[1850] | 1 | !> @file poisfft_mod.f90 |
---|
[4649] | 2 | !--------------------------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[4649] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
| 6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
| 7 | ! (at your option) any later version. |
---|
[1036] | 8 | ! |
---|
[4649] | 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
| 10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
| 11 | ! Public License for more details. |
---|
[1036] | 12 | ! |
---|
[4649] | 13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
| 14 | ! <http://www.gnu.org/licenses/>. |
---|
[1036] | 15 | ! |
---|
[4360] | 16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[4649] | 17 | !--------------------------------------------------------------------------------------------------! |
---|
[1036] | 18 | ! |
---|
[4649] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[4649] | 22 | ! |
---|
| 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: poisfft_mod.f90 4717 2020-09-30 22:27:40Z hellstea $ |
---|
[4717] | 27 | ! Formatting of OpenMP directives (J. Resler) |
---|
| 28 | ! |
---|
| 29 | ! 4671 2020-09-09 20:27:58Z pavelkrc |
---|
[4671] | 30 | ! OMP bugfix |
---|
| 31 | ! |
---|
| 32 | ! 4649 2020-08-25 12:11:17Z raasch |
---|
[4649] | 33 | ! File re-formatted to follow the PALM coding standard |
---|
| 34 | ! |
---|
| 35 | ! 4429 2020-02-27 15:24:30Z raasch |
---|
[4429] | 36 | ! Statements added to avoid compile errors due to unused dummy arguments in serial mode |
---|
[4649] | 37 | ! |
---|
[4429] | 38 | ! 4366 2020-01-09 08:12:43Z raasch |
---|
[4649] | 39 | ! Modification concerning NEC vectorizatio |
---|
| 40 | ! |
---|
[4366] | 41 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4182] | 42 | ! Corrected "Former revisions" section |
---|
[4649] | 43 | ! |
---|
[4182] | 44 | ! 3690 2019-01-22 22:56:42Z knoop |
---|
[3634] | 45 | ! OpenACC port for SPEC |
---|
[2716] | 46 | ! |
---|
[4182] | 47 | ! Revision 1.1 1997/07/24 11:24:14 raasch |
---|
| 48 | ! Initial revision |
---|
| 49 | ! |
---|
| 50 | ! |
---|
[4649] | 51 | !--------------------------------------------------------------------------------------------------! |
---|
[1] | 52 | ! Description: |
---|
| 53 | ! ------------ |
---|
[1682] | 54 | !> Solves the Poisson equation with a 2D spectral method |
---|
| 55 | !> d^2 p / dx^2 + d^2 p / dy^2 + d^2 p / dz^2 = s |
---|
| 56 | !> |
---|
| 57 | !> Input: |
---|
[4649] | 58 | !> real ar contains (nnz,nny,nnx) elements of the velocity divergence, starting from (1,nys,nxl) |
---|
[1682] | 59 | !> |
---|
| 60 | !> Output: |
---|
[4649] | 61 | !> real ar contains the solution for perturbation pressure p |
---|
| 62 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 63 | MODULE poisfft_mod |
---|
[1] | 64 | |
---|
[4649] | 65 | |
---|
| 66 | USE fft_xy, & |
---|
| 67 | ONLY: fft_init, & |
---|
| 68 | fft_y, & |
---|
| 69 | fft_y_1d, & |
---|
| 70 | fft_y_m, & |
---|
| 71 | fft_x, & |
---|
| 72 | fft_x_1d, & |
---|
| 73 | fft_x_m, & |
---|
[4366] | 74 | temperton_fft_vec |
---|
[1] | 75 | |
---|
[4649] | 76 | USE indices, & |
---|
| 77 | ONLY: nnx, & |
---|
| 78 | nny, & |
---|
| 79 | nx, & |
---|
| 80 | nxl, & |
---|
| 81 | nxr, & |
---|
| 82 | ny, & |
---|
| 83 | nys, & |
---|
| 84 | nyn, & |
---|
| 85 | nz |
---|
[1320] | 86 | |
---|
[4649] | 87 | USE transpose_indices, & |
---|
| 88 | ONLY: nxl_y, & |
---|
| 89 | nxl_z, & |
---|
| 90 | nxr_y, & |
---|
| 91 | nxr_z, & |
---|
| 92 | nys_x, & |
---|
| 93 | nys_z, & |
---|
| 94 | nyn_x, & |
---|
| 95 | nyn_z, & |
---|
| 96 | nzb_x, & |
---|
| 97 | nzb_y, & |
---|
| 98 | nzt_x, & |
---|
| 99 | nzt_y |
---|
[1320] | 100 | |
---|
[4649] | 101 | USE tridia_solver, & |
---|
| 102 | ONLY: tridia_1dd, & |
---|
| 103 | tridia_init, & |
---|
| 104 | tridia_substi, & |
---|
| 105 | tridia_substi_overlap |
---|
[1320] | 106 | |
---|
[1] | 107 | IMPLICIT NONE |
---|
| 108 | |
---|
[4649] | 109 | LOGICAL, SAVE :: poisfft_initialized = .FALSE. !< |
---|
[1111] | 110 | |
---|
[1] | 111 | PRIVATE |
---|
[807] | 112 | |
---|
[1] | 113 | PUBLIC poisfft, poisfft_init |
---|
| 114 | |
---|
| 115 | INTERFACE poisfft |
---|
| 116 | MODULE PROCEDURE poisfft |
---|
| 117 | END INTERFACE poisfft |
---|
| 118 | |
---|
| 119 | INTERFACE poisfft_init |
---|
| 120 | MODULE PROCEDURE poisfft_init |
---|
| 121 | END INTERFACE poisfft_init |
---|
| 122 | |
