[1850] | 1 | !> @file poismg_fast_mod.f90 |
---|
[1575] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1818] | 16 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
[1575] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
| 19 | ! Current revisions: |
---|
| 20 | ! ----------------- |
---|
[1905] | 21 | ! |
---|
[1610] | 22 | ! |
---|
[1576] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: poismg_fast_mod.f90 1905 2016-05-11 13:07:37Z suehring $ |
---|
| 26 | ! |
---|
[1905] | 27 | ! 1904 2016-05-11 13:06:12Z suehring |
---|
| 28 | ! Bugfix: enable special_exchange_horiz only for finer grid levels. |
---|
| 29 | ! Some formatting adjustments and variable descriptions. |
---|
| 30 | ! |
---|
[1899] | 31 | ! 1898 2016-05-03 11:27:17Z suehring |
---|
| 32 | ! Bugfix: bottom and top boundary condition in resid_fast |
---|
| 33 | ! Bugfix: restriction at nzb+1 |
---|
| 34 | ! formatting adjustments, variable descriptions added in some declaration blocks |
---|
| 35 | ! |
---|
[1851] | 36 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
| 37 | ! Module renamed |
---|
| 38 | ! |
---|
| 39 | ! |
---|
[1763] | 40 | ! 1762 2016-02-25 12:31:13Z hellstea |
---|
| 41 | ! Introduction of nested domain feature |
---|
| 42 | ! |
---|
[1683] | 43 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 44 | ! Code annotations made doxygen readable |
---|
| 45 | ! |
---|
[1610] | 46 | ! 1609 2015-07-03 15:37:58Z maronga |
---|
| 47 | ! Bugfix: allow compilation without __parallel. |
---|
| 48 | ! |
---|
[1576] | 49 | ! 1575 2015-03-27 09:56:27Z raasch |
---|
[1575] | 50 | ! Initial revision. |
---|
| 51 | ! Routine re-written and optimised based on poismg. |
---|
| 52 | ! |
---|
| 53 | ! Following optimisations have been made: |
---|
| 54 | ! - vectorisation (for Intel-CPUs) of the red-black algorithm by resorting |
---|
| 55 | ! array elements with even and odd indices |
---|
| 56 | ! - explicit boundary conditions for building walls removed (solver is |
---|
| 57 | ! running through the buildings |
---|
| 58 | ! - reduced data transfer in case of ghost point exchange, because only |
---|
| 59 | ! "red" or "black" data points need to be exchanged. This is not applied |
---|
| 60 | ! for coarser grid levels, since for then the transfer time is latency bound |
---|
| 61 | ! |
---|
| 62 | ! |
---|
| 63 | ! Description: |
---|
| 64 | ! ------------ |
---|
[1682] | 65 | !> Solves the Poisson equation for the perturbation pressure with a multigrid |
---|
| 66 | !> V- or W-Cycle scheme. |
---|
| 67 | !> |
---|
| 68 | !> This multigrid method was originally developed for PALM by Joerg Uhlenbrock, |
---|
| 69 | !> September 2000 - July 2001. It has been optimised for speed by Klaus |
---|
| 70 | !> Ketelsen in November 2014. |
---|
| 71 | !> |
---|
| 72 | !> @attention Loop unrolling and cache optimization in SOR-Red/Black method |
---|
| 73 | !> still does not give the expected speedup! |
---|
| 74 | !> |
---|
| 75 | !> @todo Further work required. |
---|
[1575] | 76 | !------------------------------------------------------------------------------! |
---|
[1682] | 77 | MODULE poismg_mod |
---|
| 78 | |
---|
[1575] | 79 | |
---|
| 80 | USE cpulog, & |
---|
| 81 | ONLY: cpu_log, log_point_s |
---|
[1609] | 82 | |
---|
[1575] | 83 | USE kinds |
---|
[1609] | 84 | |
---|
[1575] | 85 | USE pegrid |
---|
| 86 | |
---|
| 87 | PRIVATE |
---|
| 88 | |
---|
[1682] | 89 | INTEGER, SAVE :: ind_even_odd !< border index between even and odd k index |
---|
| 90 | INTEGER, DIMENSION(:), SAVE, ALLOCATABLE :: even_odd_level !< stores ind_even_odd for all MG levels |
---|
[1575] | 91 | |
---|
[1682] | 92 | REAL(wp), DIMENSION(:,:), SAVE, ALLOCATABLE :: f1_mg_b, f2_mg_b, f3_mg_b !< blocked version of f1_mg ... |
---|
[1575] | 93 | |
---|
| 94 | INTERFACE poismg_fast |
---|
| 95 | MODULE PROCEDURE poismg_fast |
---|
| 96 | END INTERFACE poismg_fast |
---|
| 97 | |
---|
| 98 | INTERFACE sort_k_to_even_odd_blocks |
---|
| 99 | MODULE PROCEDURE sort_k_to_even_odd_blocks |
---|
| 100 | MODULE PROCEDURE sort_k_to_even_odd_blocks_int |
---|
| 101 | MODULE PROCEDURE sort_k_to_even_odd_blocks_1d |
---|
| 102 | END INTERFACE sort_k_to_even_odd_blocks |
---|
| 103 | |
---|
| 104 | PUBLIC poismg_fast |
---|
| 105 | |
---|
| 106 | CONTAINS |
---|
| 107 | |
---|
[1682] | 108 | !------------------------------------------------------------------------------! |
---|
| 109 | ! Description: |
---|
| 110 | ! ------------ |
---|
| 111 | !> Solves the Poisson equation for the perturbation pressure with a multigrid |
---|
| 112 | !> V- or W-Cycle scheme. |
---|
| 113 | !------------------------------------------------------------------------------! |
---|
[1575] | 114 | SUBROUTINE poismg_fast( r ) |
---|
| 115 | |
---|
| 116 | USE arrays_3d, & |
---|
| 117 | ONLY: d, p_loc |
---|
| 118 | |
---|
| 119 | USE control_parameters, & |
---|
| 120 | ONLY: gathered_size, grid_level, grid_level_count, & |
---|
| 121 | maximum_grid_level, message_string, mgcycles, mg_cycles, & |
---|
| 122 | mg_switch_to_pe0_level, residual_limit, subdomain_size |
---|
| 123 | |
---|
| 124 | USE cpulog, & |
---|
| 125 | ONLY: cpu_log, log_point_s |
---|
| 126 | |
---|
| 127 | USE indices, & |
---|
| 128 | ONLY: nxl, nxlg, nxl_mg, nxr, nxrg, nxr_mg, nys, nysg, nys_mg, nyn,& |
---|
| 129 | nyng, nyn_mg, nzb, nzt, nzt_mg |
---|
| 130 | |
---|
| 131 | IMPLICIT NONE |
---|
| 132 | |
---|
[1682] | 133 | REAL(wp) :: maxerror !< |
---|
| 134 | REAL(wp) :: maximum_mgcycles !< |
---|
| 135 | REAL(wp) :: residual_norm !< |
---|
[1575] | 136 | |
---|
[1682] | 137 | REAL(wp), DIMENSION(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) :: r !< |
---|
[1575] | 138 | |
---|
[1682] | 139 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: p3 !< |
---|
[1575] | 140 | |
---|
| 141 | |
---|
| 142 | CALL cpu_log( log_point_s(29), 'poismg_fast', 'start' ) |
---|
| 143 | ! |
---|
| 144 | !-- Initialize arrays and variables used in this subroutine |
---|
| 145 | |
---|
| 146 | !-- If the number of grid points of the gathered grid, which is collected |
---|
| 147 | !-- on PE0, is larger than the number of grid points of an PE, than array |
---|
| 148 | !-- p3 will be enlarged. |
---|
| 149 | IF ( gathered_size > subdomain_size ) THEN |
---|
| 150 | ALLOCATE( p3(nzb:nzt_mg(mg_switch_to_pe0_level)+1,nys_mg( & |
---|
| 151 | mg_switch_to_pe0_level)-1:nyn_mg(mg_switch_to_pe0_level)+1,& |
---|
| 152 | nxl_mg(mg_switch_to_pe0_level)-1:nxr_mg( & |
---|
| 153 | mg_switch_to_pe0_level)+1) ) |
---|
| 154 | ELSE |
---|
| 155 | ALLOCATE ( p3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 156 | ENDIF |
---|
| 157 | |
---|
| 158 | p3 = 0.0_wp |
---|
| 159 | |
---|
| 160 | |
---|
| 161 | ! |
---|
| 162 | !-- Ghost boundaries have to be added to divergence array. |
---|
| 163 | !-- Exchange routine needs to know the grid level! |
---|
| 164 | grid_level = maximum_grid_level |
---|
| 165 | CALL exchange_horiz( d, 1) |
---|
| 166 | d(nzb,:,:) = d(nzb+1,:,:) |
---|
| 167 | |
---|
| 168 | ! |
---|
| 169 | !-- Initiation of the multigrid scheme. Does n cycles until the |
---|
| 170 | !-- residual is smaller than the given limit. The accuracy of the solution |
---|
| 171 | !-- of the poisson equation will increase with the number of cycles. |
---|
| 172 | !-- If the number of cycles is preset by the user, this number will be |
---|
| 173 | !-- carried out regardless of the accuracy. |
---|
| 174 | grid_level_count = 0 |
---|
| 175 | mgcycles = 0 |
---|
| 176 | IF ( mg_cycles == -1 ) THEN |
---|
| 177 | maximum_mgcycles = 0 |
---|
| 178 | residual_norm = 1.0_wp |
---|
| 179 | ELSE |
---|
| 180 | maximum_mgcycles = mg_cycles |
---|
| 181 | residual_norm = 0.0_wp |
---|
| 182 | ENDIF |
---|
| 183 | |
---|
| 184 | ! |
---|
| 185 | !-- Initial settings for sorting k-dimension from sequential order (alternate |
---|
| 186 | !-- even/odd) into blocks of even and odd or vice versa |
---|
| 187 | CALL init_even_odd_blocks |
---|
| 188 | |
---|
| 189 | ! |
---|
| 190 | !-- Sort input arrays in even/odd blocks along k-dimension |
---|
| 191 | CALL sort_k_to_even_odd_blocks( d, grid_level ) |
---|
| 192 | CALL sort_k_to_even_odd_blocks( p_loc, grid_level ) |
---|
| 193 | |
---|
| 194 | ! |
---|
| 195 | !-- The complete multigrid cycles are running in block mode, i.e. over |
---|
| 196 | !-- seperate data blocks of even and odd indices |
---|
| 197 | DO WHILE ( residual_norm > residual_limit .OR. & |
---|
| 198 | mgcycles < maximum_mgcycles ) |
---|
| 199 | |
---|
| 200 | CALL next_mg_level_fast( d, p_loc, p3, r) |
---|
| 201 | |
---|
| 202 | ! |
---|
| 203 | !-- Calculate the residual if the user has not preset the number of |
---|
| 204 | !-- cycles to be performed |
---|
| 205 | IF ( maximum_mgcycles == 0 ) THEN |
---|
| 206 | CALL resid_fast( d, p_loc, r ) |
---|
| 207 | maxerror = SUM( r(nzb+1:nzt,nys:nyn,nxl:nxr)**2 ) |
---|
| 208 | |
---|
| 209 | #if defined( __parallel ) |
---|
| 210 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 211 | CALL MPI_ALLREDUCE( maxerror, residual_norm, 1, MPI_REAL, & |
---|
| 212 | MPI_SUM, comm2d, ierr) |
---|
| 213 | #else |
---|
| 214 | residual_norm = maxerror |
---|
| 215 | #endif |
---|
| 216 | residual_norm = SQRT( residual_norm ) |
---|
| 217 | ENDIF |
---|
| 218 | |
---|
| 219 | mgcycles = mgcycles + 1 |
---|
| 220 | |
---|
| 221 | ! |
---|
| 222 | !-- If the user has not limited the number of cycles, stop the run in case |
---|
| 223 | !-- of insufficient convergence |
---|
| 224 | IF ( mgcycles > 1000 .AND. mg_cycles == -1 ) THEN |
---|
| 225 | message_string = 'no sufficient convergence within 1000 cycles' |
---|
| 226 | CALL message( 'poismg_fast', 'PA0283', 1, 2, 0, 6, 0 ) |
---|
| 227 | ENDIF |
---|
| 228 | |
---|
| 229 | ENDDO |
---|
| 230 | |
---|
| 231 | DEALLOCATE( p3 ) |
---|
| 232 | ! |
---|
| 233 | !-- Result has to be sorted back from even/odd blocks to sequential order |
---|
| 234 | CALL sort_k_to_sequential( p_loc ) |
---|
| 235 | ! |
---|
| 236 | !-- Unset the grid level. Variable is used to determine the MPI datatypes for |
---|
| 237 | !-- ghost point exchange |
---|
| 238 | grid_level = 0 |
---|
| 239 | |
---|
| 240 | CALL cpu_log( log_point_s(29), 'poismg_fast', 'stop' ) |
---|
| 241 | |
---|
| 242 | END SUBROUTINE poismg_fast |
---|
| 243 | |
---|
| 244 | |
---|
| 245 | !------------------------------------------------------------------------------! |
---|
| 246 | ! Description: |
---|
| 247 | ! ------------ |
---|
[1682] | 248 | !> Computes the residual of the perturbation pressure. |
---|
[1575] | 249 | !------------------------------------------------------------------------------! |
---|
[1682] | 250 | SUBROUTINE resid_fast( f_mg, p_mg, r ) |
---|
[1575] | 251 | |
---|
[1682] | 252 | |
---|
[1575] | 253 | USE arrays_3d, & |
---|
| 254 | ONLY: f1_mg, f2_mg, f3_mg |
---|
| 255 | |
---|
| 256 | USE control_parameters, & |
---|
| 257 | ONLY: bc_lr_cyc, bc_ns_cyc, grid_level, ibc_p_b, ibc_p_t, inflow_l,& |
---|
[1898] | 258 | inflow_n, inflow_r, inflow_s, nest_bound_l, nest_bound_n, & |
---|
| 259 | nest_bound_r, nest_bound_s, outflow_l, outflow_n, outflow_r, & |
---|
| 260 | outflow_s |
---|
[1575] | 261 | |
---|
| 262 | USE grid_variables, & |
---|
| 263 | ONLY: ddx2_mg, ddy2_mg |
---|
| 264 | |
---|
| 265 | USE indices, & |
---|
[1898] | 266 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
[1575] | 267 | |
---|
| 268 | IMPLICIT NONE |
---|
| 269 | |
---|
[1898] | 270 | INTEGER(iwp) :: i !< index variable along x |
---|
| 271 | INTEGER(iwp) :: j !< index variable along y |
---|
| 272 | INTEGER(iwp) :: k !< index variable along z |
---|
| 273 | INTEGER(iwp) :: l !< index indicating grid level |
---|
| 274 | INTEGER(iwp) :: km1 !< index variable along z dimension (k-1) |
---|
| 275 | INTEGER(iwp) :: kp1 !< index variable along z dimension (k+1) |
---|
[1575] | 276 | |
---|
| 277 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
| 278 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
[1898] | 279 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f_mg !< velocity divergence |
---|
[1575] | 280 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
| 281 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
