1 | !> @file poisfft_mod.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: poisfft_mod.f90 4182 2019-08-22 15:20:23Z resler $ |
---|
27 | ! Corrected "Former revisions" section |
---|
28 | ! |
---|
29 | ! 3690 2019-01-22 22:56:42Z knoop |
---|
30 | ! OpenACC port for SPEC |
---|
31 | ! |
---|
32 | ! Revision 1.1 1997/07/24 11:24:14 raasch |
---|
33 | ! Initial revision |
---|
34 | ! |
---|
35 | ! |
---|
36 | ! Description: |
---|
37 | ! ------------ |
---|
38 | !> Solves the Poisson equation with a 2D spectral method |
---|
39 | !> d^2 p / dx^2 + d^2 p / dy^2 + d^2 p / dz^2 = s |
---|
40 | !> |
---|
41 | !> Input: |
---|
42 | !> real ar contains (nnz,nny,nnx) elements of the velocity divergence, |
---|
43 | !> starting from (1,nys,nxl) |
---|
44 | !> |
---|
45 | !> Output: |
---|
46 | !> real ar contains the solution for perturbation pressure p |
---|
47 | !------------------------------------------------------------------------------! |
---|
48 | MODULE poisfft_mod |
---|
49 | |
---|
50 | |
---|
51 | USE fft_xy, & |
---|
52 | ONLY: fft_init, fft_y, fft_y_1d, fft_y_m, fft_x, fft_x_1d, fft_x_m |
---|
53 | |
---|
54 | USE indices, & |
---|
55 | ONLY: nnx, nny, nx, nxl, nxr, ny, nys, nyn, nz |
---|
56 | |
---|
57 | USE transpose_indices, & |
---|
58 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nys_x, nys_z, nyn_x, nyn_z, nzb_x, & |
---|
59 | nzb_y, nzt_x, nzt_y |
---|
60 | |
---|
61 | USE tridia_solver, & |
---|
62 | ONLY: tridia_1dd, tridia_init, tridia_substi, tridia_substi_overlap |
---|
63 | |
---|
64 | IMPLICIT NONE |
---|
65 | |
---|
66 | LOGICAL, SAVE :: poisfft_initialized = .FALSE. |
---|
67 | |
---|
68 | PRIVATE |
---|
69 | |
---|
70 | PUBLIC poisfft, poisfft_init |
---|
71 | |
---|
72 | INTERFACE poisfft |
---|
73 | MODULE PROCEDURE poisfft |
---|
74 | END INTERFACE poisfft |
---|
75 | |
---|
76 | INTERFACE poisfft_init |
---|
77 | MODULE PROCEDURE poisfft_init |
---|
78 | END INTERFACE poisfft_init |
---|
79 | |
---|
80 | |
---|
81 | CONTAINS |
---|
82 | |
---|
83 | !------------------------------------------------------------------------------! |
---|
84 | ! Description: |
---|
85 | ! ------------ |
---|
86 | !> Setup coefficients for FFT and the tridiagonal solver |
---|
87 | !------------------------------------------------------------------------------! |
---|
88 | SUBROUTINE poisfft_init |
---|
89 | |
---|
90 | IMPLICIT NONE |
---|
91 | |
---|
92 | |
---|
93 | CALL fft_init |
---|
94 | |
---|
95 | CALL tridia_init |
---|
96 | |
---|
97 | poisfft_initialized = .TRUE. |
---|
98 | |
---|
99 | END SUBROUTINE poisfft_init |
---|
100 | |
---|
101 | |
---|
102 | |
---|
103 | !------------------------------------------------------------------------------! |
---|
104 | ! Description: |
---|
105 | ! ------------ |
---|
106 | !> Two-dimensional Fourier Transformation in x- and y-direction. |
---|
107 | !------------------------------------------------------------------------------! |
---|
108 | SUBROUTINE poisfft( ar ) |
---|
109 | |
---|
110 | USE control_parameters, & |
---|
111 | ONLY: transpose_compute_overlap |
---|
112 | |
---|
113 | USE cpulog, & |
---|
114 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
115 | |
---|
116 | USE kinds |
---|
117 | |
---|
118 | USE pegrid |
---|
119 | |
---|
120 | IMPLICIT NONE |
---|
121 | |
---|
122 | INTEGER(iwp) :: ii !< |
---|
123 | INTEGER(iwp) :: iind !< |
---|
124 | INTEGER(iwp) :: inew !< |
---|
125 | INTEGER(iwp) :: jj !< |
---|
126 | INTEGER(iwp) :: jind !< |
---|
127 | INTEGER(iwp) :: jnew !< |
---|
128 | INTEGER(iwp) :: ki !< |
---|
129 | INTEGER(iwp) :: kk !< |
---|
130 | INTEGER(iwp) :: knew !< |
---|
131 | INTEGER(iwp) :: n !< |
---|
132 | INTEGER(iwp) :: nblk !< |
---|
133 | INTEGER(iwp) :: nnx_y !< |
---|
134 | INTEGER(iwp) :: nny_z !< |
---|
135 | INTEGER(iwp) :: nnz_x !< |
---|
136 | INTEGER(iwp) :: nxl_y_bound !< |
---|
137 | INTEGER(iwp) :: nxr_y_bound !< |
---|
138 | |
---|
139 | INTEGER(iwp), DIMENSION(4) :: isave !< |
---|
140 | |
---|
141 | REAL(wp), DIMENSION(1:nz,nys:nyn,nxl:nxr) :: ar !< |
---|
142 | REAL(wp), DIMENSION(nys:nyn,nxl:nxr,1:nz) :: ar_inv !< |
---|
143 | |
---|
144 | #define __acc_fft_device ( defined( _OPENACC ) && ( defined ( __cuda_fft ) ) ) |
---|
145 | #if __acc_fft_device |
---|
146 | !$ACC DECLARE CREATE(ar_inv) |
---|
147 | #endif |
---|
148 | |
---|
149 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ar1 !< |
---|
150 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_in !< |
---|
151 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_inv !< |
---|
152 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_y !< |
---|
153 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_z !< |
---|
154 | |
---|
155 | |
---|
156 | CALL cpu_log( log_point_s(3), 'poisfft', 'start' ) |
---|
157 | |
---|
158 | IF ( .NOT. poisfft_initialized ) CALL poisfft_init |
---|
159 | |
---|
160 | #if !__acc_fft_device |
---|
161 | !$ACC UPDATE HOST(ar) |
---|
162 | #endif |
---|
163 | |
---|
164 | #ifndef _OPENACC |
---|
165 | ! |
---|
166 | !-- Two-dimensional Fourier Transformation in x- and y-direction. |
---|
167 | IF ( pdims(2) == 1 .AND. pdims(1) > 1 ) THEN |
---|
168 | |
---|
169 | ! |
---|
170 | !-- 1d-domain-decomposition along x: |
---|
171 | !-- FFT along y and transposition y --> x |
---|
172 | CALL ffty_tr_yx( ar, ar ) |
---|
173 | |
---|
174 | ! |
---|
175 | !-- FFT along x, solving the tridiagonal system and backward FFT |
---|
176 | CALL fftx_tri_fftx( ar ) |
---|
177 | |
---|
178 | ! |
---|
179 | !-- Transposition x --> y and backward FFT along y |
---|
180 | CALL tr_xy_ffty( ar, ar ) |
---|
181 | |
---|
182 | ELSEIF ( pdims(1) == 1 .AND. pdims(2) > 1 ) THEN |
---|
183 | |
---|
184 | ! |
---|
185 | !-- 1d-domain-decomposition along y: |
---|
186 | !-- FFT along x and transposition x --> y |
---|
187 | CALL fftx_tr_xy( ar, ar ) |
---|
188 | |
---|
189 | ! |
---|
190 | !-- FFT along y, solving the tridiagonal system and backward FFT |
