1 | SUBROUTINE poismg( r ) |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Attention: Loop unrolling and cache optimization in SOR-Red/Black method |
---|
5 | ! still does not bring the expected speedup on ibm! Further work |
---|
6 | ! is required. |
---|
7 | ! |
---|
8 | ! Actual revisions: |
---|
9 | ! ----------------- |
---|
10 | ! |
---|
11 | ! |
---|
12 | ! Former revisions: |
---|
13 | ! ----------------- |
---|
14 | ! $Id: poismg.f90 4 2007-02-13 11:33:16Z raasch $ |
---|
15 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
16 | ! |
---|
17 | ! Revision 1.6 2005/03/26 20:55:54 raasch |
---|
18 | ! Implementation of non-cyclic (Neumann) horizontal boundary conditions, |
---|
19 | ! routine prolong simplified (one call of exchange_horiz spared) |
---|
20 | ! |
---|
21 | ! Revision 1.1 2001/07/20 13:10:51 raasch |
---|
22 | ! Initial revision |
---|
23 | ! |
---|
24 | ! |
---|
25 | ! Description: |
---|
26 | ! ------------ |
---|
27 | ! Solves the Poisson equation for the perturbation pressure with a multigrid |
---|
28 | ! V- or W-Cycle scheme. |
---|
29 | ! |
---|
30 | ! This multigrid method was originally developed for PALM by Joerg Uhlenbrock, |
---|
31 | ! September 2000 - July 2001. |
---|
32 | !------------------------------------------------------------------------------! |
---|
33 | |
---|
34 | USE arrays_3d |
---|
35 | USE control_parameters |
---|
36 | USE cpulog |
---|
37 | USE grid_variables |
---|
38 | USE indices |
---|
39 | USE interfaces |
---|
40 | USE pegrid |
---|
41 | |
---|
42 | IMPLICIT NONE |
---|
43 | |
---|
44 | REAL :: maxerror, maximum_mgcycles, residual_norm |
---|
45 | |
---|
46 | REAL, DIMENSION(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) :: r |
---|
47 | |
---|
48 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: p3 |
---|
49 | |
---|
50 | |
---|
51 | CALL cpu_log( log_point_s(29), 'poismg', 'start' ) |
---|
52 | |
---|
53 | |
---|
54 | ! |
---|
55 | !-- Initialize arrays and variables used in this subroutine |
---|
56 | ALLOCATE ( p3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
57 | |
---|
58 | |
---|
59 | ! |
---|
60 | !-- Some boundaries have to be added to divergence array |
---|
61 | CALL exchange_horiz( d, 0, 0 ) |
---|
62 | d(nzb,:,:) = d(nzb+1,:,:) |
---|
63 | |
---|
64 | ! |
---|
65 | !-- Initiation of the multigrid scheme. Does n cycles until the |
---|
66 | !-- residual is smaller than the given limit. The accuracy of the solution |
---|
67 | !-- of the poisson equation will increase with the number of cycles. |
---|
68 | !-- If the number of cycles is preset by the user, this number will be |
---|
69 | !-- carried out regardless of the accuracy. |
---|
70 | grid_level_count = 0 |
---|
71 | mgcycles = 0 |
---|
72 | IF ( mg_cycles == -1 ) THEN |
---|
73 | maximum_mgcycles = 0 |
---|
74 | residual_norm = 1.0 |
---|
75 | ELSE |
---|
76 | maximum_mgcycles = mg_cycles |
---|
77 | residual_norm = 0.0 |
---|
78 | ENDIF |
---|
79 | |
---|
80 | DO WHILE ( residual_norm > residual_limit .OR. & |
---|
81 | mgcycles < maximum_mgcycles ) |
---|
82 | |
---|
83 | CALL next_mg_level( d, p, p3, r) |
---|
84 | |
---|
85 | ! |
---|
86 | !-- Calculate the residual if the user has not preset the number of |
---|
87 | !-- cycles to be performed |
---|
88 | IF ( maximum_mgcycles == 0 ) THEN |
---|
89 | CALL resid( d, p, r ) |
---|
90 | maxerror = SUM( r(nzb+1:nzt,nys:nyn,nxl:nxr)**2 ) |
---|
91 | #if defined( __parallel ) |
---|
92 | CALL MPI_ALLREDUCE( maxerror, residual_norm, 1, MPI_REAL, MPI_SUM, & |
---|
93 | comm2d, ierr) |
---|
94 | #else |
---|
95 | residual_norm = maxerror |
---|
96 | #endif |
---|
97 | residual_norm = SQRT( residual_norm ) |
---|
98 | ENDIF |
---|
99 | |
---|
100 | mgcycles = mgcycles + 1 |
---|
101 | |
---|
102 | ! |
---|
103 | !-- If the user has not limited the number of cycles, stop the run in case |
---|
104 | !-- of insufficient convergence |
---|
105 | IF ( mgcycles > 1000 .AND. mg_cycles == -1 ) THEN |
---|
106 | IF ( myid == 0 ) THEN |
---|
107 | PRINT*, '+++ poismg: no sufficient convergence within 1000 cycles' |
---|
108 | ENDIF |
---|
109 | CALL local_stop |
---|
110 | ENDIF |
---|
111 | |
---|
112 | ENDDO |
---|
113 | |
---|
114 | DEALLOCATE( p3 ) |
---|
115 | |
---|
116 | CALL cpu_log( log_point_s(29), 'poismg', 'stop' ) |
---|
117 | |
---|
118 | END SUBROUTINE poismg |
---|
119 | |
---|
120 | |
---|
121 | |
---|
122 | SUBROUTINE resid( f_mg, p_mg, r ) |
---|
123 | |
---|
124 | !------------------------------------------------------------------------------! |
---|
125 | ! Description: |
---|
126 | ! ------------ |
---|
127 | ! Computes the residual of the perturbation pressure. |
---|
128 | !------------------------------------------------------------------------------! |
---|
129 | |
---|
130 | USE arrays_3d |
---|
131 | USE control_parameters |
---|
132 | USE grid_variables |
---|
133 | USE indices |
---|
134 | USE pegrid |
---|
135 | |
---|
136 | IMPLICIT NONE |
---|
137 | |
---|
138 | INTEGER :: i, j, k, l |
---|
139 | |
---|
140 | REAL, DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
141 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
142 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f_mg, p_mg, r |
---|
143 | |
---|
144 | ! |
---|
145 | !-- Calculate the residual |
---|
146 | l = grid_level |
---|
147 | |
---|
148 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