[1898] | 282 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: p_mg !< perturbation pressure |
---|
[1575] | 283 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
| 284 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
[1898] | 285 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: r !< residuum of perturbation pressure |
---|
[1575] | 286 | |
---|
| 287 | ! |
---|
| 288 | !-- Calculate the residual |
---|
| 289 | l = grid_level |
---|
| 290 | |
---|
| 291 | CALL cpu_log( log_point_s(53), 'resid', 'start' ) |
---|
[1898] | 292 | !$OMP PARALLEL PRIVATE (i,j,k,km1,kp1) |
---|
| 293 | !$OMP DO |
---|
| 294 | DO i = nxl_mg(l), nxr_mg(l) |
---|
| 295 | DO j = nys_mg(l), nyn_mg(l) |
---|
[1575] | 296 | !DIR$ IVDEP |
---|
[1898] | 297 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 298 | km1 = k-ind_even_odd-1 |
---|
| 299 | kp1 = k-ind_even_odd |
---|
| 300 | r(k,j,i) = f_mg(k,j,i) & |
---|
| 301 | - ddx2_mg(l) * & |
---|
| 302 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
| 303 | - ddy2_mg(l) * & |
---|
| 304 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
| 305 | - f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
| 306 | - f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
[1575] | 307 | + f1_mg_b(k,l) * p_mg(k,j,i) |
---|
[1898] | 308 | ENDDO |
---|
| 309 | !DIR$ IVDEP |
---|
| 310 | DO k = nzb+1, ind_even_odd |
---|
| 311 | km1 = k+ind_even_odd |
---|
| 312 | kp1 = k+ind_even_odd+1 |
---|
| 313 | r(k,j,i) = f_mg(k,j,i) & |
---|
| 314 | - ddx2_mg(l) * & |
---|
| 315 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
| 316 | - ddy2_mg(l) * & |
---|
| 317 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
| 318 | - f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
| 319 | - f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
[1575] | 320 | + f1_mg_b(k,l) * p_mg(k,j,i) |
---|
| 321 | ENDDO |
---|
| 322 | ENDDO |
---|
[1898] | 323 | ENDDO |
---|
| 324 | !$OMP END PARALLEL |
---|
[1575] | 325 | ! |
---|
| 326 | !-- Horizontal boundary conditions |
---|
| 327 | CALL exchange_horiz( r, 1) |
---|
| 328 | |
---|
| 329 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
[1762] | 330 | IF ( inflow_l .OR. outflow_l .OR. nest_bound_l ) THEN |
---|
| 331 | r(:,:,nxl_mg(l)-1) = r(:,:,nxl_mg(l)) |
---|
| 332 | ENDIF |
---|
| 333 | IF ( inflow_r .OR. outflow_r .OR. nest_bound_r ) THEN |
---|
| 334 | r(:,:,nxr_mg(l)+1) = r(:,:,nxr_mg(l)) |
---|
| 335 | ENDIF |
---|
[1575] | 336 | ENDIF |
---|
| 337 | |
---|
| 338 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
[1762] | 339 | IF ( inflow_n .OR. outflow_n .OR. nest_bound_n ) THEN |
---|
| 340 | r(:,nyn_mg(l)+1,:) = r(:,nyn_mg(l),:) |
---|
| 341 | ENDIF |
---|
| 342 | IF ( inflow_s .OR. outflow_s .OR. nest_bound_s ) THEN |
---|
| 343 | r(:,nys_mg(l)-1,:) = r(:,nys_mg(l),:) |
---|
| 344 | ENDIF |
---|
[1575] | 345 | ENDIF |
---|
| 346 | |
---|
| 347 | ! |
---|
[1898] | 348 | !-- Boundary conditions at bottom and top of the domain. Points may be within |
---|
[1575] | 349 | !-- buildings, but that doesn't matter. |
---|
| 350 | IF ( ibc_p_b == 1 ) THEN |
---|
[1898] | 351 | ! |
---|
| 352 | !-- equivalent to r(nzb,:,: ) = r(nzb+1,:,:) |
---|
| 353 | r(nzb,:,: ) = r(ind_even_odd+1,:,:) |
---|
[1575] | 354 | ELSE |
---|
| 355 | r(nzb,:,: ) = 0.0_wp |
---|
| 356 | ENDIF |
---|
| 357 | |
---|
| 358 | IF ( ibc_p_t == 1 ) THEN |
---|
[1898] | 359 | ! |
---|
| 360 | !-- equivalent to r(nzt_mg(l)+1,:,: ) = r(nzt_mg(l),:,:) |
---|
| 361 | r(nzt_mg(l)+1,:,: ) = r(ind_even_odd,:,:) |
---|
[1575] | 362 | ELSE |
---|
| 363 | r(nzt_mg(l)+1,:,: ) = 0.0_wp |
---|
| 364 | ENDIF |
---|
| 365 | |
---|
| 366 | CALL cpu_log( log_point_s(53), 'resid', 'stop' ) |
---|
| 367 | |
---|
| 368 | END SUBROUTINE resid_fast |
---|
| 369 | |
---|
| 370 | |
---|
| 371 | !------------------------------------------------------------------------------! |
---|
| 372 | ! Description: |
---|
| 373 | ! ------------ |
---|
[1682] | 374 | !> Interpolates the residual on the next coarser grid with "full weighting" |
---|
| 375 | !> scheme |
---|
[1575] | 376 | !------------------------------------------------------------------------------! |
---|
[1682] | 377 | SUBROUTINE restrict_fast( f_mg, r ) |
---|
[1575] | 378 | |
---|
[1682] | 379 | |
---|
[1575] | 380 | USE control_parameters, & |
---|
| 381 | ONLY: bc_lr_cyc, bc_ns_cyc, grid_level, ibc_p_b, ibc_p_t, inflow_l,& |
---|
[1898] | 382 | inflow_n, inflow_r, inflow_s, nest_bound_l, nest_bound_n, & |
---|
| 383 | nest_bound_r, nest_bound_s, outflow_l, outflow_n, outflow_r, & |
---|
| 384 | outflow_s |
---|
[1575] | 385 | |
---|
| 386 | USE indices, & |
---|
[1898] | 387 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
[1575] | 388 | |
---|
| 389 | IMPLICIT NONE |
---|
| 390 | |
---|
[1898] | 391 | INTEGER(iwp) :: i !< index variable along x on finer grid |
---|
| 392 | INTEGER(iwp) :: ic !< index variable along x on coarser grid |
---|
| 393 | INTEGER(iwp) :: j !< index variable along y on finer grid |
---|
| 394 | INTEGER(iwp) :: jc !< index variable along y on coarser grid |
---|
| 395 | INTEGER(iwp) :: k !< index variable along z on finer grid |
---|
| 396 | INTEGER(iwp) :: kc !< index variable along z on coarser grid |
---|
| 397 | INTEGER(iwp) :: l !< index indicating finer grid level |
---|
| 398 | INTEGER(iwp) :: km1 !< index variable along z dimension (k-1 on finer level) |
---|
| 399 | INTEGER(iwp) :: kp1 !< index variable along z dimension (k+1 on finer level) |
---|
[1575] | 400 | |
---|
| 401 | |
---|
| 402 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
| 403 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
[1898] | 404 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
| 405 | f_mg !< Residual on coarser grid level |
---|
[1575] | 406 | |
---|
| 407 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level+1)+1, & |
---|
| 408 | nys_mg(grid_level+1)-1:nyn_mg(grid_level+1)+1, & |
---|
[1898] | 409 | nxl_mg(grid_level+1)-1:nxr_mg(grid_level+1)+1) :: & |
---|
| 410 | r !< Residual on finer grid level |
---|
[1575] | 411 | |
---|
| 412 | ! |
---|
| 413 | !-- Interpolate the residual |
---|
| 414 | l = grid_level |
---|
| 415 | |
---|
| 416 | CALL cpu_log( log_point_s(54), 'restrict', 'start' ) |
---|
| 417 | ! |
---|
[1898] | 418 | !-- No wall treatment |
---|
| 419 | !$OMP PARALLEL PRIVATE (i,j,k,ic,jc,kc,km1,kp1) |
---|
| 420 | DO ic = nxl_mg(l), nxr_mg(l) |
---|
| 421 | i = 2*ic |
---|
| 422 | !$OMP DO SCHEDULE( STATIC ) |
---|
| 423 | DO jc = nys_mg(l), nyn_mg(l) |
---|
[1575] | 424 | ! |
---|
[1898] | 425 | !-- Calculation for the first point along k |
---|
| 426 | j = 2*jc |
---|
| 427 | ! |
---|
| 428 | !-- Calculation for the other points along k |
---|
| 429 | !DIR$ IVDEP |
---|
| 430 | DO k = ind_even_odd+1, nzt_mg(l+1) ! Fine grid at this point |
---|
| 431 | km1 = k-ind_even_odd-1 |
---|
[1575] | 432 | kp1 = k-ind_even_odd |
---|
[1898] | 433 | kc = k-ind_even_odd ! Coarse grid index |
---|
[1575] | 434 | |
---|
[1898] | 435 | f_mg(kc,jc,ic) = 1.0_wp / 64.0_wp * ( & |
---|
| 436 | 8.0_wp * r(k,j,i) & |
---|
| 437 | + 4.0_wp * ( r(k,j,i-1) + r(k,j,i+1) + & |
---|
| 438 | r(k,j+1,i) + r(k,j-1,i) ) & |
---|
| 439 | + 2.0_wp * ( r(k,j-1,i-1) + r(k,j+1,i-1) + & |
---|
| 440 | r(k,j-1,i+1) + r(k,j+1,i+1) ) & |
---|
| 441 | + 4.0_wp * r(km1,j,i) & |
---|
| 442 | + 2.0_wp * ( r(km1,j,i-1) + r(km1,j,i+1) + & |
---|
| 443 | r(km1,j+1,i) + r(km1,j-1,i) ) & |
---|
| 444 | + ( r(km1,j-1,i-1) + r(km1,j+1,i-1) + & |
---|
| 445 | r(km1,j-1,i+1) + r(km1,j+1,i+1) ) & |
---|
| 446 | + 4.0_wp * r(kp1,j,i) & |
---|
| 447 | + 2.0_wp * ( r(kp1,j,i-1) + r(kp1,j,i+1) + & |
---|
| 448 | r(kp1,j+1,i) + r(kp1,j-1,i) ) & |
---|
| 449 | + ( r(kp1,j-1,i-1) + r(kp1,j+1,i-1) + & |
---|
| 450 | r(kp1,j-1,i+1) + r(kp1,j+1,i+1) ) & |
---|
| 451 | ) |
---|
[1575] | 452 | ENDDO |
---|
| 453 | ENDDO |
---|
[1898] | 454 | !$OMP ENDDO nowait |
---|
| 455 | ENDDO |
---|
| 456 | !$OMP END PARALLEL |
---|
[1575] | 457 | |
---|
| 458 | ! |
---|
[1898] | 459 | !-- Ghost point exchange |
---|
| 460 | CALL exchange_horiz( f_mg, 1) |
---|
[1575] | 461 | ! |
---|
| 462 | !-- Horizontal boundary conditions |
---|
| 463 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
[1762] | 464 | IF ( inflow_l .OR. outflow_l .OR. nest_bound_l ) THEN |
---|
| 465 | f_mg(:,:,nxl_mg(l)-1) = f_mg(:,:,nxl_mg(l)) |
---|
| 466 | ENDIF |
---|
| 467 | IF ( inflow_r .OR. outflow_r .OR. nest_bound_r ) THEN |
---|
| 468 | f_mg(:,:,nxr_mg(l)+1) = f_mg(:,:,nxr_mg(l)) |
---|
| 469 | ENDIF |
---|
[1575] | 470 | ENDIF |
---|
| 471 | |
---|
| 472 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
[1762] | 473 | IF ( inflow_n .OR. outflow_n .OR. nest_bound_n ) THEN |
---|
| 474 | f_mg(:,nyn_mg(l)+1,:) = f_mg(:,nyn_mg(l),:) |
---|
| 475 | ENDIF |
---|
| 476 | IF ( inflow_s .OR. outflow_s .OR. nest_bound_s ) THEN |
---|
| 477 | f_mg(:,nys_mg(l)-1,:) = f_mg(:,nys_mg(l),:) |
---|
| 478 | ENDIF |
---|
[1575] | 479 | ENDIF |
---|
| 480 | |
---|
| 481 | ! |
---|
| 482 | !-- Boundary conditions at bottom and top of the domain. |
---|
| 483 | !-- These points are not handled by the above loop. Points may be within |
---|
[1898] | 484 | !-- buildings, but that doesn't matter. Remark: f_mg is ordered sequentielly |
---|
| 485 | !-- after interpolation on coarse grid (is ordered in odd-even blocks further |
---|
| 486 | !-- below). |
---|
[1575] | 487 | IF ( ibc_p_b == 1 ) THEN |
---|
| 488 | f_mg(nzb,:,: ) = f_mg(nzb+1,:,:) |
---|
| 489 | ELSE |
---|
| 490 | f_mg(nzb,:,: ) = 0.0_wp |
---|
| 491 | ENDIF |
---|
| 492 | |
---|
| 493 | IF ( ibc_p_t == 1 ) THEN |
---|
| 494 | f_mg(nzt_mg(l)+1,:,: ) = f_mg(nzt_mg(l),:,:) |
---|
| 495 | ELSE |
---|
| 496 | f_mg(nzt_mg(l)+1,:,: ) = 0.0_wp |
---|
| 497 | ENDIF |
---|
| 498 | |
---|
| 499 | CALL cpu_log( log_point_s(54), 'restrict', 'stop' ) |
---|
| 500 | ! |
---|
[1898] | 501 | !-- Since residual is in sequential order after interpolation, an additional |
---|
| 502 | !-- sorting in odd-even blocks along z dimension is required at this point. |
---|
[1575] | 503 | CALL sort_k_to_even_odd_blocks( f_mg , l) |
---|
| 504 | |
---|
| 505 | END SUBROUTINE restrict_fast |
---|
| 506 | |
---|
| 507 | |
---|
| 508 | !------------------------------------------------------------------------------! |
---|
| 509 | ! Description: |
---|
| 510 | ! ------------ |
---|
[1682] | 511 | !> Interpolates the correction of the perturbation pressure |
---|
| 512 | !> to the next finer grid. |
---|
[1575] | 513 | !------------------------------------------------------------------------------! |
---|
[1682] | 514 | SUBROUTINE prolong_fast( p, temp ) |
---|
[1575] | 515 | |
---|
[1682] | 516 | |
---|
[1575] | 517 | USE control_parameters, & |
---|
| 518 | ONLY: bc_lr_cyc, bc_ns_cyc, grid_level, ibc_p_b, ibc_p_t, inflow_l,& |
---|
[1762] | 519 | inflow_n, inflow_r, inflow_s, nest_bound_l, nest_bound_n, & |
---|
| 520 | nest_bound_r, nest_bound_s, outflow_l, outflow_n, & |
---|
[1575] | 521 | outflow_r, outflow_s |
---|
| 522 | |
---|
| 523 | USE indices, & |
---|
| 524 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
| 525 | |
---|
| 526 | IMPLICIT NONE |
---|
| 527 | |
---|
[1898] | 528 | INTEGER(iwp) :: i !< index variable along x on coarser grid level |
---|
| 529 | INTEGER(iwp) :: j !< index variable along y on coarser grid level |
---|
| 530 | INTEGER(iwp) :: k !< index variable along z on coarser grid level |
---|
| 531 | INTEGER(iwp) :: l !< index indicating finer grid level |
---|
| 532 | INTEGER(iwp) :: kp1 !< index variable along z |
---|
| 533 | INTEGER(iwp) :: ke !< index for prolog even |
---|
| 534 | INTEGER(iwp) :: ko !< index for prolog odd |
---|
[1575] | 535 | |
---|
| 536 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level-1)+1, & |
---|
| 537 | nys_mg(grid_level-1)-1:nyn_mg(grid_level-1)+1, & |
---|
[1898] | 538 | nxl_mg(grid_level-1)-1:nxr_mg(grid_level-1)+1 ) :: & |
---|
| 539 | p !< perturbation pressure on coarser grid level |
---|
[1575] | 540 | |
---|
| 541 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
| 542 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
[1898] | 543 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
| 544 | temp !< perturbation pressure on finer grid level |
---|
[1575] | 545 | |
---|
| 546 | |
---|