---|
191 | CALL ffty_tri_ffty( ar ) |
---|
192 | |
---|
193 | ! |
---|
194 | !-- Transposition y --> x and backward FFT along x |
---|
195 | CALL tr_yx_fftx( ar, ar ) |
---|
196 | |
---|
197 | ELSEIF ( .NOT. transpose_compute_overlap ) THEN |
---|
198 | #endif |
---|
199 | |
---|
200 | ! |
---|
201 | !-- 2d-domain-decomposition or no decomposition (1 PE run) |
---|
202 | !-- Transposition z --> x |
---|
203 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start' ) |
---|
204 | CALL resort_for_zx( ar, ar_inv ) |
---|
205 | CALL transpose_zx( ar_inv, ar ) |
---|
206 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
207 | |
---|
208 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
209 | CALL fft_x( ar, 'forward' ) |
---|
210 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
211 | |
---|
212 | ! |
---|
213 | !-- Transposition x --> y |
---|
214 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
215 | CALL resort_for_xy( ar, ar_inv ) |
---|
216 | CALL transpose_xy( ar_inv, ar ) |
---|
217 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
218 | |
---|
219 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
220 | CALL fft_y( ar, 'forward', ar_tr = ar, & |
---|
221 | nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
222 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
223 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
224 | |
---|
225 | ! |
---|
226 | !-- Transposition y --> z |
---|
227 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
228 | CALL resort_for_yz( ar, ar_inv ) |
---|
229 | CALL transpose_yz( ar_inv, ar ) |
---|
230 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
231 | |
---|
232 | ! |
---|
233 | !-- Solve the tridiagonal equation system along z |
---|
234 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
235 | CALL tridia_substi( ar ) |
---|
236 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
237 | |
---|
238 | ! |
---|
239 | !-- Inverse Fourier Transformation |
---|
240 | !-- Transposition z --> y |
---|
241 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start' ) |
---|
242 | CALL transpose_zy( ar, ar_inv ) |
---|
243 | CALL resort_for_zy( ar_inv, ar ) |
---|
244 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
245 | |
---|
246 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
247 | CALL fft_y( ar, 'backward', ar_tr = ar, & |
---|
248 | nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
249 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
250 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
251 | |
---|
252 | ! |
---|
253 | !-- Transposition y --> x |
---|
254 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
255 | CALL transpose_yx( ar, ar_inv ) |
---|
256 | CALL resort_for_yx( ar_inv, ar ) |
---|
257 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
258 | |
---|
259 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
260 | CALL fft_x( ar, 'backward' ) |
---|
261 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
262 | |
---|
263 | ! |
---|
264 | !-- Transposition x --> z |
---|
265 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
266 | CALL transpose_xz( ar, ar_inv ) |
---|
267 | CALL resort_for_xz( ar_inv, ar ) |
---|
268 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
269 | |
---|
270 | #ifndef _OPENACC |
---|
271 | ELSE |
---|
272 | |
---|
273 | ! |
---|
274 | !-- 2d-domain-decomposition or no decomposition (1 PE run) with |
---|
275 | !-- overlapping transposition / fft |
---|
276 | !-- cputime logging must not use barriers, which would prevent overlapping |
---|
277 | ALLOCATE( f_out_y(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), & |
---|
278 | f_out_z(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
279 | ! |
---|
280 | !-- Transposition z --> x + subsequent fft along x |
---|
281 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
282 | CALL resort_for_zx( ar, f_inv ) |
---|
283 | ! |
---|
284 | !-- Save original indices and gridpoint counter |
---|
285 | isave(1) = nz |
---|
286 | isave(2) = nzb_x |
---|
287 | isave(3) = nzt_x |
---|
288 | isave(4) = sendrecvcount_zx |
---|
289 | ! |
---|
290 | !-- Set new indices for transformation |
---|
291 | nblk = nz / pdims(1) |
---|
292 | nz = pdims(1) |
---|
293 | nnz_x = 1 |
---|
294 | nzb_x = 1 + myidx * nnz_x |
---|
295 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
296 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
297 | |
---|
298 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
299 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
300 | |
---|
301 | DO kk = 1, nblk |
---|
302 | |
---|
303 | IF ( kk == 1 ) THEN |
---|
304 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start', cpu_log_nowait ) |
---|
305 | ELSE |
---|
306 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
307 | ENDIF |
---|
308 | |
---|
309 | DO knew = 1, nz |
---|
310 | ki = kk + nblk * ( knew - 1 ) |
---|
311 | f_in(:,:,knew) = f_inv(:,:,ki) |
---|
312 | ENDDO |
---|
313 | |
---|
314 | CALL transpose_zx( f_in, ar1(:,:,:)) |
---|
315 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
316 | |
---|
317 | IF ( kk == 1 ) THEN |
---|
318 | CALL cpu_log( log_point_s(4), 'fft_x', 'start', cpu_log_nowait ) |
---|
319 | ELSE |
---|
320 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
321 | ENDIF |
---|
322 | |
---|
323 | n = isave(2) + kk - 1 |
---|
324 | CALL fft_x( ar1(:,:,:), 'forward', ar_2d = f_out_z(:,:,n)) |
---|
325 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
326 | |
---|
327 | ENDDO |
---|
328 | ! |
---|
329 | !-- Restore original indices/counters |
---|
330 | nz = isave(1) |
---|
331 | nzb_x = isave(2) |
---|
332 | nzt_x = isave(3) |
---|
333 | sendrecvcount_zx = isave(4) |
---|
334 | |
---|
335 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
336 | |
---|
337 | ! |
---|
338 | !-- Transposition x --> y + subsequent fft along y |
---|
339 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