149 | !$OMP DO |
---|
150 | DO i = nxl_mg(l), nxr_mg(l) |
---|
151 | DO j = nys_mg(l), nyn_mg(l) |
---|
152 | DO k = nzb+1, nzt_mg(l) |
---|
153 | r(k,j,i) = f_mg(k,j,i) & |
---|
154 | - ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
155 | - ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
156 | - f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
157 | - f3_mg(k,l) * p_mg(k-1,j,i) & |
---|
158 | + f1_mg(k,l) * p_mg(k,j,i) |
---|
159 | ENDDO |
---|
160 | ENDDO |
---|
161 | ENDDO |
---|
162 | !$OMP END PARALLEL |
---|
163 | |
---|
164 | ! |
---|
165 | !-- Horizontal boundary conditions |
---|
166 | CALL exchange_horiz( r, 0, 0 ) |
---|
167 | |
---|
168 | IF ( bc_lr /= 'cyclic' ) THEN |
---|
169 | IF ( inflow_l .OR. outflow_l ) r(:,:,nxl_mg(l)-1) = r(:,:,nxl_mg(l)) |
---|
170 | IF ( inflow_r .OR. outflow_r ) r(:,:,nxr_mg(l)+1) = r(:,:,nxr_mg(l)) |
---|
171 | ENDIF |
---|
172 | |
---|
173 | IF ( bc_ns /= 'cyclic' ) THEN |
---|
174 | IF ( inflow_n .OR. outflow_n ) r(:,nyn_mg(l)+1,:) = r(:,nyn_mg(l),:) |
---|
175 | IF ( inflow_s .OR. outflow_s ) r(:,nys_mg(l)-1,:) = r(:,nys_mg(l),:) |
---|
176 | ENDIF |
---|
177 | |
---|
178 | ! |
---|
179 | !-- Bottom and top boundary conditions |
---|
180 | IF ( ibc_p_b == 1 ) THEN |
---|
181 | r(nzb,:,: ) = r(nzb+1,:,:) |
---|
182 | ELSE |
---|
183 | r(nzb,:,: ) = 0.0 |
---|
184 | ENDIF |
---|
185 | |
---|
186 | IF ( ibc_p_t == 1 ) THEN |
---|
187 | r(nzt_mg(l)+1,:,: ) = r(nzt_mg(l),:,:) |
---|
188 | ELSE |
---|
189 | r(nzt_mg(l)+1,:,: ) = 0.0 |
---|
190 | ENDIF |
---|
191 | |
---|
192 | |
---|
193 | END SUBROUTINE resid |
---|
194 | |
---|
195 | |
---|
196 | |
---|
197 | SUBROUTINE restrict( f_mg, r ) |
---|
198 | |
---|
199 | !------------------------------------------------------------------------------! |
---|
200 | ! Description: |
---|
201 | ! ------------ |
---|
202 | ! Interpolates the residual on the next coarser grid with "full weighting" |
---|
203 | ! scheme |
---|
204 | !------------------------------------------------------------------------------! |
---|
205 | |
---|
206 | USE control_parameters |
---|
207 | USE grid_variables |
---|
208 | USE indices |
---|
209 | USE pegrid |
---|
210 | |
---|
211 | IMPLICIT NONE |
---|
212 | |
---|
213 | INTEGER :: i, ic, j, jc, k, kc, l |
---|
214 | |
---|
215 | REAL, DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
216 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
217 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f_mg |
---|
218 | |
---|
219 | REAL, DIMENSION(nzb:nzt_mg(grid_level+1)+1, & |
---|
220 | nys_mg(grid_level+1)-1:nyn_mg(grid_level+1)+1, & |
---|
221 | nxl_mg(grid_level+1)-1:nxr_mg(grid_level+1)+1) :: r |
---|
222 | |
---|
223 | ! |
---|
224 | !-- Interpolate the residual |
---|
225 | l = grid_level |
---|
226 | |
---|
227 | !$OMP PARALLEL PRIVATE (i,j,k,ic,jc,kc) |
---|
228 | !$OMP DO |
---|
229 | DO ic = nxl_mg(l), nxr_mg(l) |
---|
230 | i = 2*ic |
---|
231 | DO jc = nys_mg(l), nyn_mg(l) |
---|
232 | j = 2*jc |
---|
233 | DO kc = nzb+1, nzt_mg(l) |
---|
234 | k = 2*kc-1 |
---|
235 | f_mg(kc,jc,ic) = 1.0 / 64.0 * ( & |
---|
236 | 8.0 * r(k,j,i) & |
---|
237 | + 4.0 * ( r(k,j,i-1) + r(k,j,i+1) + & |
---|
238 | r(k,j+1,i) + r(k,j-1,i) ) & |
---|
239 | + 2.0 * ( r(k,j-1,i-1) + r(k,j+1,i-1) + & |
---|
240 | r(k,j-1,i+1) + r(k,j+1,i+1) ) & |
---|
241 | + 4.0 * r(k-1,j,i) & |
---|
242 | + 2.0 * ( r(k-1,j,i-1) + r(k-1,j,i+1) + & |
---|
243 | r(k-1,j+1,i) + r(k-1,j-1,i) ) & |
---|
244 | + ( r(k-1,j-1,i-1) + r(k-1,j+1,i-1) + & |
---|
245 | r(k-1,j-1,i+1) + r(k-1,j+1,i+1) ) & |
---|
246 | + 4.0 * r(k+1,j,i) & |
---|
247 | + 2.0 * ( r(k+1,j,i-1) + r(k+1,j,i+1) + & |
---|
248 | r(k+1,j+1,i) + r(k+1,j-1,i) ) & |
---|
249 | + ( r(k+1,j-1,i-1) + r(k+1,j+1,i-1) + & |
---|
250 | r(k+1,j-1,i+1) + r(k+1,j+1,i+1) ) & |
---|
251 | ) |
---|
252 | ENDDO |
---|
253 | ENDDO |
---|
254 | ENDDO |
---|
255 | !$OMP END PARALLEL |
---|
256 | |
---|
257 | ! |
---|
258 | !-- Horizontal boundary conditions |
---|
259 | CALL exchange_horiz( f_mg, 0, 0 ) |
---|
260 | |
---|
261 | IF ( bc_lr /= 'cyclic' ) THEN |
---|
262 | IF (inflow_l .OR. outflow_l) f_mg(:,:,nxl_mg(l)-1) = f_mg(:,:,nxl_mg(l)) |
---|
263 | IF (inflow_r .OR. outflow_r) f_mg(:,:,nxr_mg(l)+1) = f_mg(:,:,nxr_mg(l)) |
---|
264 | ENDIF |
---|
265 | |
---|
266 | IF ( bc_ns /= 'cyclic' ) THEN |
---|
267 | IF (inflow_n .OR. outflow_n) f_mg(:,nyn_mg(l)+1,:) = f_mg(:,nyn_mg(l),:) |
---|
268 | IF (inflow_s .OR. outflow_s) f_mg(:,nys_mg(l)-1,:) = f_mg(:,nys_mg(l),:) |
---|
269 | ENDIF |
---|
270 | |
---|
271 | ! |
---|
272 | !-- Bottom and top boundary conditions |
---|
273 | IF ( ibc_p_b == 1 ) THEN |
---|
274 | f_mg(nzb,:,: ) = f_mg(nzb+1,:,:) |
---|
275 | ELSE |
---|
276 | f_mg(nzb,:,: ) = 0.0 |
---|
277 | ENDIF |
---|
278 | |
---|
279 | IF ( ibc_p_t == 1 ) THEN |
---|
280 | f_mg(nzt_mg(l)+1,:,: ) = f_mg(nzt_mg(l),:,:) |
---|
281 | ELSE |
---|
282 | f_mg(nzt_mg(l)+1,:,: ) = 0.0 |
---|
283 | ENDIF |
---|
284 | |
---|
285 | |
---|
286 | END SUBROUTINE restrict |
---|
287 | |
---|
288 | |
---|
289 | |
---|
290 | SUBROUTINE prolong( p, temp ) |
---|
291 | |
---|
292 | !------------------------------------------------------------------------------! |
---|
293 | ! Description: |
---|
294 | ! ------------ |
---|
295 | ! Interpolates the correction of the perturbation pressure |
---|
296 | ! to the next finer grid. |