| 547 | CALL cpu_log( log_point_s(55), 'prolong', 'start' ) |
---|
| 548 | |
---|
| 549 | ! |
---|
| 550 | !-- First, store elements of the coarser grid on the next finer grid |
---|
| 551 | l = grid_level |
---|
| 552 | ind_even_odd = even_odd_level(grid_level-1) |
---|
| 553 | |
---|
| 554 | !$OMP PARALLEL PRIVATE (i,j,k,kp1,ke,ko) |
---|
| 555 | !$OMP DO |
---|
| 556 | DO i = nxl_mg(l-1), nxr_mg(l-1) |
---|
| 557 | DO j = nys_mg(l-1), nyn_mg(l-1) |
---|
| 558 | |
---|
| 559 | !DIR$ IVDEP |
---|
| 560 | DO k = ind_even_odd+1, nzt_mg(l-1) |
---|
| 561 | kp1 = k - ind_even_odd |
---|
| 562 | ke = 2 * ( k-ind_even_odd - 1 ) + 1 |
---|
| 563 | ko = 2 * k - 1 |
---|
| 564 | ! |
---|
| 565 | !-- Points of the coarse grid are directly stored on the next finer |
---|
| 566 | !-- grid |
---|
| 567 | temp(ko,2*j,2*i) = p(k,j,i) |
---|
| 568 | ! |
---|
| 569 | !-- Points between two coarse-grid points |
---|
| 570 | temp(ko,2*j,2*i+1) = 0.5_wp * ( p(k,j,i) + p(k,j,i+1) ) |
---|
| 571 | temp(ko,2*j+1,2*i) = 0.5_wp * ( p(k,j,i) + p(k,j+1,i) ) |
---|
| 572 | temp(ke,2*j,2*i) = 0.5_wp * ( p(k,j,i) + p(kp1,j,i) ) |
---|
| 573 | ! |
---|
| 574 | !-- Points in the center of the planes stretched by four points |
---|
| 575 | !-- of the coarse grid cube |
---|
| 576 | temp(ko,2*j+1,2*i+1) = 0.25_wp * ( p(k,j,i) + p(k,j,i+1) + & |
---|
| 577 | p(k,j+1,i) + p(k,j+1,i+1) ) |
---|
| 578 | temp(ke,2*j,2*i+1) = 0.25_wp * ( p(k,j,i) + p(k,j,i+1) + & |
---|
| 579 | p(kp1,j,i) + p(kp1,j,i+1) ) |
---|
| 580 | temp(ke,2*j+1,2*i) = 0.25_wp * ( p(k,j,i) + p(k,j+1,i) + & |
---|
| 581 | p(kp1,j,i) + p(kp1,j+1,i) ) |
---|
| 582 | ! |
---|
| 583 | !-- Points in the middle of coarse grid cube |
---|
| 584 | temp(ke,2*j+1,2*i+1) = 0.125_wp * & |
---|
| 585 | ( p(k,j,i) + p(k,j,i+1) + & |
---|
| 586 | p(k,j+1,i) + p(k,j+1,i+1) + & |
---|
| 587 | p(kp1,j,i) + p(kp1,j,i+1) + & |
---|
| 588 | p(kp1,j+1,i) + p(kp1,j+1,i+1) ) |
---|
[1898] | 589 | |
---|
[1575] | 590 | ENDDO |
---|
| 591 | |
---|
| 592 | !DIR$ IVDEP |
---|
| 593 | DO k = nzb+1, ind_even_odd |
---|
| 594 | kp1 = k + ind_even_odd + 1 |
---|
| 595 | ke = 2 * k |
---|
| 596 | ko = 2 * ( k + ind_even_odd ) |
---|
| 597 | ! |
---|
| 598 | !-- Points of the coarse grid are directly stored on the next finer |
---|
| 599 | !-- grid |
---|
| 600 | temp(ko,2*j,2*i) = p(k,j,i) |
---|
| 601 | ! |
---|
| 602 | !-- Points between two coarse-grid points |
---|
| 603 | temp(ko,2*j,2*i+1) = 0.5_wp * ( p(k,j,i) + p(k,j,i+1) ) |
---|
| 604 | temp(ko,2*j+1,2*i) = 0.5_wp * ( p(k,j,i) + p(k,j+1,i) ) |
---|
| 605 | temp(ke,2*j,2*i) = 0.5_wp * ( p(k,j,i) + p(kp1,j,i) ) |
---|
| 606 | ! |
---|
| 607 | !-- Points in the center of the planes stretched by four points |
---|
| 608 | !-- of the coarse grid cube |
---|
| 609 | temp(ko,2*j+1,2*i+1) = 0.25_wp * ( p(k,j,i) + p(k,j,i+1) + & |
---|
| 610 | p(k,j+1,i) + p(k,j+1,i+1) ) |
---|
| 611 | temp(ke,2*j,2*i+1) = 0.25_wp * ( p(k,j,i) + p(k,j,i+1) + & |
---|
| 612 | p(kp1,j,i) + p(kp1,j,i+1) ) |
---|
| 613 | temp(ke,2*j+1,2*i) = 0.25_wp * ( p(k,j,i) + p(k,j+1,i) + & |
---|
| 614 | p(kp1,j,i) + p(kp1,j+1,i) ) |
---|
| 615 | ! |
---|
| 616 | !-- Points in the middle of coarse grid cube |
---|
| 617 | temp(ke,2*j+1,2*i+1) = 0.125_wp * & |
---|
| 618 | ( p(k,j,i) + p(k,j,i+1) + & |
---|
| 619 | p(k,j+1,i) + p(k,j+1,i+1) + & |
---|
| 620 | p(kp1,j,i) + p(kp1,j,i+1) + & |
---|
| 621 | p(kp1,j+1,i) + p(kp1,j+1,i+1) ) |
---|
[1898] | 622 | |
---|
[1575] | 623 | ENDDO |
---|
| 624 | |
---|
| 625 | ENDDO |
---|
| 626 | ENDDO |
---|
| 627 | !$OMP END PARALLEL |
---|
| 628 | |
---|
| 629 | ind_even_odd = even_odd_level(grid_level) |
---|
| 630 | ! |
---|
| 631 | !-- Horizontal boundary conditions |
---|
| 632 | CALL exchange_horiz( temp, 1) |
---|
| 633 | |
---|
| 634 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
[1762] | 635 | IF ( inflow_l .OR. outflow_l .OR. nest_bound_l ) THEN |
---|
| 636 | temp(:,:,nxl_mg(l)-1) = temp(:,:,nxl_mg(l)) |
---|
| 637 | ENDIF |
---|
| 638 | IF ( inflow_r .OR. outflow_r .OR. nest_bound_r ) THEN |
---|
| 639 | temp(:,:,nxr_mg(l)+1) = temp(:,:,nxr_mg(l)) |
---|
| 640 | ENDIF |
---|
[1575] | 641 | ENDIF |
---|
| 642 | |
---|
| 643 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
[1762] | 644 | IF ( inflow_n .OR. outflow_n .OR. nest_bound_n ) THEN |
---|
| 645 | temp(:,nyn_mg(l)+1,:) = temp(:,nyn_mg(l),:) |
---|
| 646 | ENDIF |
---|
| 647 | IF ( inflow_s .OR. outflow_s .OR. nest_bound_s ) THEN |
---|
| 648 | temp(:,nys_mg(l)-1,:) = temp(:,nys_mg(l),:) |
---|
| 649 | ENDIF |
---|
[1575] | 650 | ENDIF |
---|
| 651 | |
---|
| 652 | ! |
---|
| 653 | !-- Bottom and top boundary conditions |
---|
| 654 | IF ( ibc_p_b == 1 ) THEN |
---|
[1898] | 655 | ! |
---|
| 656 | !-- equivalent to temp(nzb,:,: ) = temp(nzb+1,:,:) |
---|
[1575] | 657 | temp(nzb,:,: ) = temp(ind_even_odd+1,:,:) |
---|
| 658 | ELSE |
---|
| 659 | temp(nzb,:,: ) = 0.0_wp |
---|
| 660 | ENDIF |
---|
| 661 | |
---|
| 662 | IF ( ibc_p_t == 1 ) THEN |
---|
[1898] | 663 | ! |
---|
| 664 | !-- equivalent to temp(nzt_mg(l)+1,:,: ) = temp(nzt_mg(l),:,:) |
---|
[1575] | 665 | temp(nzt_mg(l)+1,:,: ) = temp(ind_even_odd,:,:) |
---|
| 666 | ELSE |
---|
| 667 | temp(nzt_mg(l)+1,:,: ) = 0.0_wp |
---|
| 668 | ENDIF |
---|
| 669 | |
---|
| 670 | CALL cpu_log( log_point_s(55), 'prolong', 'stop' ) |
---|
| 671 | |
---|
| 672 | END SUBROUTINE prolong_fast |
---|
| 673 | |
---|
| 674 | |
---|
| 675 | !------------------------------------------------------------------------------! |
---|
| 676 | ! Description: |
---|
| 677 | ! ------------ |
---|
[1682] | 678 | !> Relaxation method for the multigrid scheme. A Gauss-Seidel iteration with |
---|
| 679 | !> 3D-Red-Black decomposition (GS-RB) is used. |
---|
[1575] | 680 | !------------------------------------------------------------------------------! |
---|
[1682] | 681 | SUBROUTINE redblack_fast( f_mg, p_mg ) |
---|
[1575] | 682 | |
---|
[1682] | 683 | |
---|
[1575] | 684 | USE arrays_3d, & |
---|
| 685 | ONLY: f1_mg, f2_mg, f3_mg |
---|
| 686 | |
---|
| 687 | USE control_parameters, & |
---|
| 688 | ONLY: bc_lr_cyc, bc_ns_cyc, grid_level, ibc_p_b, ibc_p_t, inflow_l,& |
---|
[1898] | 689 | inflow_n, inflow_r, inflow_s, nest_bound_l, nest_bound_n, & |
---|
| 690 | nest_bound_r, nest_bound_s, ngsrb, outflow_l, outflow_n, & |
---|
| 691 | outflow_r, outflow_s |
---|
[1575] | 692 | |
---|
| 693 | USE grid_variables, & |
---|
| 694 | ONLY: ddx2_mg, ddy2_mg |
---|
| 695 | |
---|
| 696 | USE indices, & |
---|
[1898] | 697 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
[1575] | 698 | |
---|
| 699 | IMPLICIT NONE |
---|
| 700 | |
---|
[1898] | 701 | INTEGER(iwp) :: color !< grid point color, either red or black |
---|
| 702 | INTEGER(iwp) :: i !< index variable along x |
---|
| 703 | INTEGER(iwp) :: ic !< index variable along x |
---|
| 704 | INTEGER(iwp) :: j !< index variable along y |
---|
| 705 | INTEGER(iwp) :: jc !< index variable along y |
---|
| 706 | INTEGER(iwp) :: jj !< index variable along y |
---|
| 707 | INTEGER(iwp) :: k !< index variable along z |
---|
| 708 | INTEGER(iwp) :: l !< grid level |
---|
| 709 | INTEGER(iwp) :: n !< loop variable GauÃ-Seidel iterations |
---|
| 710 | INTEGER(iwp) :: km1 !< index variable (k-1) |
---|
| 711 | INTEGER(iwp) :: kp1 !< index variable (k+1) |
---|
[1575] | 712 | |
---|
[1898] | 713 | LOGICAL :: unroll !< flag indicating whether loop unrolling is possible |
---|
[1575] | 714 | |
---|
| 715 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
| 716 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
[1898] | 717 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
| 718 | f_mg !< residual of perturbation pressure |
---|
[1575] | 719 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
| 720 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
[1898] | 721 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
| 722 | p_mg !< perturbation pressure |
---|
[1575] | 723 | |
---|
| 724 | l = grid_level |
---|
| 725 | |
---|
[1898] | 726 | unroll = ( MOD( nyn_mg(l)-nys_mg(l)+1, 4 ) == 0 .AND. & |
---|
[1575] | 727 | MOD( nxr_mg(l)-nxl_mg(l)+1, 2 ) == 0 ) |
---|
| 728 | |
---|
| 729 | DO n = 1, ngsrb |
---|
| 730 | |
---|
| 731 | DO color = 1, 2 |
---|
| 732 | |
---|
[1898] | 733 | IF ( .NOT. unroll ) THEN |
---|
[1575] | 734 | |
---|
[1898] | 735 | CALL cpu_log( log_point_s(36), 'redblack_no_unroll_f', 'start' ) |
---|
[1575] | 736 | ! |
---|
[1898] | 737 | !-- Without unrolling of loops, no cache optimization |
---|
| 738 | !$OMP PARALLEL PRIVATE (i,j,k,km1,kp1) |
---|
| 739 | !$OMP DO |
---|
| 740 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
| 741 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
| 742 | !DIR$ IVDEP |
---|
| 743 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 744 | km1 = k-ind_even_odd-1 |
---|
| 745 | kp1 = k-ind_even_odd |
---|
| 746 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
| 747 | ddx2_mg(l) * & |
---|
| 748 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
[1575] | 749 | + ddy2_mg(l) * & |
---|
[1898] | 750 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
[1575] | 751 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
| 752 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
[1898] | 753 | - f_mg(k,j,i) ) |
---|
[1575] | 754 | ENDDO |
---|
| 755 | ENDDO |
---|
[1898] | 756 | ENDDO |
---|
[1575] | 757 | |
---|
[1898] | 758 | !$OMP DO |
---|
| 759 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
| 760 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
| 761 | !DIR$ IVDEP |
---|
| 762 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 763 | km1 = k-ind_even_odd-1 |
---|
| 764 | kp1 = k-ind_even_odd |
---|
| 765 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
| 766 | ddx2_mg(l) * & |
---|
| 767 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
[1575] | 768 | + ddy2_mg(l) * & |
---|
| 769 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
| 770 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
| 771 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
[1898] | 772 | - f_mg(k,j,i) ) |
---|
[1575] | 773 | ENDDO |
---|
| 774 | ENDDO |
---|
[1898] | 775 | ENDDO |
---|
[1575] | 776 | |
---|
[1898] | 777 | !$OMP DO |
---|
| 778 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
| 779 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
| 780 | !DIR$ IVDEP |
---|
| 781 | DO k = nzb+1, ind_even_odd |
---|
| 782 | km1 = k+ind_even_odd |
---|
| 783 | kp1 = k+ind_even_odd+1 |
---|
| 784 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
| 785 | ddx2_mg(l) * & |
---|
[1575] | 786 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
| 787 | + ddy2_mg(l) * & |
---|
| 788 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
| 789 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
| 790 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
[1898] | 791 | - f_mg(k,j,i) ) |
---|
[1575] | 792 | ENDDO |
---|
| 793 | ENDDO |
---|
[1898] | 794 | ENDDO |
---|
[1575] | 795 | |
---|
[1898] | 796 | !$OMP DO |
---|
| 797 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
| 798 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
| 799 | !DIR$ IVDEP |
---|
| 800 | DO k = nzb+1, ind_even_odd |
---|
| 801 | km1 = k+ind_even_odd |
---|
| 802 | kp1 = k+ind_even_odd+1 |
---|
| 803 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
| 804 | ddx2_mg(l) * & |
---|
[1575] | 805 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
| 806 | + ddy2_mg(l) * & |
---|
| 807 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
| 808 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
| 809 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
[1898] | 810 | - f_mg(k,j,i) ) |
---|
[1575] | 811 | ENDDO |
---|
| 812 | ENDDO |
---|
[1898] | 813 | ENDDO |
---|
| 814 | !$OMP END PARALLEL |
---|
[1575] | 815 | |
---|
[1898] | 816 | CALL cpu_log( log_point_s(36), 'redblack_no_unroll_f', 'stop' ) |
---|
[1575] | 817 | |
---|
[1898] | 818 | ELSE |
---|
[1575] | 819 | ! |
---|
[1898] | 820 | !-- Loop unrolling along y, only one i loop for better cache use |
---|
| 821 | CALL cpu_log( log_point_s(38), 'redblack_unroll_f', 'start' ) |
---|
[1575] | 822 | |
---|
[1898] | 823 | !$OMP PARALLEL PRIVATE (i,j,k,ic,jc,km1,kp1,jj) |
---|
| 824 | !$OMP DO |
---|