340 | CALL resort_for_xy( f_out_z, f_inv ) |
---|
341 | ! |
---|
342 | !-- Save original indices and gridpoint counter |
---|
343 | isave(1) = nx |
---|
344 | isave(2) = nxl_y |
---|
345 | isave(3) = nxr_y |
---|
346 | isave(4) = sendrecvcount_xy |
---|
347 | ! |
---|
348 | !-- Set new indices for transformation |
---|
349 | nblk = ( ( nx+1 ) / pdims(2) ) - 1 |
---|
350 | nx = pdims(2) |
---|
351 | nnx_y = 1 |
---|
352 | nxl_y = myidy * nnx_y |
---|
353 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
354 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
355 | |
---|
356 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
357 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
358 | |
---|
359 | DO ii = 0, nblk |
---|
360 | |
---|
361 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
362 | |
---|
363 | DO inew = 0, nx-1 |
---|
364 | iind = ii + ( nblk + 1 ) * inew |
---|
365 | f_in(:,:,inew) = f_inv(:,:,iind) |
---|
366 | ENDDO |
---|
367 | |
---|
368 | CALL transpose_xy( f_in, ar1(:,:,:) ) |
---|
369 | |
---|
370 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
371 | |
---|
372 | IF ( ii == 1 ) THEN |
---|
373 | CALL cpu_log( log_point_s(7), 'fft_y', 'start', cpu_log_nowait ) |
---|
374 | ELSE |
---|
375 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
376 | ENDIF |
---|
377 | |
---|
378 | nxl_y_bound = isave(2) |
---|
379 | nxr_y_bound = isave(3) |
---|
380 | n = isave(2) + ii |
---|
381 | CALL fft_y( ar1(:,:,:), 'forward', ar_tr = f_out_y, & |
---|
382 | nxl_y_bound = nxl_y_bound, nxr_y_bound = nxr_y_bound, & |
---|
383 | nxl_y_l = n, nxr_y_l = n ) |
---|
384 | |
---|
385 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
386 | |
---|
387 | ENDDO |
---|
388 | ! |
---|
389 | !-- Restore original indices/counters |
---|
390 | nx = isave(1) |
---|
391 | nxl_y = isave(2) |
---|
392 | nxr_y = isave(3) |
---|
393 | sendrecvcount_xy = isave(4) |
---|
394 | |
---|
395 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
396 | |
---|
397 | ! |
---|
398 | !-- Transposition y --> z + subsequent tridia + resort for z --> y |
---|
399 | ALLOCATE( f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
400 | CALL resort_for_yz( f_out_y, f_inv ) |
---|
401 | ! |
---|
402 | !-- Save original indices and gridpoint counter |
---|
403 | isave(1) = ny |
---|
404 | isave(2) = nys_z |
---|
405 | isave(3) = nyn_z |
---|
406 | isave(4) = sendrecvcount_yz |
---|
407 | ! |
---|
408 | !-- Set new indices for transformation |
---|
409 | nblk = ( ( ny+1 ) / pdims(1) ) - 1 |
---|
410 | ny = pdims(1) |
---|
411 | nny_z = 1 |
---|
412 | nys_z = myidx * nny_z |
---|
413 | nyn_z = ( myidx + 1 ) * nny_z - 1 |
---|
414 | sendrecvcount_yz = ( nxr_y-nxl_y+1 ) * nny_z * ( nzt_y-nzb_y+1 ) |
---|
415 | |
---|
416 | ALLOCATE( ar1(nxl_z:nxr_z,nys_z:nyn_z,1:nz) ) |
---|
417 | ALLOCATE( f_in(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
418 | |
---|
419 | DO jj = 0, nblk |
---|
420 | ! |
---|
421 | !-- Forward Fourier Transformation |
---|
422 | !-- Transposition y --> z |
---|
423 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
424 | |
---|
425 | DO jnew = 0, ny-1 |
---|
426 | jind = jj + ( nblk + 1 ) * jnew |
---|
427 | f_in(:,:,jnew) = f_inv(:,:,jind) |
---|
428 | ENDDO |
---|
429 | |
---|
430 | CALL transpose_yz( f_in, ar1(:,:,:) ) |
---|
431 | |
---|
432 | IF ( jj == nblk ) THEN |
---|
433 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
434 | ELSE |
---|
435 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
436 | ENDIF |
---|
437 | |
---|
438 | ! |
---|
439 | !-- Solve the tridiagonal equation system along z |
---|
440 | CALL cpu_log( log_point_s(6), 'tridia', 'start', cpu_log_nowait ) |
---|
441 | |
---|
442 | n = isave(2) + jj |
---|
443 | CALL tridia_substi_overlap( ar1(:,:,:), n ) |
---|
444 | |
---|
445 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
446 | |
---|
447 | ! |
---|
448 | !-- Inverse Fourier Transformation |
---|
449 | !-- Transposition z --> y |
---|
450 | !-- Only one thread should call MPI routines, therefore forward and |
---|
451 | !-- backward tranpose are in the same section |
---|
452 | IF ( jj == 0 ) THEN |
---|
453 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start', cpu_log_nowait ) |
---|
454 | ELSE |
---|
455 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
456 | ENDIF |
---|
457 | |
---|
458 | CALL transpose_zy( ar1(:,:,:), f_in ) |
---|
459 | |
---|
460 | DO jnew = 0, ny-1 |
---|
461 | jind = jj + ( nblk + 1 ) * jnew |
---|
462 | f_inv(:,:,jind) = f_in(:,:,jnew) |
---|
463 | ENDDO |
---|
464 | |
---|
465 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
466 | |
---|
467 | ENDDO |
---|
468 | ! |
---|
469 | !-- Restore original indices/counters |
---|
470 | ny = isave(1) |
---|
471 | nys_z = isave(2) |
---|
472 | nyn_z = isave(3) |
---|
473 | sendrecvcount_yz = isave(4) |
---|
474 | |
---|
475 | CALL resort_for_zy( f_inv, f_out_y ) |
---|
476 | |
---|
477 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
478 | |
---|
479 | ! |
---|
480 | !-- fft along y backward + subsequent transposition y --> x |
---|
481 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
482 | ! |
---|
483 | !-- Save original indices and gridpoint counter |
---|
484 | isave(1) = nx |
---|
485 | isave(2) = nxl_y |
---|
486 | isave(3) = nxr_y |
---|
487 | isave(4) = sendrecvcount_xy |
---|
488 | ! |
---|
489 | !-- Set new indices for transformation |
---|
490 | nblk = (( nx+1 ) / pdims(2) ) - 1 |
---|
491 | nx = pdims(2) |
---|
492 | nnx_y = 1 |
---|
493 | nxl_y = myidy * nnx_y |
---|
494 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
495 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
496 | |
---|
497 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
498 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
499 | |
---|
500 | DO ii = 0, nblk |
---|
501 | |
---|
502 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
503 | |
