|
436 | ! |
---|
437 | !-- No wall treatment |
---|
438 | !$OMP PARALLEL PRIVATE (i,j,k,ic,jc,kc,km1,kp1) |
---|
439 | !$OMP DO SCHEDULE( STATIC ) |
---|
440 | DO ic = nxl_mg(l), nxr_mg(l) |
---|
441 | i = 2*ic |
---|
442 | DO jc = nys_mg(l), nyn_mg(l) |
---|
443 | ! |
---|
444 | !-- Calculation for the first point along k |
---|
445 | j = 2*jc |
---|
446 | ! |
---|
447 | !-- Calculation for the other points along k |
---|
448 | !DIR$ IVDEP |
---|
449 | DO k = ind_even_odd+1, nzt_mg(l+1) ! Fine grid at this point |
---|
450 | km1 = k-ind_even_odd-1 |
---|
451 | kp1 = k-ind_even_odd |
---|
452 | kc = k-ind_even_odd ! Coarse grid index |
---|
453 | |
---|
454 | f_mg(kc,jc,ic) = 1.0_wp / 64.0_wp * ( & |
---|
455 | 8.0_wp * r(k,j,i) & |
---|
456 | + 4.0_wp * ( r(k,j,i-1) + r(k,j,i+1) + & |
---|
457 | r(k,j+1,i) + r(k,j-1,i) ) & |
---|
458 | + 2.0_wp * ( r(k,j-1,i-1) + r(k,j+1,i-1) + & |
---|
459 | r(k,j-1,i+1) + r(k,j+1,i+1) ) & |
---|
460 | + 4.0_wp * r(km1,j,i) & |
---|
461 | + 2.0_wp * ( r(km1,j,i-1) + r(km1,j,i+1) + & |
---|
462 | r(km1,j+1,i) + r(km1,j-1,i) ) & |
---|
463 | + ( r(km1,j-1,i-1) + r(km1,j+1,i-1) + & |
---|
464 | r(km1,j-1,i+1) + r(km1,j+1,i+1) ) & |
---|
465 | + 4.0_wp * r(kp1,j,i) & |
---|
466 | + 2.0_wp * ( r(kp1,j,i-1) + r(kp1,j,i+1) + & |
---|
467 | r(kp1,j+1,i) + r(kp1,j-1,i) ) & |
---|
468 | + ( r(kp1,j-1,i-1) + r(kp1,j+1,i-1) + & |
---|
469 | r(kp1,j-1,i+1) + r(kp1,j+1,i+1) ) & |
---|
470 | ) |
---|
471 | ENDDO |
---|
472 | ENDDO |
---|
473 | ENDDO |
---|
474 | !$OMP ENDDO |
---|
475 | !$OMP END PARALLEL |
---|
476 | |
---|
477 | ! |
---|
478 | !-- Ghost point exchange |
---|
479 | CALL exchange_horiz( f_mg, 1) |
---|
480 | ! |
---|
481 | !-- Horizontal boundary conditions |
---|
482 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
483 | IF ( inflow_l .OR. outflow_l .OR. nest_bound_l ) THEN |
---|
484 | f_mg(:,:,nxl_mg(l)-1) = f_mg(:,:,nxl_mg(l)) |
---|
485 | ENDIF |
---|
486 | IF ( inflow_r .OR. outflow_r .OR. nest_bound_r ) THEN |
---|
487 | f_mg(:,:,nxr_mg(l)+1) = f_mg(:,:,nxr_mg(l)) |
---|
488 | ENDIF |
---|
489 | ENDIF |
---|
490 | |
---|
491 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
492 | IF ( inflow_n .OR. outflow_n .OR. nest_bound_n ) THEN |
---|
493 | f_mg(:,nyn_mg(l)+1,:) = f_mg(:,nyn_mg(l),:) |
---|
494 | ENDIF |
---|
495 | IF ( inflow_s .OR. outflow_s .OR. nest_bound_s ) THEN |
---|
496 | f_mg(:,nys_mg(l)-1,:) = f_mg(:,nys_mg(l),:) |
---|
497 | ENDIF |
---|
498 | ENDIF |
---|
499 | |
---|
500 | ! |
---|
501 | !-- Boundary conditions at bottom and top of the domain. |
---|
502 | !-- These points are not handled by the above loop. Points may be within |
---|
503 | !-- buildings, but that doesn't matter. Remark: f_mg is ordered sequentielly |
---|
504 | !-- after interpolation on coarse grid (is ordered in odd-even blocks further |
---|
505 | !-- below). |
---|
506 | IF ( ibc_p_b == 1 ) THEN |
---|
507 | f_mg(nzb,:,: ) = f_mg(nzb+1,:,:) |
---|
508 | ELSE |
---|
509 | f_mg(nzb,:,: ) = 0.0_wp |
---|
510 | ENDIF |
---|
511 | |
---|
512 | IF ( ibc_p_t == 1 ) THEN |
---|
513 | f_mg(nzt_mg(l)+1,:,: ) = f_mg(nzt_mg(l),:,:) |
---|
514 | ELSE |
---|
515 | f_mg(nzt_mg(l)+1,:,: ) = 0.0_wp |
---|
516 | ENDIF |
---|
517 | |
---|
518 | CALL cpu_log( log_point_s(54), 'restrict', 'stop' ) |
---|
519 | ! |
---|
520 | !-- Since residual is in sequential order after interpolation, an additional |
---|
521 | !-- sorting in odd-even blocks along z dimension is required at this point. |
---|
522 | CALL sort_k_to_even_odd_blocks( f_mg , l) |
---|
523 | |
---|
524 | END SUBROUTINE restrict |
---|
525 | |
---|
526 | |
---|
527 | !------------------------------------------------------------------------------! |
---|
528 | ! Description: |
---|
529 | ! ------------ |
---|
530 | !> Interpolates the correction of the perturbation pressure |
---|
531 | !> to the next finer grid. |
---|
532 | !------------------------------------------------------------------------------! |
---|
533 | SUBROUTINE prolong( p, temp ) |
---|
534 | |
---|
535 | |
---|
536 | USE control_parameters, & |
---|
537 | ONLY: bc_lr_cyc, bc_ns_cyc, grid_level, ibc_p_b, ibc_p_t, inflow_l,& |
---|
538 | inflow_n, inflow_r, inflow_s, nest_bound_l, nest_bound_n, & |
---|
539 | nest_bound_r, nest_bound_s, outflow_l, outflow_n, & |
---|
540 | outflow_r, outflow_s |
---|
541 | |
---|
542 | USE indices, & |
---|
543 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
544 | |
---|
545 | IMPLICIT NONE |
---|
546 | |
---|
547 | INTEGER(iwp) :: i !< index variable along x on coarser grid level |
---|
548 | INTEGER(iwp) :: j !< index variable along y on coarser grid level |
---|
549 | INTEGER(iwp) :: k !< index variable along z on coarser grid level |
---|
550 | INTEGER(iwp) :: l !< index indicating finer grid level |
---|
551 | INTEGER(iwp) :: kp1 !< index variable along z |
---|
552 | INTEGER(iwp) :: ke !< index for prolog even |
---|
553 | INTEGER(iwp) :: ko !< index for prolog odd |
---|
554 | |
---|
555 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level-1)+1, & |
---|
556 | nys_mg(grid_level-1)-1:nyn_mg(grid_level-1)+1, & |
---|
557 | nxl_mg(grid_level-1)-1:nxr_mg(grid_level-1)+1 ) :: & |
---|
558 | p !< perturbation pressure on coarser grid level |
---|
559 | |
---|
560 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
561 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
562 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
563 | temp !< perturbation pressure on finer grid level |
---|
564 | |
---|
565 | |
---|
566 | CALL cpu_log( log_point_s(55), 'prolong', 'start' ) |
---|
567 | |
---|
568 | ! |
---|
569 | !-- First, store elements of the coarser grid on the next finer grid |
---|
570 | l = grid_level |
---|
571 | ind_even_odd = even_odd_level(grid_level-1) |
---|
572 | |
---|
573 | !$OMP PARALLEL PRIVATE (i,j,k,kp1,ke,ko) |
---|
574 | !$OMP DO |
---|
575 | DO i = nxl_mg(l-1), nxr_mg(l-1) |
---|
576 | DO j = nys_mg(l-1), nyn_mg(l-1) |
---|
577 | |
---|
578 | !DIR$ IVDEP |
---|
579 | DO k = ind_even_odd+1, nzt_mg(l-1) |
---|
580 | kp1 = k - ind_even_odd |
---|
581 | ke = 2 * ( k-ind_even_odd - 1 ) + 1 |
---|
582 | ko = 2 * k - 1 |
---|
583 | ! |
---|
584 | !-- Points of the coarse grid are directly stored on the next finer |
---|
585 | !-- grid |
---|
586 | temp(ko,2*j,2*i) = p(k,j,i) |
---|
587 | ! |
---|
588 | !-- Points between two coarse-grid points |
---|
589 | temp(ko,2*j,2*i+1) = 0.5_wp * ( p(k,j,i) + p(k,j,i+1) ) |
---|
590 | temp(ko,2*j+1,2*i) = 0.5_wp * ( p(k,j,i) + p(k,j+1,i) ) |
---|
591 | temp(ke,2*j,2*i) = 0.5_wp * ( p(k,j,i) + p(kp1,j,i) ) |
---|
592 | ! |
---|
593 | !-- Points in the center of the planes stretched by four points |
---|
594 | !-- of the coarse grid cube |
---|
595 | temp(ko,2*j+1,2*i+1) = 0.25_wp * ( p(k,j,i) + p(k,j,i+1) + & |
---|
596 | p(k,j+1,i) + p(k,j+1,i+1) ) |
---|
597 | temp(ke,2*j,2*i+1) = 0.25_wp * ( p(k,j,i) + p(k,j,i+1) + & |
---|
598 | p(kp1,j,i) + p(kp1,j,i+1) ) |
---|
599 | temp(ke,2*j+1,2*i) = 0.25_wp * ( p(k,j,i) + p(k,j+1,i) + & |
---|
600 | p(kp1,j,i) + p(kp1,j+1,i) ) |
---|
601 | ! |
---|
602 | !-- Points in the middle of coarse grid cube |
---|
603 | temp(ke,2*j+1,2*i+1) = 0.125_wp * & |
---|
604 | ( p(k,j,i) + p(k,j,i+1) + & |
---|
605 | p(k,j+1,i) + p(k,j+1,i+1) + & |
---|
606 | p(kp1,j,i) + p(kp1,j,i+1) + & |
---|
607 | p(kp1,j+1,i) + p(kp1,j+1,i+1) ) |
---|
608 | |
---|
609 | ENDDO |
---|
610 | |
---|
611 | !DIR$ IVDEP |
---|
612 | DO k = nzb+1, ind_even_odd |
---|
613 | kp1 = k + ind_even_odd + 1 |
---|
614 | ke = 2 * k |
---|
615 | ko = 2 * ( k + ind_even_odd ) |
---|
616 | ! |
---|
617 | !-- Points of the coarse grid are directly stored on the next finer |
---|
618 | !-- grid |
---|
619 | temp(ko,2*j,2*i) = p(k,j,i) |
---|
620 | ! |
---|
621 | !-- Points between two coarse-grid points |
---|
622 | temp(ko,2*j,2*i+1) = 0.5_wp * ( p(k,j,i) + p(k,j,i+1) ) |
---|
623 | temp(ko,2*j+1,2*i) = 0.5_wp * ( p(k,j,i) + p(k,j+1,i) ) |
---|
624 | temp(ke,2*j,2*i) = 0.5_wp * ( p(k,j,i) + p(kp1,j,i) ) |
---|
625 | ! |
---|
626 | !-- Points in the center of the planes stretched by four points |
---|
627 | !-- of the coarse grid cube |
---|
628 | temp(ko,2*j+1,2*i+1) = 0.25_wp * ( p(k,j,i) + p(k,j,i+1) + & |
---|
629 | p(k,j+1,i) + p(k,j+1,i+1) ) |
---|
630 | temp(ke,2*j,2*i+1) = 0.25_wp * ( p(k,j,i) + p(k,j,i+1) + & |
---|
631 | p(kp1,j,i) + p(kp1,j,i+1) ) |
---|
632 | temp(ke,2*j+1,2*i) = 0.25_wp * ( p(k,j,i) + p(k,j+1,i) + & |
---|
633 | p(kp1,j,i) + p(kp1,j+1,i) ) |
---|
634 | ! |
---|
635 | !-- Points in the middle of coarse grid cube |
---|
636 | temp(ke,2*j+1,2*i+1) = 0.125_wp * & |
---|
637 | ( p(k,j,i) + p(k,j,i+1) + & |
---|
638 | p(k,j+1,i) + p(k,j+1,i+1) + & |
---|
639 | p(kp1,j,i) + p(kp1,j,i+1) + & |
---|
640 | p(kp1,j+1,i) + p(kp1,j+1,i+1) ) |
---|
641 | |
---|
642 | ENDDO |
---|
643 | |
---|
644 | ENDDO |
---|
645 | ENDDO |
---|
646 | !$OMP END PARALLEL |
---|
647 | |
---|
648 | ind_even_odd = even_odd_level(grid_level) |
---|
649 | ! |
---|
650 | !-- Horizontal boundary conditions |
---|
651 | CALL exchange_horiz( temp, 1) |
---|
652 | |
---|
653 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
654 | IF ( inflow_l .OR. outflow_l .OR. nest_bound_l ) THEN |
---|
655 | temp(:,:,nxl_mg(l)-1) = temp(:,:,nxl_mg(l)) |
---|
656 | ENDIF |
---|