| 825 | DO ic = nxl_mg(l), nxr_mg(l), 2 |
---|
| 826 | DO jc = nys_mg(l), nyn_mg(l), 4 |
---|
| 827 | i = ic |
---|
| 828 | jj = jc+2-color |
---|
| 829 | !DIR$ IVDEP |
---|
| 830 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 831 | km1 = k-ind_even_odd-1 |
---|
| 832 | kp1 = k-ind_even_odd |
---|
| 833 | j = jj |
---|
| 834 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
| 835 | ddx2_mg(l) * & |
---|
[1575] | 836 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
| 837 | + ddy2_mg(l) * & |
---|
| 838 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
| 839 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
| 840 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
[1898] | 841 | - f_mg(k,j,i) ) |
---|
| 842 | j = jj+2 |
---|
| 843 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
| 844 | ddx2_mg(l) * & |
---|
[1575] | 845 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
| 846 | + ddy2_mg(l) * & |
---|
| 847 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
| 848 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
| 849 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
[1898] | 850 | - f_mg(k,j,i) ) |
---|
| 851 | ENDDO |
---|
[1575] | 852 | |
---|
[1898] | 853 | i = ic+1 |
---|
| 854 | jj = jc+color-1 |
---|
| 855 | !DIR$ IVDEP |
---|
| 856 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 857 | km1 = k-ind_even_odd-1 |
---|
| 858 | kp1 = k-ind_even_odd |
---|
| 859 | j = jj |
---|
| 860 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
| 861 | ddx2_mg(l) * & |
---|
| 862 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
[1575] | 863 | + ddy2_mg(l) * & |
---|
| 864 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
| 865 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
| 866 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
[1898] | 867 | - f_mg(k,j,i) ) |
---|
| 868 | j = jj+2 |
---|
| 869 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
| 870 | ddx2_mg(l) * & |
---|
| 871 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
[1575] | 872 | + ddy2_mg(l) * & |
---|
[1898] | 873 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
[1575] | 874 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
| 875 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
[1898] | 876 | - f_mg(k,j,i) ) |
---|
| 877 | ENDDO |
---|
[1575] | 878 | |
---|
[1898] | 879 | i = ic |
---|
| 880 | jj = jc+color-1 |
---|
| 881 | !DIR$ IVDEP |
---|
| 882 | DO k = nzb+1, ind_even_odd |
---|
| 883 | km1 = k+ind_even_odd |
---|
| 884 | kp1 = k+ind_even_odd+1 |
---|
| 885 | j = jj |
---|
| 886 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
| 887 | ddx2_mg(l) * & |
---|
| 888 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
[1575] | 889 | + ddy2_mg(l) * & |
---|
[1898] | 890 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
[1575] | 891 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
| 892 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
[1898] | 893 | - f_mg(k,j,i) ) |
---|
| 894 | j = jj+2 |
---|
| 895 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
| 896 | ddx2_mg(l) * & |
---|
[1575] | 897 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
| 898 | + ddy2_mg(l) * & |
---|
| 899 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
| 900 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
| 901 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
[1898] | 902 | - f_mg(k,j,i) ) |
---|
| 903 | ENDDO |
---|
[1575] | 904 | |
---|
[1898] | 905 | i = ic+1 |
---|
| 906 | jj = jc+2-color |
---|
| 907 | !DIR$ IVDEP |
---|
| 908 | DO k = nzb+1, ind_even_odd |
---|
| 909 | km1 = k+ind_even_odd |
---|
| 910 | kp1 = k+ind_even_odd+1 |
---|
| 911 | j = jj |
---|
| 912 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
| 913 | ddx2_mg(l) * & |
---|
| 914 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
[1575] | 915 | + ddy2_mg(l) * & |
---|
| 916 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
| 917 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
| 918 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
[1898] | 919 | - f_mg(k,j,i) ) |
---|
| 920 | j = jj+2 |
---|
| 921 | p_mg(k,j,i) = 1.0_wp / f1_mg_b(k,l) * ( & |
---|
| 922 | ddx2_mg(l) * & |
---|
[1575] | 923 | ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
| 924 | + ddy2_mg(l) * & |
---|
[1898] | 925 | ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
[1575] | 926 | + f2_mg_b(k,l) * p_mg(kp1,j,i) & |
---|
| 927 | + f3_mg_b(k,l) * p_mg(km1,j,i) & |
---|
[1898] | 928 | - f_mg(k,j,i) ) |
---|
[1575] | 929 | ENDDO |
---|
| 930 | |
---|
| 931 | ENDDO |
---|
[1898] | 932 | ENDDO |
---|
| 933 | !$OMP END PARALLEL |
---|
[1575] | 934 | |
---|
[1898] | 935 | CALL cpu_log( log_point_s(38), 'redblack_unroll_f', 'stop' ) |
---|
[1575] | 936 | |
---|
| 937 | ENDIF |
---|
| 938 | |
---|
| 939 | ! |
---|
| 940 | !-- Horizontal boundary conditions |
---|
| 941 | CALL special_exchange_horiz( p_mg, color ) |
---|
| 942 | |
---|
[1762] | 943 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
| 944 | IF ( inflow_l .OR. outflow_l .OR. nest_bound_l ) THEN |
---|
[1575] | 945 | p_mg(:,:,nxl_mg(l)-1) = p_mg(:,:,nxl_mg(l)) |
---|
| 946 | ENDIF |
---|
[1762] | 947 | IF ( inflow_r .OR. outflow_r .OR. nest_bound_r ) THEN |
---|
[1575] | 948 | p_mg(:,:,nxr_mg(l)+1) = p_mg(:,:,nxr_mg(l)) |
---|
| 949 | ENDIF |
---|
| 950 | ENDIF |
---|
| 951 | |
---|
| 952 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
[1762] | 953 | IF ( inflow_n .OR. outflow_n .OR. nest_bound_n ) THEN |
---|
[1575] | 954 | p_mg(:,nyn_mg(l)+1,:) = p_mg(:,nyn_mg(l),:) |
---|
| 955 | ENDIF |
---|
[1762] | 956 | IF ( inflow_s .OR. outflow_s .OR. nest_bound_s ) THEN |
---|
[1575] | 957 | p_mg(:,nys_mg(l)-1,:) = p_mg(:,nys_mg(l),:) |
---|
| 958 | ENDIF |
---|
| 959 | ENDIF |
---|
| 960 | |
---|
| 961 | ! |
---|
| 962 | !-- Bottom and top boundary conditions |
---|
| 963 | IF ( ibc_p_b == 1 ) THEN |
---|
[1898] | 964 | ! |
---|
| 965 | !-- equivalent to p_mg(nzb,:,: ) = p_mg(nzb+1,:,:) |
---|
[1575] | 966 | p_mg(nzb,:,: ) = p_mg(ind_even_odd+1,:,:) |
---|
| 967 | ELSE |
---|
| 968 | p_mg(nzb,:,: ) = 0.0_wp |
---|
| 969 | ENDIF |
---|
| 970 | |
---|
| 971 | IF ( ibc_p_t == 1 ) THEN |
---|
[1898] | 972 | ! |
---|
| 973 | !-- equivalent to p_mg(nzt_mg(l)+1,:,: ) = p_mg(nzt_mg(l),:,:) |
---|
[1575] | 974 | p_mg(nzt_mg(l)+1,:,: ) = p_mg(ind_even_odd,:,:) |
---|
| 975 | ELSE |
---|
| 976 | p_mg(nzt_mg(l)+1,:,: ) = 0.0_wp |
---|
| 977 | ENDIF |
---|
| 978 | |
---|
| 979 | ENDDO |
---|
[1898] | 980 | |
---|
[1575] | 981 | ENDDO |
---|
| 982 | |
---|
| 983 | END SUBROUTINE redblack_fast |
---|
| 984 | |
---|
| 985 | |
---|
| 986 | !------------------------------------------------------------------------------! |
---|
| 987 | ! Description: |
---|
| 988 | ! ------------ |
---|
[1682] | 989 | !> Sort k-Dimension from sequential into blocks of even and odd. |
---|
| 990 | !> This is required to vectorize the red-black subroutine. |
---|
| 991 | !> Version for 3D-REAL arrays |
---|
[1575] | 992 | !------------------------------------------------------------------------------! |
---|
[1682] | 993 | SUBROUTINE sort_k_to_even_odd_blocks( p_mg , glevel ) |
---|
[1575] | 994 | |
---|
[1682] | 995 | |
---|
[1575] | 996 | USE control_parameters, & |
---|
| 997 | ONLY: grid_level |
---|
| 998 | |
---|
| 999 | USE indices, & |
---|
| 1000 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
| 1001 | |
---|
| 1002 | IMPLICIT NONE |
---|
| 1003 | |
---|
[1898] | 1004 | INTEGER(iwp), INTENT(IN) :: glevel !< grid level |
---|
[1575] | 1005 | |
---|
| 1006 | REAL(wp), DIMENSION(nzb:nzt_mg(glevel)+1, & |
---|
| 1007 | nys_mg(glevel)-1:nyn_mg(glevel)+1, & |
---|
[1898] | 1008 | nxl_mg(glevel)-1:nxr_mg(glevel)+1) :: & |
---|
| 1009 | p_mg !< array to be sorted |
---|
[1575] | 1010 | ! |
---|
| 1011 | !-- Local variables |
---|
[1898] | 1012 | INTEGER(iwp) :: i !< index variable along x |
---|
| 1013 | INTEGER(iwp) :: j !< index variable along y |
---|
| 1014 | INTEGER(iwp) :: k !< index variable along z |
---|
| 1015 | INTEGER(iwp) :: l !< grid level |
---|
| 1016 | INTEGER(iwp) :: ind !< index variable along z |
---|
| 1017 | REAL(wp), DIMENSION(nzb:nzt_mg(glevel)+1) :: tmp !< odd-even sorted temporary array |
---|
[1575] | 1018 | |
---|
| 1019 | |
---|
| 1020 | CALL cpu_log( log_point_s(52), 'sort_k_to_even_odd', 'start' ) |
---|
| 1021 | |
---|
| 1022 | l = glevel |
---|
| 1023 | ind_even_odd = even_odd_level(l) |
---|
| 1024 | |
---|
| 1025 | !$OMP PARALLEL PRIVATE (i,j,k,ind,tmp) |
---|
| 1026 | !$OMP DO |
---|
| 1027 | DO i = nxl_mg(l)-1, nxr_mg(l)+1 |
---|
| 1028 | DO j = nys_mg(l)-1, nyn_mg(l)+1 |
---|
| 1029 | |
---|
| 1030 | ! |
---|
| 1031 | !-- Sort the data with even k index |
---|
| 1032 | ind = nzb-1 |
---|
| 1033 | DO k = nzb, nzt_mg(l), 2 |
---|
| 1034 | ind = ind + 1 |
---|
| 1035 | tmp(ind) = p_mg(k,j,i) |
---|
| 1036 | ENDDO |
---|
| 1037 | ! |
---|
| 1038 | !-- Sort the data with odd k index |
---|
| 1039 | DO k = nzb+1, nzt_mg(l)+1, 2 |
---|
| 1040 | ind = ind + 1 |
---|
| 1041 | tmp(ind) = p_mg(k,j,i) |
---|
| 1042 | ENDDO |
---|
| 1043 | |
---|
| 1044 | p_mg(:,j,i) = tmp |
---|
| 1045 | |
---|
| 1046 | ENDDO |
---|
| 1047 | ENDDO |
---|
| 1048 | !$OMP END PARALLEL |
---|
| 1049 | |
---|
| 1050 | CALL cpu_log( log_point_s(52), 'sort_k_to_even_odd', 'stop' ) |
---|
| 1051 | |
---|
| 1052 | END SUBROUTINE sort_k_to_even_odd_blocks |
---|
| 1053 | |
---|
| 1054 | |
---|
| 1055 | !------------------------------------------------------------------------------! |
---|
| 1056 | ! Description: |
---|
| 1057 | ! ------------ |
---|
[1682] | 1058 | !> Sort k-Dimension from sequential into blocks of even and odd. |
---|
| 1059 | !> This is required to vectorize the red-black subroutine. |
---|
| 1060 | !> Version for 1D-REAL arrays |
---|
[1575] | 1061 | !------------------------------------------------------------------------------! |
---|
[1682] | 1062 | SUBROUTINE sort_k_to_even_odd_blocks_1d( f_mg, f_mg_b, glevel ) |
---|
[1575] | 1063 | |
---|
[1682] | 1064 | |
---|
[1575] | 1065 | USE indices, & |
---|
| 1066 | ONLY: nzb, nzt_mg |
---|
| 1067 | |
---|
| 1068 | IMPLICIT NONE |
---|
| 1069 | |
---|
[1898] | 1070 | INTEGER(iwp), INTENT(IN) :: glevel !< grid level |
---|
[1575] | 1071 | |
---|
[1898] | 1072 | REAL(wp), DIMENSION(nzb+1:nzt_mg(glevel)) :: f_mg !< 1D input array |
---|
| 1073 | REAL(wp), DIMENSION(nzb:nzt_mg(glevel)+1) :: f_mg_b !< 1D output array |
---|
[1575] | 1074 | |
---|
| 1075 | ! |
---|
| 1076 | !-- Local variables |
---|
[1898] | 1077 | INTEGER(iwp) :: ind !< index variable along z |
---|
| 1078 | INTEGER(iwp) :: k !< index variable along z |
---|
[1575] | 1079 | |
---|
| 1080 | |
---|
| 1081 | ind = nzb - 1 |
---|
| 1082 | ! |
---|
| 1083 | !-- Sort the data with even k index |
---|
| 1084 | DO k = nzb, nzt_mg(glevel), 2 |
---|
| 1085 | ind = ind + 1 |
---|
| 1086 | IF ( k >= nzb+1 .AND. k <= nzt_mg(glevel) ) THEN |
---|
| 1087 | f_mg_b(ind) = f_mg(k) |
---|
| 1088 | ENDIF |
---|
| 1089 | ENDDO |
---|
| 1090 | ! |
---|
| 1091 | !-- Sort the data with odd k index |
---|
| 1092 | DO k = nzb+1, nzt_mg(glevel)+1, 2 |
---|
| 1093 | ind = ind + 1 |
---|
| 1094 | IF( k >= nzb+1 .AND. k <= nzt_mg(glevel) ) THEN |
---|
| 1095 | f_mg_b(ind) = f_mg(k) |
---|
| 1096 | ENDIF |
---|
| 1097 | ENDDO |
---|
| 1098 | |
---|
| 1099 | END SUBROUTINE sort_k_to_even_odd_blocks_1d |
---|
| 1100 | |
---|
| 1101 | |
---|
| 1102 | !------------------------------------------------------------------------------! |
---|
| 1103 | ! Description: |
---|
| 1104 | ! ------------ |
---|
[1682] | 1105 | !> Sort k-Dimension from sequential into blocks of even and odd. |
---|
| 1106 | !> This is required to vectorize the red-black subroutine. |
---|
| 1107 | !> Version for 2D-INTEGER arrays |
---|
[1575] | 1108 | !------------------------------------------------------------------------------! |
---|
[1682] | 1109 | SUBROUTINE sort_k_to_even_odd_blocks_int( i_mg , glevel ) |
---|
[1575] | 1110 | |
---|
[1682] | 1111 | |
---|
[1575] | 1112 | USE control_parameters, & |
---|
| 1113 | ONLY: grid_level |
---|
| 1114 | |
---|
| 1115 | USE indices, & |
---|
| 1116 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
| 1117 | |
---|
| 1118 | IMPLICIT NONE |
---|
| 1119 | |