---|
[807] | 123 | |
---|
[1] | 124 | CONTAINS |
---|
| 125 | |
---|
[4649] | 126 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 127 | ! Description: |
---|
| 128 | ! ------------ |
---|
[3241] | 129 | !> Setup coefficients for FFT and the tridiagonal solver |
---|
[4649] | 130 | !--------------------------------------------------------------------------------------------------! |
---|
| 131 | SUBROUTINE poisfft_init |
---|
[1] | 132 | |
---|
[4649] | 133 | IMPLICIT NONE |
---|
[1111] | 134 | |
---|
| 135 | |
---|
[4649] | 136 | CALL fft_init |
---|
[1] | 137 | |
---|
[4649] | 138 | CALL tridia_init |
---|
[1111] | 139 | |
---|
[4649] | 140 | poisfft_initialized = .TRUE. |
---|
[1111] | 141 | |
---|
[4649] | 142 | END SUBROUTINE poisfft_init |
---|
[1] | 143 | |
---|
[1111] | 144 | |
---|
[1804] | 145 | |
---|
[4649] | 146 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 147 | ! Description: |
---|
| 148 | ! ------------ |
---|
| 149 | !> Two-dimensional Fourier Transformation in x- and y-direction. |
---|
[4649] | 150 | !--------------------------------------------------------------------------------------------------! |
---|
| 151 | SUBROUTINE poisfft( ar ) |
---|
[1] | 152 | |
---|
[4649] | 153 | USE control_parameters, & |
---|
| 154 | ONLY: transpose_compute_overlap |
---|
[1320] | 155 | |
---|
[4649] | 156 | USE cpulog, & |
---|
| 157 | ONLY: cpu_log, & |
---|
| 158 | cpu_log_nowait, & |
---|
| 159 | log_point_s |
---|
[1320] | 160 | |
---|
[4649] | 161 | USE kinds |
---|
[1320] | 162 | |
---|
[4649] | 163 | USE pegrid |
---|
[1] | 164 | |
---|
[4649] | 165 | IMPLICIT NONE |
---|
[1] | 166 | |
---|
[4649] | 167 | INTEGER(iwp) :: ii !< |
---|
| 168 | INTEGER(iwp) :: iind !< |
---|
| 169 | INTEGER(iwp) :: inew !< |
---|
| 170 | INTEGER(iwp) :: jj !< |
---|
| 171 | INTEGER(iwp) :: jind !< |
---|
| 172 | INTEGER(iwp) :: jnew !< |
---|
| 173 | INTEGER(iwp) :: ki !< |
---|
| 174 | INTEGER(iwp) :: kk !< |
---|
| 175 | INTEGER(iwp) :: knew !< |
---|
| 176 | INTEGER(iwp) :: n !< |
---|
| 177 | INTEGER(iwp) :: nblk !< |
---|
| 178 | INTEGER(iwp) :: nnx_y !< |
---|
| 179 | INTEGER(iwp) :: nny_z !< |
---|
| 180 | INTEGER(iwp) :: nnz_x !< |
---|
| 181 | INTEGER(iwp) :: nxl_y_bound !< |
---|
| 182 | INTEGER(iwp) :: nxr_y_bound !< |
---|
[1] | 183 | |
---|
[4649] | 184 | INTEGER(iwp), DIMENSION(4) :: isave !< |
---|
[1320] | 185 | |
---|
[4649] | 186 | REAL(wp), DIMENSION(1:nz,nys:nyn,nxl:nxr) :: ar !< |
---|
| 187 | REAL(wp), DIMENSION(nys:nyn,nxl:nxr,1:nz) :: ar_inv !< |
---|
[3690] | 188 | |
---|
| 189 | #define __acc_fft_device ( defined( _OPENACC ) && ( defined ( __cuda_fft ) ) ) |
---|
| 190 | #if __acc_fft_device |
---|
[4649] | 191 | !$ACC DECLARE CREATE(ar_inv) |
---|
[3690] | 192 | #endif |
---|
[1] | 193 | |
---|
[4649] | 194 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ar1 !< |
---|
| 195 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_in !< |
---|
| 196 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_inv !< |
---|
| 197 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_y !< |
---|
| 198 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_z !< |
---|
[1216] | 199 | |
---|
| 200 | |
---|
[4649] | 201 | CALL cpu_log( log_point_s(3), 'poisfft', 'start' ) |
---|
[1] | 202 | |
---|
[4649] | 203 | IF ( .NOT. poisfft_initialized ) CALL poisfft_init |
---|
[1111] | 204 | |
---|
[3690] | 205 | #if !__acc_fft_device |
---|
[4649] | 206 | !$ACC UPDATE HOST(ar) |
---|
[3690] | 207 | #endif |
---|
| 208 | |
---|
[3634] | 209 | #ifndef _OPENACC |
---|
[1] | 210 | ! |
---|
[4649] | 211 | !-- Two-dimensional Fourier Transformation in x- and y-direction. |
---|
| 212 | IF ( pdims(2) == 1 .AND. pdims(1) > 1 ) THEN |
---|
[1] | 213 | |
---|
| 214 | ! |
---|
[4649] | 215 | !-- 1d-domain-decomposition along x: |
---|
| 216 | !-- FFT along y and transposition y --> x |
---|
| 217 | CALL ffty_tr_yx( ar, ar ) |
---|
[1] | 218 | |
---|
| 219 | ! |
---|
[4649] | 220 | !-- FFT along x, solving the tridiagonal system and backward FFT |
---|
| 221 | CALL fftx_tri_fftx( ar ) |
---|
[1] | 222 | |
---|
| 223 | ! |
---|
[4649] | 224 | !-- Transposition x --> y and backward FFT along y |
---|
| 225 | CALL tr_xy_ffty( ar, ar ) |
---|
[1] | 226 | |
---|
[4649] | 227 | ELSEIF ( pdims(1) == 1 .AND. pdims(2) > 1 ) THEN |
---|
[1] | 228 | |
---|
| 229 | ! |
---|
[4649] | 230 | !-- 1d-domain-decomposition along y: |
---|