---|
504 | n = isave(2) + ii |
---|
505 | nxl_y_bound = isave(2) |
---|
506 | nxr_y_bound = isave(3) |
---|
507 | |
---|
508 | CALL fft_y( ar1(:,:,:), 'backward', ar_tr = f_out_y, & |
---|
509 | nxl_y_bound = nxl_y_bound, nxr_y_bound = nxr_y_bound, & |
---|
510 | nxl_y_l = n, nxr_y_l = n ) |
---|
511 | |
---|
512 | IF ( ii == nblk ) THEN |
---|
513 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
514 | ELSE |
---|
515 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
516 | ENDIF |
---|
517 | |
---|
518 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
519 | |
---|
520 | CALL transpose_yx( ar1(:,:,:), f_in ) |
---|
521 | |
---|
522 | DO inew = 0, nx-1 |
---|
523 | iind = ii + (nblk+1) * inew |
---|
524 | f_inv(:,:,iind) = f_in(:,:,inew) |
---|
525 | ENDDO |
---|
526 | |
---|
527 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
528 | |
---|
529 | ENDDO |
---|
530 | ! |
---|
531 | !-- Restore original indices/counters |
---|
532 | nx = isave(1) |
---|
533 | nxl_y = isave(2) |
---|
534 | nxr_y = isave(3) |
---|
535 | sendrecvcount_xy = isave(4) |
---|
536 | |
---|
537 | CALL resort_for_yx( f_inv, f_out_z ) |
---|
538 | |
---|
539 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
540 | |
---|
541 | ! |
---|
542 | !-- fft along x backward + subsequent final transposition x --> z |
---|
543 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
544 | ! |
---|
545 | !-- Save original indices and gridpoint counter |
---|
546 | isave(1) = nz |
---|
547 | isave(2) = nzb_x |
---|
548 | isave(3) = nzt_x |
---|
549 | isave(4) = sendrecvcount_zx |
---|
550 | ! |
---|
551 | !-- Set new indices for transformation |
---|
552 | nblk = nz / pdims(1) |
---|
553 | nz = pdims(1) |
---|
554 | nnz_x = 1 |
---|
555 | nzb_x = 1 + myidx * nnz_x |
---|
556 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
557 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
558 | |
---|
559 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
560 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
561 | |
---|
562 | DO kk = 1, nblk |
---|
563 | |
---|
564 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
565 | |
---|
566 | n = isave(2) + kk - 1 |
---|
567 | CALL fft_x( ar1(:,:,:), 'backward', f_out_z(:,:,n)) |
---|
568 | |
---|
569 | IF ( kk == nblk ) THEN |
---|
570 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
571 | ELSE |
---|
572 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
573 | ENDIF |
---|
574 | |
---|
575 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
576 | |
---|
577 | CALL transpose_xz( ar1(:,:,:), f_in ) |
---|
578 | |
---|
579 | DO knew = 1, nz |
---|
580 | ki = kk + nblk * (knew-1) |
---|
581 | f_inv(:,:,ki) = f_in(:,:,knew) |
---|
582 | ENDDO |
---|
583 | |
---|
584 | IF ( kk == nblk ) THEN |
---|
585 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
586 | ELSE |
---|
587 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
588 | ENDIF |
---|
589 | |
---|
590 | ENDDO |
---|
591 | ! |
---|
592 | !-- Restore original indices/counters |
---|
593 | nz = isave(1) |
---|
594 | nzb_x = isave(2) |
---|
595 | nzt_x = isave(3) |
---|
596 | sendrecvcount_zx = isave(4) |
---|
597 | |
---|
598 | CALL resort_for_xz( f_inv, ar ) |
---|
599 | |
---|
600 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
601 | |
---|
602 | ENDIF |
---|
603 | #endif |
---|
604 | |
---|
605 | #if !__acc_fft_device |
---|
606 | !$ACC UPDATE DEVICE(ar) |
---|
607 | #endif |
---|
608 | |
---|
609 | CALL cpu_log( log_point_s(3), 'poisfft', 'stop' ) |
---|
610 | |
---|
611 | END SUBROUTINE poisfft |
---|
612 | |
---|
613 | |
---|
614 | !------------------------------------------------------------------------------! |
---|
615 | ! Description: |
---|
616 | ! ------------ |
---|
617 | !> Fourier-transformation along y with subsequent transposition y --> x for |
---|
618 | !> a 1d-decomposition along x. |
---|
619 | !> |
---|
620 | !> @attention The performance of this routine is much faster on the NEC-SX6, |
---|
621 | !> if the first index of work_ffty_vec is odd. Otherwise |
---|
622 | !> memory bank conflicts may occur (especially if the index is a |
---|
623 | !> multiple of 128). That's why work_ffty_vec is dimensioned as |
---|
624 | !> 0:ny+1. |
---|
625 | !> Of course, this will not work if users are using an odd number |
---|
626 | !> of gridpoints along y. |
---|
627 | !------------------------------------------------------------------------------! |
---|
628 | SUBROUTINE ffty_tr_yx( f_in, f_out ) |
---|
629 | |
---|
630 | USE control_parameters, & |
---|
631 | ONLY: loop_optimization |
---|
632 | |
---|
633 | USE cpulog, & |
---|
634 | ONLY: cpu_log, log_point_s |
---|
635 | |
---|
636 | USE kinds |
---|
637 | |
---|
638 | USE pegrid |
---|
639 | |
---|
640 | IMPLICIT NONE |
---|
641 | |
---|
642 | INTEGER(iwp) :: i !< |
---|
643 | INTEGER(iwp) :: iend !< |
---|
644 | INTEGER(iwp) :: iouter !< |
---|
645 | INTEGER(iwp) :: ir !< |
---|
646 | INTEGER(iwp) :: j !< |
---|
647 | INTEGER(iwp) :: k !< |
---|
648 | |
---|
649 | INTEGER(iwp), PARAMETER :: stridex = 4 !< |
---|
650 | |
---|
651 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_in !< |
---|
652 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_out !< |
---|
653 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !< |
---|
654 | |
---|
655 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_ffty !< |
---|
656 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: work_ffty_vec !< |
---|
657 | |
---|
658 | ! |
---|
659 | !-- Carry out the FFT along y, where all data are present due to the |
---|
660 | !-- 1d-decomposition along x. Resort the data in a way that x becomes |
---|
661 | !-- the first index. |
---|
662 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'start' ) |
---|
663 | |
---|
664 | IF ( loop_optimization == 'vector' ) THEN |
---|
665 | |
---|
666 | ALLOCATE( work_ffty_vec(0:ny+1,1:nz,nxl:nxr) ) |
---|
667 | ! |
---|