---|
[1898] | 1120 | INTEGER(iwp), INTENT(IN) :: glevel !< grid level |
---|
[1575] | 1121 | |
---|
| 1122 | INTEGER(iwp), DIMENSION(nzb:nzt_mg(glevel)+1, & |
---|
| 1123 | nys_mg(glevel)-1:nyn_mg(glevel)+1, & |
---|
[1898] | 1124 | nxl_mg(glevel)-1:nxr_mg(glevel)+1) :: & |
---|
| 1125 | i_mg !< array to be sorted |
---|
[1575] | 1126 | ! |
---|
| 1127 | !-- Local variables |
---|
[1898] | 1128 | INTEGER(iwp) :: i !< index variabel along x |
---|
| 1129 | INTEGER(iwp) :: j !< index variable along y |
---|
| 1130 | INTEGER(iwp) :: k !< index variable along z |
---|
| 1131 | INTEGER(iwp) :: l !< grid level |
---|
| 1132 | INTEGER(iwp) :: ind !< index variable along z |
---|
| 1133 | INTEGER(iwp),DIMENSION(nzb:nzt_mg(glevel)+1) :: tmp !< temporary odd-even sorted array |
---|
[1575] | 1134 | |
---|
| 1135 | |
---|
| 1136 | CALL cpu_log( log_point_s(52), 'sort_k_to_even_odd', 'start' ) |
---|
| 1137 | |
---|
| 1138 | l = glevel |
---|
| 1139 | ind_even_odd = even_odd_level(l) |
---|
| 1140 | |
---|
| 1141 | DO i = nxl_mg(l)-1, nxr_mg(l)+1 |
---|
| 1142 | DO j = nys_mg(l)-1, nyn_mg(l)+1 |
---|
| 1143 | |
---|
| 1144 | ! |
---|
| 1145 | !-- Sort the data with even k index |
---|
| 1146 | ind = nzb-1 |
---|
| 1147 | DO k = nzb, nzt_mg(l), 2 |
---|
| 1148 | ind = ind + 1 |
---|
| 1149 | tmp(ind) = i_mg(k,j,i) |
---|
| 1150 | ENDDO |
---|
| 1151 | ! |
---|
| 1152 | !++ ATTENTION: Check reason for this error. Remove it or replace WRITE |
---|
| 1153 | !++ by PALM message |
---|
[1609] | 1154 | #if defined ( __parallel ) |
---|
[1575] | 1155 | IF ( ind /= ind_even_odd ) THEN |
---|
| 1156 | WRITE (0,*) 'ERROR ==> illegal ind_even_odd ',ind,ind_even_odd,l |
---|
| 1157 | CALL MPI_ABORT(MPI_COMM_WORLD,i,j) |
---|
| 1158 | ENDIF |
---|
[1609] | 1159 | #endif |
---|
[1575] | 1160 | ! |
---|
| 1161 | !-- Sort the data with odd k index |
---|
| 1162 | DO k = nzb+1, nzt_mg(l)+1, 2 |
---|
| 1163 | ind = ind + 1 |
---|
| 1164 | tmp(ind) = i_mg(k,j,i) |
---|
| 1165 | ENDDO |
---|
| 1166 | |
---|
| 1167 | i_mg(:,j,i) = tmp |
---|
| 1168 | |
---|
| 1169 | ENDDO |
---|
| 1170 | ENDDO |
---|
| 1171 | |
---|
| 1172 | CALL cpu_log( log_point_s(52), 'sort_k_to_even_odd', 'stop' ) |
---|
| 1173 | |
---|
| 1174 | END SUBROUTINE sort_k_to_even_odd_blocks_int |
---|
| 1175 | |
---|
| 1176 | |
---|
| 1177 | !------------------------------------------------------------------------------! |
---|
| 1178 | ! Description: |
---|
| 1179 | ! ------------ |
---|
[1682] | 1180 | !> Sort k-dimension from blocks of even and odd into sequential |
---|
[1575] | 1181 | !------------------------------------------------------------------------------! |
---|
[1682] | 1182 | SUBROUTINE sort_k_to_sequential( p_mg ) |
---|
[1575] | 1183 | |
---|
[1682] | 1184 | |
---|
[1575] | 1185 | USE control_parameters, & |
---|
| 1186 | ONLY: grid_level |
---|
| 1187 | |
---|
| 1188 | USE indices, & |
---|
| 1189 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
| 1190 | |
---|
| 1191 | IMPLICIT NONE |
---|
| 1192 | |
---|
| 1193 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
| 1194 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
[1898] | 1195 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
| 1196 | p_mg !< array to be sorted |
---|
[1575] | 1197 | ! |
---|
| 1198 | !-- Local variables |
---|
[1898] | 1199 | INTEGER(iwp) :: i !< index variable along x |
---|
| 1200 | INTEGER(iwp) :: j !< index variable along y |
---|
| 1201 | INTEGER(iwp) :: k !< index variable along z |
---|
| 1202 | INTEGER(iwp) :: l !< grid level |
---|
| 1203 | INTEGER(iwp) :: ind !< index variable along z |
---|
[1575] | 1204 | |
---|
| 1205 | REAL(wp),DIMENSION(nzb:nzt_mg(grid_level)+1) :: tmp |
---|
| 1206 | |
---|
| 1207 | |
---|
| 1208 | l = grid_level |
---|
| 1209 | |
---|
| 1210 | !$OMP PARALLEL PRIVATE (i,j,k,ind,tmp) |
---|
| 1211 | !$OMP DO |
---|
| 1212 | DO i = nxl_mg(l)-1, nxr_mg(l)+1 |
---|
| 1213 | DO j = nys_mg(l)-1, nyn_mg(l)+1 |
---|
| 1214 | |
---|
| 1215 | ind = nzb - 1 |
---|
| 1216 | tmp = p_mg(:,j,i) |
---|
| 1217 | DO k = nzb, nzt_mg(l), 2 |
---|
| 1218 | ind = ind + 1 |
---|
| 1219 | p_mg(k,j,i) = tmp(ind) |
---|
| 1220 | ENDDO |
---|
| 1221 | |
---|
| 1222 | DO k = nzb+1, nzt_mg(l)+1, 2 |
---|
| 1223 | ind = ind + 1 |
---|
| 1224 | p_mg(k,j,i) = tmp(ind) |
---|
| 1225 | ENDDO |
---|
| 1226 | ENDDO |
---|
| 1227 | ENDDO |
---|
| 1228 | !$OMP END PARALLEL |
---|
| 1229 | |
---|
| 1230 | END SUBROUTINE sort_k_to_sequential |
---|
| 1231 | |
---|
| 1232 | |
---|
[1682] | 1233 | !------------------------------------------------------------------------------! |
---|
| 1234 | ! Description: |
---|
| 1235 | ! ------------ |
---|
| 1236 | !> Gather subdomain data from all PEs. |
---|
| 1237 | !------------------------------------------------------------------------------! |
---|
[1575] | 1238 | SUBROUTINE mg_gather_fast( f2, f2_sub ) |
---|
| 1239 | |
---|
| 1240 | USE control_parameters, & |
---|
| 1241 | ONLY: grid_level |
---|
| 1242 | |
---|
| 1243 | USE cpulog, & |
---|
| 1244 | ONLY: cpu_log, log_point_s |
---|
| 1245 | |
---|
| 1246 | USE indices, & |
---|
| 1247 | ONLY: mg_loc_ind, nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
| 1248 | |
---|
| 1249 | IMPLICIT NONE |
---|
| 1250 | |
---|
[1682] | 1251 | INTEGER(iwp) :: i !< |
---|
| 1252 | INTEGER(iwp) :: il !< |
---|
| 1253 | INTEGER(iwp) :: ir !< |
---|
| 1254 | INTEGER(iwp) :: j !< |
---|
| 1255 | INTEGER(iwp) :: jn !< |
---|
| 1256 | INTEGER(iwp) :: js !< |
---|
| 1257 | INTEGER(iwp) :: k !< |
---|
| 1258 | INTEGER(iwp) :: nwords !< |
---|
[1575] | 1259 | |
---|
| 1260 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
| 1261 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
[1682] | 1262 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f2 !< |
---|
[1575] | 1263 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
| 1264 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
[1682] | 1265 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f2_l !< |
---|
[1575] | 1266 | |
---|
| 1267 | REAL(wp), DIMENSION(nzb:mg_loc_ind(5,myid)+1, & |
---|
| 1268 | mg_loc_ind(3,myid)-1:mg_loc_ind(4,myid)+1, & |
---|
[1682] | 1269 | mg_loc_ind(1,myid)-1:mg_loc_ind(2,myid)+1) :: f2_sub !< |
---|
[1575] | 1270 | |
---|
| 1271 | |
---|
| 1272 | #if defined( __parallel ) |
---|
| 1273 | CALL cpu_log( log_point_s(34), 'mg_gather', 'start' ) |
---|
| 1274 | |
---|
| 1275 | f2_l = 0.0_wp |
---|
| 1276 | |
---|
| 1277 | ! |
---|
| 1278 | !-- Store the local subdomain array on the total array |
---|
| 1279 | js = mg_loc_ind(3,myid) |
---|
| 1280 | IF ( south_border_pe ) js = js - 1 |
---|
| 1281 | jn = mg_loc_ind(4,myid) |
---|
| 1282 | IF ( north_border_pe ) jn = jn + 1 |
---|
| 1283 | il = mg_loc_ind(1,myid) |
---|
| 1284 | IF ( left_border_pe ) il = il - 1 |
---|
| 1285 | ir = mg_loc_ind(2,myid) |
---|
| 1286 | IF ( right_border_pe ) ir = ir + 1 |
---|
| 1287 | DO i = il, ir |
---|
| 1288 | DO j = js, jn |
---|
| 1289 | DO k = nzb, nzt_mg(grid_level)+1 |
---|
| 1290 | f2_l(k,j,i) = f2_sub(k,j,i) |
---|
| 1291 | ENDDO |
---|
| 1292 | ENDDO |
---|
| 1293 | ENDDO |
---|
| 1294 | |
---|
| 1295 | ! |
---|
| 1296 | !-- Find out the number of array elements of the total array |
---|
| 1297 | nwords = SIZE( f2 ) |
---|
| 1298 | |
---|
| 1299 | ! |
---|
| 1300 | !-- Gather subdomain data from all PEs |
---|
| 1301 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1302 | CALL MPI_ALLREDUCE( f2_l(nzb,nys_mg(grid_level)-1,nxl_mg(grid_level)-1), & |
---|
| 1303 | f2(nzb,nys_mg(grid_level)-1,nxl_mg(grid_level)-1), & |
---|
| 1304 | nwords, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1305 | |
---|
| 1306 | CALL cpu_log( log_point_s(34), 'mg_gather', 'stop' ) |
---|
| 1307 | #endif |
---|
| 1308 | |
---|
| 1309 | END SUBROUTINE mg_gather_fast |
---|
| 1310 | |
---|
| 1311 | |
---|
| 1312 | |
---|
[1682] | 1313 | !------------------------------------------------------------------------------! |
---|
| 1314 | ! Description: |
---|
| 1315 | ! ------------ |
---|
| 1316 | !> @todo It might be possible to improve the speed of this routine by using |
---|
| 1317 | !> non-blocking communication |
---|
| 1318 | !------------------------------------------------------------------------------! |
---|
[1575] | 1319 | SUBROUTINE mg_scatter_fast( p2, p2_sub ) |
---|
| 1320 | |
---|
| 1321 | USE control_parameters, & |
---|
| 1322 | ONLY: grid_level |
---|
| 1323 | |
---|
| 1324 | USE cpulog, & |
---|
| 1325 | ONLY: cpu_log, log_point_s |
---|
| 1326 | |
---|
| 1327 | USE indices, & |
---|
| 1328 | ONLY: mg_loc_ind, nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
| 1329 | |
---|
| 1330 | IMPLICIT NONE |
---|
| 1331 | |
---|
[1682] | 1332 | INTEGER(iwp) :: nwords !< |
---|
[1575] | 1333 | |
---|
| 1334 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level-1)+1, & |
---|
| 1335 | nys_mg(grid_level-1)-1:nyn_mg(grid_level-1)+1, & |
---|
[1682] | 1336 | nxl_mg(grid_level-1)-1:nxr_mg(grid_level-1)+1) :: p2 !< |
---|
[1575] | 1337 | |
---|
| 1338 | REAL(wp), DIMENSION(nzb:mg_loc_ind(5,myid)+1, & |
---|
| 1339 | mg_loc_ind(3,myid)-1:mg_loc_ind(4,myid)+1, & |
---|
[1682] | 1340 | mg_loc_ind(1,myid)-1:mg_loc_ind(2,myid)+1) :: p2_sub !< |
---|
[1575] | 1341 | |
---|
| 1342 | ! |
---|
| 1343 | !-- Find out the number of array elements of the subdomain array |
---|
| 1344 | nwords = SIZE( p2_sub ) |
---|
| 1345 | |
---|
| 1346 | #if defined( __parallel ) |
---|
| 1347 | CALL cpu_log( log_point_s(35), 'mg_scatter', 'start' ) |
---|
| 1348 | |
---|
| 1349 | p2_sub = p2(:,mg_loc_ind(3,myid)-1:mg_loc_ind(4,myid)+1, & |
---|
| 1350 | mg_loc_ind(1,myid)-1:mg_loc_ind(2,myid)+1) |
---|
| 1351 | |
---|
| 1352 | CALL cpu_log( log_point_s(35), 'mg_scatter', 'stop' ) |
---|
| 1353 | #endif |
---|
| 1354 | |
---|
| 1355 | END SUBROUTINE mg_scatter_fast |
---|
| 1356 | |
---|
| 1357 | |
---|
| 1358 | !------------------------------------------------------------------------------! |
---|
| 1359 | ! Description: |
---|
| 1360 | ! ------------ |
---|
[1682] | 1361 | !> This is where the multigrid technique takes place. V- and W- Cycle are |
---|
| 1362 | !> implemented and steered by the parameter "gamma". Parameter "nue" determines |
---|
| 1363 | !> the convergence of the multigrid iterative solution. There are nue times |
---|
| 1364 | !> RB-GS iterations. It should be set to "1" or "2", considering the time effort |
---|
| 1365 | !> one would like to invest. Last choice shows a very good converging factor, |
---|
| 1366 | !> but leads to an increase in computing time. |
---|
[1575] | 1367 | !------------------------------------------------------------------------------! |
---|
[1682] | 1368 | RECURSIVE SUBROUTINE next_mg_level_fast( f_mg, p_mg, p3, r ) |
---|
[1575] | 1369 | |
---|
| 1370 | USE control_parameters, & |
---|
| 1371 | ONLY: bc_lr_dirrad, bc_lr_raddir, bc_ns_dirrad, bc_ns_raddir, & |
---|
| 1372 | gamma_mg, grid_level, grid_level_count, ibc_p_b, ibc_p_t, & |
---|
| 1373 | inflow_l, inflow_n, inflow_r, inflow_s, maximum_grid_level, & |
---|
[1762] | 1374 | mg_switch_to_pe0_level, mg_switch_to_pe0, nest_domain, & |
---|
| 1375 | nest_bound_l, nest_bound_n, nest_bound_r, nest_bound_s, & |
---|
| 1376 | ngsrb, outflow_l, outflow_n, outflow_r, outflow_s |
---|
[1575] | 1377 | |
---|
| 1378 | USE indices, & |
---|
| 1379 | ONLY: mg_loc_ind, nxl, nxl_mg, nxr, nxr_mg, nys, nys_mg, nyn, & |
---|
| 1380 | nyn_mg, nzb, nzt, nzt_mg |
---|
| 1381 | |
---|
| 1382 | IMPLICIT NONE |
---|
| 1383 | |
---|
[1898] | 1384 | INTEGER(iwp) :: i !< index variable along x |
---|
| 1385 | INTEGER(iwp) :: j !< index variable along y |
---|
| 1386 | INTEGER(iwp) :: k !< index variable along z |
---|
[1682] | 1387 | INTEGER(iwp) :: nxl_mg_save !< |
---|
| 1388 | INTEGER(iwp) :: nxr_mg_save !< |
---|
| 1389 | INTEGER(iwp) :: nyn_mg_save !< |
---|
| 1390 | INTEGER(iwp) :: nys_mg_save !< |
---|
| 1391 | INTEGER(iwp) :: nzt_mg_save !< |
---|
[1575] | 1392 | |
---|
| 1393 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
| 1394 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
[1682] | 1395 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f_mg !< |
---|
[1575] | 1396 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
| 1397 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