---|
297 | !------------------------------------------------------------------------------! |
---|
298 | |
---|
299 | USE control_parameters |
---|
300 | USE pegrid |
---|
301 | USE indices |
---|
302 | |
---|
303 | IMPLICIT NONE |
---|
304 | |
---|
305 | INTEGER :: i, j, k, l |
---|
306 | |
---|
307 | REAL, DIMENSION(nzb:nzt_mg(grid_level-1)+1, & |
---|
308 | nys_mg(grid_level-1)-1:nyn_mg(grid_level-1)+1, & |
---|
309 | nxl_mg(grid_level-1)-1:nxr_mg(grid_level-1)+1 ) :: p |
---|
310 | |
---|
311 | REAL, DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
312 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
313 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: temp |
---|
314 | |
---|
315 | |
---|
316 | ! |
---|
317 | !-- First, store elements of the coarser grid on the next finer grid |
---|
318 | l = grid_level |
---|
319 | |
---|
320 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
321 | !$OMP DO |
---|
322 | DO i = nxl_mg(l-1), nxr_mg(l-1) |
---|
323 | DO j = nys_mg(l-1), nyn_mg(l-1) |
---|
324 | !CDIR NODEP |
---|
325 | DO k = nzb+1, nzt_mg(l-1) |
---|
326 | ! |
---|
327 | !-- Points of the coarse grid are directly stored on the next finer |
---|
328 | !-- grid |
---|
329 | temp(2*k-1,2*j,2*i) = p(k,j,i) |
---|
330 | ! |
---|
331 | !-- Points between two coarse-grid points |
---|
332 | temp(2*k-1,2*j,2*i+1) = 0.5 * ( p(k,j,i) + p(k,j,i+1) ) |
---|
333 | temp(2*k-1,2*j+1,2*i) = 0.5 * ( p(k,j,i) + p(k,j+1,i) ) |
---|
334 | temp(2*k,2*j,2*i) = 0.5 * ( p(k,j,i) + p(k+1,j,i) ) |
---|
335 | ! |
---|
336 | !-- Points in the center of the planes stretched by four points |
---|
337 | !-- of the coarse grid cube |
---|
338 | temp(2*k-1,2*j+1,2*i+1) = 0.25 * ( p(k,j,i) + p(k,j,i+1) + & |
---|
339 | p(k,j+1,i) + p(k,j+1,i+1) ) |
---|
340 | temp(2*k,2*j,2*i+1) = 0.25 * ( p(k,j,i) + p(k,j,i+1) + & |
---|
341 | p(k+1,j,i) + p(k+1,j,i+1) ) |
---|
342 | temp(2*k,2*j+1,2*i) = 0.25 * ( p(k,j,i) + p(k,j+1,i) + & |
---|
343 | p(k+1,j,i) + p(k+1,j+1,i) ) |
---|
344 | ! |
---|
345 | !-- Points in the middle of coarse grid cube |
---|
346 | temp(2*k,2*j+1,2*i+1) = 0.125 * ( p(k,j,i) + p(k,j,i+1) + & |
---|
347 | p(k,j+1,i) + p(k,j+1,i+1) + & |
---|
348 | p(k+1,j,i) + p(k+1,j,i+1) + & |
---|
349 | p(k+1,j+1,i) + p(k+1,j+1,i+1) ) |
---|
350 | ENDDO |
---|
351 | ENDDO |
---|
352 | ENDDO |
---|
353 | !$OMP END PARALLEL |
---|
354 | |
---|
355 | ! |
---|
356 | !-- Horizontal boundary conditions |
---|
357 | CALL exchange_horiz( temp, 0, 0 ) |
---|
358 | |
---|
359 | IF ( bc_lr /= 'cyclic' ) THEN |
---|
360 | IF (inflow_l .OR. outflow_l) temp(:,:,nxl_mg(l)-1) = temp(:,:,nxl_mg(l)) |
---|
361 | IF (inflow_r .OR. outflow_r) temp(:,:,nxr_mg(l)+1) = temp(:,:,nxr_mg(l)) |
---|
362 | ENDIF |
---|
363 | |
---|
364 | IF ( bc_ns /= 'cyclic' ) THEN |
---|
365 | IF (inflow_n .OR. outflow_n) temp(:,nyn_mg(l)+1,:) = temp(:,nyn_mg(l),:) |
---|
366 | IF (inflow_s .OR. outflow_s) temp(:,nys_mg(l)-1,:) = temp(:,nys_mg(l),:) |
---|
367 | ENDIF |
---|
368 | |
---|
369 | ! |
---|
370 | !-- Bottom and top boundary conditions |
---|
371 | IF ( ibc_p_b == 1 ) THEN |
---|
372 | temp(nzb,:,: ) = temp(nzb+1,:,:) |
---|
373 | ELSE |
---|
374 | temp(nzb,:,: ) = 0.0 |
---|
375 | ENDIF |
---|
376 | |
---|
377 | IF ( ibc_p_t == 1 ) THEN |
---|
378 | temp(nzt_mg(l)+1,:,: ) = temp(nzt_mg(l),:,:) |
---|
379 | ELSE |
---|
380 | temp(nzt_mg(l)+1,:,: ) = 0.0 |
---|
381 | ENDIF |
---|
382 | |
---|
383 | |
---|
384 | END SUBROUTINE prolong |
---|
385 | |
---|
386 | |
---|
387 | SUBROUTINE redblack( f_mg, p_mg ) |
---|
388 | |
---|
389 | !------------------------------------------------------------------------------! |
---|
390 | ! Description: |
---|
391 | ! ------------ |
---|
392 | ! Relaxation method for the multigrid scheme. A Gauss-Seidel iteration with |
---|
393 | ! 3D-Red-Black decomposition (GS-RB) is used. |
---|
394 | !------------------------------------------------------------------------------! |
---|
395 | |
---|
396 | USE arrays_3d |
---|
397 | USE control_parameters |
---|
398 | USE cpulog |
---|
399 | USE grid_variables |
---|
400 | USE indices |
---|
401 | USE interfaces |
---|
402 | USE pegrid |
---|
403 | |
---|
404 | IMPLICIT NONE |
---|
405 | |
---|
406 | INTEGER :: colour, i, ic, j, jc, jj, k, l, n |
---|
407 | |
---|
408 | LOGICAL :: unroll |
---|
409 | |
---|
410 | REAL, DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
411 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
412 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f_mg, p_mg |
---|
413 | |
---|
414 | |
---|
415 | l = grid_level |
---|
416 | |
---|
417 | unroll = ( MOD( nyn_mg(l)-nys_mg(l)+1, 4 ) == 0 .AND. & |
---|
418 | MOD( nxr_mg(l)-nxl_mg(l)+1, 2 ) == 0 ) |
---|
419 | |
---|
420 | DO n = 1, ngsrb |
---|
421 | |
---|
422 | DO colour = 1, 2 |
---|
423 | |
---|
424 | IF ( .NOT. unroll ) THEN |
---|
425 | CALL cpu_log( log_point_s(36), 'redblack_no_unroll', 'start' ) |
---|
426 | |
---|
427 | ! |
---|
428 | !-- Without unrolling of loops, no cache optimization |
---|
429 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
430 | DO j = nys_mg(l) + 2 - colour, nyn_mg(l), 2 |
---|
431 | DO k = nzb+1, nzt_mg(l), 2 |
---|
432 | p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
433 | ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
434 | + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