| 231 | !-- FFT along x and transposition x --> y |
---|
| 232 | CALL fftx_tr_xy( ar, ar ) |
---|
[1] | 233 | |
---|
| 234 | ! |
---|
[4649] | 235 | !-- FFT along y, solving the tridiagonal system and backward FFT |
---|
| 236 | CALL ffty_tri_ffty( ar ) |
---|
[1] | 237 | |
---|
| 238 | ! |
---|
[4649] | 239 | !-- Transposition y --> x and backward FFT along x |
---|
| 240 | CALL tr_yx_fftx( ar, ar ) |
---|
[1] | 241 | |
---|
[4649] | 242 | ELSEIF ( .NOT. transpose_compute_overlap ) THEN |
---|
[3634] | 243 | #endif |
---|
[1] | 244 | |
---|
| 245 | ! |
---|
[4649] | 246 | !-- 2d-domain-decomposition or no decomposition (1 PE run) |
---|
| 247 | !-- Transposition z --> x |
---|
| 248 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start' ) |
---|
| 249 | CALL resort_for_zx( ar, ar_inv ) |
---|
| 250 | CALL transpose_zx( ar_inv, ar ) |
---|
| 251 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1] | 252 | |
---|
[4649] | 253 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
| 254 | IF ( temperton_fft_vec ) THEN |
---|
[4366] | 255 | ! |
---|
[4649] | 256 | !-- Vector version outputs a transformed array ar_inv that does not require resorting |
---|
| 257 | !-- (which is done for ar further below) |
---|
| 258 | CALL fft_x( ar, 'forward', ar_inv=ar_inv) |
---|
| 259 | ELSE |
---|
| 260 | CALL fft_x( ar, 'forward') |
---|
| 261 | ENDIF |
---|
| 262 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
[1] | 263 | |
---|
| 264 | ! |
---|
[4649] | 265 | !-- Transposition x --> y |
---|
| 266 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
| 267 | IF( .NOT. temperton_fft_vec ) CALL resort_for_xy( ar, ar_inv ) |
---|
| 268 | CALL transpose_xy( ar_inv, ar ) |
---|
| 269 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1] | 270 | |
---|
[4649] | 271 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
| 272 | IF ( temperton_fft_vec ) THEN |
---|
[4366] | 273 | ! |
---|
[4649] | 274 | !-- Input array ar_inv from fft_x can be directly used here. |
---|
| 275 | !-- The output (also in array ar_inv) does not require resorting below. |
---|
| 276 | CALL fft_y( ar, 'forward', ar_inv = ar_inv, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 277 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 278 | ELSE |
---|
| 279 | CALL fft_y( ar, 'forward', ar_tr = ar, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 280 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 281 | ENDIF |
---|
| 282 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
[1] | 283 | |
---|
| 284 | ! |
---|
[4649] | 285 | !-- Transposition y --> z |
---|
| 286 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
| 287 | IF ( .NOT. temperton_fft_vec ) CALL resort_for_yz( ar, ar_inv ) |
---|
| 288 | CALL transpose_yz( ar_inv, ar ) |
---|
| 289 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
[1] | 290 | |
---|
| 291 | ! |
---|
[4649] | 292 | !-- Solve the tridiagonal equation system along z |
---|
| 293 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
| 294 | CALL tridia_substi( ar ) |
---|
| 295 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
[1] | 296 | |
---|
| 297 | ! |
---|
[4649] | 298 | !-- Inverse Fourier Transformation |
---|
| 299 | !-- Transposition z --> y |
---|
| 300 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start' ) |
---|
| 301 | CALL transpose_zy( ar, ar_inv ) |
---|
[4366] | 302 | ! |
---|
[4649] | 303 | !-- The fft_y below (vector branch) can directly process ar_inv (i.e. does not require a |
---|
| 304 | !-- resorting) |
---|
| 305 | IF ( .NOT. temperton_fft_vec ) CALL resort_for_zy( ar_inv, ar ) |
---|
| 306 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1] | 307 | |
---|
[4649] | 308 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
| 309 | IF ( temperton_fft_vec ) THEN |
---|
[4366] | 310 | ! |
---|
[4649] | 311 | !-- Output array ar_inv can be used as input to the below fft_x routine without resorting |
---|
| 312 | CALL fft_y( ar, 'backward', ar_inv = ar_inv, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 313 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 314 | ELSE |
---|
| 315 | CALL fft_y( ar, 'backward', ar_tr = ar, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 316 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 317 | ENDIF |
---|
[4366] | 318 | |
---|
[4649] | 319 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
[1] | 320 | |
---|
| 321 | ! |
---|
[4649] | 322 | !-- Transposition y --> x |