657 | IF ( inflow_r .OR. outflow_r .OR. nest_bound_r ) THEN |
---|
658 | temp(:,:,nxr_mg(l)+1) = temp(:,:,nxr_mg(l)) |
---|
659 | ENDIF |
---|
660 | ENDIF |
---|
661 | |
---|
662 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
663 | IF ( inflow_n .OR. outflow_n .OR. nest_bound_n ) THEN |
---|
664 | temp(:,nyn_mg(l)+1,:) = temp(:,nyn_mg(l),:) |
---|
665 | ENDIF |
---|
666 | IF ( inflow_s .OR. outflow_s .OR. nest_bound_s ) THEN |
---|
667 | temp(:,nys_mg(l)-1,:) = temp(:,nys_mg(l),:) |
---|
668 | ENDIF |
---|
669 | ENDIF |
---|
670 | |
---|
671 | ! |
---|
672 | !-- Bottom and top boundary conditions |
---|
673 | IF ( ibc_p_b == 1 ) THEN |
---|
674 | ! |
---|
675 | !-- equivalent to temp(nzb,:,: ) = temp(nzb+1,:,:) |
---|
676 | temp(nzb,:,: ) = temp(ind_even_odd+1,:,:) |
---|
677 | ELSE |
---|
678 | temp(nzb,:,: ) = 0.0_wp |
---|
679 | ENDIF |
---|
680 | |
---|
681 | IF ( ibc_p_t == 1 ) THEN |
---|
682 | ! |
---|
683 | !-- equivalent to temp(nzt_mg(l)+1,:,: ) = temp(nzt_mg(l),:,:) |
---|
684 | temp(nzt_mg(l)+1,:,: ) = temp(ind_even_odd,:,:) |
---|
685 | ELSE |
---|
686 | temp(nzt_mg(l)+1,:,: ) = 0.0_wp |
---|
687 | ENDIF |
---|
688 | |
---|
689 | CALL cpu_log( log_point_s(55), 'prolong', 'stop' ) |
---|
690 | |
---|
691 | END SUBROUTINE prolong |
---|
692 | |
---|
693 | |
---|
694 | !------------------------------------------------------------------------------! |
---|
695 | ! Description: |
---|
696 | ! ------------ |
---|
697 | !> Relaxation method for the multigrid scheme. A Gauss-Seidel iteration with |
---|
698 | !> 3D-Red-Black decomposition (GS-RB) is used. |
---|
699 | !------------------------------------------------------------------------------! |
---|
700 | SUBROUTINE redblack( f_mg, p_mg ) |
---|
701 | |
---|
702 | |
---|
703 | USE arrays_3d, & |
---|
704 | ONLY: f1_mg, f2_mg, f3_mg, rho_air_mg |
---|
705 | |
---|
706 | USE control_parameters, & |
---|
707 | ONLY: bc_lr_cyc, bc_ns_cyc, grid_level, ibc_p_b, ibc_p_t, inflow_l,& |
---|
708 | inflow_n, inflow_r, inflow_s, nest_bound_l, nest_bound_n, & |
---|
709 | nest_bound_r, nest_bound_s, ngsrb, outflow_l, outflow_n, & |
---|
710 | outflow_r, outflow_s |
---|
711 | |
---|
712 | USE grid_variables, & |
---|
713 | ONLY: ddx2_mg, ddy2_mg |
---|
714 | |
---|
715 | USE indices, & |
---|
716 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
717 | |
---|
718 | IMPLICIT NONE |
---|
719 | |
---|
720 | INTEGER(iwp) :: color !< grid point color, either red or black |
---|
721 | INTEGER(iwp) :: i !< index variable along x |
---|
722 | INTEGER(iwp) :: ic !< index variable along x |
---|
723 | INTEGER(iwp) :: j !< index variable along y |
---|
724 | INTEGER(iwp) :: jc !< index variable along y |
---|
725 | INTEGER(iwp) :: jj !< index variable along y |
---|
726 | INTEGER(iwp) :: k !< index variable along z |
---|
727 | INTEGER(iwp) :: l !< grid level |
---|
728 | INTEGER(iwp) :: n !< loop variable GauÃ-Seidel iterations |
---|
729 | INTEGER(iwp) :: km1 !< index variable (k-1) |
---|
730 | INTEGER(iwp) :: kp1 !< index variable (k+1) |
---|
731 | |
---|
732 | LOGICAL :: unroll !< flag indicating whether loop unrolling is possible |
---|
733 | |
---|
734 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
735 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
736 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
737 | f_mg !< residual of perturbation pressure |
---|
738 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
739 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
740 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
741 | p_mg !< perturbation pressure |
---|
742 | |
---|
743 | l = grid_level |
---|
744 | |
---|
745 | unroll = ( MOD( nyn_mg(l)-nys_mg(l)+1, 4 ) == 0 .AND. & |
---|
746 | MOD( nxr_mg(l)-nxl_mg(l)+1, 2 ) == 0 ) |
---|
747 | |
---|
748 | DO n = 1, ngsrb |
---|
749 | |
---|
750 | DO color = 1, 2 |
---|
751 | |
---|
752 | IF ( .NOT. unroll ) THEN |
---|
753 | |
---|
754 | CALL cpu_log( log_point_s(36), 'redblack_no_unroll_f', 'start' ) |
---|
755 | ! |
---|
756 | !-- Without unrolling of loops, no cache optimization |
---|
757 | !$OMP PARALLEL PRIVATE (i,j,k,km1,kp1) |
---|
758 | !$OMP DO |
---|
759 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
760 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
761 | !DIR$ IVDEP |
---|
762 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
763 | km1 = k-ind_even_odd-1 |
---|
764 | kp1 = k-ind_even_odd |
---|
765 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
766 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
767 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
768 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
769 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
770 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
771 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
772 | - f_mg(k,j,i) ) |
---|
773 | ENDDO |
---|
774 | ENDDO |
---|
775 | ENDDO |
---|
776 | |
---|
777 | !$OMP DO |
---|
778 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
779 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
780 | !DIR$ IVDEP |
---|
781 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
782 | km1 = k-ind_even_odd-1 |
---|
783 | kp1 = k-ind_even_odd |
---|
784 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
785 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
786 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
787 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
788 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
789 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
790 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
791 | - f_mg(k,j,i) ) |
---|
792 | ENDDO |
---|
793 | ENDDO |
---|
794 | ENDDO |
---|
795 | |
---|
796 | !$OMP DO |
---|
797 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
798 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
799 | !DIR$ IVDEP |
---|
800 | DO k = nzb+1, ind_even_odd |
---|
801 | km1 = k+ind_even_odd |
---|
802 | kp1 = k+ind_even_odd+1 |
---|
803 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
804 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
805 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
806 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
807 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
808 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
809 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
810 | - f_mg(k,j,i) ) |
---|
811 | ENDDO |
---|
812 | ENDDO |
---|
813 | ENDDO |
---|
814 | |
---|
815 | !$OMP DO |
---|
816 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
817 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
818 | !DIR$ IVDEP |
---|
819 | DO k = nzb+1, ind_even_odd |
---|
820 | km1 = k+ind_even_odd |
---|
821 | kp1 = k+ind_even_odd+1 |
---|
822 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
823 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
824 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
825 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
826 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
827 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
828 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
829 | - f_mg(k,j,i) ) |
---|
830 | ENDDO |
---|
831 | ENDDO |
---|
832 | ENDDO |
---|
833 | !$OMP END PARALLEL |
---|
834 | |
---|
835 | CALL cpu_log( log_point_s(36), 'redblack_no_unroll_f', 'stop' ) |
---|
836 | |
---|
837 | ELSE |
---|
838 | ! |
---|
839 | !-- Loop unrolling along y, only one i loop for better cache use |
---|
840 | CALL cpu_log( log_point_s(38), 'redblack_unroll_f', 'start' ) |
---|
841 | |
---|
842 | !$OMP PARALLEL PRIVATE (i,j,k,ic,jc,km1,kp1,jj) |
---|
843 | !$OMP DO |
---|
844 | DO ic = nxl_mg(l), nxr_mg(l), 2 |
---|
845 | DO jc = nys_mg(l), nyn_mg(l), 4 |
---|
846 | i = ic |
---|
847 | jj = jc+2-color |
---|
848 | !DIR$ IVDEP |
---|
849 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
850 | km1 = k-ind_even_odd-1 |
---|
851 | kp1 = k-ind_even_odd |
---|
852 | j = jj |
---|
853 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
854 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
855 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
856 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
857 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
858 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
859 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
860 | - f_mg(k,j,i) ) |
---|
861 | j = jj+2 |
---|
862 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
863 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
864 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
865 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
866 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
867 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
868 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
869 | - f_mg(k,j,i) ) |
---|
870 | ENDDO |
---|
871 | |
---|
872 | i = ic+1 |
---|
873 | jj = jc+color-1 |
---|
874 | !DIR$ IVDEP |
---|
875 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
876 | km1 = k-ind_even_odd-1 |
---|
877 | kp1 = k-ind_even_odd |
---|
878 | j = jj |
---|
879 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
880 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