435 | + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
436 | + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
437 | ) |
---|
438 | ENDDO |
---|
439 | ENDDO |
---|
440 | ENDDO |
---|
441 | |
---|
442 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
443 | DO j = nys_mg(l) + (colour-1), nyn_mg(l), 2 |
---|
444 | DO k = nzb+1, nzt_mg(l), 2 |
---|
445 | p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
446 | ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
447 | + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
448 | + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
449 | + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
450 | ) |
---|
451 | ENDDO |
---|
452 | ENDDO |
---|
453 | ENDDO |
---|
454 | |
---|
455 | DO i = nxl_mg(l), nxr_mg(l), 2 |
---|
456 | DO j = nys_mg(l) + (colour-1), nyn_mg(l), 2 |
---|
457 | DO k = nzb+2, nzt_mg(l), 2 |
---|
458 | p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
459 | ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
460 | + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
461 | + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
462 | + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
463 | ) |
---|
464 | ENDDO |
---|
465 | ENDDO |
---|
466 | ENDDO |
---|
467 | |
---|
468 | DO i = nxl_mg(l)+1, nxr_mg(l), 2 |
---|
469 | DO j = nys_mg(l) + 2 - colour, nyn_mg(l), 2 |
---|
470 | DO k = nzb+2, nzt_mg(l), 2 |
---|
471 | p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
472 | ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
473 | + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
474 | + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
475 | + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
476 | ) |
---|
477 | ENDDO |
---|
478 | ENDDO |
---|
479 | ENDDO |
---|
480 | CALL cpu_log( log_point_s(36), 'redblack_no_unroll', 'stop' ) |
---|
481 | |
---|
482 | ELSE |
---|
483 | |
---|
484 | ! |
---|
485 | !-- Loop unrolling along y, only one i loop for better cache use |
---|
486 | CALL cpu_log( log_point_s(38), 'redblack_unroll', 'start' ) |
---|
487 | DO ic = nxl_mg(l), nxr_mg(l), 2 |
---|
488 | DO jc = nys_mg(l), nyn_mg(l), 4 |
---|
489 | i = ic |
---|
490 | jj = jc+2-colour |
---|
491 | DO k = nzb+1, nzt_mg(l), 2 |
---|
492 | j = jj |
---|
493 | p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
494 | ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
495 | + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
496 | + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
497 | + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
498 | ) |
---|
499 | j = jj+2 |
---|
500 | p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
501 | ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
502 | + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
503 | + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
504 | + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
505 | ) |
---|
506 | ! j = jj+4 |
---|
507 | ! p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
508 | ! ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
509 | ! + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
510 | ! + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
511 | ! + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
512 | ! ) |
---|
513 | ! j = jj+6 |
---|
514 | ! p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
515 | ! ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
516 | ! + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
517 | ! + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
518 | ! + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
519 | ! ) |
---|
520 | ENDDO |
---|
521 | |
---|
522 | i = ic+1 |
---|
523 | jj = jc+colour-1 |
---|
524 | DO k = nzb+1, nzt_mg(l), 2 |
---|
525 | j =jj |
---|
526 | p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
527 | ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
528 | + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
529 | + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
530 | + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
531 | ) |
---|
532 | j = jj+2 |
---|
533 | p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
534 | ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
535 | + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
536 | + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
537 | + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
538 | ) |
---|
539 | ! j = jj+4 |
---|
540 | ! p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
541 | ! ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
542 | ! + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
543 | ! + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
544 | ! + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
545 | ! ) |
---|
546 | ! j = jj+6 |
---|
547 | ! p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
548 | ! ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
549 | ! + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
550 | ! + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
551 | ! + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
552 | ! ) |
---|
553 | ENDDO |
---|
554 | |
---|
555 | i = ic |
---|
556 | jj = jc+colour-1 |
---|
557 | DO k = nzb+2, nzt_mg(l), 2 |
---|
558 | j =jj |
---|
559 | p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