---|
| 323 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
| 324 | CALL transpose_yx( ar, ar_inv ) |
---|
| 325 | IF ( .NOT. temperton_fft_vec ) CALL resort_for_yx( ar_inv, ar ) |
---|
| 326 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1] | 327 | |
---|
[4649] | 328 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
| 329 | IF ( temperton_fft_vec ) THEN |
---|
| 330 | CALL fft_x( ar, 'backward', ar_inv=ar_inv ) |
---|
| 331 | ELSE |
---|
| 332 | CALL fft_x( ar, 'backward' ) |
---|
| 333 | ENDIF |
---|
| 334 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
[1] | 335 | |
---|
| 336 | ! |
---|
[4649] | 337 | !-- Transposition x --> z |
---|
| 338 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
| 339 | CALL transpose_xz( ar, ar_inv ) |
---|
| 340 | CALL resort_for_xz( ar_inv, ar ) |
---|
| 341 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
[1] | 342 | |
---|
[3634] | 343 | #ifndef _OPENACC |
---|
[4649] | 344 | ELSE |
---|
[1216] | 345 | |
---|
| 346 | ! |
---|
[4649] | 347 | !-- 2d-domain-decomposition or no decomposition (1 PE run) with overlapping transposition / fft |
---|
| 348 | !-- cputime logging must not use barriers, which would prevent overlapping |
---|
| 349 | ALLOCATE( f_out_y(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), & |
---|
| 350 | f_out_z(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
[1216] | 351 | ! |
---|
[4649] | 352 | !-- Transposition z --> x + subsequent fft along x |
---|
| 353 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 354 | CALL resort_for_zx( ar, f_inv ) |
---|
[1216] | 355 | ! |
---|
[4649] | 356 | !-- Save original indices and gridpoint counter |
---|
| 357 | isave(1) = nz |
---|
| 358 | isave(2) = nzb_x |
---|
| 359 | isave(3) = nzt_x |
---|
| 360 | isave(4) = sendrecvcount_zx |
---|
[1216] | 361 | ! |
---|
[4649] | 362 | !-- Set new indices for transformation |
---|
| 363 | nblk = nz / pdims(1) |
---|
| 364 | nz = pdims(1) |
---|
| 365 | nnz_x = 1 |
---|
| 366 | nzb_x = 1 + myidx * nnz_x |
---|
| 367 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
| 368 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
[1216] | 369 | |
---|
[4649] | 370 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
| 371 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
[1216] | 372 | |
---|
[4649] | 373 | DO kk = 1, nblk |
---|
[1216] | 374 | |
---|
[4649] | 375 | IF ( kk == 1 ) THEN |
---|
| 376 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start', cpu_log_nowait ) |
---|
| 377 | ELSE |
---|
| 378 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
| 379 | ENDIF |
---|
[1216] | 380 | |
---|
[4649] | 381 | DO knew = 1, nz |
---|
| 382 | ki = kk + nblk * ( knew - 1 ) |
---|
| 383 | f_in(:,:,knew) = f_inv(:,:,ki) |
---|
| 384 | ENDDO |
---|
[1216] | 385 | |
---|
[4649] | 386 | CALL transpose_zx( f_in, ar1(:,:,:)) |
---|
| 387 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 388 | |
---|
[4649] | 389 | IF ( kk == 1 ) THEN |
---|
| 390 | CALL cpu_log( log_point_s(4), 'fft_x', 'start', cpu_log_nowait ) |
---|
| 391 | ELSE |
---|
| 392 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
| 393 | ENDIF |
---|
[1216] | 394 | |
---|
[4649] | 395 | n = isave(2) + kk - 1 |
---|
| 396 | CALL fft_x( ar1(:,:,:), 'forward', ar_2d = f_out_z(:,:,n) ) |
---|
| 397 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
[1216] | 398 | |
---|
[4649] | 399 | ENDDO |
---|
[1216] | 400 | ! |
---|
[4649] | 401 | !-- Restore original indices/counters |
---|
| 402 | nz = isave(1) |
---|
| 403 | nzb_x = isave(2) |
---|
| 404 | nzt_x = isave(3) |
---|
| 405 | sendrecvcount_zx = isave(4) |
---|
[1216] | 406 | |
---|
[4649] | 407 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
[1216] | 408 | |
---|
| 409 | ! |
---|
[4649] | 410 | !-- Transposition x --> y + subsequent fft along y |
---|
| 411 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 412 | CALL resort_for_xy( f_out_z, f_inv ) |
---|
[1216] | 413 | ! |
---|
[4649] | 414 | !-- Save original indices and gridpoint counter |
---|
| 415 | isave(1) = nx |
---|
| 416 | isave(2) = nxl_y |
---|
| 417 | isave(3) = nxr_y |
---|
| 418 | isave(4) = sendrecvcount_xy |
---|
[1216] | 419 | ! |
---|
[4649] | 420 | !-- Set new indices for transformation |
---|
| 421 | nblk = ( ( nx+1 ) / pdims(2) ) - 1 |
---|
| 422 | nx = pdims(2) |
---|
| 423 | nnx_y = 1 |
---|
| 424 | nxl_y = myidy * nnx_y |
---|