881 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
882 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
883 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
884 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
885 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
886 | - f_mg(k,j,i) ) |
---|
887 | j = jj+2 |
---|
888 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
889 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
890 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
891 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
892 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
893 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
894 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
895 | - f_mg(k,j,i) ) |
---|
896 | ENDDO |
---|
897 | |
---|
898 | i = ic |
---|
899 | jj = jc+color-1 |
---|
900 | !DIR$ IVDEP |
---|
901 | DO k = nzb+1, ind_even_odd |
---|
902 | km1 = k+ind_even_odd |
---|
903 | kp1 = k+ind_even_odd+1 |
---|
904 | j = jj |
---|
905 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
906 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
907 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
908 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
909 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
910 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
911 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
912 | - f_mg(k,j,i) ) |
---|
913 | j = jj+2 |
---|
914 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
915 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
916 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
917 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
918 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
919 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
920 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
921 | - f_mg(k,j,i) ) |
---|
922 | ENDDO |
---|
923 | |
---|
924 | i = ic+1 |
---|
925 | jj = jc+2-color |
---|
926 | !DIR$ IVDEP |
---|
927 | DO k = nzb+1, ind_even_odd |
---|
928 | km1 = k+ind_even_odd |
---|
929 | kp1 = k+ind_even_odd+1 |
---|
930 | j = jj |
---|
931 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
932 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
933 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
934 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
935 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
936 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
937 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
938 | - f_mg(k,j,i) ) |
---|
939 | j = jj+2 |
---|
940 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
941 | rho_air_mg(k,l) * ddx2_mg(l) * & |
---|
942 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
943 | + rho_air_mg(k,l) * ddy2_mg(l) * & |
---|
944 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
945 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
946 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
947 | - f_mg(k,j,i) ) |
---|
948 | ENDDO |
---|
949 | |
---|
950 | ENDDO |
---|
951 | ENDDO |
---|
952 | !$OMP END PARALLEL |
---|
953 | |
---|
954 | CALL cpu_log( log_point_s(38), 'redblack_unroll_f', 'stop' ) |
---|
955 | |
---|
956 | ENDIF |
---|
957 | |
---|
958 | ! |
---|
959 | !-- Horizontal boundary conditions |
---|
960 | CALL special_exchange_horiz( p_mg, color ) |
---|
961 | |
---|
962 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
963 | IF ( inflow_l .OR. outflow_l .OR. nest_bound_l ) THEN |
---|
964 | p_mg(:,:,nxl_mg(l)-1) = p_mg(:,:,nxl_mg(l)) |
---|
965 | ENDIF |
---|
966 | IF ( inflow_r .OR. outflow_r .OR. nest_bound_r ) THEN |
---|
967 | p_mg(:,:,nxr_mg(l)+1) = p_mg(:,:,nxr_mg(l)) |
---|
968 | ENDIF |
---|
969 | ENDIF |
---|
970 | |
---|
971 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
972 | IF ( inflow_n .OR. outflow_n .OR. nest_bound_n ) THEN |
---|
973 | p_mg(:,nyn_mg(l)+1,:) = p_mg(:,nyn_mg(l),:) |
---|
974 | ENDIF |
---|
975 | IF ( inflow_s .OR. outflow_s .OR. nest_bound_s ) THEN |
---|
976 | p_mg(:,nys_mg(l)-1,:) = p_mg(:,nys_mg(l),:) |
---|
977 | ENDIF |
---|
978 | ENDIF |
---|
979 | |
---|
980 | ! |
---|
981 | !-- Bottom and top boundary conditions |
---|
982 | IF ( ibc_p_b == 1 ) THEN |
---|
983 | ! |
---|
984 | !-- equivalent to p_mg(nzb,:,: ) = p_mg(nzb+1,:,:) |
---|
985 | p_mg(nzb,:,: ) = p_mg(ind_even_odd+1,:,:) |
---|
986 | ELSE |
---|
987 | p_mg(nzb,:,: ) = 0.0_wp |
---|
988 | ENDIF |
---|
989 | |
---|
990 | IF ( ibc_p_t == 1 ) THEN |
---|
991 | ! |
---|
992 | !-- equivalent to p_mg(nzt_mg(l)+1,:,: ) = p_mg(nzt_mg(l),:,:) |
---|
993 | p_mg(nzt_mg(l)+1,:,: ) = p_mg(ind_even_odd,:,:) |
---|
994 | ELSE |
---|
995 | p_mg(nzt_mg(l)+1,:,: ) = 0.0_wp |
---|
996 | ENDIF |
---|
997 | |
---|
998 | ENDDO |
---|
999 | |
---|
1000 | ENDDO |
---|
1001 | |
---|
1002 | END SUBROUTINE redblack |
---|
1003 | |
---|
1004 | |
---|
1005 | !------------------------------------------------------------------------------! |
---|
1006 | ! Description: |
---|
1007 | ! ------------ |
---|
1008 | !> Sort k-Dimension from sequential into blocks of even and odd. |
---|
1009 | !> This is required to vectorize the red-black subroutine. |
---|
1010 | !> Version for 3D-REAL arrays |
---|
1011 | !------------------------------------------------------------------------------! |
---|
1012 | SUBROUTINE sort_k_to_even_odd_blocks( p_mg , glevel ) |
---|
1013 | |
---|
1014 | |
---|
1015 | USE control_parameters, & |
---|
1016 | ONLY: grid_level |
---|
1017 | |
---|
1018 | USE indices, & |
---|
1019 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
1020 | |
---|
1021 | IMPLICIT NONE |
---|
1022 | |
---|
1023 | INTEGER(iwp), INTENT(IN) :: glevel !< grid level |
---|
1024 | |
---|
1025 | REAL(wp), DIMENSION(nzb:nzt_mg(glevel)+1, & |
---|
1026 | nys_mg(glevel)-1:nyn_mg(glevel)+1, & |
---|
1027 | nxl_mg(glevel)-1:nxr_mg(glevel)+1) :: & |
---|
1028 | p_mg !< array to be sorted |
---|
1029 | ! |
---|
1030 | !-- Local variables |
---|
1031 | INTEGER(iwp) :: i !< index variable along x |
---|
1032 | INTEGER(iwp) :: j !< index variable along y |
---|
1033 | INTEGER(iwp) :: k !< index variable along z |
---|
1034 | INTEGER(iwp) :: l !< grid level |
---|
1035 | INTEGER(iwp) :: ind !< index variable along z |
---|
1036 | REAL(wp), DIMENSION(nzb:nzt_mg(glevel)+1) :: tmp !< odd-even sorted temporary array |
---|
1037 | |
---|
1038 | |
---|
1039 | CALL cpu_log( log_point_s(52), 'sort_k_to_even_odd', 'start' ) |
---|
1040 | |
---|
1041 | l = glevel |
---|
1042 | ind_even_odd = even_odd_level(l) |
---|
1043 | |
---|
1044 | !$OMP PARALLEL PRIVATE (i,j,k,ind,tmp) |
---|
1045 | !$OMP DO |
---|
1046 | DO i = nxl_mg(l)-1, nxr_mg(l)+1 |
---|
1047 | DO j = nys_mg(l)-1, nyn_mg(l)+1 |
---|
1048 | |
---|
1049 | ! |
---|
1050 | !-- Sort the data with even k index |
---|
1051 | ind = nzb-1 |
---|
1052 | DO k = nzb, nzt_mg(l), 2 |
---|
1053 | ind = ind + 1 |
---|
1054 | tmp(ind) = p_mg(k,j,i) |
---|
1055 | ENDDO |
---|
1056 | ! |
---|
1057 | !-- Sort the data with odd k index |
---|
1058 | DO k = nzb+1, nzt_mg(l)+1, 2 |
---|
1059 | ind = ind + 1 |
---|
1060 | tmp(ind) = p_mg(k,j,i) |
---|
1061 | ENDDO |
---|
1062 | |
---|
1063 | p_mg(:,j,i) = tmp |
---|
1064 | |
---|
1065 | ENDDO |
---|
1066 | ENDDO |
---|
1067 | !$OMP END PARALLEL |
---|
1068 | |
---|
1069 | CALL cpu_log( log_point_s(52), 'sort_k_to_even_odd', 'stop' ) |
---|
1070 | |
---|
1071 | END SUBROUTINE sort_k_to_even_odd_blocks |
---|
1072 | |
---|
1073 | |
---|
1074 | !------------------------------------------------------------------------------! |
---|
1075 | ! Description: |
---|
1076 | ! ------------ |
---|
1077 | !> Sort k-Dimension from sequential into blocks of even and odd. |
---|
1078 | !> This is required to vectorize the red-black subroutine. |
---|
1079 | !> Version for 1D-REAL arrays |
---|
1080 | !------------------------------------------------------------------------------! |
---|
1081 | SUBROUTINE sort_k_to_even_odd_blocks_1d( f_mg, f_mg_b, glevel ) |
---|
1082 | |
---|
1083 | |
---|
1084 | USE indices, & |
---|
1085 | ONLY: nzb, nzt_mg |
---|
1086 | |
---|
1087 | IMPLICIT NONE |
---|
1088 | |
---|
1089 | INTEGER(iwp), INTENT(IN) :: glevel !< grid level |
---|
1090 | |
---|
1091 | REAL(wp), DIMENSION(nzb+1:nzt_mg(glevel)) :: f_mg !< 1D input array |
---|
1092 | REAL(wp), DIMENSION(nzb:nzt_mg(glevel)+1) :: f_mg_b !< 1D output array |
---|
1093 | |
---|
1094 | ! |
---|
1095 | !-- Local variables |
---|
1096 | INTEGER(iwp) :: ind !< index variable along z |
---|
1097 | INTEGER(iwp) :: k !< index variable along z |
---|
1098 | |
---|
1099 | |
---|
1100 | ind = nzb - 1 |
---|
1101 | ! |
---|
1102 | !-- Sort the data with even k index |
---|
1103 | DO k = nzb, nzt_mg(glevel), 2 |
---|
1104 | ind = ind + 1 |
---|
1105 | IF ( k >= nzb+1 .AND. k <= nzt_mg(glevel) ) THEN |
---|
1106 | f_mg_b(ind) = f_mg(k) |
---|
1107 | ENDIF |
---|
1108 | ENDDO |
---|
1109 | ! |
---|
1110 | !-- Sort the data with odd k index |
---|
1111 | DO k = nzb+1, nzt_mg(glevel)+1, 2 |
---|
1112 | ind = ind + 1 |
---|
1113 | IF( k >= nzb+1 .AND. k <= nzt_mg(glevel) ) THEN |
---|
1114 | f_mg_b(ind) = f_mg(k) |
---|
1115 | ENDIF |
---|
1116 | ENDDO |
---|
1117 | |
---|
1118 | END SUBROUTINE sort_k_to_even_odd_blocks_1d |
---|
1119 | |
---|
1120 | |
---|