668 | !-- Code optimized for vector processors |
---|
669 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
670 | !$OMP DO |
---|
671 | DO i = nxl, nxr |
---|
672 | |
---|
673 | DO j = 0, ny |
---|
674 | DO k = 1, nz |
---|
675 | work_ffty_vec(j,k,i) = f_in(k,j,i) |
---|
676 | ENDDO |
---|
677 | ENDDO |
---|
678 | |
---|
679 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'forward' ) |
---|
680 | |
---|
681 | ENDDO |
---|
682 | |
---|
683 | !$OMP DO |
---|
684 | DO k = 1, nz |
---|
685 | DO j = 0, ny |
---|
686 | DO i = nxl, nxr |
---|
687 | work(i,k,j) = work_ffty_vec(j,k,i) |
---|
688 | ENDDO |
---|
689 | ENDDO |
---|
690 | ENDDO |
---|
691 | !$OMP END PARALLEL |
---|
692 | |
---|
693 | DEALLOCATE( work_ffty_vec ) |
---|
694 | |
---|
695 | ELSE |
---|
696 | ! |
---|
697 | !-- Cache optimized code. |
---|
698 | ALLOCATE( work_ffty(0:ny,stridex) ) |
---|
699 | ! |
---|
700 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
701 | !-- loop for better cache performance |
---|
702 | !$OMP PARALLEL PRIVATE (i,iend,iouter,ir,j,k,work_ffty) |
---|
703 | !$OMP DO |
---|
704 | DO iouter = nxl, nxr, stridex |
---|
705 | |
---|
706 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
707 | |
---|
708 | DO k = 1, nz |
---|
709 | |
---|
710 | DO i = iouter, iend |
---|
711 | |
---|
712 | ir = i-iouter+1 ! counter within a stride |
---|
713 | DO j = 0, ny |
---|
714 | work_ffty(j,ir) = f_in(k,j,i) |
---|
715 | ENDDO |
---|
716 | ! |
---|
717 | !-- FFT along y |
---|
718 | CALL fft_y_1d( work_ffty(:,ir), 'forward' ) |
---|
719 | |
---|
720 | ENDDO |
---|
721 | |
---|
722 | ! |
---|
723 | !-- Resort |
---|
724 | DO j = 0, ny |
---|
725 | DO i = iouter, iend |
---|
726 | work(i,k,j) = work_ffty(j,i-iouter+1) |
---|
727 | ENDDO |
---|
728 | ENDDO |
---|
729 | |
---|
730 | ENDDO |
---|
731 | |
---|
732 | ENDDO |
---|
733 | !$OMP END PARALLEL |
---|
734 | |
---|
735 | DEALLOCATE( work_ffty ) |
---|
736 | |
---|
737 | ENDIF |
---|
738 | |
---|
739 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'pause' ) |
---|
740 | |
---|
741 | ! |
---|
742 | !-- Transpose array |
---|
743 | #if defined( __parallel ) |
---|
744 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
745 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
746 | CALL MPI_ALLTOALL( work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
747 | f_out(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
748 | comm1dx, ierr ) |
---|
749 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
750 | #endif |
---|
751 | |
---|
752 | END SUBROUTINE ffty_tr_yx |
---|
753 | |
---|
754 | |
---|
755 | !------------------------------------------------------------------------------! |
---|
756 | ! Description: |
---|
757 | ! ------------ |
---|
758 | !> Transposition x --> y with a subsequent backward Fourier transformation for |
---|
759 | !> a 1d-decomposition along x |
---|
760 | !------------------------------------------------------------------------------! |
---|
761 | SUBROUTINE tr_xy_ffty( f_in, f_out ) |
---|
762 | |
---|
763 | USE control_parameters, & |
---|
764 | ONLY: loop_optimization |
---|
765 | |
---|
766 | USE cpulog, & |
---|
767 | ONLY: cpu_log, log_point_s |
---|
768 | |
---|
769 | USE kinds |
---|
770 | |
---|
771 | USE pegrid |
---|
772 | |
---|
773 | IMPLICIT NONE |
---|
774 | |
---|
775 | INTEGER(iwp) :: i !< |
---|
776 | INTEGER(iwp) :: iend !< |
---|
777 | INTEGER(iwp) :: iouter !< |
---|
778 | INTEGER(iwp) :: ir !< |
---|
779 | INTEGER(iwp) :: j !< |
---|
780 | INTEGER(iwp) :: k !< |
---|
781 | |
---|
782 | INTEGER(iwp), PARAMETER :: stridex = 4 !< |
---|
783 | |
---|
784 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_in !< |
---|
785 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_out !< |
---|
786 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !< |
---|
787 | |
---|
788 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_ffty !< |
---|
789 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: work_ffty_vec !< |
---|
790 | |
---|
791 | ! |
---|
792 | !-- Transpose array |
---|
793 | #if defined( __parallel ) |
---|
794 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
795 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
796 | CALL MPI_ALLTOALL( f_in(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
797 | work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
798 | comm1dx, ierr ) |
---|
799 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
800 | #endif |
---|
801 | |
---|
802 | ! |
---|
803 | !-- Resort the data in a way that y becomes the first index and carry out the |
---|
804 | !-- backward fft along y. |
---|
805 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'continue' ) |
---|
806 | |
---|
807 | IF ( loop_optimization == 'vector' ) THEN |
---|
808 | |
---|
809 | ALLOCATE( work_ffty_vec(0:ny+1,1:nz,nxl:nxr) ) |
---|
810 | ! |
---|
811 | !-- Code optimized for vector processors |
---|
812 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
813 | !$OMP DO |
---|
814 | DO k = 1, nz |
---|
815 | DO j = 0, ny |
---|
816 | DO i = nxl, nxr |
---|
817 | work_ffty_vec(j,k,i) = work(i,k,j) |
---|
818 | ENDDO |
---|
819 | ENDDO |
---|
820 | ENDDO |
---|
821 | |
---|
822 | !$OMP DO |
---|
823 | DO i = nxl, nxr |
---|
824 | |
---|
825 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'backward' ) |
---|
826 | |
---|
827 | DO j = 0, ny |
---|
828 | DO k = 1, nz |
---|
829 | f_out(k,j,i) = work_ffty_vec(j,k,i) |
---|
830 | ENDDO |
---|
831 | ENDDO |
---|
832 | |
---|
833 | ENDDO |
---|
834 | !$OMP END PARALLEL |
---|
835 | |
---|
836 | DEALLOCATE( work_ffty_vec ) |
---|
837 | |
---|
838 | ELSE |
---|
839 | ! |
---|
840 | !-- Cache optimized code. |
---|
841 | ALLOCATE( work_ffty(0:ny,stridex) ) |
---|
842 | ! |
---|
843 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
844 | !-- loop for better cache performance |
---|
845 | !$OMP PARALLEL PRIVATE ( i, iend, iouter, ir, j, k, work_ffty ) |