| 425 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
| 426 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
[1216] | 427 | |
---|
[4649] | 428 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
| 429 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
[1216] | 430 | |
---|
[4649] | 431 | DO ii = 0, nblk |
---|
[1216] | 432 | |
---|
[4649] | 433 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1216] | 434 | |
---|
[4649] | 435 | DO inew = 0, nx-1 |
---|
| 436 | iind = ii + ( nblk + 1 ) * inew |
---|
| 437 | f_in(:,:,inew) = f_inv(:,:,iind) |
---|
| 438 | ENDDO |
---|
[1216] | 439 | |
---|
[4649] | 440 | CALL transpose_xy( f_in, ar1(:,:,:) ) |
---|
[1216] | 441 | |
---|
[4649] | 442 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 443 | |
---|
[4649] | 444 | IF ( ii == 1 ) THEN |
---|
| 445 | CALL cpu_log( log_point_s(7), 'fft_y', 'start', cpu_log_nowait ) |
---|
| 446 | ELSE |
---|
| 447 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
| 448 | ENDIF |
---|
[1216] | 449 | |
---|
[4649] | 450 | nxl_y_bound = isave(2) |
---|
| 451 | nxr_y_bound = isave(3) |
---|
| 452 | n = isave(2) + ii |
---|
| 453 | CALL fft_y( ar1(:,:,:), 'forward', ar_tr = f_out_y, nxl_y_bound = nxl_y_bound, & |
---|
| 454 | nxr_y_bound = nxr_y_bound, nxl_y_l = n, nxr_y_l = n ) |
---|
[1216] | 455 | |
---|
[4649] | 456 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
[1216] | 457 | |
---|
[4649] | 458 | ENDDO |
---|
[1216] | 459 | ! |
---|
[4649] | 460 | !-- Restore original indices/counters |
---|
| 461 | nx = isave(1) |
---|
| 462 | nxl_y = isave(2) |
---|
| 463 | nxr_y = isave(3) |
---|
| 464 | sendrecvcount_xy = isave(4) |
---|
[1216] | 465 | |
---|
[4649] | 466 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
[1216] | 467 | |
---|
| 468 | ! |
---|
[4649] | 469 | !-- Transposition y --> z + subsequent tridia + resort for z --> y |
---|
| 470 | ALLOCATE( f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
| 471 | CALL resort_for_yz( f_out_y, f_inv ) |
---|
[1216] | 472 | ! |
---|
[4649] | 473 | !-- Save original indices and gridpoint counter |
---|
| 474 | isave(1) = ny |
---|
| 475 | isave(2) = nys_z |
---|
| 476 | isave(3) = nyn_z |
---|
| 477 | isave(4) = sendrecvcount_yz |
---|
[1216] | 478 | ! |
---|
[4649] | 479 | !-- Set new indices for transformation |
---|
| 480 | nblk = ( ( ny+1 ) / pdims(1) ) - 1 |
---|
| 481 | ny = pdims(1) |
---|
| 482 | nny_z = 1 |
---|
| 483 | nys_z = myidx * nny_z |
---|
| 484 | nyn_z = ( myidx + 1 ) * nny_z - 1 |
---|
| 485 | sendrecvcount_yz = ( nxr_y-nxl_y+1 ) * nny_z * ( nzt_y-nzb_y+1 ) |
---|
[1216] | 486 | |
---|
[4649] | 487 | ALLOCATE( ar1(nxl_z:nxr_z,nys_z:nyn_z,1:nz) ) |
---|
| 488 | ALLOCATE( f_in(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
[1216] | 489 | |
---|
[4649] | 490 | DO jj = 0, nblk |
---|
[1216] | 491 | ! |
---|
[4649] | 492 | !-- Forward Fourier Transformation |
---|
| 493 | !-- Transposition y --> z |
---|
| 494 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1216] | 495 | |
---|
[4649] | 496 | DO jnew = 0, ny-1 |
---|
| 497 | jind = jj + ( nblk + 1 ) * jnew |
---|
| 498 | f_in(:,:,jnew) = f_inv(:,:,jind) |
---|
| 499 | ENDDO |
---|
[1216] | 500 | |
---|
[4649] | 501 | CALL transpose_yz( f_in, ar1(:,:,:) ) |
---|
[1216] | 502 | |
---|
[4649] | 503 | IF ( jj == nblk ) THEN |
---|
| 504 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
| 505 | ELSE |
---|
| 506 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 507 | ENDIF |
---|
[1216] | 508 | |
---|
| 509 | ! |
---|
[4649] | 510 | !-- Solve the tridiagonal equation system along z |
---|
| 511 | CALL cpu_log( log_point_s(6), 'tridia', 'start', cpu_log_nowait ) |
---|
[1216] | 512 | |
---|
[4649] | 513 | n = isave(2) + jj |
---|
| 514 | CALL tridia_substi_overlap( ar1(:,:,:), n ) |
---|
[1216] | 515 | |
---|
[4649] | 516 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
[1216] | 517 | |
---|
[1306] | 518 | ! |
---|
[4649] | 519 | !-- Inverse Fourier Transformation |
---|
| 520 | !-- Transposition z --> y |
---|
| 521 | !-- Only one thread should call MPI routines, therefore forward and backward tranpose are in |
---|
| 522 | !-- the same section |
---|
| 523 | IF ( jj == 0 ) THEN |
---|
| 524 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start', cpu_log_nowait ) |
---|
| 525 | ELSE |
---|
| 526 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
| 527 | ENDIF |
---|
[1216] | 528 | |
---|