1121 | !------------------------------------------------------------------------------! |
---|
1122 | ! Description: |
---|
1123 | ! ------------ |
---|
1124 | !> Sort k-Dimension from sequential into blocks of even and odd. |
---|
1125 | !> This is required to vectorize the red-black subroutine. |
---|
1126 | !> Version for 2D-INTEGER arrays |
---|
1127 | !------------------------------------------------------------------------------! |
---|
1128 | SUBROUTINE sort_k_to_even_odd_blocks_int( i_mg , glevel ) |
---|
1129 | |
---|
1130 | |
---|
1131 | USE control_parameters, & |
---|
1132 | ONLY: grid_level |
---|
1133 | |
---|
1134 | USE indices, & |
---|
1135 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
1136 | |
---|
1137 | IMPLICIT NONE |
---|
1138 | |
---|
1139 | INTEGER(iwp), INTENT(IN) :: glevel !< grid level |
---|
1140 | |
---|
1141 | INTEGER(iwp), DIMENSION(nzb:nzt_mg(glevel)+1, & |
---|
1142 | nys_mg(glevel)-1:nyn_mg(glevel)+1, & |
---|
1143 | nxl_mg(glevel)-1:nxr_mg(glevel)+1) :: & |
---|
1144 | i_mg !< array to be sorted |
---|
1145 | ! |
---|
1146 | !-- Local variables |
---|
1147 | INTEGER(iwp) :: i !< index variabel along x |
---|
1148 | INTEGER(iwp) :: j !< index variable along y |
---|
1149 | INTEGER(iwp) :: k !< index variable along z |
---|
1150 | INTEGER(iwp) :: l !< grid level |
---|
1151 | INTEGER(iwp) :: ind !< index variable along z |
---|
1152 | INTEGER(iwp),DIMENSION(nzb:nzt_mg(glevel)+1) :: tmp !< temporary odd-even sorted array |
---|
1153 | |
---|
1154 | |
---|
1155 | CALL cpu_log( log_point_s(52), 'sort_k_to_even_odd', 'start' ) |
---|
1156 | |
---|
1157 | l = glevel |
---|
1158 | ind_even_odd = even_odd_level(l) |
---|
1159 | |
---|
1160 | DO i = nxl_mg(l)-1, nxr_mg(l)+1 |
---|
1161 | DO j = nys_mg(l)-1, nyn_mg(l)+1 |
---|
1162 | |
---|
1163 | ! |
---|
1164 | !-- Sort the data with even k index |
---|
1165 | ind = nzb-1 |
---|
1166 | DO k = nzb, nzt_mg(l), 2 |
---|
1167 | ind = ind + 1 |
---|
1168 | tmp(ind) = i_mg(k,j,i) |
---|
1169 | ENDDO |
---|
1170 | ! |
---|
1171 | !++ ATTENTION: Check reason for this error. Remove it or replace WRITE |
---|
1172 | !++ by PALM message |
---|
1173 | #if defined ( __parallel ) |
---|
1174 | IF ( ind /= ind_even_odd ) THEN |
---|
1175 | WRITE (0,*) 'ERROR ==> illegal ind_even_odd ',ind,ind_even_odd,l |
---|
1176 | CALL MPI_ABORT(MPI_COMM_WORLD,i,j) |
---|
1177 | ENDIF |
---|
1178 | #endif |
---|
1179 | ! |
---|
1180 | !-- Sort the data with odd k index |
---|
1181 | DO k = nzb+1, nzt_mg(l)+1, 2 |
---|
1182 | ind = ind + 1 |
---|
1183 | tmp(ind) = i_mg(k,j,i) |
---|
1184 | ENDDO |
---|
1185 | |
---|
1186 | i_mg(:,j,i) = tmp |
---|
1187 | |
---|
1188 | ENDDO |
---|
1189 | ENDDO |
---|
1190 | |
---|
1191 | CALL cpu_log( log_point_s(52), 'sort_k_to_even_odd', 'stop' ) |
---|
1192 | |
---|
1193 | END SUBROUTINE sort_k_to_even_odd_blocks_int |
---|
1194 | |
---|
1195 | |
---|
1196 | !------------------------------------------------------------------------------! |
---|
1197 | ! Description: |
---|
1198 | ! ------------ |
---|
1199 | !> Sort k-dimension from blocks of even and odd into sequential |
---|
1200 | !------------------------------------------------------------------------------! |
---|
1201 | SUBROUTINE sort_k_to_sequential( p_mg ) |
---|
1202 | |
---|
1203 | |
---|
1204 | USE control_parameters, & |
---|
1205 | ONLY: grid_level |
---|
1206 | |
---|
1207 | USE indices, & |
---|
1208 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
1209 | |
---|
1210 | IMPLICIT NONE |
---|
1211 | |
---|
1212 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1213 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1214 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
1215 | p_mg !< array to be sorted |
---|
1216 | ! |
---|
1217 | !-- Local variables |
---|
1218 | INTEGER(iwp) :: i !< index variable along x |
---|
1219 | INTEGER(iwp) :: j !< index variable along y |
---|
1220 | INTEGER(iwp) :: k !< index variable along z |
---|
1221 | INTEGER(iwp) :: l !< grid level |
---|
1222 | INTEGER(iwp) :: ind !< index variable along z |
---|
1223 | |
---|
1224 | REAL(wp),DIMENSION(nzb:nzt_mg(grid_level)+1) :: tmp |
---|
1225 | |
---|
1226 | |
---|
1227 | l = grid_level |
---|
1228 | |
---|
1229 | !$OMP PARALLEL PRIVATE (i,j,k,ind,tmp) |
---|
1230 | !$OMP DO |
---|
1231 | DO i = nxl_mg(l)-1, nxr_mg(l)+1 |
---|
1232 | DO j = nys_mg(l)-1, nyn_mg(l)+1 |
---|
1233 | |
---|
1234 | ind = nzb - 1 |
---|
1235 | tmp = p_mg(:,j,i) |
---|
1236 | DO k = nzb, nzt_mg(l), 2 |
---|
1237 | ind = ind + 1 |
---|
1238 | p_mg(k,j,i) = tmp(ind) |
---|
1239 | ENDDO |
---|
1240 | |
---|
1241 | DO k = nzb+1, nzt_mg(l)+1, 2 |
---|
1242 | ind = ind + 1 |
---|
1243 | p_mg(k,j,i) = tmp(ind) |
---|
1244 | ENDDO |
---|
1245 | ENDDO |
---|
1246 | ENDDO |
---|
1247 | !$OMP END PARALLEL |
---|
1248 | |
---|
1249 | END SUBROUTINE sort_k_to_sequential |
---|
1250 | |
---|
1251 | |
---|
1252 | !------------------------------------------------------------------------------! |
---|
1253 | ! Description: |
---|
1254 | ! ------------ |
---|
1255 | !> Gather subdomain data from all PEs. |
---|
1256 | !------------------------------------------------------------------------------! |
---|
1257 | SUBROUTINE mg_gather( f2, f2_sub ) |
---|
1258 | |
---|
1259 | USE control_parameters, & |
---|
1260 | ONLY: grid_level |
---|
1261 | |
---|
1262 | USE cpulog, & |
---|
1263 | ONLY: cpu_log, log_point_s |
---|
1264 | |
---|
1265 | USE indices, & |
---|
1266 | ONLY: mg_loc_ind, nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
1267 | |
---|
1268 | IMPLICIT NONE |
---|
1269 | |
---|
1270 | INTEGER(iwp) :: i !< |
---|
1271 | INTEGER(iwp) :: il !< |
---|
1272 | INTEGER(iwp) :: ir !< |
---|
1273 | INTEGER(iwp) :: j !< |
---|
1274 | INTEGER(iwp) :: jn !< |
---|
1275 | INTEGER(iwp) :: js !< |
---|
1276 | INTEGER(iwp) :: k !< |
---|
1277 | INTEGER(iwp) :: nwords !< |
---|
1278 | |
---|
1279 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1280 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1281 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f2 !< |
---|
1282 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1283 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1284 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f2_l !< |
---|
1285 | |
---|
1286 | REAL(wp), DIMENSION(nzb:mg_loc_ind(5,myid)+1, & |
---|
1287 | mg_loc_ind(3,myid)-1:mg_loc_ind(4,myid)+1, & |
---|
1288 | mg_loc_ind(1,myid)-1:mg_loc_ind(2,myid)+1) :: f2_sub !< |
---|
1289 | |
---|
1290 | |
---|
1291 | #if defined( __parallel ) |
---|
1292 | CALL cpu_log( log_point_s(34), 'mg_gather', 'start' ) |
---|
1293 | |
---|
1294 | f2_l = 0.0_wp |
---|
1295 | |
---|
1296 | ! |
---|
1297 | !-- Store the local subdomain array on the total array |
---|
1298 | js = mg_loc_ind(3,myid) |
---|
1299 | IF ( south_border_pe ) js = js - 1 |
---|
1300 | jn = mg_loc_ind(4,myid) |
---|
1301 | IF ( north_border_pe ) jn = jn + 1 |
---|
1302 | il = mg_loc_ind(1,myid) |
---|
1303 | IF ( left_border_pe ) il = il - 1 |
---|
1304 | ir = mg_loc_ind(2,myid) |
---|
1305 | IF ( right_border_pe ) ir = ir + 1 |
---|
1306 | DO i = il, ir |
---|
1307 | DO j = js, jn |
---|
1308 | DO k = nzb, nzt_mg(grid_level)+1 |
---|
1309 | f2_l(k,j,i) = f2_sub(k,j,i) |
---|
1310 | ENDDO |
---|
1311 | ENDDO |
---|
1312 | ENDDO |
---|
1313 | |
---|
1314 | ! |
---|
1315 | !-- Find out the number of array elements of the total array |
---|
1316 | nwords = SIZE( f2 ) |
---|
1317 | |
---|
1318 | ! |
---|
1319 | !-- Gather subdomain data from all PEs |
---|
1320 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1321 | CALL MPI_ALLREDUCE( f2_l(nzb,nys_mg(grid_level)-1,nxl_mg(grid_level)-1), & |
---|
1322 | f2(nzb,nys_mg(grid_level)-1,nxl_mg(grid_level)-1), & |
---|
1323 | nwords, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1324 | |
---|
1325 | CALL cpu_log( log_point_s(34), 'mg_gather', 'stop' ) |
---|
1326 | #endif |
---|
1327 | |
---|
1328 | END SUBROUTINE mg_gather |
---|
1329 | |
---|
1330 | |
---|
1331 | |
---|
1332 | !------------------------------------------------------------------------------! |
---|
1333 | ! Description: |
---|
1334 | ! ------------ |
---|
1335 | !> @todo It might be possible to improve the speed of this routine by using |
---|
1336 | !> non-blocking communication |
---|
1337 | !------------------------------------------------------------------------------! |
---|
1338 | SUBROUTINE mg_scatter( p2, p2_sub ) |
---|
1339 | |
---|
1340 | USE control_parameters, & |
---|
1341 | ONLY: grid_level |
---|
1342 | |
---|
1343 | USE cpulog, & |
---|
1344 | ONLY: cpu_log, log_point_s |
---|
1345 | |
---|
1346 | USE indices, & |
---|
1347 | ONLY: mg_loc_ind, nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
1348 | |
---|
1349 | IMPLICIT NONE |
---|
1350 | |
---|
1351 | INTEGER(iwp) :: nwords !< |
---|
1352 | |
---|
1353 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level-1)+1, & |
---|
1354 | nys_mg(grid_level-1)-1:nyn_mg(grid_level-1)+1, & |
---|
1355 | nxl_mg(grid_level-1)-1:nxr_mg(grid_level-1)+1) :: p2 !< |
---|
1356 | |
---|
1357 | REAL(wp), DIMENSION(nzb:mg_loc_ind(5,myid)+1, & |
---|
1358 | mg_loc_ind(3,myid)-1:mg_loc_ind(4,myid)+1, & |
---|
1359 | mg_loc_ind(1,myid)-1:mg_loc_ind(2,myid)+1) :: p2_sub !< |
---|
1360 | |
---|
1361 | ! |
---|