560 | ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
561 | + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
562 | + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
563 | + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
564 | ) |
---|
565 | j = jj+2 |
---|
566 | p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
567 | ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
568 | + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
569 | + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
570 | + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
571 | ) |
---|
572 | ! j = jj+4 |
---|
573 | ! p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
574 | ! ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
575 | ! + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
576 | ! + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
577 | ! + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
578 | ! ) |
---|
579 | ! j = jj+6 |
---|
580 | ! p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
581 | ! ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
582 | ! + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
583 | ! + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
584 | ! + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
585 | ! ) |
---|
586 | ENDDO |
---|
587 | |
---|
588 | i = ic+1 |
---|
589 | jj = jc+2-colour |
---|
590 | DO k = nzb+2, nzt_mg(l), 2 |
---|
591 | j =jj |
---|
592 | p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
593 | ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
594 | + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
595 | + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
596 | + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
597 | ) |
---|
598 | j = jj+2 |
---|
599 | p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
600 | ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
601 | + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
602 | + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
603 | + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
604 | ) |
---|
605 | ! j = jj+4 |
---|
606 | ! p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
607 | ! ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
608 | ! + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
609 | ! + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
610 | ! + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
611 | ! ) |
---|
612 | ! j = jj+6 |
---|
613 | ! p_mg(k,j,i) = 1.0 / f1_mg(k,l) * ( & |
---|
614 | ! ddx2_mg(l) * ( p_mg(k,j,i+1) + p_mg(k,j,i-1) ) & |
---|
615 | ! + ddy2_mg(l) * ( p_mg(k,j+1,i) + p_mg(k,j-1,i) ) & |
---|
616 | ! + f2_mg(k,l) * p_mg(k+1,j,i) & |
---|
617 | ! + f3_mg(k,l) * p_mg(k-1,j,i) - f_mg(k,j,i) & |
---|
618 | ! ) |
---|
619 | ENDDO |
---|
620 | |
---|
621 | ENDDO |
---|
622 | ENDDO |
---|
623 | CALL cpu_log( log_point_s(38), 'redblack_unroll', 'stop' ) |
---|
624 | |
---|
625 | ENDIF |
---|
626 | |
---|
627 | ! |
---|
628 | !-- Horizontal boundary conditions |
---|
629 | CALL exchange_horiz( p_mg, 0, 0 ) |
---|
630 | |
---|
631 | IF ( bc_lr /= 'cyclic' ) THEN |
---|
632 | IF ( inflow_l .OR. outflow_l ) THEN |
---|
633 | p_mg(:,:,nxl_mg(l)-1) = p_mg(:,:,nxl_mg(l)) |
---|
634 | ENDIF |
---|
635 | IF ( inflow_r .OR. outflow_r ) THEN |
---|
636 | p_mg(:,:,nxr_mg(l)+1) = p_mg(:,:,nxr_mg(l)) |
---|
637 | ENDIF |
---|
638 | ENDIF |
---|
639 | |
---|
640 | IF ( bc_ns /= 'cyclic' ) THEN |
---|
641 | IF ( inflow_n .OR. outflow_n ) THEN |
---|
642 | p_mg(:,nyn_mg(l)+1,:) = p_mg(:,nyn_mg(l),:) |
---|
643 | ENDIF |
---|
644 | IF ( inflow_s .OR. outflow_s ) THEN |
---|
645 | p_mg(:,nys_mg(l)-1,:) = p_mg(:,nys_mg(l),:) |
---|
646 | ENDIF |
---|
647 | ENDIF |
---|
648 | |
---|
649 | ! |
---|
650 | !-- Bottom and top boundary conditions |
---|
651 | IF ( ibc_p_b == 1 ) THEN |
---|
652 | p_mg(nzb,:,: ) = p_mg(nzb+1,:,:) |
---|
653 | ELSE |
---|
654 | p_mg(nzb,:,: ) = 0.0 |
---|
655 | ENDIF |
---|
656 | |
---|
657 | IF ( ibc_p_t == 1 ) THEN |
---|
658 | p_mg(nzt_mg(l)+1,:,: ) = p_mg(nzt_mg(l),:,:) |
---|
659 | ELSE |
---|
660 | p_mg(nzt_mg(l)+1,:,: ) = 0.0 |
---|
661 | ENDIF |
---|
662 | |
---|
663 | ENDDO |
---|
664 | |
---|
665 | ENDDO |
---|
666 | |
---|
667 | |
---|
668 | END SUBROUTINE redblack |
---|
669 | |
---|
670 | |
---|
671 | |
---|
672 | SUBROUTINE mg_gather( f2, f2_sub ) |
---|
673 | |
---|
674 | USE control_parameters |
---|
675 | USE cpulog |
---|
676 | USE indices |
---|
677 | USE interfaces |
---|
678 | USE pegrid |
---|
679 | |
---|
680 | IMPLICIT NONE |
---|
681 | |
---|
682 | INTEGER :: n, nwords, sender |
---|
683 | |
---|
684 | REAL, DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
685 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
686 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f2 |
---|
687 | |
---|
688 | REAL, DIMENSION(nzb:mg_loc_ind(5,myid)+1, & |
---|
689 | mg_loc_ind(3,myid)-1:mg_loc_ind(4,myid)+1, & |
---|
690 | mg_loc_ind(1,myid)-1:mg_loc_ind(2,myid)+1) :: f2_sub |
---|
691 | |
---|
692 | ! |
---|
693 | !-- Find out the number of array elements of the subdomain array |
---|
694 | nwords = SIZE( f2_sub ) |
---|
695 | |
---|
696 | #if defined( __parallel ) |
---|
697 | CALL cpu_log( log_point_s(34), 'mg_gather', 'start' ) |
---|
698 | |
---|
699 | IF ( myid == 0 ) THEN |
---|
700 | ! |
---|
701 | !-- Store the local subdomain array on the total array |