[4649] | 529 | CALL transpose_zy( ar1(:,:,:), f_in ) |
---|
[1216] | 530 | |
---|
[4649] | 531 | DO jnew = 0, ny-1 |
---|
| 532 | jind = jj + ( nblk + 1 ) * jnew |
---|
| 533 | f_inv(:,:,jind) = f_in(:,:,jnew) |
---|
| 534 | ENDDO |
---|
[1216] | 535 | |
---|
[4649] | 536 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 537 | |
---|
[4649] | 538 | ENDDO |
---|
[1216] | 539 | ! |
---|
[4649] | 540 | !-- Restore original indices/counters |
---|
| 541 | ny = isave(1) |
---|
| 542 | nys_z = isave(2) |
---|
| 543 | nyn_z = isave(3) |
---|
| 544 | sendrecvcount_yz = isave(4) |
---|
[1216] | 545 | |
---|
[4649] | 546 | CALL resort_for_zy( f_inv, f_out_y ) |
---|
[1216] | 547 | |
---|
[4649] | 548 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
[1216] | 549 | |
---|
| 550 | ! |
---|
[4649] | 551 | !-- fft along y backward + subsequent transposition y --> x |
---|
| 552 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
[1216] | 553 | ! |
---|
[4649] | 554 | !-- Save original indices and gridpoint counter |
---|
| 555 | isave(1) = nx |
---|
| 556 | isave(2) = nxl_y |
---|
| 557 | isave(3) = nxr_y |
---|
| 558 | isave(4) = sendrecvcount_xy |
---|
[1216] | 559 | ! |
---|
[4649] | 560 | !-- Set new indices for transformation |
---|
| 561 | nblk = ( ( nx+1 ) / pdims(2) ) - 1 |
---|
| 562 | nx = pdims(2) |
---|
| 563 | nnx_y = 1 |
---|
| 564 | nxl_y = myidy * nnx_y |
---|
| 565 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
| 566 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
[1216] | 567 | |
---|
[4649] | 568 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
| 569 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
[1216] | 570 | |
---|
[4649] | 571 | DO ii = 0, nblk |
---|
[1216] | 572 | |
---|
[4649] | 573 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
[1216] | 574 | |
---|
[4649] | 575 | n = isave(2) + ii |
---|
| 576 | nxl_y_bound = isave(2) |
---|
| 577 | nxr_y_bound = isave(3) |
---|
[1216] | 578 | |
---|
[4649] | 579 | CALL fft_y( ar1(:,:,:), 'backward', ar_tr = f_out_y, nxl_y_bound = nxl_y_bound, & |
---|
| 580 | nxr_y_bound = nxr_y_bound, nxl_y_l = n, nxr_y_l = n ) |
---|
[1216] | 581 | |
---|
[4649] | 582 | IF ( ii == nblk ) THEN |
---|
| 583 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 584 | ELSE |
---|
| 585 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 586 | ENDIF |
---|
[1216] | 587 | |
---|
[4649] | 588 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 589 | |
---|
[4649] | 590 | CALL transpose_yx( ar1(:,:,:), f_in ) |
---|
[1216] | 591 | |
---|
[4649] | 592 | DO inew = 0, nx-1 |
---|
| 593 | iind = ii + (nblk+1) * inew |
---|
| 594 | f_inv(:,:,iind) = f_in(:,:,inew) |
---|
| 595 | ENDDO |
---|
[1216] | 596 | |
---|
[4649] | 597 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 598 | |
---|
[4649] | 599 | ENDDO |
---|
[1216] | 600 | ! |
---|
[4649] | 601 | !-- Restore original indices/counters |
---|
| 602 | nx = isave(1) |
---|
| 603 | nxl_y = isave(2) |
---|
| 604 | nxr_y = isave(3) |
---|
| 605 | sendrecvcount_xy = isave(4) |
---|
[1216] | 606 | |
---|
[4649] | 607 | CALL resort_for_yx( f_inv, f_out_z ) |
---|
[1216] | 608 | |
---|
[4649] | 609 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
[1216] | 610 | |
---|
| 611 | ! |
---|
[4649] | 612 | !-- fft along x backward + subsequent final transposition x --> z |
---|
| 613 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
[1216] | 614 | ! |
---|
[4649] | 615 | !-- Save original indices and gridpoint counter |
---|
| 616 | isave(1) = nz |
---|
| 617 | isave(2) = nzb_x |
---|
| 618 | isave(3) = nzt_x |
---|
| 619 | isave(4) = sendrecvcount_zx |
---|
[1216] | 620 | ! |
---|
[4649] | 621 | !-- Set new indices for transformation |
---|
| 622 | nblk = nz / pdims(1) |
---|
| 623 | nz = pdims(1) |
---|
| 624 | nnz_x = 1 |
---|
| 625 | nzb_x = 1 + myidx * nnz_x |
---|
| 626 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
| 627 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
[1216] | 628 | |
---|
[4649] | 629 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
| 630 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
[1216] | 631 | |
---|
[4649] | 632 | DO kk = 1, nblk |
---|
[1216] | 633 | |
---|
[4649] | 634 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
[1216] | 635 | |
---|
[4649] | 636 | n = isave(2) + kk - 1 |
---|
| 637 | CALL fft_x( ar1(:,:,:), 'backward', f_out_z(:,:,n) ) |
---|
[1216] | 638 | |