1362 | !-- Find out the number of array elements of the subdomain array |
---|
1363 | nwords = SIZE( p2_sub ) |
---|
1364 | |
---|
1365 | #if defined( __parallel ) |
---|
1366 | CALL cpu_log( log_point_s(35), 'mg_scatter', 'start' ) |
---|
1367 | |
---|
1368 | p2_sub = p2(:,mg_loc_ind(3,myid)-1:mg_loc_ind(4,myid)+1, & |
---|
1369 | mg_loc_ind(1,myid)-1:mg_loc_ind(2,myid)+1) |
---|
1370 | |
---|
1371 | CALL cpu_log( log_point_s(35), 'mg_scatter', 'stop' ) |
---|
1372 | #endif |
---|
1373 | |
---|
1374 | END SUBROUTINE mg_scatter |
---|
1375 | |
---|
1376 | |
---|
1377 | !------------------------------------------------------------------------------! |
---|
1378 | ! Description: |
---|
1379 | ! ------------ |
---|
1380 | !> This is where the multigrid technique takes place. V- and W- Cycle are |
---|
1381 | !> implemented and steered by the parameter "gamma". Parameter "nue" determines |
---|
1382 | !> the convergence of the multigrid iterative solution. There are nue times |
---|
1383 | !> RB-GS iterations. It should be set to "1" or "2", considering the time effort |
---|
1384 | !> one would like to invest. Last choice shows a very good converging factor, |
---|
1385 | !> but leads to an increase in computing time. |
---|
1386 | !------------------------------------------------------------------------------! |
---|
1387 | RECURSIVE SUBROUTINE next_mg_level( f_mg, p_mg, p3, r ) |
---|
1388 | |
---|
1389 | USE control_parameters, & |
---|
1390 | ONLY: bc_lr_dirrad, bc_lr_raddir, bc_ns_dirrad, bc_ns_raddir, & |
---|
1391 | gamma_mg, grid_level, grid_level_count, ibc_p_b, ibc_p_t, & |
---|
1392 | inflow_l, inflow_n, inflow_r, inflow_s, maximum_grid_level, & |
---|
1393 | mg_switch_to_pe0_level, mg_switch_to_pe0, nest_domain, & |
---|
1394 | nest_bound_l, nest_bound_n, nest_bound_r, nest_bound_s, & |
---|
1395 | ngsrb, outflow_l, outflow_n, outflow_r, outflow_s |
---|
1396 | |
---|
1397 | USE indices, & |
---|
1398 | ONLY: mg_loc_ind, nxl, nxl_mg, nxr, nxr_mg, nys, nys_mg, nyn, & |
---|
1399 | nyn_mg, nzb, nzt, nzt_mg |
---|
1400 | |
---|
1401 | IMPLICIT NONE |
---|
1402 | |
---|
1403 | INTEGER(iwp) :: i !< index variable along x |
---|
1404 | INTEGER(iwp) :: j !< index variable along y |
---|
1405 | INTEGER(iwp) :: k !< index variable along z |
---|
1406 | INTEGER(iwp) :: nxl_mg_save !< |
---|
1407 | INTEGER(iwp) :: nxr_mg_save !< |
---|
1408 | INTEGER(iwp) :: nyn_mg_save !< |
---|
1409 | INTEGER(iwp) :: nys_mg_save !< |
---|
1410 | INTEGER(iwp) :: nzt_mg_save !< |
---|
1411 | |
---|
1412 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1413 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1414 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f_mg !< |
---|
1415 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1416 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1417 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: p_mg !< |
---|
1418 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1419 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1420 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: p3 !< |
---|
1421 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1422 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1423 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: r !< |
---|
1424 | |
---|
1425 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level-1)+1, & |
---|
1426 | nys_mg(grid_level-1)-1:nyn_mg(grid_level-1)+1, & |
---|
1427 | nxl_mg(grid_level-1)-1:nxr_mg(grid_level-1)+1) :: f2 !< |
---|
1428 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level-1)+1, & |
---|
1429 | nys_mg(grid_level-1)-1:nyn_mg(grid_level-1)+1, & |
---|
1430 | nxl_mg(grid_level-1)-1:nxr_mg(grid_level-1)+1) :: p2 !< |
---|
1431 | |
---|
1432 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f2_sub !< |
---|
1433 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: p2_sub !< |
---|
1434 | |
---|
1435 | ! |
---|
1436 | !-- Restriction to the coarsest grid |
---|
1437 | 10 IF ( grid_level == 1 ) THEN |
---|
1438 | |
---|
1439 | ! |
---|
1440 | !-- Solution on the coarsest grid. Double the number of Gauss-Seidel |
---|
1441 | !-- iterations in order to get a more accurate solution. |
---|
1442 | ngsrb = 2 * ngsrb |
---|
1443 | |
---|
1444 | ind_even_odd = even_odd_level(grid_level) |
---|
1445 | |
---|
1446 | CALL redblack( f_mg, p_mg ) |
---|
1447 | |
---|
1448 | ngsrb = ngsrb / 2 |
---|
1449 | |
---|
1450 | |
---|
1451 | ELSEIF ( grid_level /= 1 ) THEN |
---|
1452 | |
---|
1453 | grid_level_count(grid_level) = grid_level_count(grid_level) + 1 |
---|
1454 | |
---|
1455 | ! |
---|
1456 | !-- Solution on the actual grid level |
---|
1457 | ind_even_odd = even_odd_level(grid_level) |
---|
1458 | |
---|
1459 | CALL redblack( f_mg, p_mg ) |
---|
1460 | |
---|
1461 | ! |
---|
1462 | !-- Determination of the actual residual |
---|
1463 | CALL resid( f_mg, p_mg, r ) |
---|
1464 | |
---|
1465 | !-- Restriction of the residual (finer grid values!) to the next coarser |
---|
1466 | !-- grid. Therefore, the grid level has to be decremented now. nxl..nzt have |
---|
1467 | !-- to be set to the coarse grid values, because these variables are needed |
---|
1468 | !-- for the exchange of ghost points in routine exchange_horiz |
---|
1469 | grid_level = grid_level - 1 |
---|
1470 | |
---|
1471 | nxl = nxl_mg(grid_level) |
---|
1472 | nys = nys_mg(grid_level) |
---|
1473 | nxr = nxr_mg(grid_level) |
---|
1474 | nyn = nyn_mg(grid_level) |
---|
1475 | nzt = nzt_mg(grid_level) |
---|
1476 | |
---|
1477 | IF ( grid_level == mg_switch_to_pe0_level ) THEN |
---|
1478 | |
---|
1479 | ! |
---|
1480 | !-- From this level on, calculations are done on PE0 only. |
---|
1481 | !-- First, carry out restriction on the subdomain. |
---|
1482 | !-- Therefore, indices of the level have to be changed to subdomain |
---|
1483 | !-- values in between (otherwise, the restrict routine would expect |
---|
1484 | !-- the gathered array) |
---|
1485 | |
---|
1486 | nxl_mg_save = nxl_mg(grid_level) |
---|
1487 | nxr_mg_save = nxr_mg(grid_level) |
---|
1488 | nys_mg_save = nys_mg(grid_level) |
---|
1489 | nyn_mg_save = nyn_mg(grid_level) |
---|
1490 | nzt_mg_save = nzt_mg(grid_level) |
---|
1491 | nxl_mg(grid_level) = mg_loc_ind(1,myid) |
---|
1492 | nxr_mg(grid_level) = mg_loc_ind(2,myid) |
---|
1493 | nys_mg(grid_level) = mg_loc_ind(3,myid) |
---|
1494 | nyn_mg(grid_level) = mg_loc_ind(4,myid) |
---|
1495 | nzt_mg(grid_level) = mg_loc_ind(5,myid) |
---|
1496 | nxl = mg_loc_ind(1,myid) |
---|
1497 | nxr = mg_loc_ind(2,myid) |
---|
1498 | nys = mg_loc_ind(3,myid) |
---|
1499 | nyn = mg_loc_ind(4,myid) |
---|
1500 | nzt = mg_loc_ind(5,myid) |
---|
1501 | |
---|
1502 | ALLOCATE( f2_sub(nzb:nzt_mg(grid_level)+1, & |
---|
1503 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1504 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) ) |
---|
1505 | |
---|
1506 | CALL restrict( f2_sub, r ) |
---|
1507 | |
---|
1508 | ! |
---|
1509 | !-- Restore the correct indices of this level |
---|
1510 | nxl_mg(grid_level) = nxl_mg_save |
---|
1511 | nxr_mg(grid_level) = nxr_mg_save |
---|
1512 | nys_mg(grid_level) = nys_mg_save |
---|
1513 | nyn_mg(grid_level) = nyn_mg_save |
---|
1514 | nzt_mg(grid_level) = nzt_mg_save |
---|
1515 | nxl = nxl_mg(grid_level) |
---|
1516 | nxr = nxr_mg(grid_level) |
---|
1517 | nys = nys_mg(grid_level) |
---|
1518 | nyn = nyn_mg(grid_level) |
---|
1519 | nzt = nzt_mg(grid_level) |
---|
1520 | ! |
---|
1521 | !-- Gather all arrays from the subdomains on PE0 |
---|
1522 | CALL mg_gather( f2, f2_sub ) |
---|
1523 | |
---|
1524 | ! |
---|
1525 | !-- Set switch for routine exchange_horiz, that no ghostpoint exchange |
---|
1526 | !-- has to be carried out from now on |
---|
1527 | mg_switch_to_pe0 = .TRUE. |
---|
1528 | |
---|
1529 | ! |
---|
1530 | !-- In case of non-cyclic lateral boundary conditions, both in- and |
---|
1531 | !-- outflow conditions have to be used on all PEs after the switch, |
---|
1532 | !-- because then they have the total domain. |
---|
1533 | IF ( bc_lr_dirrad ) THEN |
---|
1534 | inflow_l = .TRUE. |
---|
1535 | inflow_r = .FALSE. |
---|
1536 | outflow_l = .FALSE. |
---|
1537 | outflow_r = .TRUE. |
---|
1538 | ELSEIF ( bc_lr_raddir ) THEN |
---|
1539 | inflow_l = .FALSE. |
---|
1540 | inflow_r = .TRUE. |
---|
1541 | outflow_l = .TRUE. |
---|
1542 | outflow_r = .FALSE. |
---|
1543 | ELSEIF ( nest_domain ) THEN |
---|
1544 | nest_bound_l = .TRUE. |
---|
1545 | nest_bound_r = .TRUE. |
---|
1546 | ENDIF |
---|
1547 | |
---|
1548 | IF ( bc_ns_dirrad ) THEN |
---|
1549 | inflow_n = .TRUE. |
---|
1550 | inflow_s = .FALSE. |
---|
1551 | outflow_n = .FALSE. |
---|
1552 | outflow_s = .TRUE. |
---|
1553 | ELSEIF ( bc_ns_raddir ) THEN |
---|
1554 | inflow_n = .FALSE. |
---|
1555 | inflow_s = .TRUE. |
---|
1556 | outflow_n = .TRUE. |
---|
1557 | outflow_s = .FALSE. |
---|
1558 | ELSEIF ( nest_domain ) THEN |
---|
1559 | nest_bound_s = .TRUE. |
---|
1560 | nest_bound_n = .TRUE. |
---|
1561 | ENDIF |
---|
1562 | |
---|
1563 | DEALLOCATE( f2_sub ) |
---|
1564 | |
---|
1565 | ELSE |
---|
1566 | |
---|
1567 | CALL restrict( f2, r ) |
---|
1568 | |
---|
1569 | ind_even_odd = even_odd_level(grid_level) ! must be after restrict |
---|
1570 | |
---|
1571 | ENDIF |
---|
1572 | |
---|
1573 | p2 = 0.0_wp |
---|