---|
702 | f2(:,mg_loc_ind(3,0)-1:mg_loc_ind(4,0)+1, & |
---|
703 | mg_loc_ind(1,0)-1:mg_loc_ind(2,0)+1) = f2_sub |
---|
704 | |
---|
705 | ! |
---|
706 | !-- Receive the subdomain arrays from all other PEs and store them on the |
---|
707 | !-- total array |
---|
708 | DO n = 1, numprocs-1 |
---|
709 | ! |
---|
710 | !-- Receive the arrays in arbitrary order from the PEs. |
---|
711 | CALL MPI_RECV( f2_sub(nzb,mg_loc_ind(3,0)-1,mg_loc_ind(1,0)-1), & |
---|
712 | nwords, MPI_REAL, MPI_ANY_SOURCE, 1, comm2d, status, & |
---|
713 | ierr ) |
---|
714 | sender = status(MPI_SOURCE) |
---|
715 | f2(:,mg_loc_ind(3,sender)-1:mg_loc_ind(4,sender)+1, & |
---|
716 | mg_loc_ind(1,sender)-1:mg_loc_ind(2,sender)+1) = f2_sub |
---|
717 | ENDDO |
---|
718 | |
---|
719 | ELSE |
---|
720 | ! |
---|
721 | !-- Send subdomain array to PE0 |
---|
722 | CALL MPI_SEND( f2_sub(nzb,mg_loc_ind(3,myid)-1,mg_loc_ind(1,myid)-1), & |
---|
723 | nwords, MPI_REAL, 0, 1, comm2d, ierr ) |
---|
724 | ENDIF |
---|
725 | |
---|
726 | CALL cpu_log( log_point_s(34), 'mg_gather', 'stop' ) |
---|
727 | #endif |
---|
728 | |
---|
729 | END SUBROUTINE mg_gather |
---|
730 | |
---|
731 | |
---|
732 | |
---|
733 | SUBROUTINE mg_scatter( p2, p2_sub ) |
---|
734 | ! |
---|
735 | !-- TODO: It may be possible to improve the speed of this routine by using |
---|
736 | !-- non-blocking communication |
---|
737 | |
---|
738 | USE control_parameters |
---|
739 | USE cpulog |
---|
740 | USE indices |
---|
741 | USE interfaces |
---|
742 | USE pegrid |
---|
743 | |
---|
744 | IMPLICIT NONE |
---|
745 | |
---|
746 | INTEGER :: n, nwords, sender |
---|
747 | |
---|
748 | REAL, DIMENSION(nzb:nzt_mg(grid_level-1)+1, & |
---|
749 | nys_mg(grid_level-1)-1:nyn_mg(grid_level-1)+1, & |
---|
750 | nxl_mg(grid_level-1)-1:nxr_mg(grid_level-1)+1) :: p2 |
---|
751 | |
---|
752 | REAL, DIMENSION(nzb:mg_loc_ind(5,myid)+1, & |
---|
753 | mg_loc_ind(3,myid)-1:mg_loc_ind(4,myid)+1, & |
---|
754 | mg_loc_ind(1,myid)-1:mg_loc_ind(2,myid)+1) :: p2_sub |
---|
755 | |
---|
756 | ! |
---|
757 | !-- Find out the number of array elements of the subdomain array |
---|
758 | nwords = SIZE( p2_sub ) |
---|
759 | |
---|
760 | #if defined( __parallel ) |
---|
761 | CALL cpu_log( log_point_s(35), 'mg_scatter', 'start' ) |
---|
762 | |
---|
763 | IF ( myid == 0 ) THEN |
---|
764 | ! |
---|
765 | !-- Scatter the subdomain arrays to the other PEs by blocking |
---|
766 | !-- communication |
---|
767 | DO n = 1, numprocs-1 |
---|
768 | |
---|
769 | p2_sub = p2(:,mg_loc_ind(3,n)-1:mg_loc_ind(4,n)+1, & |
---|
770 | mg_loc_ind(1,n)-1:mg_loc_ind(2,n)+1) |
---|
771 | |
---|
772 | CALL MPI_SEND( p2_sub(nzb,mg_loc_ind(3,0)-1,mg_loc_ind(1,0)-1), & |
---|
773 | nwords, MPI_REAL, n, 1, comm2d, ierr ) |
---|
774 | |
---|
775 | ENDDO |
---|
776 | |
---|
777 | ! |
---|
778 | !-- Store data from the total array to the local subdomain array |
---|
779 | p2_sub = p2(:,mg_loc_ind(3,0)-1:mg_loc_ind(4,0)+1, & |
---|
780 | mg_loc_ind(1,0)-1:mg_loc_ind(2,0)+1) |
---|
781 | |
---|
782 | ELSE |
---|
783 | ! |
---|
784 | !-- Receive subdomain array from PE0 |
---|
785 | CALL MPI_RECV( p2_sub(nzb,mg_loc_ind(3,myid)-1,mg_loc_ind(1,myid)-1), & |
---|
786 | nwords, MPI_REAL, 0, 1, comm2d, status, ierr ) |
---|
787 | |
---|
788 | ENDIF |
---|
789 | |
---|
790 | CALL cpu_log( log_point_s(35), 'mg_scatter', 'stop' ) |
---|
791 | #endif |
---|
792 | |
---|
793 | END SUBROUTINE mg_scatter |
---|
794 | |
---|
795 | |
---|
796 | |
---|
797 | RECURSIVE SUBROUTINE next_mg_level( f_mg, p_mg, p3, r ) |
---|
798 | |
---|
799 | !------------------------------------------------------------------------------! |
---|
800 | ! Description: |
---|
801 | ! ------------ |
---|
802 | ! This is where the multigrid technique takes place. V- and W- Cycle are |
---|
803 | ! implemented and steered by the parameter "gamma". Parameter "nue" determines |
---|
804 | ! the convergence of the multigrid iterative solution. There are nue times |
---|
805 | ! RB-GS iterations. It should be set to "1" or "2", considering the time effort |
---|
806 | ! one would like to invest. Last choice shows a very good converging factor, |
---|
807 | ! but leads to an increase in computing time. |
---|
808 | !------------------------------------------------------------------------------! |
---|
809 | |
---|
810 | USE arrays_3d |
---|
811 | USE control_parameters |
---|
812 | USE grid_variables |
---|
813 | USE indices |
---|
814 | USE pegrid |
---|
815 | |
---|
816 | IMPLICIT NONE |
---|
817 | |
---|
818 | INTEGER :: i, j, k, nxl_mg_save, nxr_mg_save, nyn_mg_save, nys_mg_save, & |
---|
819 | nzt_mg_save |
---|
820 | |
---|
821 | LOGICAL :: restore_boundary_lr_on_pe0, restore_boundary_ns_on_pe0 |
---|
822 | |
---|
823 | REAL, DIMENSION(nzb:nzt_mg(grid_level)+1, & |
---|
824 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
825 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) :: f_mg, p_mg, p3, r |
---|
826 | |
---|
827 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: f2, f2_sub, p2, p2_sub |
---|
828 | |
---|
829 | ! |
---|
830 | !-- Restriction to the coarsest grid |
---|
831 | 10 IF ( grid_level == 1 ) THEN |
---|
832 | |
---|
833 | ! |
---|
834 | !-- Solution on the coarsest grid. Double the number of Gauss-Seidel |
---|
835 | !-- iterations in order to get a more accurate solution. |
---|