---|
[4649] | 639 | IF ( kk == nblk ) THEN |
---|
| 640 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 641 | ELSE |
---|
| 642 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
| 643 | ENDIF |
---|
[1216] | 644 | |
---|
[4649] | 645 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 646 | |
---|
[4649] | 647 | CALL transpose_xz( ar1(:,:,:), f_in ) |
---|
[1216] | 648 | |
---|
[4649] | 649 | DO knew = 1, nz |
---|
| 650 | ki = kk + nblk * ( knew - 1 ) |
---|
| 651 | f_inv(:,:,ki) = f_in(:,:,knew) |
---|
| 652 | ENDDO |
---|
[1216] | 653 | |
---|
[4649] | 654 | IF ( kk == nblk ) THEN |
---|
| 655 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
| 656 | ELSE |
---|
| 657 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 658 | ENDIF |
---|
[1216] | 659 | |
---|
[4649] | 660 | ENDDO |
---|
[1216] | 661 | ! |
---|
[4649] | 662 | !-- Restore original indices/counters |
---|
| 663 | nz = isave(1) |
---|
| 664 | nzb_x = isave(2) |
---|
| 665 | nzt_x = isave(3) |
---|
| 666 | sendrecvcount_zx = isave(4) |
---|
[1216] | 667 | |
---|
[4649] | 668 | CALL resort_for_xz( f_inv, ar ) |
---|
[1216] | 669 | |
---|
[4649] | 670 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
[1216] | 671 | |
---|
[4649] | 672 | ENDIF |
---|
[3634] | 673 | #endif |
---|
[1] | 674 | |
---|
[3690] | 675 | #if !__acc_fft_device |
---|
[4649] | 676 | !$ACC UPDATE DEVICE(ar) |
---|
[3690] | 677 | #endif |
---|
| 678 | |
---|
[4649] | 679 | CALL cpu_log( log_point_s(3), 'poisfft', 'stop' ) |
---|
[1] | 680 | |
---|
[4649] | 681 | END SUBROUTINE poisfft |
---|
[1] | 682 | |
---|
| 683 | |
---|
[4649] | 684 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 685 | ! Description: |
---|
| 686 | ! ------------ |
---|
[4649] | 687 | !> Fourier-transformation along y with subsequent transposition y --> x for a 1d-decomposition |
---|
| 688 | !> along x. |
---|
[1682] | 689 | !> |
---|
[4649] | 690 | !> @attention The performance of this routine is much faster on the NEC-SX6, if the first index of |
---|
| 691 | !> work_ffty_vec is odd. Otherwise memory bank conflicts may occur (especially if the |
---|
| 692 | !> index is a multiple of 128). That's why work_ffty_vec is dimensioned as 0:ny+1. |
---|
| 693 | !> Of course, this will not work if users are using an odd number of gridpoints along y. |
---|
| 694 | !--------------------------------------------------------------------------------------------------! |
---|
| 695 | SUBROUTINE ffty_tr_yx( f_in, f_out ) |
---|
[1] | 696 | |
---|
[4649] | 697 | USE control_parameters, & |
---|
| 698 | ONLY: loop_optimization |
---|
[1320] | 699 | |
---|
[4649] | 700 | USE cpulog, & |
---|
| 701 | ONLY: cpu_log, & |
---|
| 702 | log_point_s |
---|
[1320] | 703 | |
---|
[4649] | 704 | USE kinds |
---|
[1320] | 705 | |
---|
[4649] | 706 | USE pegrid |
---|
[1] | 707 | |
---|
[4649] | 708 | IMPLICIT NONE |
---|
[1] | 709 | |
---|
[4649] | 710 | INTEGER(iwp) :: i !< |
---|
| 711 | INTEGER(iwp) :: iend !< |
---|
| 712 | INTEGER(iwp) :: iouter !< |
---|
| 713 | INTEGER(iwp) :: ir !< |
---|
| 714 | INTEGER(iwp) :: j !< |
---|
| 715 | INTEGER(iwp) :: k !< |
---|
[1] | 716 | |
---|
[4649] | 717 | INTEGER(iwp), PARAMETER :: stridex = 4 !< |
---|
[1320] | 718 | |
---|
[4649] | 719 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_in !< |
---|
| 720 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_out !< |
---|
| 721 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !< |
---|
[1] | 722 | |
---|
[4649] | 723 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_ffty !< |
---|
| 724 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: work_ffty_vec !< |
---|
[2300] | 725 | |
---|
[1] | 726 | ! |
---|
[4649] | 727 | !-- Carry out the FFT along y, where all data are present due to the 1d-decomposition along x. |
---|
| 728 | !-- Resort the data in a way that x becomes the first index. |
---|
| 729 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'start' ) |
---|
[1] | 730 | |
---|
[4649] | 731 | IF ( loop_optimization == 'vector' ) THEN |
---|
[2300] | 732 | |
---|
[4649] | 733 | ALLOCATE( work_ffty_vec(0:ny+1,1:nz,nxl:nxr) ) |
---|
[1] | 734 | ! |
---|
[4649] | 735 | !-- Code optimized for vector processors |
---|
| 736 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 737 | !$OMP DO |
---|
| 738 | DO i = nxl, nxr |
---|
[1] | 739 | |
---|
[4649] | 740 | DO j = 0, ny |
---|
| 741 | DO k = 1, nz |
---|