1574 | |
---|
1575 | ! |
---|
1576 | !-- Repeat the same procedure till the coarsest grid is reached |
---|
1577 | CALL next_mg_level( f2, p2, p3, r ) |
---|
1578 | |
---|
1579 | ENDIF |
---|
1580 | |
---|
1581 | ! |
---|
1582 | !-- Now follows the prolongation |
---|
1583 | IF ( grid_level >= 2 ) THEN |
---|
1584 | |
---|
1585 | ! |
---|
1586 | !-- Prolongation of the new residual. The values are transferred |
---|
1587 | !-- from the coarse to the next finer grid. |
---|
1588 | IF ( grid_level == mg_switch_to_pe0_level+1 ) THEN |
---|
1589 | |
---|
1590 | #if defined( __parallel ) |
---|
1591 | ! |
---|
1592 | !-- At this level, the new residual first has to be scattered from |
---|
1593 | !-- PE0 to the other PEs |
---|
1594 | ALLOCATE( p2_sub(nzb:mg_loc_ind(5,myid)+1, & |
---|
1595 | mg_loc_ind(3,myid)-1:mg_loc_ind(4,myid)+1, & |
---|
1596 | mg_loc_ind(1,myid)-1:mg_loc_ind(2,myid)+1) ) |
---|
1597 | |
---|
1598 | CALL mg_scatter( p2, p2_sub ) |
---|
1599 | |
---|
1600 | ! |
---|
1601 | !-- Therefore, indices of the previous level have to be changed to |
---|
1602 | !-- subdomain values in between (otherwise, the prolong routine would |
---|
1603 | !-- expect the gathered array) |
---|
1604 | nxl_mg_save = nxl_mg(grid_level-1) |
---|
1605 | nxr_mg_save = nxr_mg(grid_level-1) |
---|
1606 | nys_mg_save = nys_mg(grid_level-1) |
---|
1607 | nyn_mg_save = nyn_mg(grid_level-1) |
---|
1608 | nzt_mg_save = nzt_mg(grid_level-1) |
---|
1609 | nxl_mg(grid_level-1) = mg_loc_ind(1,myid) |
---|
1610 | nxr_mg(grid_level-1) = mg_loc_ind(2,myid) |
---|
1611 | nys_mg(grid_level-1) = mg_loc_ind(3,myid) |
---|
1612 | nyn_mg(grid_level-1) = mg_loc_ind(4,myid) |
---|
1613 | nzt_mg(grid_level-1) = mg_loc_ind(5,myid) |
---|
1614 | |
---|
1615 | ! |
---|
1616 | !-- Set switch for routine exchange_horiz, that ghostpoint exchange |
---|
1617 | !-- has to be carried again out from now on |
---|
1618 | mg_switch_to_pe0 = .FALSE. |
---|
1619 | |
---|
1620 | ! |
---|
1621 | !-- For non-cyclic lateral boundary conditions and in case of nesting, |
---|
1622 | !-- restore the in-/outflow conditions. |
---|
1623 | inflow_l = .FALSE.; inflow_r = .FALSE. |
---|
1624 | inflow_n = .FALSE.; inflow_s = .FALSE. |
---|
1625 | outflow_l = .FALSE.; outflow_r = .FALSE. |
---|
1626 | outflow_n = .FALSE.; outflow_s = .FALSE. |
---|
1627 | ! |
---|
1628 | !-- In case of nesting, restore lateral boundary conditions |
---|
1629 | IF ( nest_domain ) THEN |
---|
1630 | nest_bound_l = .FALSE. |
---|
1631 | nest_bound_r = .FALSE. |
---|
1632 | nest_bound_s = .FALSE. |
---|
1633 | nest_bound_n = .FALSE. |
---|
1634 | ENDIF |
---|
1635 | |
---|
1636 | IF ( pleft == MPI_PROC_NULL ) THEN |
---|
1637 | IF ( bc_lr_dirrad ) THEN |
---|
1638 | inflow_l = .TRUE. |
---|
1639 | ELSEIF ( bc_lr_raddir ) THEN |
---|
1640 | outflow_l = .TRUE. |
---|
1641 | ELSEIF ( nest_domain ) THEN |
---|
1642 | nest_bound_l = .TRUE. |
---|
1643 | ENDIF |
---|
1644 | ENDIF |
---|
1645 | |
---|
1646 | IF ( pright == MPI_PROC_NULL ) THEN |
---|
1647 | IF ( bc_lr_dirrad ) THEN |
---|
1648 | outflow_r = .TRUE. |
---|
1649 | ELSEIF ( bc_lr_raddir ) THEN |
---|
1650 | inflow_r = .TRUE. |
---|
1651 | ELSEIF ( nest_domain ) THEN |
---|
1652 | nest_bound_r = .TRUE. |
---|
1653 | ENDIF |
---|
1654 | ENDIF |
---|
1655 | |
---|
1656 | IF ( psouth == MPI_PROC_NULL ) THEN |
---|
1657 | IF ( bc_ns_dirrad ) THEN |
---|
1658 | outflow_s = .TRUE. |
---|
1659 | ELSEIF ( bc_ns_raddir ) THEN |
---|
1660 | inflow_s = .TRUE. |
---|
1661 | ELSEIF ( nest_domain ) THEN |
---|
1662 | nest_bound_s = .TRUE. |
---|
1663 | ENDIF |
---|
1664 | ENDIF |
---|
1665 | |
---|
1666 | IF ( pnorth == MPI_PROC_NULL ) THEN |
---|
1667 | IF ( bc_ns_dirrad ) THEN |
---|
1668 | inflow_n = .TRUE. |
---|
1669 | ELSEIF ( bc_ns_raddir ) THEN |
---|
1670 | outflow_n = .TRUE. |
---|
1671 | ELSEIF ( nest_domain ) THEN |
---|
1672 | nest_bound_n = .TRUE. |
---|
1673 | ENDIF |
---|
1674 | ENDIF |
---|
1675 | |
---|
1676 | CALL prolong( p2_sub, p3 ) |
---|
1677 | |
---|
1678 | ! |
---|
1679 | !-- Restore the correct indices of the previous level |
---|
1680 | nxl_mg(grid_level-1) = nxl_mg_save |
---|
1681 | nxr_mg(grid_level-1) = nxr_mg_save |
---|
1682 | nys_mg(grid_level-1) = nys_mg_save |
---|
1683 | nyn_mg(grid_level-1) = nyn_mg_save |
---|
1684 | nzt_mg(grid_level-1) = nzt_mg_save |
---|
1685 | |
---|
1686 | DEALLOCATE( p2_sub ) |
---|
1687 | #endif |
---|
1688 | |
---|
1689 | ELSE |
---|
1690 | |
---|
1691 | CALL prolong( p2, p3 ) |
---|
1692 | |
---|
1693 | ENDIF |
---|
1694 | |
---|
1695 | ! |
---|
1696 | !-- Computation of the new pressure correction. Therefore, |
---|
1697 | !-- values from prior grids are added up automatically stage by stage. |
---|
1698 | DO i = nxl_mg(grid_level)-1, nxr_mg(grid_level)+1 |
---|
1699 | DO j = nys_mg(grid_level)-1, nyn_mg(grid_level)+1 |
---|
1700 | DO k = nzb, nzt_mg(grid_level)+1 |
---|
1701 | p_mg(k,j,i) = p_mg(k,j,i) + p3(k,j,i) |
---|
1702 | ENDDO |
---|
1703 | ENDDO |
---|
1704 | ENDDO |
---|
1705 | |
---|
1706 | ! |
---|
1707 | !-- Relaxation of the new solution |
---|
1708 | CALL redblack( f_mg, p_mg ) |
---|
1709 | |
---|
1710 | ENDIF |
---|
1711 | |
---|
1712 | |
---|
1713 | ! |
---|
1714 | !-- The following few lines serve the steering of the multigrid scheme |
---|
1715 | IF ( grid_level == maximum_grid_level ) THEN |
---|
1716 | |
---|
1717 | GOTO 20 |
---|
1718 | |
---|
1719 | ELSEIF ( grid_level /= maximum_grid_level .AND. grid_level /= 1 .AND. & |
---|
1720 | grid_level_count(grid_level) /= gamma_mg ) THEN |
---|
1721 | |
---|
1722 | GOTO 10 |
---|
1723 | |
---|
1724 | ENDIF |
---|
1725 | |
---|
1726 | ! |
---|
1727 | !-- Reset counter for the next call of poismg |
---|
1728 | grid_level_count(grid_level) = 0 |
---|
1729 | |
---|
1730 | ! |
---|
1731 | !-- Continue with the next finer level. nxl..nzt have to be |
---|
1732 | !-- set to the finer grid values, because these variables are needed for the |
---|
1733 | !-- exchange of ghost points in routine exchange_horiz |
---|
1734 | grid_level = grid_level + 1 |
---|
1735 | ind_even_odd = even_odd_level(grid_level) |
---|
1736 | |
---|
1737 | nxl = nxl_mg(grid_level) |
---|
1738 | nxr = nxr_mg(grid_level) |
---|
1739 | nys = nys_mg(grid_level) |
---|
1740 | nyn = nyn_mg(grid_level) |
---|
1741 | nzt = nzt_mg(grid_level) |
---|
1742 | |
---|
1743 | 20 CONTINUE |
---|
1744 | |
---|
1745 | END SUBROUTINE next_mg_level |
---|
1746 | |
---|
1747 | |
---|
1748 | !------------------------------------------------------------------------------! |
---|
1749 | ! Description: |
---|
1750 | ! ------------ |
---|
1751 | !> Initial settings for sorting k-dimension from sequential order (alternate |
---|
1752 | !> even/odd) into blocks of even and odd or vice versa |
---|
1753 | !------------------------------------------------------------------------------! |
---|
1754 | SUBROUTINE init_even_odd_blocks |
---|
1755 | |
---|
1756 | |
---|
1757 | USE arrays_3d, & |
---|
1758 | ONLY: f1_mg, f2_mg, f3_mg |
---|
1759 | |
---|
1760 | USE control_parameters, & |
---|
1761 | ONLY: grid_level, maximum_grid_level |
---|
1762 | |
---|
1763 | USE indices, & |
---|
1764 | ONLY: nzb, nzt, nzt_mg |
---|
1765 | |
---|
1766 | USE indices, & |
---|
1767 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
1768 | |
---|
1769 | IMPLICIT NONE |
---|
1770 | ! |
---|
1771 | !-- Local variables |
---|
1772 | INTEGER(iwp) :: i !< |
---|
1773 | INTEGER(iwp) :: l !< |
---|
1774 | |
---|
1775 | LOGICAL, SAVE :: lfirst = .TRUE. |
---|
1776 | |
---|
1777 | |
---|
1778 | IF ( .NOT. lfirst ) RETURN |
---|
1779 | |
---|
1780 | ALLOCATE( even_odd_level(maximum_grid_level) ) |
---|
1781 | |
---|
1782 | ALLOCATE( f1_mg_b(nzb:nzt+1,maximum_grid_level), & |
---|
1783 | f2_mg_b(nzb:nzt+1,maximum_grid_level), & |
---|
1784 | f3_mg_b(nzb:nzt+1,maximum_grid_level) ) |
---|
1785 | |
---|
1786 | ! |
---|
1787 | !-- Set border index between the even and odd block |
---|
1788 | DO i = maximum_grid_level, 1, -1 |
---|
1789 | even_odd_level(i) = nzt_mg(i) / 2 |
---|
1790 | ENDDO |
---|
1791 | |
---|
1792 | ! |
---|
1793 | !-- Sort grid coefficients used in red/black scheme and for calculating the |
---|
1794 | !-- residual to block (even/odd) structure |
---|
1795 | DO l = maximum_grid_level, 1 , -1 |
---|
1796 | CALL sort_k_to_even_odd_blocks( f1_mg(nzb+1:nzt_mg(grid_level),l), & |
---|
1797 | f1_mg_b(nzb:nzt_mg(grid_level)+1,l), & |
---|
1798 | l ) |
---|
1799 | CALL sort_k_to_even_odd_blocks( f2_mg(nzb+1:nzt_mg(grid_level),l), & |
---|
1800 | f2_mg_b(nzb:nzt_mg(grid_level)+1,l), & |
---|
1801 | l ) |
---|
1802 | CALL sort_k_to_even_odd_blocks( f3_mg(nzb+1:nzt_mg(grid_level),l), & |
---|
1803 | f3_mg_b(nzb:nzt_mg(grid_level)+1,l), & |
---|
1804 | l ) |
---|
1805 | ENDDO |
---|
1806 | |
---|
1807 | lfirst = .FALSE. |
---|
1808 | |
---|
1809 | END SUBROUTINE init_even_odd_blocks |
---|
1810 | |
---|
1811 | |
---|
1812 | !------------------------------------------------------------------------------! |
---|
1813 | ! Description: |
---|
1814 | ! ------------ |
---|
1815 | !> Special exchange_horiz subroutine for use in redblack. Transfers only |
---|
1816 | !> "red" or "black" data points. |
---|
1817 | !------------------------------------------------------------------------------! |
---|