---|
846 | !$OMP DO |
---|
847 | DO iouter = nxl, nxr, stridex |
---|
848 | |
---|
849 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
850 | |
---|
851 | DO k = 1, nz |
---|
852 | ! |
---|
853 | !-- Resort |
---|
854 | DO j = 0, ny |
---|
855 | DO i = iouter, iend |
---|
856 | work_ffty(j,i-iouter+1) = work(i,k,j) |
---|
857 | ENDDO |
---|
858 | ENDDO |
---|
859 | |
---|
860 | DO i = iouter, iend |
---|
861 | |
---|
862 | ! |
---|
863 | !-- FFT along y |
---|
864 | ir = i-iouter+1 ! counter within a stride |
---|
865 | CALL fft_y_1d( work_ffty(:,ir), 'backward' ) |
---|
866 | |
---|
867 | DO j = 0, ny |
---|
868 | f_out(k,j,i) = work_ffty(j,ir) |
---|
869 | ENDDO |
---|
870 | ENDDO |
---|
871 | |
---|
872 | ENDDO |
---|
873 | |
---|
874 | ENDDO |
---|
875 | !$OMP END PARALLEL |
---|
876 | |
---|
877 | DEALLOCATE( work_ffty ) |
---|
878 | |
---|
879 | ENDIF |
---|
880 | |
---|
881 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'stop' ) |
---|
882 | |
---|
883 | END SUBROUTINE tr_xy_ffty |
---|
884 | |
---|
885 | |
---|
886 | !------------------------------------------------------------------------------! |
---|
887 | ! Description: |
---|
888 | ! ------------ |
---|
889 | !> FFT along x, solution of the tridiagonal system and backward FFT for |
---|
890 | !> a 1d-decomposition along x |
---|
891 | !> |
---|
892 | !> @warning this subroutine may still not work for hybrid parallelization |
---|
893 | !> with OpenMP (for possible necessary changes see the original |
---|
894 | !> routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
895 | !------------------------------------------------------------------------------! |
---|
896 | SUBROUTINE fftx_tri_fftx( ar ) |
---|
897 | |
---|
898 | USE control_parameters, & |
---|
899 | ONLY: loop_optimization |
---|
900 | |
---|
901 | USE cpulog, & |
---|
902 | ONLY: cpu_log, log_point_s |
---|
903 | |
---|
904 | USE grid_variables, & |
---|
905 | ONLY: ddx2, ddy2 |
---|
906 | |
---|
907 | USE kinds |
---|
908 | |
---|
909 | USE pegrid |
---|
910 | |
---|
911 | IMPLICIT NONE |
---|
912 | |
---|
913 | INTEGER(iwp) :: i !< |
---|
914 | INTEGER(iwp) :: j !< |
---|
915 | INTEGER(iwp) :: k !< |
---|
916 | INTEGER(iwp) :: m !< |
---|
917 | INTEGER(iwp) :: n !< |
---|
918 | !$ INTEGER(iwp) :: omp_get_thread_num !< |
---|
919 | INTEGER(iwp) :: tn !< |
---|
920 | |
---|
921 | REAL(wp), DIMENSION(0:nx) :: work_fftx !< |
---|
922 | REAL(wp), DIMENSION(0:nx,1:nz) :: work_trix !< |
---|
923 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: ar !< |
---|
924 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !< |
---|
925 | |
---|
926 | |
---|
927 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'start' ) |
---|
928 | |
---|
929 | ALLOCATE( tri(5,0:nx,0:nz-1,0:threads_per_task-1) ) |
---|
930 | |
---|
931 | tn = 0 ! Default thread number in case of one thread |
---|
932 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_fftx, work_trix ) |
---|
933 | DO j = nys_x, nyn_x |
---|
934 | |
---|
935 | !$ tn = omp_get_thread_num() |
---|
936 | |
---|
937 | IF ( loop_optimization == 'vector' ) THEN |
---|
938 | ! |
---|
939 | !-- Code optimized for vector processors |
---|
940 | DO k = 1, nz |
---|
941 | |
---|
942 | m = 0 |
---|
943 | DO n = 1, pdims(1) |
---|
944 | DO i = 1, nnx |
---|
945 | work_trix(m,k) = ar(i,k,j,n) |
---|
946 | m = m + 1 |
---|
947 | ENDDO |
---|
948 | ENDDO |
---|
949 | |
---|
950 | ENDDO |
---|
951 | |
---|
952 | CALL fft_x_m( work_trix, 'forward' ) |
---|
953 | |
---|
954 | ELSE |
---|
955 | ! |
---|
956 | !-- Cache optimized code |
---|
957 | DO k = 1, nz |
---|
958 | |
---|
959 | m = 0 |
---|
960 | DO n = 1, pdims(1) |
---|
961 | DO i = 1, nnx |
---|
962 | work_fftx(m) = ar(i,k,j,n) |
---|
963 | m = m + 1 |
---|
964 | ENDDO |
---|
965 | ENDDO |
---|
966 | |
---|
967 | CALL fft_x_1d( work_fftx, 'forward' ) |
---|
968 | |
---|
969 | DO i = 0, nx |
---|
970 | work_trix(i,k) = work_fftx(i) |
---|
971 | ENDDO |
---|
972 | |
---|
973 | ENDDO |
---|
974 | |
---|
975 | ENDIF |
---|
976 | |
---|
977 | ! |
---|
978 | !-- Solve the linear equation system |
---|
979 | CALL tridia_1dd( ddx2, ddy2, nx, ny, j, work_trix, tri(:,:,:,tn) ) |
---|
980 | |
---|
981 | IF ( loop_optimization == 'vector' ) THEN |
---|
982 | ! |
---|
983 | !-- Code optimized for vector processors |
---|
984 | CALL fft_x_m( work_trix, 'backward' ) |
---|
985 | |
---|
986 | DO k = 1, nz |
---|
987 | |
---|
988 | m = 0 |
---|
989 | DO n = 1, pdims(1) |
---|
990 | DO i = 1, nnx |
---|
991 | ar(i,k,j,n) = work_trix(m,k) |
---|
992 | m = m + 1 |
---|
993 | ENDDO |
---|
994 | ENDDO |
---|
995 | |
---|
996 | ENDDO |
---|
997 | |
---|
998 | ELSE |
---|
999 | ! |
---|
1000 | !-- Cache optimized code |
---|
1001 | DO k = 1, nz |
---|
1002 | |
---|
1003 | DO i = 0, nx |
---|
1004 | work_fftx(i) = work_trix(i,k) |
---|
1005 | ENDDO |
---|
1006 | |
---|
1007 | CALL fft_x_1d( work_fftx, 'backward' ) |
---|
1008 | |
---|
1009 | m = 0 |
---|
1010 | DO n = 1, pdims(1) |
---|
1011 | DO i = 1, nnx |
---|
1012 | ar(i,k,j,n) = work_fftx(m) |
---|
1013 | m = m + 1 |
---|
1014 | ENDDO |
---|
1015 | ENDDO |
---|
1016 | |
---|
1017 | ENDDO |
---|
1018 | |
---|
1019 | ENDIF |
---|
1020 | |
---|
1021 | ENDDO |
---|
1022 | |
---|
1023 | DEALLOCATE( tri ) |
---|
1024 | |
---|
1025 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'stop' ) |
---|
1026 | |
---|
1027 | END SUBROUTINE fftx_tri_fftx |
---|
1028 | |
---|
1029 | |
---|
1030 | !------------------------------------------------------------------------------! |
---|
1031 | ! Description: |
---|
1032 | ! ------------ |
---|
1033 | !> Fourier-transformation along x with subsequent transposition x --> y for |
---|
1034 | !> a 1d-decomposition along y. |
---|
1035 | !> |
---|
1036 | !> @attention NEC-branch of this routine may significantly profit from |
---|
1037 | !> further optimizations. So far, performance is much worse than |
---|