[1682] | 1398 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: p_mg !< |
---|
[1575] | 1399 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
| 1400 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
[1682] | 1401 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: p3 !< |
---|
[1575] | 1402 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
| 1403 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
[1682] | 1404 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: r !< |
---|
[1575] | 1405 | |
---|
| 1406 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level-1)+1, & |
---|
| 1407 | nys_mg(grid_level-1)-1:nyn_mg(grid_level-1)+1, & |
---|
[1682] | 1408 | nxl_mg(grid_level-1)-1:nxr_mg(grid_level-1)+1) :: f2 !< |
---|
[1575] | 1409 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level-1)+1, & |
---|
| 1410 | nys_mg(grid_level-1)-1:nyn_mg(grid_level-1)+1, & |
---|
[1682] | 1411 | nxl_mg(grid_level-1)-1:nxr_mg(grid_level-1)+1) :: p2 !< |
---|
[1575] | 1412 | |
---|
[1682] | 1413 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f2_sub !< |
---|
| 1414 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: p2_sub !< |
---|
[1575] | 1415 | |
---|
| 1416 | ! |
---|
| 1417 | !-- Restriction to the coarsest grid |
---|
| 1418 | 10 IF ( grid_level == 1 ) THEN |
---|
| 1419 | |
---|
| 1420 | ! |
---|
| 1421 | !-- Solution on the coarsest grid. Double the number of Gauss-Seidel |
---|
| 1422 | !-- iterations in order to get a more accurate solution. |
---|
| 1423 | ngsrb = 2 * ngsrb |
---|
| 1424 | |
---|
| 1425 | ind_even_odd = even_odd_level(grid_level) |
---|
| 1426 | |
---|
| 1427 | CALL redblack_fast( f_mg, p_mg ) |
---|
| 1428 | |
---|
| 1429 | ngsrb = ngsrb / 2 |
---|
| 1430 | |
---|
| 1431 | |
---|
| 1432 | ELSEIF ( grid_level /= 1 ) THEN |
---|
| 1433 | |
---|
| 1434 | grid_level_count(grid_level) = grid_level_count(grid_level) + 1 |
---|
| 1435 | |
---|
| 1436 | ! |
---|
| 1437 | !-- Solution on the actual grid level |
---|
| 1438 | ind_even_odd = even_odd_level(grid_level) |
---|
| 1439 | |
---|
| 1440 | CALL redblack_fast( f_mg, p_mg ) |
---|
| 1441 | |
---|
| 1442 | ! |
---|
| 1443 | !-- Determination of the actual residual |
---|
| 1444 | CALL resid_fast( f_mg, p_mg, r ) |
---|
| 1445 | |
---|
| 1446 | !-- Restriction of the residual (finer grid values!) to the next coarser |
---|
| 1447 | !-- grid. Therefore, the grid level has to be decremented now. nxl..nzt have |
---|
| 1448 | !-- to be set to the coarse grid values, because these variables are needed |
---|
| 1449 | !-- for the exchange of ghost points in routine exchange_horiz |
---|
| 1450 | grid_level = grid_level - 1 |
---|
| 1451 | |
---|
| 1452 | nxl = nxl_mg(grid_level) |
---|
| 1453 | nys = nys_mg(grid_level) |
---|
| 1454 | nxr = nxr_mg(grid_level) |
---|
| 1455 | nyn = nyn_mg(grid_level) |
---|
| 1456 | nzt = nzt_mg(grid_level) |
---|
| 1457 | |
---|
| 1458 | IF ( grid_level == mg_switch_to_pe0_level ) THEN |
---|
| 1459 | |
---|
| 1460 | ! |
---|
| 1461 | !-- From this level on, calculations are done on PE0 only. |
---|
| 1462 | !-- First, carry out restriction on the subdomain. |
---|
| 1463 | !-- Therefore, indices of the level have to be changed to subdomain |
---|
| 1464 | !-- values in between (otherwise, the restrict routine would expect |
---|
| 1465 | !-- the gathered array) |
---|
| 1466 | |
---|
| 1467 | nxl_mg_save = nxl_mg(grid_level) |
---|
| 1468 | nxr_mg_save = nxr_mg(grid_level) |
---|
| 1469 | nys_mg_save = nys_mg(grid_level) |
---|
| 1470 | nyn_mg_save = nyn_mg(grid_level) |
---|
| 1471 | nzt_mg_save = nzt_mg(grid_level) |
---|
| 1472 | nxl_mg(grid_level) = mg_loc_ind(1,myid) |
---|
| 1473 | nxr_mg(grid_level) = mg_loc_ind(2,myid) |
---|
| 1474 | nys_mg(grid_level) = mg_loc_ind(3,myid) |
---|
| 1475 | nyn_mg(grid_level) = mg_loc_ind(4,myid) |
---|
| 1476 | nzt_mg(grid_level) = mg_loc_ind(5,myid) |
---|
| 1477 | nxl = mg_loc_ind(1,myid) |
---|
| 1478 | nxr = mg_loc_ind(2,myid) |
---|
| 1479 | nys = mg_loc_ind(3,myid) |
---|
| 1480 | nyn = mg_loc_ind(4,myid) |
---|
| 1481 | nzt = mg_loc_ind(5,myid) |
---|
| 1482 | |
---|
| 1483 | ALLOCATE( f2_sub(nzb:nzt_mg(grid_level)+1, & |
---|
| 1484 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
| 1485 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) ) |
---|
| 1486 | |
---|
| 1487 | CALL restrict_fast( f2_sub, r ) |
---|
| 1488 | |
---|
| 1489 | ! |
---|
| 1490 | !-- Restore the correct indices of this level |
---|
| 1491 | nxl_mg(grid_level) = nxl_mg_save |
---|
| 1492 | nxr_mg(grid_level) = nxr_mg_save |
---|
| 1493 | nys_mg(grid_level) = nys_mg_save |
---|
| 1494 | nyn_mg(grid_level) = nyn_mg_save |
---|
| 1495 | nzt_mg(grid_level) = nzt_mg_save |
---|
| 1496 | nxl = nxl_mg(grid_level) |
---|
| 1497 | nxr = nxr_mg(grid_level) |
---|
| 1498 | nys = nys_mg(grid_level) |
---|
| 1499 | nyn = nyn_mg(grid_level) |
---|
| 1500 | nzt = nzt_mg(grid_level) |
---|
| 1501 | ! |
---|
| 1502 | !-- Gather all arrays from the subdomains on PE0 |
---|
| 1503 | CALL mg_gather_fast( f2, f2_sub ) |
---|
| 1504 | |
---|
| 1505 | ! |
---|
| 1506 | !-- Set switch for routine exchange_horiz, that no ghostpoint exchange |
---|
| 1507 | !-- has to be carried out from now on |
---|
| 1508 | mg_switch_to_pe0 = .TRUE. |
---|
| 1509 | |
---|
| 1510 | ! |
---|
| 1511 | !-- In case of non-cyclic lateral boundary conditions, both in- and |
---|
| 1512 | !-- outflow conditions have to be used on all PEs after the switch, |
---|
| 1513 | !-- because then they have the total domain. |
---|
| 1514 | IF ( bc_lr_dirrad ) THEN |
---|
| 1515 | inflow_l = .TRUE. |
---|
| 1516 | inflow_r = .FALSE. |
---|
| 1517 | outflow_l = .FALSE. |
---|
| 1518 | outflow_r = .TRUE. |
---|
| 1519 | ELSEIF ( bc_lr_raddir ) THEN |
---|
| 1520 | inflow_l = .FALSE. |
---|
| 1521 | inflow_r = .TRUE. |
---|
| 1522 | outflow_l = .TRUE. |
---|
| 1523 | outflow_r = .FALSE. |
---|
[1762] | 1524 | ELSEIF ( nest_domain ) THEN |
---|
| 1525 | nest_bound_l = .TRUE. |
---|
| 1526 | nest_bound_r = .TRUE. |
---|
[1575] | 1527 | ENDIF |
---|
| 1528 | |
---|
| 1529 | IF ( bc_ns_dirrad ) THEN |
---|
| 1530 | inflow_n = .TRUE. |
---|
| 1531 | inflow_s = .FALSE. |
---|
| 1532 | outflow_n = .FALSE. |
---|
| 1533 | outflow_s = .TRUE. |
---|
| 1534 | ELSEIF ( bc_ns_raddir ) THEN |
---|
| 1535 | inflow_n = .FALSE. |
---|
| 1536 | inflow_s = .TRUE. |
---|
| 1537 | outflow_n = .TRUE. |
---|
| 1538 | outflow_s = .FALSE. |
---|
[1762] | 1539 | ELSEIF ( nest_domain ) THEN |
---|
| 1540 | nest_bound_s = .TRUE. |
---|
| 1541 | nest_bound_n = .TRUE. |
---|
[1575] | 1542 | ENDIF |
---|
| 1543 | |
---|
| 1544 | DEALLOCATE( f2_sub ) |
---|
| 1545 | |
---|
| 1546 | ELSE |
---|
| 1547 | |
---|
| 1548 | CALL restrict_fast( f2, r ) |
---|
| 1549 | |
---|
| 1550 | ind_even_odd = even_odd_level(grid_level) ! must be after restrict |
---|
| 1551 | |
---|
| 1552 | ENDIF |
---|
| 1553 | |
---|
| 1554 | p2 = 0.0_wp |
---|
| 1555 | |
---|
| 1556 | ! |
---|
| 1557 | !-- Repeat the same procedure till the coarsest grid is reached |
---|
| 1558 | CALL next_mg_level_fast( f2, p2, p3, r ) |
---|
| 1559 | |
---|
| 1560 | ENDIF |
---|
| 1561 | |
---|
| 1562 | ! |
---|
| 1563 | !-- Now follows the prolongation |
---|
| 1564 | IF ( grid_level >= 2 ) THEN |
---|
| 1565 | |
---|
| 1566 | ! |
---|
| 1567 | !-- Prolongation of the new residual. The values are transferred |
---|
| 1568 | !-- from the coarse to the next finer grid. |
---|
| 1569 | IF ( grid_level == mg_switch_to_pe0_level+1 ) THEN |
---|
| 1570 | |
---|
| 1571 | #if defined( __parallel ) |
---|
| 1572 | ! |
---|
| 1573 | !-- At this level, the new residual first has to be scattered from |
---|
| 1574 | !-- PE0 to the other PEs |
---|
| 1575 | ALLOCATE( p2_sub(nzb:mg_loc_ind(5,myid)+1, & |
---|
| 1576 | mg_loc_ind(3,myid)-1:mg_loc_ind(4,myid)+1, & |
---|
| 1577 | mg_loc_ind(1,myid)-1:mg_loc_ind(2,myid)+1) ) |
---|
| 1578 | |
---|
| 1579 | CALL mg_scatter_fast( p2, p2_sub ) |
---|
| 1580 | |
---|
| 1581 | ! |
---|
| 1582 | !-- Therefore, indices of the previous level have to be changed to |
---|
| 1583 | !-- subdomain values in between (otherwise, the prolong routine would |
---|
| 1584 | !-- expect the gathered array) |
---|
| 1585 | nxl_mg_save = nxl_mg(grid_level-1) |
---|
| 1586 | nxr_mg_save = nxr_mg(grid_level-1) |
---|
| 1587 | nys_mg_save = nys_mg(grid_level-1) |
---|
| 1588 | nyn_mg_save = nyn_mg(grid_level-1) |
---|
| 1589 | nzt_mg_save = nzt_mg(grid_level-1) |
---|
| 1590 | nxl_mg(grid_level-1) = mg_loc_ind(1,myid) |
---|
| 1591 | nxr_mg(grid_level-1) = mg_loc_ind(2,myid) |
---|
| 1592 | nys_mg(grid_level-1) = mg_loc_ind(3,myid) |
---|
| 1593 | nyn_mg(grid_level-1) = mg_loc_ind(4,myid) |
---|
| 1594 | nzt_mg(grid_level-1) = mg_loc_ind(5,myid) |
---|
| 1595 | |
---|
| 1596 | ! |
---|
| 1597 | !-- Set switch for routine exchange_horiz, that ghostpoint exchange |
---|
| 1598 | !-- has to be carried again out from now on |
---|
| 1599 | mg_switch_to_pe0 = .FALSE. |
---|
| 1600 | |
---|
| 1601 | ! |
---|
| 1602 | !-- For non-cyclic lateral boundary conditions, restore the |
---|
| 1603 | !-- in-/outflow conditions |
---|
| 1604 | inflow_l = .FALSE.; inflow_r = .FALSE. |
---|
| 1605 | inflow_n = .FALSE.; inflow_s = .FALSE. |
---|
| 1606 | outflow_l = .FALSE.; outflow_r = .FALSE. |
---|
| 1607 | outflow_n = .FALSE.; outflow_s = .FALSE. |
---|
| 1608 | |
---|
| 1609 | IF ( pleft == MPI_PROC_NULL ) THEN |
---|
| 1610 | IF ( bc_lr_dirrad ) THEN |
---|
| 1611 | inflow_l = .TRUE. |
---|
| 1612 | ELSEIF ( bc_lr_raddir ) THEN |
---|
| 1613 | outflow_l = .TRUE. |
---|
[1762] | 1614 | ELSEIF ( nest_domain ) THEN |
---|
| 1615 | nest_bound_l = .TRUE. |
---|
[1575] | 1616 | ENDIF |
---|
| 1617 | ENDIF |
---|
| 1618 | |
---|
| 1619 | IF ( pright == MPI_PROC_NULL ) THEN |
---|
| 1620 | IF ( bc_lr_dirrad ) THEN |
---|
| 1621 | outflow_r = .TRUE. |
---|
| 1622 | ELSEIF ( bc_lr_raddir ) THEN |
---|
| 1623 | inflow_r = .TRUE. |
---|
[1762] | 1624 | ELSEIF ( nest_domain ) THEN |
---|
| 1625 | nest_bound_r = .TRUE. |
---|
[1575] | 1626 | ENDIF |
---|
| 1627 | ENDIF |
---|
| 1628 | |
---|
| 1629 | IF ( psouth == MPI_PROC_NULL ) THEN |
---|
| 1630 | IF ( bc_ns_dirrad ) THEN |
---|
| 1631 | outflow_s = .TRUE. |
---|
| 1632 | ELSEIF ( bc_ns_raddir ) THEN |
---|
| 1633 | inflow_s = .TRUE. |
---|
[1762] | 1634 | ELSEIF ( nest_domain ) THEN |
---|
| 1635 | nest_bound_s = .TRUE. |
---|
[1575] | 1636 | ENDIF |
---|
| 1637 | ENDIF |
---|
| 1638 | |
---|
| 1639 | IF ( pnorth == MPI_PROC_NULL ) THEN |
---|
| 1640 | IF ( bc_ns_dirrad ) THEN |
---|
| 1641 | inflow_n = .TRUE. |
---|
| 1642 | ELSEIF ( bc_ns_raddir ) THEN |
---|
| 1643 | outflow_n = .TRUE. |
---|
[1762] | 1644 | ELSEIF ( nest_domain ) THEN |
---|
| 1645 | nest_bound_n = .TRUE. |
---|
[1575] | 1646 | ENDIF |
---|
| 1647 | ENDIF |
---|
| 1648 | |
---|
| 1649 | CALL prolong_fast( p2_sub, p3 ) |
---|
| 1650 | |
---|
| 1651 | ! |
---|
| 1652 | !-- Restore the correct indices of the previous level |
---|
| 1653 | nxl_mg(grid_level-1) = nxl_mg_save |
---|
| 1654 | nxr_mg(grid_level-1) = nxr_mg_save |
---|
| 1655 | nys_mg(grid_level-1) = nys_mg_save |
---|
| 1656 | nyn_mg(grid_level-1) = nyn_mg_save |
---|
| 1657 | nzt_mg(grid_level-1) = nzt_mg_save |
---|
| 1658 | |
---|
| 1659 | DEALLOCATE( p2_sub ) |
---|
| 1660 | #endif |
---|
| 1661 | |
---|
| 1662 | ELSE |
---|
| 1663 | |
---|
| 1664 | CALL prolong_fast( p2, p3 ) |
---|
| 1665 | |
---|
| 1666 | ENDIF |
---|
| 1667 | |
---|
| 1668 | ! |
---|
| 1669 | !-- Computation of the new pressure correction. Therefore, |
---|
| 1670 | !-- values from prior grids are added up automatically stage by stage. |
---|
| 1671 | DO i = nxl_mg(grid_level)-1, nxr_mg(grid_level)+1 |
---|
| 1672 | DO j = nys_mg(grid_level)-1, nyn_mg(grid_level)+1 |
---|
| 1673 | DO k = nzb, nzt_mg(grid_level)+1 |
---|
| 1674 | p_mg(k,j,i) = p_mg(k,j,i) + p3(k,j,i) |
---|
| 1675 | ENDDO |
---|
| 1676 | ENDDO |
---|
| 1677 | ENDDO |
---|
| 1678 | |
---|
| 1679 | ! |
---|
| 1680 | !-- Relaxation of the new solution |
---|
| 1681 | CALL redblack_fast( f_mg, p_mg ) |
---|
| 1682 | |
---|
| 1683 | ENDIF |
---|
| 1684 | |
---|
| 1685 | |
---|
| 1686 | ! |
---|
| 1687 | !-- The following few lines serve the steering of the multigrid scheme |