1818 | SUBROUTINE special_exchange_horiz ( p_mg, color ) |
---|
1819 | |
---|
1820 | |
---|
1821 | USE control_parameters, & |
---|
1822 | ONLY: bc_lr_cyc, bc_ns_cyc, grid_level, ibc_p_b, ibc_p_t, & |
---|
1823 | inflow_l, inflow_n, inflow_r, inflow_s, maximum_grid_level, & |
---|
1824 | mg_switch_to_pe0_level, outflow_l, outflow_n, outflow_r, & |
---|
1825 | outflow_s, synchronous_exchange |
---|
1826 | |
---|
1827 | USE indices, & |
---|
1828 | ONLY: mg_loc_ind, nxl, nxl_mg, nxr, nxr_mg, nys, nys_mg, nyn, & |
---|
1829 | nyn_mg, nzb, nzt, nzt_mg |
---|
1830 | |
---|
1831 | IMPLICIT NONE |
---|
1832 | |
---|
1833 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
1834 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
1835 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
1836 | p_mg !< treated array |
---|
1837 | |
---|
1838 | INTEGER(iwp), intent(IN) :: color !< flag for grid point type (red or black) |
---|
1839 | ! |
---|
1840 | !-- Local variables |
---|
1841 | INTEGER(iwp) :: i !< index variable along x |
---|
1842 | INTEGER(iwp) :: i1 !< index variable along x on coarse level |
---|
1843 | INTEGER(iwp) :: i2 !< index variable along x on coarse level |
---|
1844 | |
---|
1845 | INTEGER(iwp) :: j !< index variable along y |
---|
1846 | INTEGER(iwp) :: j1 !< index variable along y on coarse level |
---|
1847 | INTEGER(iwp) :: j2 !< index variable along y on coarse level |
---|
1848 | INTEGER(iwp) :: k !< index variable along z |
---|
1849 | INTEGER(iwp) :: l !< short for grid level |
---|
1850 | INTEGER(iwp) :: jys !< index for lower local PE boundary along y |
---|
1851 | INTEGER(iwp) :: jyn !< index for upper local PE boundary along y |
---|
1852 | INTEGER(iwp) :: ixl !< index for lower local PE boundary along x |
---|
1853 | INTEGER(iwp) :: ixr !< index for upper local PE boundary along x |
---|
1854 | |
---|
1855 | LOGICAL :: synchronous_exchange_save !< dummy to reset synchronous_exchange to prescribed value |
---|
1856 | |
---|
1857 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: temp !< temporary array on next coarser grid level |
---|
1858 | |
---|
1859 | #if defined ( __parallel ) |
---|
1860 | synchronous_exchange_save = synchronous_exchange |
---|
1861 | synchronous_exchange = .FALSE. |
---|
1862 | |
---|
1863 | l = grid_level |
---|
1864 | |
---|
1865 | ind_even_odd = even_odd_level(grid_level) |
---|
1866 | |
---|
1867 | ! |
---|
1868 | !-- Restricted transfer only on finer levels with enough data. |
---|
1869 | !-- Restricted transfer is not possible for levels smaller or equal to |
---|
1870 | !-- 'switch to PE0 levels', since array bounds does not fit. Moreover, |
---|
1871 | !-- it is not possible for the coarsest grid level, since the dimensions |
---|
1872 | !-- of temp are not defined. For such cases, normal exchange_horiz is called. |
---|
1873 | IF ( l > 1 .AND. l > mg_switch_to_pe0_level + 1 .AND. & |
---|
1874 | ( ngp_xz(grid_level) >= 900 .OR. ngp_yz(grid_level) >= 900 ) ) THEN |
---|
1875 | |
---|
1876 | jys = nys_mg(grid_level-1) |
---|
1877 | jyn = nyn_mg(grid_level-1) |
---|
1878 | ixl = nxl_mg(grid_level-1) |
---|
1879 | ixr = nxr_mg(grid_level-1) |
---|
1880 | ALLOCATE( temp(nzb:nzt_mg(l-1)+1,jys-1:jyn+1,ixl-1:ixr+1) ) |
---|
1881 | ! |
---|
1882 | !-- Handling the even k Values |
---|
1883 | !-- Collecting data for the north - south exchange |
---|
1884 | !-- Since only every second value has to be transfered, data are stored |
---|
1885 | !-- on the next coarser grid level, because the arrays on that level |
---|
1886 | !-- have just the required size |
---|
1887 | i1 = nxl_mg(grid_level-1) |
---|
1888 | i2 = nxl_mg(grid_level-1) |
---|
1889 | |
---|
1890 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
1891 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
1892 | |
---|
1893 | IF ( j == nys_mg(l) ) THEN |
---|
1894 | !DIR$ IVDEP |
---|
1895 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1896 | temp(k-ind_even_odd,jys,i1) = p_mg(k,j,i) |
---|
1897 | ENDDO |
---|
1898 | i1 = i1 + 1 |
---|
1899 | |
---|
1900 | ENDIF |
---|
1901 | |
---|
1902 | IF ( j == nyn_mg(l) ) THEN |
---|
1903 | !DIR$ IVDEP |
---|
1904 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1905 | temp(k-ind_even_odd,jyn,i2) = p_mg(k,j,i) |
---|
1906 | ENDDO |
---|
1907 | i2 = i2 + 1 |
---|
1908 | |
---|
1909 | ENDIF |
---|
1910 | |
---|
1911 | ENDDO |
---|
1912 | ENDDO |
---|
1913 | |
---|
1914 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
1915 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
1916 | |
---|
1917 | IF ( j == nys_mg(l) ) THEN |
---|
1918 | !DIR$ IVDEP |
---|
1919 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1920 | temp(k-ind_even_odd,jys,i1) = p_mg(k,j,i) |
---|
1921 | ENDDO |
---|
1922 | i1 = i1 + 1 |
---|
1923 | |
---|
1924 | ENDIF |
---|
1925 | |
---|
1926 | IF ( j == nyn_mg(l) ) THEN |
---|
1927 | !DIR$ IVDEP |
---|
1928 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1929 | temp(k-ind_even_odd,jyn,i2) = p_mg(k,j,i) |
---|
1930 | ENDDO |
---|
1931 | i2 = i2 + 1 |
---|
1932 | |
---|
1933 | ENDIF |
---|
1934 | |
---|
1935 | ENDDO |
---|
1936 | ENDDO |
---|
1937 | |
---|
1938 | grid_level = grid_level-1 |
---|
1939 | |
---|
1940 | nxl = nxl_mg(grid_level) |
---|
1941 | nys = nys_mg(grid_level) |
---|
1942 | nxr = nxr_mg(grid_level) |
---|
1943 | nyn = nyn_mg(grid_level) |
---|
1944 | nzt = nzt_mg(grid_level) |
---|
1945 | |
---|
1946 | send_receive = 'ns' |
---|
1947 | CALL exchange_horiz( temp, 1 ) |
---|
1948 | |
---|
1949 | grid_level = grid_level+1 |
---|
1950 | |
---|
1951 | i1 = nxl_mg(grid_level-1) |
---|
1952 | i2 = nxl_mg(grid_level-1) |
---|
1953 | |
---|
1954 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
1955 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
1956 | |
---|
1957 | IF ( j == nys_mg(l) ) THEN |
---|
1958 | !DIR$ IVDEP |
---|
1959 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1960 | p_mg(k,nyn_mg(l)+1,i) = temp(k-ind_even_odd,jyn+1,i1) |
---|
1961 | ENDDO |
---|
1962 | i1 = i1 + 1 |
---|
1963 | |
---|
1964 | ENDIF |
---|
1965 | |
---|
1966 | IF ( j == nyn_mg(l) ) THEN |
---|
1967 | !DIR$ IVDEP |
---|
1968 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1969 | p_mg(k,nys_mg(l)-1,i) = temp(k-ind_even_odd,jys-1,i2) |
---|
1970 | ENDDO |
---|
1971 | i2 = i2 + 1 |
---|
1972 | |
---|
1973 | ENDIF |
---|
1974 | |
---|
1975 | ENDDO |
---|
1976 | ENDDO |
---|
1977 | |
---|
1978 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
1979 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
1980 | |
---|
1981 | IF ( j == nys_mg(l) ) THEN |
---|
1982 | !DIR$ IVDEP |
---|
1983 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1984 | p_mg(k,nyn_mg(l)+1,i) = temp(k-ind_even_odd,jyn+1,i1) |
---|
1985 | ENDDO |
---|
1986 | i1 = i1 + 1 |
---|
1987 | |
---|
1988 | ENDIF |
---|
1989 | |
---|
1990 | IF ( j == nyn_mg(l) ) THEN |
---|
1991 | !DIR$ IVDEP |
---|
1992 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
1993 | p_mg(k,nys_mg(l)-1,i) = temp(k-ind_even_odd,jys-1,i2) |
---|
1994 | ENDDO |
---|
1995 | i2 = i2 + 1 |
---|
1996 | |
---|
1997 | ENDIF |
---|
1998 | |
---|
1999 | ENDDO |
---|
2000 | ENDDO |
---|
2001 | |
---|
2002 | ! |
---|
2003 | !-- Collecting data for the left - right exchange |
---|
2004 | !-- Since only every second value has to be transfered, data are stored |
---|
2005 | !-- on the next coarser grid level, because the arrays on that level |
---|
2006 | !-- have just the required size |
---|
2007 | j1 = nys_mg(grid_level-1) |
---|
2008 | j2 = nys_mg(grid_level-1) |
---|
2009 | |
---|
2010 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
2011 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
2012 | |
---|
2013 | IF ( i == nxl_mg(l) ) THEN |
---|
2014 | !DIR$ IVDEP |
---|
2015 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2016 | temp(k-ind_even_odd,j1,ixl) = p_mg(k,j,i) |
---|
2017 | ENDDO |
---|
2018 | j1 = j1 + 1 |
---|
2019 | |
---|
2020 | ENDIF |
---|
2021 | |
---|
2022 | IF ( i == nxr_mg(l) ) THEN |
---|
2023 | !DIR$ IVDEP |
---|
2024 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2025 | temp(k-ind_even_odd,j2,ixr) = p_mg(k,j,i) |
---|
2026 | ENDDO |
---|
2027 | j2 = j2 + 1 |
---|
2028 | |
---|
2029 | ENDIF |
---|
2030 | |
---|
2031 | ENDDO |
---|
2032 | ENDDO |
---|
2033 | |
---|
2034 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
2035 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
2036 | |
---|
2037 | IF ( i == nxl_mg(l) ) THEN |
---|
2038 | !DIR$ IVDEP |
---|
2039 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2040 | temp(k-ind_even_odd,j1,ixl) = p_mg(k,j,i) |
---|
2041 | ENDDO |
---|
2042 | j1 = j1 + 1 |
---|
2043 | |
---|
2044 | ENDIF |
---|
2045 | |
---|
2046 | IF ( i == nxr_mg(l) ) THEN |
---|
2047 | !DIR$ IVDEP |
---|
2048 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2049 | temp(k-ind_even_odd,j2,ixr) = p_mg(k,j,i) |
---|
2050 | ENDDO |
---|
2051 | j2 = j2 + 1 |
---|
2052 | |
---|
2053 | ENDIF |
---|
2054 | |
---|
2055 | ENDDO |
---|
2056 | ENDDO |
---|
2057 | |
---|
2058 | grid_level = grid_level-1 |
---|
2059 | send_receive = 'lr' |
---|
2060 | |
---|
2061 | CALL exchange_horiz( temp, 1 ) |
---|
2062 | |
---|
2063 | grid_level = grid_level+1 |
---|
2064 | |
---|
2065 | j1 = nys_mg(grid_level-1) |
---|
2066 | j2 = nys_mg(grid_level-1) |