1038 | !> for routine ffty_tr_yx (more than three times slower). |
---|
1039 | !------------------------------------------------------------------------------! |
---|
1040 | SUBROUTINE fftx_tr_xy( f_in, f_out ) |
---|
1041 | |
---|
1042 | |
---|
1043 | USE control_parameters, & |
---|
1044 | ONLY: loop_optimization |
---|
1045 | |
---|
1046 | USE cpulog, & |
---|
1047 | ONLY: cpu_log, log_point_s |
---|
1048 | |
---|
1049 | USE kinds |
---|
1050 | |
---|
1051 | USE pegrid |
---|
1052 | |
---|
1053 | IMPLICIT NONE |
---|
1054 | |
---|
1055 | INTEGER(iwp) :: i !< |
---|
1056 | INTEGER(iwp) :: j !< |
---|
1057 | INTEGER(iwp) :: k !< |
---|
1058 | |
---|
1059 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !< |
---|
1060 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_in !< |
---|
1061 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_out !< |
---|
1062 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !< |
---|
1063 | |
---|
1064 | ! |
---|
1065 | !-- Carry out the FFT along x, where all data are present due to the |
---|
1066 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
1067 | !-- the first index. |
---|
1068 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'start' ) |
---|
1069 | |
---|
1070 | IF ( loop_optimization == 'vector' ) THEN |
---|
1071 | ! |
---|
1072 | !-- Code for vector processors |
---|
1073 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
1074 | !$OMP DO |
---|
1075 | DO i = 0, nx |
---|
1076 | |
---|
1077 | DO j = nys, nyn |
---|
1078 | DO k = 1, nz |
---|
1079 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
1080 | ENDDO |
---|
1081 | ENDDO |
---|
1082 | |
---|
1083 | ENDDO |
---|
1084 | |
---|
1085 | !$OMP DO |
---|
1086 | DO j = nys, nyn |
---|
1087 | |
---|
1088 | CALL fft_x_m( work_fftx(:,:,j), 'forward' ) |
---|
1089 | |
---|
1090 | DO k = 1, nz |
---|
1091 | DO i = 0, nx |
---|
1092 | work(j,k,i) = work_fftx(i,k,j) |
---|
1093 | ENDDO |
---|
1094 | ENDDO |
---|
1095 | |
---|
1096 | ENDDO |
---|
1097 | !$OMP END PARALLEL |
---|
1098 | |
---|
1099 | ELSE |
---|
1100 | |
---|
1101 | ! |
---|
1102 | !-- Cache optimized code (there might be still a potential for better |
---|
1103 | !-- optimization). |
---|
1104 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
1105 | !$OMP DO |
---|
1106 | DO i = 0, nx |
---|
1107 | |
---|
1108 | DO j = nys, nyn |
---|
1109 | DO k = 1, nz |
---|
1110 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
1111 | ENDDO |
---|
1112 | ENDDO |
---|
1113 | |
---|
1114 | ENDDO |
---|
1115 | |
---|
1116 | !$OMP DO |
---|
1117 | DO j = nys, nyn |
---|
1118 | DO k = 1, nz |
---|
1119 | |
---|
1120 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'forward' ) |
---|
1121 | |
---|
1122 | DO i = 0, nx |
---|
1123 | work(j,k,i) = work_fftx(i,k,j) |
---|
1124 | ENDDO |
---|
1125 | ENDDO |
---|
1126 | |
---|
1127 | ENDDO |
---|
1128 | !$OMP END PARALLEL |
---|
1129 | |
---|
1130 | ENDIF |
---|
1131 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'pause' ) |
---|
1132 | |
---|
1133 | ! |
---|
1134 | !-- Transpose array |
---|
1135 | #if defined( __parallel ) |
---|
1136 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
1137 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1138 | CALL MPI_ALLTOALL( work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
1139 | f_out(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
1140 | comm1dy, ierr ) |
---|
1141 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
1142 | #endif |
---|
1143 | |
---|
1144 | END SUBROUTINE fftx_tr_xy |
---|
1145 | |
---|
1146 | |
---|
1147 | !------------------------------------------------------------------------------! |
---|
1148 | ! Description: |
---|
1149 | ! ------------ |
---|
1150 | !> Transposition y --> x with a subsequent backward Fourier transformation for |
---|
1151 | !> a 1d-decomposition along x. |
---|
1152 | !------------------------------------------------------------------------------! |
---|
1153 | SUBROUTINE tr_yx_fftx( f_in, f_out ) |
---|
1154 | |
---|
1155 | |
---|
1156 | USE control_parameters, & |
---|
1157 | ONLY: loop_optimization |
---|
1158 | |
---|
1159 | USE cpulog, & |
---|
1160 | ONLY: cpu_log, log_point_s |
---|
1161 | |
---|
1162 | USE kinds |
---|
1163 | |
---|
1164 | USE pegrid |
---|
1165 | |
---|
1166 | IMPLICIT NONE |
---|
1167 | |
---|
1168 | INTEGER(iwp) :: i !< |
---|
1169 | INTEGER(iwp) :: j !< |
---|
1170 | INTEGER(iwp) :: k !< |
---|
1171 | |
---|
1172 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !< |
---|
1173 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_in !< |
---|
1174 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_out !< |
---|
1175 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !< |
---|
1176 | |
---|
1177 | ! |
---|
1178 | !-- Transpose array |
---|
1179 | #if defined( __parallel ) |
---|
1180 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
1181 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1182 | CALL MPI_ALLTOALL( f_in(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
1183 | work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
1184 | comm1dy, ierr ) |
---|
1185 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
1186 | #endif |
---|
1187 | |
---|
1188 | ! |
---|
1189 | !-- Carry out the FFT along x, where all data are present due to the |
---|
1190 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
1191 | !-- the first index. |
---|
1192 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'continue' ) |
---|
1193 | |
---|
1194 | IF ( loop_optimization == 'vector' ) THEN |
---|
1195 | ! |
---|
1196 | !-- Code optimized for vector processors |
---|
1197 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
1198 | !$OMP DO |
---|
1199 | DO j = nys, nyn |
---|
1200 | |
---|
1201 | DO k = 1, nz |
---|
1202 | DO i = 0, nx |
---|
1203 | work_fftx(i,k,j) = work(j,k,i) |
---|
1204 | ENDDO |
---|
1205 | ENDDO |
---|
1206 | |
---|