836 | ngsrb = 2 * ngsrb |
---|
837 | CALL redblack( f_mg, p_mg ) |
---|
838 | ngsrb = ngsrb / 2 |
---|
839 | |
---|
840 | ELSEIF ( grid_level /= 1 ) THEN |
---|
841 | |
---|
842 | grid_level_count(grid_level) = grid_level_count(grid_level) + 1 |
---|
843 | |
---|
844 | ! |
---|
845 | !-- Solution on the actual grid level |
---|
846 | CALL redblack( f_mg, p_mg ) |
---|
847 | |
---|
848 | ! |
---|
849 | !-- Determination of the actual residual |
---|
850 | CALL resid( f_mg, p_mg, r ) |
---|
851 | |
---|
852 | ! |
---|
853 | !-- Restriction of the residual (finer grid values!) to the next coarser |
---|
854 | !-- grid. Therefore, the grid level has to be decremented now. nxl..nzt have |
---|
855 | !-- to be set to the coarse grid values, because these variables are needed |
---|
856 | !-- for the exchange of ghost points in routine exchange_horiz |
---|
857 | grid_level = grid_level - 1 |
---|
858 | nxl = nxl_mg(grid_level) |
---|
859 | nxr = nxr_mg(grid_level) |
---|
860 | nys = nys_mg(grid_level) |
---|
861 | nyn = nyn_mg(grid_level) |
---|
862 | nzt = nzt_mg(grid_level) |
---|
863 | |
---|
864 | ALLOCATE( f2(nzb:nzt_mg(grid_level)+1, & |
---|
865 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
866 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1), & |
---|
867 | p2(nzb:nzt_mg(grid_level)+1, & |
---|
868 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
869 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) ) |
---|
870 | |
---|
871 | IF ( grid_level == mg_switch_to_pe0_level ) THEN |
---|
872 | ! print*, 'myid=',myid, ' restrict and switch to PE0. level=', grid_level |
---|
873 | ! |
---|
874 | !-- From this level on, calculations are done on PE0 only. |
---|
875 | !-- First, carry out restriction on the subdomain. |
---|
876 | !-- Therefore, indices of the level have to be changed to subdomain values |
---|
877 | !-- in between (otherwise, the restrict routine would expect |
---|
878 | !-- the gathered array) |
---|
879 | nxl_mg_save = nxl_mg(grid_level) |
---|
880 | nxr_mg_save = nxr_mg(grid_level) |
---|
881 | nys_mg_save = nys_mg(grid_level) |
---|
882 | nyn_mg_save = nyn_mg(grid_level) |
---|
883 | nzt_mg_save = nzt_mg(grid_level) |
---|
884 | nxl_mg(grid_level) = mg_loc_ind(1,myid) |
---|
885 | nxr_mg(grid_level) = mg_loc_ind(2,myid) |
---|
886 | nys_mg(grid_level) = mg_loc_ind(3,myid) |
---|
887 | nyn_mg(grid_level) = mg_loc_ind(4,myid) |
---|
888 | nzt_mg(grid_level) = mg_loc_ind(5,myid) |
---|
889 | nxl = mg_loc_ind(1,myid) |
---|
890 | nxr = mg_loc_ind(2,myid) |
---|
891 | nys = mg_loc_ind(3,myid) |
---|
892 | nyn = mg_loc_ind(4,myid) |
---|
893 | nzt = mg_loc_ind(5,myid) |
---|
894 | |
---|
895 | ALLOCATE( f2_sub(nzb:nzt_mg(grid_level)+1, & |
---|
896 | nys_mg(grid_level)-1:nyn_mg(grid_level)+1, & |
---|
897 | nxl_mg(grid_level)-1:nxr_mg(grid_level)+1) ) |
---|
898 | |
---|
899 | CALL restrict( f2_sub, r ) |
---|
900 | |
---|
901 | ! |
---|
902 | !-- Restore the correct indices of this level |
---|
903 | nxl_mg(grid_level) = nxl_mg_save |
---|
904 | nxr_mg(grid_level) = nxr_mg_save |
---|
905 | nys_mg(grid_level) = nys_mg_save |
---|
906 | nyn_mg(grid_level) = nyn_mg_save |
---|
907 | nzt_mg(grid_level) = nzt_mg_save |
---|
908 | nxl = nxl_mg(grid_level) |
---|
909 | nxr = nxr_mg(grid_level) |
---|
910 | nys = nys_mg(grid_level) |
---|
911 | nyn = nyn_mg(grid_level) |
---|
912 | nzt = nzt_mg(grid_level) |
---|
913 | |
---|
914 | ! |
---|
915 | !-- Gather all arrays from the subdomains on PE0 |
---|
916 | CALL mg_gather( f2, f2_sub ) |
---|
917 | |
---|
918 | ! |
---|
919 | !-- Set switch for routine exchange_horiz, that no ghostpoint exchange |
---|
920 | !-- has to be carried out from now on |
---|
921 | mg_switch_to_pe0 = .TRUE. |
---|
922 | |
---|
923 | ! |
---|
924 | !-- In case of non-cyclic lateral boundary conditions, both in- and |
---|
925 | !-- outflow conditions have to be used on PE0 after the switch, because |
---|
926 | !-- it then contains the total domain. Due to the virtual processor |
---|
927 | !-- grid, before the switch, PE0 can have in-/outflow at the left |
---|
928 | !-- and south wall only (or on opposite walls in case of a 1d |
---|
929 | !-- decomposition). |
---|
930 | restore_boundary_lr_on_pe0 = .FALSE. |
---|
931 | restore_boundary_ns_on_pe0 = .FALSE. |
---|
932 | IF ( myid == 0 ) THEN |
---|
933 | IF ( inflow_l .AND. .NOT. outflow_r ) THEN |
---|
934 | outflow_r = .TRUE. |
---|
935 | restore_boundary_lr_on_pe0 = .TRUE. |
---|
936 | ENDIF |
---|
937 | IF ( outflow_l .AND. .NOT. inflow_r ) THEN |
---|
938 | inflow_r = .TRUE. |
---|
939 | restore_boundary_lr_on_pe0 = .TRUE. |
---|
940 | ENDIF |
---|
941 | IF ( inflow_s .AND. .NOT. outflow_n ) THEN |
---|
942 | outflow_n = .TRUE. |
---|
943 | restore_boundary_ns_on_pe0 = .TRUE. |
---|
944 | ENDIF |
---|
945 | IF ( outflow_s .AND. .NOT. inflow_n ) THEN |
---|
946 | inflow_n = .TRUE. |
---|
947 | restore_boundary_ns_on_pe0 = .TRUE. |
---|
948 | ENDIF |
---|
949 | ENDIF |
---|
950 | |
---|
951 | DEALLOCATE( f2_sub ) |
---|
952 | |
---|
953 | ELSE |
---|
954 | |
---|
955 | CALL restrict( f2, r ) |
---|
956 | |
---|
957 | ENDIF |
---|
958 | p2 = 0.0 |
---|
959 | |
---|
960 | ! |
---|
961 | !-- Repeat the same procedure till the coarsest grid is reached |
---|
962 | IF ( myid == 0 .OR. grid_level > mg_switch_to_pe0_level ) THEN |
---|
963 | CALL next_mg_level( f2, p2, p3, r ) |