---|
2067 | |
---|
2068 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
2069 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
2070 | |
---|
2071 | IF ( i == nxl_mg(l) ) THEN |
---|
2072 | !DIR$ IVDEP |
---|
2073 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2074 | p_mg(k,j,nxr_mg(l)+1) = temp(k-ind_even_odd,j1,ixr+1) |
---|
2075 | ENDDO |
---|
2076 | j1 = j1 + 1 |
---|
2077 | |
---|
2078 | ENDIF |
---|
2079 | |
---|
2080 | IF ( i == nxr_mg(l) ) THEN |
---|
2081 | !DIR$ IVDEP |
---|
2082 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2083 | p_mg(k,j,nxl_mg(l)-1) = temp(k-ind_even_odd,j2,ixl-1) |
---|
2084 | ENDDO |
---|
2085 | j2 = j2 + 1 |
---|
2086 | |
---|
2087 | ENDIF |
---|
2088 | |
---|
2089 | ENDDO |
---|
2090 | ENDDO |
---|
2091 | |
---|
2092 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
2093 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
2094 | |
---|
2095 | IF ( i == nxl_mg(l) ) THEN |
---|
2096 | !DIR$ IVDEP |
---|
2097 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2098 | p_mg(k,j,nxr_mg(l)+1) = temp(k-ind_even_odd,j1,ixr+1) |
---|
2099 | ENDDO |
---|
2100 | j1 = j1 + 1 |
---|
2101 | |
---|
2102 | ENDIF |
---|
2103 | |
---|
2104 | IF ( i == nxr_mg(l) ) THEN |
---|
2105 | !DIR$ IVDEP |
---|
2106 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
2107 | p_mg(k,j,nxl_mg(l)-1) = temp(k-ind_even_odd,j2,ixl-1) |
---|
2108 | ENDDO |
---|
2109 | j2 = j2 + 1 |
---|
2110 | |
---|
2111 | ENDIF |
---|
2112 | |
---|
2113 | ENDDO |
---|
2114 | ENDDO |
---|
2115 | |
---|
2116 | ! |
---|
2117 | !-- Now handling the even k values |
---|
2118 | !-- Collecting data for the north - south exchange |
---|
2119 | !-- Since only every second value has to be transfered, data are stored |
---|
2120 | !-- on the next coarser grid level, because the arrays on that level |
---|
2121 | !-- have just the required size |
---|
2122 | i1 = nxl_mg(grid_level-1) |
---|
2123 | i2 = nxl_mg(grid_level-1) |
---|
2124 | |
---|
2125 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
2126 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
2127 | |
---|
2128 | IF ( j == nys_mg(l) ) THEN |
---|
2129 | !DIR$ IVDEP |
---|
2130 | DO k = nzb+1, ind_even_odd |
---|
2131 | temp(k,jys,i1) = p_mg(k,j,i) |
---|
2132 | ENDDO |
---|
2133 | i1 = i1 + 1 |
---|
2134 | |
---|
2135 | ENDIF |
---|
2136 | |
---|
2137 | IF ( j == nyn_mg(l) ) THEN |
---|
2138 | !DIR$ IVDEP |
---|
2139 | DO k = nzb+1, ind_even_odd |
---|
2140 | temp(k,jyn,i2) = p_mg(k,j,i) |
---|
2141 | ENDDO |
---|
2142 | i2 = i2 + 1 |
---|
2143 | |
---|
2144 | ENDIF |
---|
2145 | |
---|
2146 | ENDDO |
---|
2147 | ENDDO |
---|
2148 | |
---|
2149 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
2150 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
2151 | |
---|
2152 | IF ( j == nys_mg(l) ) THEN |
---|
2153 | !DIR$ IVDEP |
---|
2154 | DO k = nzb+1, ind_even_odd |
---|
2155 | temp(k,jys,i1) = p_mg(k,j,i) |
---|
2156 | ENDDO |
---|
2157 | i1 = i1 + 1 |
---|
2158 | |
---|
2159 | ENDIF |
---|
2160 | |
---|
2161 | IF ( j == nyn_mg(l) ) THEN |
---|
2162 | !DIR$ IVDEP |
---|
2163 | DO k = nzb+1, ind_even_odd |
---|
2164 | temp(k,jyn,i2) = p_mg(k,j,i) |
---|
2165 | ENDDO |
---|
2166 | i2 = i2 + 1 |
---|
2167 | |
---|
2168 | ENDIF |
---|
2169 | |
---|
2170 | ENDDO |
---|
2171 | ENDDO |
---|
2172 | |
---|
2173 | grid_level = grid_level-1 |
---|
2174 | |
---|
2175 | send_receive = 'ns' |
---|
2176 | CALL exchange_horiz( temp, 1 ) |
---|
2177 | |
---|
2178 | grid_level = grid_level+1 |
---|
2179 | |
---|
2180 | i1 = nxl_mg(grid_level-1) |
---|
2181 | i2 = nxl_mg(grid_level-1) |
---|
2182 | |
---|
2183 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
2184 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
2185 | |
---|
2186 | IF ( j == nys_mg(l) ) THEN |
---|
2187 | !DIR$ IVDEP |
---|
2188 | DO k = nzb+1, ind_even_odd |
---|
2189 | p_mg(k,nyn_mg(l)+1,i) = temp(k,jyn+1,i1) |
---|
2190 | ENDDO |
---|
2191 | i1 = i1 + 1 |
---|
2192 | |
---|
2193 | ENDIF |
---|
2194 | |
---|
2195 | IF ( j == nyn_mg(l) ) THEN |
---|
2196 | !DIR$ IVDEP |
---|
2197 | DO k = nzb+1, ind_even_odd |
---|
2198 | p_mg(k,nys_mg(l)-1,i) = temp(k,jys-1,i2) |
---|
2199 | ENDDO |
---|
2200 | i2 = i2 + 1 |
---|
2201 | |
---|
2202 | ENDIF |
---|
2203 | |
---|
2204 | ENDDO |
---|
2205 | ENDDO |
---|
2206 | |
---|
2207 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
2208 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
2209 | |
---|
2210 | IF ( j == nys_mg(l) ) THEN |
---|
2211 | !DIR$ IVDEP |
---|
2212 | DO k = nzb+1, ind_even_odd |
---|
2213 | p_mg(k,nyn_mg(l)+1,i) = temp(k,jyn+1,i1) |
---|
2214 | ENDDO |
---|
2215 | i1 = i1 + 1 |
---|
2216 | |
---|
2217 | ENDIF |
---|
2218 | |
---|
2219 | IF ( j == nyn_mg(l) ) THEN |
---|
2220 | !DIR$ IVDEP |
---|
2221 | DO k = nzb+1, ind_even_odd |
---|
2222 | p_mg(k,nys_mg(l)-1,i) = temp(k,jys-1,i2) |
---|
2223 | ENDDO |
---|
2224 | i2 = i2 + 1 |
---|
2225 | |
---|
2226 | ENDIF |
---|
2227 | |
---|
2228 | ENDDO |
---|
2229 | ENDDO |
---|
2230 | |
---|
2231 | j1 = nys_mg(grid_level-1) |
---|
2232 | j2 = nys_mg(grid_level-1) |
---|
2233 | |
---|
2234 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
2235 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
2236 | |
---|
2237 | IF ( i == nxl_mg(l) ) THEN |
---|
2238 | !DIR$ IVDEP |
---|
2239 | DO k = nzb+1, ind_even_odd |
---|
2240 | temp(k,j1,ixl) = p_mg(k,j,i) |
---|
2241 | ENDDO |
---|
2242 | j1 = j1 + 1 |
---|
2243 | |
---|
2244 | ENDIF |
---|
2245 | |
---|
2246 | IF ( i == nxr_mg(l) ) THEN |
---|
2247 | !DIR$ IVDEP |
---|
2248 | DO k = nzb+1, ind_even_odd |
---|
2249 | temp(k,j2,ixr) = p_mg(k,j,i) |
---|
2250 | ENDDO |
---|
2251 | j2 = j2 + 1 |
---|
2252 | |
---|
2253 | ENDIF |
---|
2254 | |
---|
2255 | ENDDO |
---|
2256 | ENDDO |
---|
2257 | |
---|
2258 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
2259 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
2260 | |
---|
2261 | IF ( i == nxl_mg(l) ) THEN |
---|
2262 | !DIR$ IVDEP |
---|
2263 | DO k = nzb+1, ind_even_odd |
---|
2264 | temp(k,j1,ixl) = p_mg(k,j,i) |
---|
2265 | ENDDO |
---|
2266 | j1 = j1 + 1 |
---|
2267 | |
---|
2268 | ENDIF |
---|
2269 | |
---|
2270 | IF ( i == nxr_mg(l) ) THEN |
---|
2271 | !DIR$ IVDEP |
---|
2272 | DO k = nzb+1, ind_even_odd |
---|
2273 | temp(k,j2,ixr) = p_mg(k,j,i) |
---|
2274 | ENDDO |
---|
2275 | j2 = j2 + 1 |
---|
2276 | |
---|
2277 | ENDIF |
---|
2278 | |
---|
2279 | ENDDO |
---|
2280 | ENDDO |
---|
2281 | |
---|
2282 | grid_level = grid_level-1 |
---|
2283 | |
---|
2284 | send_receive = 'lr' |
---|
2285 | CALL exchange_horiz( temp, 1 ) |
---|
2286 | |
---|
2287 | grid_level = grid_level+1 |
---|
2288 | |
---|
2289 | nxl = nxl_mg(grid_level) |
---|
2290 | nys = nys_mg(grid_level) |
---|
2291 | nxr = nxr_mg(grid_level) |
---|
2292 | nyn = nyn_mg(grid_level) |
---|
2293 | nzt = nzt_mg(grid_level) |
---|
2294 | |
---|
2295 | j1 = nys_mg(grid_level-1) |
---|
2296 | j2 = nys_mg(grid_level-1) |
---|
2297 | |
---|
2298 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
2299 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
2300 | |
---|
2301 | IF ( i == nxl_mg(l) ) THEN |
---|
2302 | !DIR$ IVDEP |
---|
2303 | DO k = nzb+1, ind_even_odd |
---|
2304 | p_mg(k,j,nxr_mg(l)+1) = temp(k,j1,ixr+1) |
---|
2305 | ENDDO |
---|
2306 | j1 = j1 + 1 |
---|
2307 | |
---|
2308 | ENDIF |
---|
2309 | |
---|
2310 | IF ( i == nxr_mg(l) ) THEN |
---|
2311 | !DIR$ IVDEP |
---|
2312 | DO k = nzb+1, ind_even_odd |
---|
2313 | p_mg(k,j,nxl_mg(l)-1) = temp(k,j2,ixl-1) |
---|
2314 | ENDDO |
---|
2315 | j2 = j2 + 1 |
---|
2316 | |
---|
2317 | ENDIF |
---|
2318 | |
---|
2319 | ENDDO |
---|
2320 | ENDDO |
---|
2321 | |
---|
2322 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
2323 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
2324 | |
---|
2325 | IF ( i == nxl_mg(l) ) THEN |
---|
2326 | !DIR$ IVDEP |
---|
2327 | DO k = nzb+1, ind_even_odd |
---|
2328 | p_mg(k,j,nxr_mg(l)+1) = temp(k,j1,ixr+1) |
---|
2329 | ENDDO |
---|
2330 | j1 = j1 + 1 |
---|
2331 | |
---|
2332 | ENDIF |
---|
2333 | |
---|
2334 | IF ( i == nxr_mg(l) ) THEN |
---|
2335 | !DIR$ IVDEP |
---|
2336 | DO k = nzb+1, ind_even_odd |
---|
2337 | p_mg(k,j,nxl_mg(l)-1) = temp(k,j2,ixl-1) |
---|
2338 | ENDDO |
---|
2339 | j2 = j2 + 1 |
---|
2340 | |
---|
2341 | ENDIF |
---|
2342 | |
---|
2343 | ENDDO |
---|
2344 | ENDDO |
---|
2345 | |
---|
2346 | DEALLOCATE( temp ) |
---|
2347 | |
---|
2348 | ELSE |
---|
2349 | |
---|
2350 | ! |
---|
2351 | !-- Standard horizontal ghost boundary exchange for small coarse grid |
---|
2352 | !-- levels, where the transfer time is latency bound |
---|
2353 | CALL exchange_horiz( p_mg, 1 ) |
---|
2354 | |
---|
2355 | ENDIF |
---|
2356 | |
---|
2357 | ! |
---|
2358 | !-- Reset values to default PALM setup |
---|
2359 | synchronous_exchange = synchronous_exchange_save |
---|
2360 | send_receive = 'al' |
---|
2361 | #else |
---|
2362 | |
---|
2363 | ! |
---|
2364 | !-- Standard horizontal ghost boundary exchange for small coarse grid |
---|
2365 | !-- levels, where the transfer time is latency bound |
---|
2366 | CALL exchange_horiz( p_mg, 1 ) |
---|
2367 | #endif |
---|
2368 | |
---|
2369 | END SUBROUTINE special_exchange_horiz |
---|
2370 | |
---|
2371 | END MODULE poismg_mod |
---|