1207 | CALL fft_x_m( work_fftx(:,:,j), 'backward' ) |
---|
1208 | |
---|
1209 | ENDDO |
---|
1210 | |
---|
1211 | !$OMP DO |
---|
1212 | DO i = 0, nx |
---|
1213 | DO j = nys, nyn |
---|
1214 | DO k = 1, nz |
---|
1215 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
1216 | ENDDO |
---|
1217 | ENDDO |
---|
1218 | ENDDO |
---|
1219 | !$OMP END PARALLEL |
---|
1220 | |
---|
1221 | ELSE |
---|
1222 | |
---|
1223 | ! |
---|
1224 | !-- Cache optimized code (there might be still a potential for better |
---|
1225 | !-- optimization). |
---|
1226 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
1227 | !$OMP DO |
---|
1228 | DO j = nys, nyn |
---|
1229 | DO k = 1, nz |
---|
1230 | |
---|
1231 | DO i = 0, nx |
---|
1232 | work_fftx(i,k,j) = work(j,k,i) |
---|
1233 | ENDDO |
---|
1234 | |
---|
1235 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'backward' ) |
---|
1236 | |
---|
1237 | ENDDO |
---|
1238 | ENDDO |
---|
1239 | |
---|
1240 | !$OMP DO |
---|
1241 | DO i = 0, nx |
---|
1242 | DO j = nys, nyn |
---|
1243 | DO k = 1, nz |
---|
1244 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
1245 | ENDDO |
---|
1246 | ENDDO |
---|
1247 | ENDDO |
---|
1248 | !$OMP END PARALLEL |
---|
1249 | |
---|
1250 | ENDIF |
---|
1251 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'stop' ) |
---|
1252 | |
---|
1253 | END SUBROUTINE tr_yx_fftx |
---|
1254 | |
---|
1255 | |
---|
1256 | !------------------------------------------------------------------------------! |
---|
1257 | ! Description: |
---|
1258 | ! ------------ |
---|
1259 | !> FFT along y, solution of the tridiagonal system and backward FFT for |
---|
1260 | !> a 1d-decomposition along y. |
---|
1261 | !> |
---|
1262 | !> @warning this subroutine may still not work for hybrid parallelization |
---|
1263 | !> with OpenMP (for possible necessary changes see the original |
---|
1264 | !> routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
1265 | !------------------------------------------------------------------------------! |
---|
1266 | SUBROUTINE ffty_tri_ffty( ar ) |
---|
1267 | |
---|
1268 | |
---|
1269 | USE control_parameters, & |
---|
1270 | ONLY: loop_optimization |
---|
1271 | |
---|
1272 | USE cpulog, & |
---|
1273 | ONLY: cpu_log, log_point_s |
---|
1274 | |
---|
1275 | USE grid_variables, & |
---|
1276 | ONLY: ddx2, ddy2 |
---|
1277 | |
---|
1278 | USE kinds |
---|
1279 | |
---|
1280 | USE pegrid |
---|
1281 | |
---|
1282 | IMPLICIT NONE |
---|
1283 | |
---|
1284 | INTEGER(iwp) :: i !< |
---|
1285 | INTEGER(iwp) :: j !< |
---|
1286 | INTEGER(iwp) :: k !< |
---|
1287 | INTEGER(iwp) :: m !< |
---|
1288 | INTEGER(iwp) :: n !< |
---|
1289 | !$ INTEGER(iwp) :: omp_get_thread_num !< |
---|
1290 | INTEGER(iwp) :: tn !< |
---|
1291 | |
---|
1292 | REAL(wp), DIMENSION(0:ny) :: work_ffty !< |
---|
1293 | REAL(wp), DIMENSION(0:ny,1:nz) :: work_triy !< |
---|
1294 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: ar !< |
---|
1295 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !< |
---|
1296 | |
---|
1297 | |
---|
1298 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'start' ) |
---|
1299 | |
---|
1300 | ALLOCATE( tri(5,0:ny,0:nz-1,0:threads_per_task-1) ) |
---|
1301 | |
---|
1302 | tn = 0 ! Default thread number in case of one thread |
---|
1303 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_ffty, work_triy ) |
---|
1304 | DO i = nxl_y, nxr_y |
---|
1305 | |
---|
1306 | !$ tn = omp_get_thread_num() |
---|
1307 | |
---|
1308 | IF ( loop_optimization == 'vector' ) THEN |
---|
1309 | ! |
---|
1310 | !-- Code optimized for vector processors |
---|
1311 | DO k = 1, nz |
---|
1312 | |
---|
1313 | m = 0 |
---|
1314 | DO n = 1, pdims(2) |
---|
1315 | DO j = 1, nny |
---|
1316 | work_triy(m,k) = ar(j,k,i,n) |
---|
1317 | m = m + 1 |
---|
1318 | ENDDO |
---|
1319 | ENDDO |
---|
1320 | |
---|
1321 | ENDDO |
---|
1322 | |
---|
1323 | CALL fft_y_m( work_triy, ny, 'forward' ) |
---|
1324 | |
---|
1325 | ELSE |
---|
1326 | ! |
---|
1327 | !-- Cache optimized code |
---|
1328 | DO k = 1, nz |
---|
1329 | |
---|
1330 | m = 0 |
---|
1331 | DO n = 1, pdims(2) |
---|
1332 | DO j = 1, nny |
---|
1333 | work_ffty(m) = ar(j,k,i,n) |
---|
1334 | m = m + 1 |
---|
1335 | ENDDO |
---|
1336 | ENDDO |
---|
1337 | |
---|
1338 | CALL fft_y_1d( work_ffty, 'forward' ) |
---|
1339 | |
---|
1340 | DO j = 0, ny |
---|
1341 | work_triy(j,k) = work_ffty(j) |
---|
1342 | ENDDO |
---|
1343 | |
---|
1344 | ENDDO |
---|
1345 | |
---|
1346 | ENDIF |
---|
1347 | |
---|
1348 | ! |
---|
1349 | !-- Solve the linear equation system |
---|
1350 | CALL tridia_1dd( ddy2, ddx2, ny, nx, i, work_triy, tri(:,:,:,tn) ) |
---|
1351 | |
---|
1352 | IF ( loop_optimization == 'vector' ) THEN |
---|
1353 | ! |
---|
1354 | !-- Code optimized for vector processors |
---|
1355 | CALL fft_y_m( work_triy, ny, 'backward' ) |
---|
1356 | |
---|
1357 | DO k = 1, nz |
---|
1358 | |
---|
1359 | m = 0 |
---|
1360 | DO n = 1, pdims(2) |
---|
1361 | DO j = 1, nny |
---|
1362 | ar(j,k,i,n) = work_triy(m,k) |
---|
1363 | m = m + 1 |
---|
1364 | ENDDO |
---|
1365 | ENDDO |
---|
1366 | |
---|
1367 | ENDDO |
---|
1368 | |
---|
1369 | ELSE |
---|
1370 | ! |
---|
1371 | !-- Cache optimized code |
---|
1372 | DO k = 1, nz |
---|
1373 | |
---|
1374 | DO j = 0, ny |
---|
1375 | work_ffty(j) = work_triy(j,k) |
---|
1376 | ENDDO |
---|
1377 | |
---|
1378 | CALL fft_y_1d( work_ffty, 'backward' ) |
---|
1379 | |
---|
1380 | m = 0 |
---|
1381 | DO n = 1, pdims(2) |
---|
1382 | DO j = 1, nny |
---|
1383 | ar(j,k,i,n) = work_ffty(m) |
---|
1384 | m = m + 1 |
---|
1385 | ENDDO |
---|
1386 | ENDDO |
---|
1387 | |
---|
1388 | ENDDO |
---|
1389 | |
---|
1390 | ENDIF |
---|
1391 | |
---|
1392 | ENDDO |
---|
1393 | |
---|
1394 | DEALLOCATE( tri ) |
---|
1395 | |
---|
1396 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'stop' ) |
---|
1397 | |
---|
1398 | END SUBROUTINE ffty_tri_ffty |
---|
1399 | |
---|
1400 | END MODULE poisfft_mod |
---|