---|
| 1688 | IF ( grid_level == maximum_grid_level ) THEN |
---|
| 1689 | |
---|
| 1690 | GOTO 20 |
---|
| 1691 | |
---|
| 1692 | ELSEIF ( grid_level /= maximum_grid_level .AND. grid_level /= 1 .AND. & |
---|
| 1693 | grid_level_count(grid_level) /= gamma_mg ) THEN |
---|
| 1694 | |
---|
| 1695 | GOTO 10 |
---|
| 1696 | |
---|
| 1697 | ENDIF |
---|
| 1698 | |
---|
| 1699 | ! |
---|
| 1700 | !-- Reset counter for the next call of poismg_fast |
---|
| 1701 | grid_level_count(grid_level) = 0 |
---|
| 1702 | |
---|
| 1703 | ! |
---|
| 1704 | !-- Continue with the next finer level. nxl..nzt have to be |
---|
| 1705 | !-- set to the finer grid values, because these variables are needed for the |
---|
| 1706 | !-- exchange of ghost points in routine exchange_horiz |
---|
| 1707 | grid_level = grid_level + 1 |
---|
| 1708 | ind_even_odd = even_odd_level(grid_level) |
---|
| 1709 | |
---|
| 1710 | nxl = nxl_mg(grid_level) |
---|
| 1711 | nxr = nxr_mg(grid_level) |
---|
| 1712 | nys = nys_mg(grid_level) |
---|
| 1713 | nyn = nyn_mg(grid_level) |
---|
| 1714 | nzt = nzt_mg(grid_level) |
---|
| 1715 | |
---|
| 1716 | 20 CONTINUE |
---|
| 1717 | |
---|
| 1718 | END SUBROUTINE next_mg_level_fast |
---|
| 1719 | |
---|
| 1720 | |
---|
| 1721 | !------------------------------------------------------------------------------! |
---|
| 1722 | ! Description: |
---|
| 1723 | ! ------------ |
---|
[1682] | 1724 | !> Initial settings for sorting k-dimension from sequential order (alternate |
---|
| 1725 | !> even/odd) into blocks of even and odd or vice versa |
---|
[1575] | 1726 | !------------------------------------------------------------------------------! |
---|
[1682] | 1727 | SUBROUTINE init_even_odd_blocks |
---|
[1575] | 1728 | |
---|
[1682] | 1729 | |
---|
[1575] | 1730 | USE arrays_3d, & |
---|
| 1731 | ONLY: f1_mg, f2_mg, f3_mg |
---|
| 1732 | |
---|
| 1733 | USE control_parameters, & |
---|
[1898] | 1734 | ONLY: grid_level, maximum_grid_level |
---|
[1575] | 1735 | |
---|
| 1736 | USE indices, & |
---|
| 1737 | ONLY: nzb, nzt, nzt_mg |
---|
| 1738 | |
---|
| 1739 | USE indices, & |
---|
[1898] | 1740 | ONLY: nxl_mg, nxr_mg, nys_mg, nyn_mg, nzb, nzt_mg |
---|
[1575] | 1741 | |
---|
| 1742 | IMPLICIT NONE |
---|
| 1743 | ! |
---|
| 1744 | !-- Local variables |
---|
[1898] | 1745 | INTEGER(iwp) :: i !< |
---|
[1682] | 1746 | INTEGER(iwp) :: l !< |
---|
[1575] | 1747 | |
---|
| 1748 | LOGICAL, SAVE :: lfirst = .TRUE. |
---|
| 1749 | |
---|
| 1750 | |
---|
| 1751 | IF ( .NOT. lfirst ) RETURN |
---|
| 1752 | |
---|
| 1753 | ALLOCATE( even_odd_level(maximum_grid_level) ) |
---|
| 1754 | |
---|
| 1755 | ALLOCATE( f1_mg_b(nzb:nzt+1,maximum_grid_level), & |
---|
| 1756 | f2_mg_b(nzb:nzt+1,maximum_grid_level), & |
---|
| 1757 | f3_mg_b(nzb:nzt+1,maximum_grid_level) ) |
---|
| 1758 | |
---|
| 1759 | ! |
---|
| 1760 | !-- Set border index between the even and odd block |
---|
| 1761 | DO i = maximum_grid_level, 1, -1 |
---|
| 1762 | even_odd_level(i) = nzt_mg(i) / 2 |
---|
| 1763 | ENDDO |
---|
| 1764 | |
---|
| 1765 | ! |
---|
| 1766 | !-- Sort grid coefficients used in red/black scheme and for calculating the |
---|
| 1767 | !-- residual to block (even/odd) structure |
---|
| 1768 | DO l = maximum_grid_level, 1 , -1 |
---|
| 1769 | CALL sort_k_to_even_odd_blocks( f1_mg(nzb+1:nzt_mg(grid_level),l), & |
---|
| 1770 | f1_mg_b(nzb:nzt_mg(grid_level)+1,l), & |
---|
| 1771 | l ) |
---|
| 1772 | CALL sort_k_to_even_odd_blocks( f2_mg(nzb+1:nzt_mg(grid_level),l), & |
---|
| 1773 | f2_mg_b(nzb:nzt_mg(grid_level)+1,l), & |
---|
| 1774 | l ) |
---|
| 1775 | CALL sort_k_to_even_odd_blocks( f3_mg(nzb+1:nzt_mg(grid_level),l), & |
---|
| 1776 | f3_mg_b(nzb:nzt_mg(grid_level)+1,l), & |
---|
| 1777 | l ) |
---|
| 1778 | ENDDO |
---|
| 1779 | |
---|
| 1780 | lfirst = .FALSE. |
---|
| 1781 | |
---|
| 1782 | END SUBROUTINE init_even_odd_blocks |
---|
| 1783 | |
---|
| 1784 | |
---|
| 1785 | !------------------------------------------------------------------------------! |
---|
| 1786 | ! Description: |
---|
| 1787 | ! ------------ |
---|
[1682] | 1788 | !> Special exchange_horiz subroutine for use in redblack. Transfers only |
---|
| 1789 | !> "red" or "black" data points. |
---|
[1575] | 1790 | !------------------------------------------------------------------------------! |
---|
[1682] | 1791 | SUBROUTINE special_exchange_horiz ( p_mg, color ) |
---|
[1575] | 1792 | |
---|
[1682] | 1793 | |
---|
[1575] | 1794 | USE control_parameters, & |
---|
| 1795 | ONLY: bc_lr_cyc, bc_ns_cyc, grid_level, ibc_p_b, ibc_p_t, & |
---|
| 1796 | inflow_l, inflow_n, inflow_r, inflow_s, maximum_grid_level, & |
---|
[1904] | 1797 | mg_switch_to_pe0_level, outflow_l, outflow_n, outflow_r, & |
---|
| 1798 | outflow_s, synchronous_exchange |
---|
[1575] | 1799 | |
---|
| 1800 | USE indices, & |
---|
| 1801 | ONLY: mg_loc_ind, nxl, nxl_mg, nxr, nxr_mg, nys, nys_mg, nyn, & |
---|
| 1802 | nyn_mg, nzb, nzt, nzt_mg |
---|
| 1803 | |
---|
| 1804 | IMPLICIT NONE |
---|
| 1805 | |
---|
| 1806 | REAL(wp), DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
| 1807 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
[1904] | 1808 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: & |
---|
| 1809 | p_mg !< treated array |
---|
[1575] | 1810 | |
---|
[1904] | 1811 | INTEGER(iwp), intent(IN) :: color !< flag for grid point type (red or black) |
---|
[1575] | 1812 | ! |
---|
| 1813 | !-- Local variables |
---|
[1904] | 1814 | INTEGER(iwp) :: i !< index variable along x |
---|
| 1815 | INTEGER(iwp) :: i1 !< index variable along x on coarse level |
---|
| 1816 | INTEGER(iwp) :: i2 !< index variable along x on coarse level |
---|
[1575] | 1817 | |
---|
[1904] | 1818 | INTEGER(iwp) :: j !< index variable along y |
---|
| 1819 | INTEGER(iwp) :: j1 !< index variable along y on coarse level |
---|
| 1820 | INTEGER(iwp) :: j2 !< index variable along y on coarse level |
---|
| 1821 | INTEGER(iwp) :: k !< index variable along z |
---|
| 1822 | INTEGER(iwp) :: l !< short for grid level |
---|
| 1823 | INTEGER(iwp) :: jys !< index for lower local PE boundary along y |
---|
| 1824 | INTEGER(iwp) :: jyn !< index for upper local PE boundary along y |
---|
| 1825 | INTEGER(iwp) :: ixl !< index for lower local PE boundary along x |
---|
| 1826 | INTEGER(iwp) :: ixr !< index for upper local PE boundary along x |
---|
[1575] | 1827 | |
---|
[1904] | 1828 | LOGICAL :: sendrecv_in_background_save !< dummy to reset sendrecv_in_background to prescribed value |
---|
| 1829 | LOGICAL :: synchronous_exchange_save !< dummy to reset synchronous_exchange to prescribed value |
---|
| 1830 | |
---|
| 1831 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: temp !< temporary array on next coarser grid level |
---|
| 1832 | |
---|
[1609] | 1833 | #if defined ( __parallel ) |
---|
[1575] | 1834 | sendrecv_in_background_save = sendrecv_in_background |
---|
| 1835 | sendrecv_in_background = .FALSE. |
---|
| 1836 | synchronous_exchange_save = synchronous_exchange |
---|
| 1837 | synchronous_exchange = .FALSE. |
---|
| 1838 | |
---|
| 1839 | l = grid_level |
---|
| 1840 | |
---|
| 1841 | ind_even_odd = even_odd_level(grid_level) |
---|
| 1842 | |
---|
[1904] | 1843 | ! |
---|
| 1844 | !-- Restricted transfer only on finer levels with enough data. |
---|
| 1845 | !-- Restricted transfer is not possible for levels smaller or equal to |
---|
| 1846 | !-- 'switch to PE0 levels', since array bounds does not fit. Moreover, |
---|
| 1847 | !-- it is not possible for the coarsest grid level, since the dimensions |
---|
| 1848 | !-- of temp are not defined. For such cases, normal exchange_horiz is called. |
---|
| 1849 | IF ( l > 1 .AND. l > mg_switch_to_pe0_level + 1 .AND. & |
---|
| 1850 | ( ngp_xz(grid_level) >= 900 .OR. ngp_yz(grid_level) >= 900 ) ) THEN |
---|
[1575] | 1851 | |
---|
[1904] | 1852 | jys = nys_mg(grid_level-1) |
---|
| 1853 | jyn = nyn_mg(grid_level-1) |
---|
| 1854 | ixl = nxl_mg(grid_level-1) |
---|
| 1855 | ixr = nxr_mg(grid_level-1) |
---|
| 1856 | ALLOCATE( temp(nzb:nzt_mg(l-1)+1,jys-1:jyn+1,ixl-1:ixr+1) ) |
---|
[1575] | 1857 | ! |
---|
| 1858 | !-- Handling the even k Values |
---|
| 1859 | !-- Collecting data for the north - south exchange |
---|
| 1860 | !-- Since only every second value has to be transfered, data are stored |
---|
| 1861 | !-- on the next coarser grid level, because the arrays on that level |
---|
| 1862 | !-- have just the required size |
---|
| 1863 | i1 = nxl_mg(grid_level-1) |
---|
| 1864 | i2 = nxl_mg(grid_level-1) |
---|
| 1865 | |
---|
| 1866 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
| 1867 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
| 1868 | |
---|
| 1869 | IF ( j == nys_mg(l) ) THEN |
---|
| 1870 | !DIR$ IVDEP |
---|
| 1871 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 1872 | temp(k-ind_even_odd,jys,i1) = p_mg(k,j,i) |
---|
| 1873 | ENDDO |
---|
| 1874 | i1 = i1 + 1 |
---|
| 1875 | |
---|
| 1876 | ENDIF |
---|
| 1877 | |
---|
| 1878 | IF ( j == nyn_mg(l) ) THEN |
---|
| 1879 | !DIR$ IVDEP |
---|
| 1880 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 1881 | temp(k-ind_even_odd,jyn,i2) = p_mg(k,j,i) |
---|
| 1882 | ENDDO |
---|
| 1883 | i2 = i2 + 1 |
---|
| 1884 | |
---|
| 1885 | ENDIF |
---|
| 1886 | |
---|
| 1887 | ENDDO |
---|
| 1888 | ENDDO |
---|
| 1889 | |
---|
| 1890 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
| 1891 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
| 1892 | |
---|
| 1893 | IF ( j == nys_mg(l) ) THEN |
---|
| 1894 | !DIR$ IVDEP |
---|
| 1895 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 1896 | temp(k-ind_even_odd,jys,i1) = p_mg(k,j,i) |
---|
| 1897 | ENDDO |
---|
| 1898 | i1 = i1 + 1 |
---|
| 1899 | |
---|
| 1900 | ENDIF |
---|
| 1901 | |
---|
| 1902 | IF ( j == nyn_mg(l) ) THEN |
---|
| 1903 | !DIR$ IVDEP |
---|
| 1904 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 1905 | temp(k-ind_even_odd,jyn,i2) = p_mg(k,j,i) |
---|
| 1906 | ENDDO |
---|
| 1907 | i2 = i2 + 1 |
---|
| 1908 | |
---|
| 1909 | ENDIF |
---|
| 1910 | |
---|
| 1911 | ENDDO |
---|
| 1912 | ENDDO |
---|
| 1913 | |
---|
| 1914 | grid_level = grid_level-1 |
---|
| 1915 | |
---|
| 1916 | nxl = nxl_mg(grid_level) |
---|
| 1917 | nys = nys_mg(grid_level) |
---|
| 1918 | nxr = nxr_mg(grid_level) |
---|
| 1919 | nyn = nyn_mg(grid_level) |
---|
| 1920 | nzt = nzt_mg(grid_level) |
---|
| 1921 | |
---|
| 1922 | send_receive = 'ns' |
---|
| 1923 | CALL exchange_horiz( temp, 1 ) |
---|
| 1924 | |
---|
| 1925 | grid_level = grid_level+1 |
---|
| 1926 | |
---|
| 1927 | i1 = nxl_mg(grid_level-1) |
---|
| 1928 | i2 = nxl_mg(grid_level-1) |
---|
| 1929 | |
---|
| 1930 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
| 1931 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
| 1932 | |
---|
| 1933 | IF ( j == nys_mg(l) ) THEN |
---|
| 1934 | !DIR$ IVDEP |
---|
| 1935 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 1936 | p_mg(k,nyn_mg(l)+1,i) = temp(k-ind_even_odd,jyn+1,i1) |
---|
| 1937 | ENDDO |
---|
| 1938 | i1 = i1 + 1 |
---|
| 1939 | |
---|
| 1940 | ENDIF |
---|
| 1941 | |
---|
| 1942 | IF ( j == nyn_mg(l) ) THEN |
---|
| 1943 | !DIR$ IVDEP |
---|
| 1944 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 1945 | p_mg(k,nys_mg(l)-1,i) = temp(k-ind_even_odd,jys-1,i2) |
---|
| 1946 | ENDDO |
---|
| 1947 | i2 = i2 + 1 |
---|
| 1948 | |
---|
| 1949 | ENDIF |
---|
| 1950 | |
---|
| 1951 | ENDDO |
---|
| 1952 | ENDDO |
---|
| 1953 | |
---|
| 1954 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
| 1955 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
| 1956 | |
---|
| 1957 | IF ( j == nys_mg(l) ) THEN |
---|
| 1958 | !DIR$ IVDEP |
---|
| 1959 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 1960 | p_mg(k,nyn_mg(l)+1,i) = temp(k-ind_even_odd,jyn+1,i1) |
---|
| 1961 | ENDDO |
---|
| 1962 | i1 = i1 + 1 |
---|
| 1963 | |
---|
| 1964 | ENDIF |
---|
| 1965 | |
---|
| 1966 | IF ( j == nyn_mg(l) ) THEN |
---|
| 1967 | !DIR$ IVDEP |
---|
| 1968 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 1969 | p_mg(k,nys_mg(l)-1,i) = temp(k-ind_even_odd,jys-1,i2) |
---|
| 1970 | ENDDO |
---|
| 1971 | i2 = i2 + 1 |
---|
| 1972 | |
---|
| 1973 | ENDIF |
---|
| 1974 | |
---|
| 1975 | ENDDO |
---|
| 1976 | ENDDO |
---|
| 1977 | |