---|
964 | ENDIF |
---|
965 | |
---|
966 | ENDIF |
---|
967 | |
---|
968 | ! |
---|
969 | !-- Now follows the prolongation |
---|
970 | IF ( grid_level >= 2 ) THEN |
---|
971 | |
---|
972 | ! |
---|
973 | !-- Grid level has to be incremented on the PEs where next_mg_level |
---|
974 | !-- has not been called before (normally it is incremented at the end |
---|
975 | !-- of next_mg_level) |
---|
976 | IF ( myid /= 0 .AND. grid_level == mg_switch_to_pe0_level ) THEN |
---|
977 | grid_level = grid_level + 1 |
---|
978 | nxl = nxl_mg(grid_level) |
---|
979 | nxr = nxr_mg(grid_level) |
---|
980 | nys = nys_mg(grid_level) |
---|
981 | nyn = nyn_mg(grid_level) |
---|
982 | nzt = nzt_mg(grid_level) |
---|
983 | ENDIF |
---|
984 | |
---|
985 | ! |
---|
986 | !-- Prolongation of the new residual. The values are transferred |
---|
987 | !-- from the coarse to the next finer grid. |
---|
988 | IF ( grid_level == mg_switch_to_pe0_level+1 ) THEN |
---|
989 | ! |
---|
990 | !-- At this level, the new residual first has to be scattered from |
---|
991 | !-- PE0 to the other PEs |
---|
992 | ALLOCATE( p2_sub(nzb:mg_loc_ind(5,myid)+1, & |
---|
993 | mg_loc_ind(3,myid)-1:mg_loc_ind(4,myid)+1, & |
---|
994 | mg_loc_ind(1,myid)-1:mg_loc_ind(2,myid)+1) ) |
---|
995 | |
---|
996 | CALL mg_scatter( p2, p2_sub ) |
---|
997 | |
---|
998 | ! |
---|
999 | !-- Therefore, indices of the previous level have to be changed to |
---|
1000 | !-- subdomain values in between (otherwise, the prolong routine would |
---|
1001 | !-- expect the gathered array) |
---|
1002 | nxl_mg_save = nxl_mg(grid_level-1) |
---|
1003 | nxr_mg_save = nxr_mg(grid_level-1) |
---|
1004 | nys_mg_save = nys_mg(grid_level-1) |
---|
1005 | nyn_mg_save = nyn_mg(grid_level-1) |
---|
1006 | nzt_mg_save = nzt_mg(grid_level-1) |
---|
1007 | nxl_mg(grid_level-1) = mg_loc_ind(1,myid) |
---|
1008 | nxr_mg(grid_level-1) = mg_loc_ind(2,myid) |
---|
1009 | nys_mg(grid_level-1) = mg_loc_ind(3,myid) |
---|
1010 | nyn_mg(grid_level-1) = mg_loc_ind(4,myid) |
---|
1011 | nzt_mg(grid_level-1) = mg_loc_ind(5,myid) |
---|
1012 | |
---|
1013 | ! |
---|
1014 | !-- Set switch for routine exchange_horiz, that ghostpoint exchange |
---|
1015 | !-- has to be carried again out from now on |
---|
1016 | mg_switch_to_pe0 = .FALSE. |
---|
1017 | |
---|
1018 | ! |
---|
1019 | !-- In case of non-cyclic lateral boundary conditions, restore the |
---|
1020 | !-- in-/outflow conditions on PE0 |
---|
1021 | IF ( myid == 0 ) THEN |
---|
1022 | IF ( restore_boundary_lr_on_pe0 ) THEN |
---|
1023 | IF ( inflow_l ) outflow_r = .FALSE. |
---|
1024 | IF ( outflow_l ) inflow_r = .FALSE. |
---|
1025 | ENDIF |
---|
1026 | IF ( restore_boundary_ns_on_pe0 ) THEN |
---|
1027 | IF ( inflow_s ) outflow_n = .FALSE. |
---|
1028 | IF ( outflow_s ) inflow_n = .FALSE. |
---|
1029 | ENDIF |
---|
1030 | ENDIF |
---|
1031 | |
---|
1032 | CALL prolong( p2_sub, p3 ) |
---|
1033 | |
---|
1034 | ! |
---|
1035 | !-- Restore the correct indices of the previous level |
---|
1036 | nxl_mg(grid_level-1) = nxl_mg_save |
---|
1037 | nxr_mg(grid_level-1) = nxr_mg_save |
---|
1038 | nys_mg(grid_level-1) = nys_mg_save |
---|
1039 | nyn_mg(grid_level-1) = nyn_mg_save |
---|
1040 | nzt_mg(grid_level-1) = nzt_mg_save |
---|
1041 | |
---|
1042 | DEALLOCATE( p2_sub ) |
---|
1043 | |
---|
1044 | ELSE |
---|
1045 | |
---|
1046 | CALL prolong( p2, p3 ) |
---|
1047 | |
---|
1048 | ENDIF |
---|
1049 | |
---|
1050 | ! |
---|
1051 | !-- Temporary arrays for the actual grid are not needed any more |
---|
1052 | DEALLOCATE( p2, f2 ) |
---|
1053 | |
---|
1054 | ! |
---|
1055 | !-- Computation of the new pressure correction. Therefore, |
---|
1056 | !-- values from prior grids are added up automatically stage by stage. |
---|
1057 | DO i = nxl_mg(grid_level)-1, nxr_mg(grid_level)+1 |
---|
1058 | DO j = nys_mg(grid_level)-1, nyn_mg(grid_level)+1 |
---|
1059 | DO k = nzb, nzt_mg(grid_level)+1 |
---|
1060 | p_mg(k,j,i) = p_mg(k,j,i) + p3(k,j,i) |
---|
1061 | ENDDO |
---|
1062 | ENDDO |
---|
1063 | ENDDO |
---|
1064 | |
---|
1065 | ! |
---|
1066 | !-- Relaxation of the new solution |
---|
1067 | CALL redblack( f_mg, p_mg ) |
---|
1068 | |
---|
1069 | ENDIF |
---|
1070 | |
---|
1071 | ! |
---|
1072 | !-- The following few lines serve the steering of the multigrid scheme |
---|
1073 | IF ( grid_level == maximum_grid_level ) THEN |
---|
1074 | |
---|
1075 | GOTO 20 |
---|
1076 | |
---|
1077 | ELSEIF ( grid_level /= maximum_grid_level .AND. grid_level /= 1 .AND. & |
---|
1078 | grid_level_count(grid_level) /= gamma_mg ) THEN |
---|
1079 | |
---|
1080 | GOTO 10 |
---|
1081 | |
---|
1082 | ENDIF |
---|
1083 | |
---|
1084 | ! |
---|
1085 | !-- Reset counter for the next call of poismg |
---|
1086 | grid_level_count(grid_level) = 0 |
---|
1087 | |
---|
1088 | ! |
---|
1089 | !-- Continue with the next finer level. nxl..nzt have to be |
---|
1090 | !-- set to the finer grid values, because these variables are needed for the |
---|
1091 | !-- exchange of ghost points in routine exchange_horiz |
---|
1092 | grid_level = grid_level + 1 |
---|
1093 | nxl = nxl_mg(grid_level) |
---|
1094 | nxr = nxr_mg(grid_level) |
---|
1095 | nys = nys_mg(grid_level) |
---|
1096 | nyn = nyn_mg(grid_level) |
---|
1097 | nzt = nzt_mg(grid_level) |
---|
1098 | |
---|
1099 | 20 CONTINUE |
---|
1100 | |
---|
1101 | END SUBROUTINE next_mg_level |
---|