---|
| 1978 | ! |
---|
| 1979 | !-- Collecting data for the left - right exchange |
---|
| 1980 | !-- Since only every second value has to be transfered, data are stored |
---|
| 1981 | !-- on the next coarser grid level, because the arrays on that level |
---|
| 1982 | !-- have just the required size |
---|
| 1983 | j1 = nys_mg(grid_level-1) |
---|
| 1984 | j2 = nys_mg(grid_level-1) |
---|
| 1985 | |
---|
| 1986 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
| 1987 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
| 1988 | |
---|
| 1989 | IF ( i == nxl_mg(l) ) THEN |
---|
| 1990 | !DIR$ IVDEP |
---|
| 1991 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 1992 | temp(k-ind_even_odd,j1,ixl) = p_mg(k,j,i) |
---|
| 1993 | ENDDO |
---|
| 1994 | j1 = j1 + 1 |
---|
| 1995 | |
---|
| 1996 | ENDIF |
---|
| 1997 | |
---|
| 1998 | IF ( i == nxr_mg(l) ) THEN |
---|
| 1999 | !DIR$ IVDEP |
---|
| 2000 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 2001 | temp(k-ind_even_odd,j2,ixr) = p_mg(k,j,i) |
---|
| 2002 | ENDDO |
---|
| 2003 | j2 = j2 + 1 |
---|
| 2004 | |
---|
| 2005 | ENDIF |
---|
| 2006 | |
---|
| 2007 | ENDDO |
---|
| 2008 | ENDDO |
---|
| 2009 | |
---|
| 2010 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
| 2011 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
| 2012 | |
---|
| 2013 | IF ( i == nxl_mg(l) ) THEN |
---|
| 2014 | !DIR$ IVDEP |
---|
| 2015 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 2016 | temp(k-ind_even_odd,j1,ixl) = p_mg(k,j,i) |
---|
| 2017 | ENDDO |
---|
| 2018 | j1 = j1 + 1 |
---|
| 2019 | |
---|
| 2020 | ENDIF |
---|
| 2021 | |
---|
| 2022 | IF ( i == nxr_mg(l) ) THEN |
---|
| 2023 | !DIR$ IVDEP |
---|
| 2024 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 2025 | temp(k-ind_even_odd,j2,ixr) = p_mg(k,j,i) |
---|
| 2026 | ENDDO |
---|
| 2027 | j2 = j2 + 1 |
---|
| 2028 | |
---|
| 2029 | ENDIF |
---|
| 2030 | |
---|
| 2031 | ENDDO |
---|
| 2032 | ENDDO |
---|
| 2033 | |
---|
| 2034 | grid_level = grid_level-1 |
---|
| 2035 | send_receive = 'lr' |
---|
| 2036 | |
---|
| 2037 | CALL exchange_horiz( temp, 1 ) |
---|
| 2038 | |
---|
| 2039 | grid_level = grid_level+1 |
---|
| 2040 | |
---|
| 2041 | j1 = nys_mg(grid_level-1) |
---|
| 2042 | j2 = nys_mg(grid_level-1) |
---|
| 2043 | |
---|
| 2044 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
| 2045 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
| 2046 | |
---|
| 2047 | IF ( i == nxl_mg(l) ) THEN |
---|
| 2048 | !DIR$ IVDEP |
---|
| 2049 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 2050 | p_mg(k,j,nxr_mg(l)+1) = temp(k-ind_even_odd,j1,ixr+1) |
---|
| 2051 | ENDDO |
---|
| 2052 | j1 = j1 + 1 |
---|
| 2053 | |
---|
| 2054 | ENDIF |
---|
| 2055 | |
---|
| 2056 | IF ( i == nxr_mg(l) ) THEN |
---|
| 2057 | !DIR$ IVDEP |
---|
| 2058 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 2059 | p_mg(k,j,nxl_mg(l)-1) = temp(k-ind_even_odd,j2,ixl-1) |
---|
| 2060 | ENDDO |
---|
| 2061 | j2 = j2 + 1 |
---|
| 2062 | |
---|
| 2063 | ENDIF |
---|
| 2064 | |
---|
| 2065 | ENDDO |
---|
| 2066 | ENDDO |
---|
| 2067 | |
---|
| 2068 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
| 2069 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
| 2070 | |
---|
| 2071 | IF ( i == nxl_mg(l) ) THEN |
---|
| 2072 | !DIR$ IVDEP |
---|
| 2073 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 2074 | p_mg(k,j,nxr_mg(l)+1) = temp(k-ind_even_odd,j1,ixr+1) |
---|
| 2075 | ENDDO |
---|
| 2076 | j1 = j1 + 1 |
---|
| 2077 | |
---|
| 2078 | ENDIF |
---|
| 2079 | |
---|
| 2080 | IF ( i == nxr_mg(l) ) THEN |
---|
| 2081 | !DIR$ IVDEP |
---|
| 2082 | DO k = ind_even_odd+1, nzt_mg(l) |
---|
| 2083 | p_mg(k,j,nxl_mg(l)-1) = temp(k-ind_even_odd,j2,ixl-1) |
---|
| 2084 | ENDDO |
---|
| 2085 | j2 = j2 + 1 |
---|
| 2086 | |
---|
| 2087 | ENDIF |
---|
| 2088 | |
---|
| 2089 | ENDDO |
---|
| 2090 | ENDDO |
---|
| 2091 | |
---|
| 2092 | ! |
---|
| 2093 | !-- Now handling the even k values |
---|
| 2094 | !-- Collecting data for the north - south exchange |
---|
| 2095 | !-- Since only every second value has to be transfered, data are stored |
---|
| 2096 | !-- on the next coarser grid level, because the arrays on that level |
---|
| 2097 | !-- have just the required size |
---|
| 2098 | i1 = nxl_mg(grid_level-1) |
---|
| 2099 | i2 = nxl_mg(grid_level-1) |
---|
| 2100 | |
---|
| 2101 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
| 2102 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
| 2103 | |
---|
| 2104 | IF ( j == nys_mg(l) ) THEN |
---|
| 2105 | !DIR$ IVDEP |
---|
| 2106 | DO k = nzb+1, ind_even_odd |
---|
| 2107 | temp(k,jys,i1) = p_mg(k,j,i) |
---|
| 2108 | ENDDO |
---|
| 2109 | i1 = i1 + 1 |
---|
| 2110 | |
---|
| 2111 | ENDIF |
---|
| 2112 | |
---|
| 2113 | IF ( j == nyn_mg(l) ) THEN |
---|
| 2114 | !DIR$ IVDEP |
---|
| 2115 | DO k = nzb+1, ind_even_odd |
---|
| 2116 | temp(k,jyn,i2) = p_mg(k,j,i) |
---|
| 2117 | ENDDO |
---|
| 2118 | i2 = i2 + 1 |
---|
| 2119 | |
---|
| 2120 | ENDIF |
---|
| 2121 | |
---|
| 2122 | ENDDO |
---|
| 2123 | ENDDO |
---|
| 2124 | |
---|
| 2125 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
| 2126 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
| 2127 | |
---|
| 2128 | IF ( j == nys_mg(l) ) THEN |
---|
| 2129 | !DIR$ IVDEP |
---|
| 2130 | DO k = nzb+1, ind_even_odd |
---|
| 2131 | temp(k,jys,i1) = p_mg(k,j,i) |
---|
| 2132 | ENDDO |
---|
| 2133 | i1 = i1 + 1 |
---|
| 2134 | |
---|
| 2135 | ENDIF |
---|
| 2136 | |
---|
| 2137 | IF ( j == nyn_mg(l) ) THEN |
---|
| 2138 | !DIR$ IVDEP |
---|
| 2139 | DO k = nzb+1, ind_even_odd |
---|
| 2140 | temp(k,jyn,i2) = p_mg(k,j,i) |
---|
| 2141 | ENDDO |
---|
| 2142 | i2 = i2 + 1 |
---|
| 2143 | |
---|
| 2144 | ENDIF |
---|
| 2145 | |
---|
| 2146 | ENDDO |
---|
| 2147 | ENDDO |
---|
| 2148 | |
---|
| 2149 | grid_level = grid_level-1 |
---|
| 2150 | |
---|
| 2151 | send_receive = 'ns' |
---|
| 2152 | CALL exchange_horiz( temp, 1 ) |
---|
| 2153 | |
---|
| 2154 | grid_level = grid_level+1 |
---|
| 2155 | |
---|
| 2156 | i1 = nxl_mg(grid_level-1) |
---|
| 2157 | i2 = nxl_mg(grid_level-1) |
---|
| 2158 | |
---|
| 2159 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
| 2160 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
| 2161 | |
---|
| 2162 | IF ( j == nys_mg(l) ) THEN |
---|
| 2163 | !DIR$ IVDEP |
---|
| 2164 | DO k = nzb+1, ind_even_odd |
---|
| 2165 | p_mg(k,nyn_mg(l)+1,i) = temp(k,jyn+1,i1) |
---|
| 2166 | ENDDO |
---|
| 2167 | i1 = i1 + 1 |
---|
| 2168 | |
---|
| 2169 | ENDIF |
---|
| 2170 | |
---|
| 2171 | IF ( j == nyn_mg(l) ) THEN |
---|
| 2172 | !DIR$ IVDEP |
---|
| 2173 | DO k = nzb+1, ind_even_odd |
---|
| 2174 | p_mg(k,nys_mg(l)-1,i) = temp(k,jys-1,i2) |
---|
| 2175 | ENDDO |
---|
| 2176 | i2 = i2 + 1 |
---|
| 2177 | |
---|
| 2178 | ENDIF |
---|
| 2179 | |
---|
| 2180 | ENDDO |
---|
| 2181 | ENDDO |
---|
| 2182 | |
---|
| 2183 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
| 2184 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
| 2185 | |
---|
| 2186 | IF ( j == nys_mg(l) ) THEN |
---|
| 2187 | !DIR$ IVDEP |
---|
| 2188 | DO k = nzb+1, ind_even_odd |
---|
| 2189 | p_mg(k,nyn_mg(l)+1,i) = temp(k,jyn+1,i1) |
---|
| 2190 | ENDDO |
---|
| 2191 | i1 = i1 + 1 |
---|
| 2192 | |
---|
| 2193 | ENDIF |
---|
| 2194 | |
---|
| 2195 | IF ( j == nyn_mg(l) ) THEN |
---|
| 2196 | !DIR$ IVDEP |
---|
| 2197 | DO k = nzb+1, ind_even_odd |
---|
| 2198 | p_mg(k,nys_mg(l)-1,i) = temp(k,jys-1,i2) |
---|
| 2199 | ENDDO |
---|
| 2200 | i2 = i2 + 1 |
---|
| 2201 | |
---|
| 2202 | ENDIF |
---|
| 2203 | |
---|
| 2204 | ENDDO |
---|
| 2205 | ENDDO |
---|
| 2206 | |
---|
| 2207 | j1 = nys_mg(grid_level-1) |
---|
| 2208 | j2 = nys_mg(grid_level-1) |
---|
| 2209 | |
---|
| 2210 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
| 2211 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
| 2212 | |
---|
| 2213 | IF ( i == nxl_mg(l) ) THEN |
---|
| 2214 | !DIR$ IVDEP |
---|
| 2215 | DO k = nzb+1, ind_even_odd |
---|
| 2216 | temp(k,j1,ixl) = p_mg(k,j,i) |
---|
| 2217 | ENDDO |
---|
| 2218 | j1 = j1 + 1 |
---|
| 2219 | |
---|
| 2220 | ENDIF |
---|
| 2221 | |
---|
| 2222 | IF ( i == nxr_mg(l) ) THEN |
---|
| 2223 | !DIR$ IVDEP |
---|
| 2224 | DO k = nzb+1, ind_even_odd |
---|
| 2225 | temp(k,j2,ixr) = p_mg(k,j,i) |
---|
| 2226 | ENDDO |
---|
| 2227 | j2 = j2 + 1 |
---|
| 2228 | |
---|
| 2229 | ENDIF |
---|
| 2230 | |
---|
| 2231 | ENDDO |
---|
| 2232 | ENDDO |
---|
| 2233 | |
---|
| 2234 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
| 2235 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
| 2236 | |
---|
| 2237 | IF ( i == nxl_mg(l) ) THEN |
---|
| 2238 | !DIR$ IVDEP |
---|
| 2239 | DO k = nzb+1, ind_even_odd |
---|
| 2240 | temp(k,j1,ixl) = p_mg(k,j,i) |
---|
| 2241 | ENDDO |
---|
| 2242 | j1 = j1 + 1 |
---|
| 2243 | |
---|
| 2244 | ENDIF |
---|
| 2245 | |
---|
| 2246 | IF ( i == nxr_mg(l) ) THEN |
---|
| 2247 | !DIR$ IVDEP |
---|
| 2248 | DO k = nzb+1, ind_even_odd |
---|
| 2249 | temp(k,j2,ixr) = p_mg(k,j,i) |
---|
| 2250 | ENDDO |
---|
| 2251 | j2 = j2 + 1 |
---|
| 2252 | |
---|
| 2253 | ENDIF |
---|
| 2254 | |
---|
| 2255 | ENDDO |
---|
| 2256 | ENDDO |
---|
| 2257 | |
---|
| 2258 | grid_level = grid_level-1 |
---|
| 2259 | |
---|
| 2260 | send_receive = 'lr' |
---|
| 2261 | CALL exchange_horiz( temp, 1 ) |
---|
| 2262 | |
---|
| 2263 | grid_level = grid_level+1 |
---|
| 2264 | |
---|
| 2265 | nxl = nxl_mg(grid_level) |
---|
| 2266 | nys = nys_mg(grid_level) |
---|
| 2267 | nxr = nxr_mg(grid_level) |
---|
| 2268 | nyn = nyn_mg(grid_level) |
---|
| 2269 | nzt = nzt_mg(grid_level) |
---|
| 2270 | |
---|
| 2271 | j1 = nys_mg(grid_level-1) |
---|
| 2272 | j2 = nys_mg(grid_level-1) |
---|
| 2273 | |
---|
| 2274 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
| 2275 | DO j = nys_mg(l) + (color-1), nyn_mg(l), 2 |
---|
| 2276 | |
---|
| 2277 | IF ( i == nxl_mg(l) ) THEN |
---|
| 2278 | !DIR$ IVDEP |
---|
| 2279 | DO k = nzb+1, ind_even_odd |
---|
| 2280 | p_mg(k,j,nxr_mg(l)+1) = temp(k,j1,ixr+1) |
---|
| 2281 | ENDDO |
---|
| 2282 | j1 = j1 + 1 |
---|
| 2283 | |
---|
| 2284 | ENDIF |
---|
| 2285 | |
---|
| 2286 | IF ( i == nxr_mg(l) ) THEN |
---|
| 2287 | !DIR$ IVDEP |
---|
| 2288 | DO k = nzb+1, ind_even_odd |
---|
| 2289 | p_mg(k,j,nxl_mg(l)-1) = temp(k,j2,ixl-1) |
---|
| 2290 | ENDDO |
---|
| 2291 | j2 = j2 + 1 |
---|
| 2292 | |
---|
| 2293 | ENDIF |
---|
| 2294 | |
---|
| 2295 | ENDDO |
---|
| 2296 | ENDDO |
---|
| 2297 | |
---|
| 2298 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
| 2299 | DO j = nys_mg(l) + 2 - color, nyn_mg(l), 2 |
---|
| 2300 | |
---|
| 2301 | IF ( i == nxl_mg(l) ) THEN |
---|
| 2302 | !DIR$ IVDEP |
---|
| 2303 | DO k = nzb+1, ind_even_odd |
---|
| 2304 | p_mg(k,j,nxr_mg(l)+1) = temp(k,j1,ixr+1) |
---|
| 2305 | ENDDO |
---|
| 2306 | j1 = j1 + 1 |
---|
| 2307 | |
---|
| 2308 | ENDIF |
---|
| 2309 | |
---|
| 2310 | IF ( i == nxr_mg(l) ) THEN |
---|
| 2311 | !DIR$ IVDEP |
---|
| 2312 | DO k = nzb+1, ind_even_odd |
---|
| 2313 | p_mg(k,j,nxl_mg(l)-1) = temp(k,j2,ixl-1) |
---|
| 2314 | ENDDO |
---|
| 2315 | j2 = j2 + 1 |
---|
| 2316 | |
---|
| 2317 | ENDIF |
---|
| 2318 | |
---|
| 2319 | ENDDO |
---|
| 2320 | ENDDO |
---|
| 2321 | |
---|
[1904] | 2322 | DEALLOCATE( temp ) |
---|
| 2323 | |
---|
[1575] | 2324 | ELSE |
---|
[1609] | 2325 | |
---|
[1575] | 2326 | ! |
---|
| 2327 | !-- Standard horizontal ghost boundary exchange for small coarse grid |
---|
| 2328 | !-- levels, where the transfer time is latency bound |
---|
| 2329 | CALL exchange_horiz( p_mg, 1 ) |
---|
| 2330 | |
---|
| 2331 | ENDIF |
---|
| 2332 | |
---|
| 2333 | ! |
---|
| 2334 | !-- Reset values to default PALM setup |
---|
| 2335 | sendrecv_in_background = sendrecv_in_background_save |
---|
| 2336 | synchronous_exchange = synchronous_exchange_save |
---|
| 2337 | send_receive = 'al' |
---|
[1609] | 2338 | #else |
---|
[1575] | 2339 | |
---|
[1609] | 2340 | ! |
---|
| 2341 | !-- Standard horizontal ghost boundary exchange for small coarse grid |
---|
| 2342 | !-- levels, where the transfer time is latency bound |
---|
| 2343 | CALL exchange_horiz( p_mg, 1 ) |
---|
| 2344 | #endif |
---|
| 2345 | |
---|
[1575] | 2346 | END SUBROUTINE special_exchange_horiz |
---|
| 2347 | |
---|
| 2348 | END MODULE poismg_mod |
---|