| 742 | work_ffty_vec(j,k,i) = f_in(k,j,i) |
---|
[1] | 743 | ENDDO |
---|
[4649] | 744 | ENDDO |
---|
[1] | 745 | |
---|
[4649] | 746 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'forward' ) |
---|
[1] | 747 | |
---|
[4649] | 748 | ENDDO |
---|
[1] | 749 | |
---|
[4649] | 750 | !$OMP DO |
---|
| 751 | DO k = 1, nz |
---|
| 752 | DO j = 0, ny |
---|
| 753 | DO i = nxl, nxr |
---|
| 754 | work(i,k,j) = work_ffty_vec(j,k,i) |
---|
[1] | 755 | ENDDO |
---|
| 756 | ENDDO |
---|
[4649] | 757 | ENDDO |
---|
| 758 | !$OMP END PARALLEL |
---|
[1] | 759 | |
---|
[4649] | 760 | DEALLOCATE( work_ffty_vec ) |
---|
[2300] | 761 | |
---|
[4649] | 762 | ELSE |
---|
[1] | 763 | ! |
---|
[4649] | 764 | !-- Cache optimized code. |
---|
| 765 | ALLOCATE( work_ffty(0:ny,stridex) ) |
---|
[2300] | 766 | ! |
---|
[4649] | 767 | !-- The i-(x-)direction is split into a strided outer loop and an inner loop for better cache |
---|
| 768 | !-- performance |
---|
| 769 | !$OMP PARALLEL PRIVATE (i,iend,iouter,ir,j,k,work_ffty) |
---|
| 770 | !$OMP DO |
---|
| 771 | DO iouter = nxl, nxr, stridex |
---|
[1] | 772 | |
---|
[4649] | 773 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
[1] | 774 | |
---|
[4649] | 775 | DO k = 1, nz |
---|
[1] | 776 | |
---|
[4649] | 777 | DO i = iouter, iend |
---|
[1] | 778 | |
---|
[4649] | 779 | ir = i-iouter+1 ! Counter within a stride |
---|
| 780 | DO j = 0, ny |
---|
| 781 | work_ffty(j,ir) = f_in(k,j,i) |
---|
| 782 | ENDDO |
---|
[1] | 783 | ! |
---|
[4649] | 784 | !-- FFT along y |
---|
| 785 | CALL fft_y_1d( work_ffty(:,ir), 'forward' ) |
---|
[1] | 786 | |
---|
[4649] | 787 | ENDDO |
---|
[1] | 788 | |
---|
| 789 | ! |
---|
[4649] | 790 | !-- Resort |
---|
| 791 | DO j = 0, ny |
---|
| 792 | DO i = iouter, iend |
---|
| 793 | work(i,k,j) = work_ffty(j,i-iouter+1) |
---|
[1] | 794 | ENDDO |
---|
| 795 | ENDDO |
---|
| 796 | |
---|
| 797 | ENDDO |
---|
| 798 | |
---|
[4649] | 799 | ENDDO |
---|
| 800 | !$OMP END PARALLEL |
---|
[2300] | 801 | |
---|
[4649] | 802 | DEALLOCATE( work_ffty ) |
---|
[2300] | 803 | |
---|
[4649] | 804 | ENDIF |
---|
[1] | 805 | |
---|
[4649] | 806 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'pause' ) |
---|
| 807 | |
---|
[1] | 808 | ! |
---|
[4649] | 809 | !-- Transpose array |
---|
[1111] | 810 | #if defined( __parallel ) |
---|
[4649] | 811 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 812 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 813 | CALL MPI_ALLTOALL( work(nxl,1,0), sendrecvcount_xy, MPI_REAL, f_out(1,1,nys_x,1), & |
---|
| 814 | sendrecvcount_xy, MPI_REAL, comm1dx, ierr ) |
---|
| 815 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[4429] | 816 | #else |
---|
| 817 | ! |
---|
[4649] | 818 | !-- Next line required to avoid compile error about unused dummy argument in serial mode |
---|
| 819 | i = SIZE( f_out ) |
---|
[1111] | 820 | #endif |
---|
[1] | 821 | |
---|
[4649] | 822 | END SUBROUTINE ffty_tr_yx |
---|
[1] | 823 | |
---|
| 824 | |
---|
[4649] | 825 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 826 | ! Description: |
---|
| 827 | ! ------------ |
---|
[4649] | 828 | !> Transposition x --> y with a subsequent backward Fourier transformation for a 1d-decomposition |
---|
| 829 | !> along x |
---|
| 830 | !--------------------------------------------------------------------------------------------------! |
---|
| 831 | SUBROUTINE tr_xy_ffty( f_in, f_out ) |
---|
[1] | 832 | |
---|
[4649] | 833 | USE control_parameters, & |
---|
| 834 | ONLY: loop_optimization |
---|
[1320] | 835 | |
---|
[4649] | 836 | USE cpulog, & |
---|
| 837 | ONLY: cpu_log, & |
---|
| 838 | log_point_s |
---|
[1320] | 839 | |
---|
[4649] | 840 | USE kinds |
---|
[1320] | 841 | |
---|
[4649] | 842 | USE pegrid |
---|
[1] | 843 | |
---|
[4649] | 844 | IMPLICIT NONE |
---|
[1] | 845 | |
---|
[4649] | 846 | INTEGER(iwp) :: i !< |
---|
| 847 | INTEGER(iwp) :: iend !< |
---|
| 848 | INTEGER(iwp) :: iouter !< |
---|
| 849 | INTEGER(iwp) :: ir !< |
---|
| 850 | INTEGER(iwp) :: j !< |
---|
| 851 | INTEGER(iwp) :: k !< |
---|
[1] | 852 | |
---|
[4649] | 853 | INTEGER(iwp), PARAMETER :: stridex = 4 !< |
---|
[1320] | 854 | |
---|
[4649] | 855 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_in !< |
---|
| 856 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_out !< |
---|
| 857 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !< |
---|
[1] | 858 | |
---|
[4649] | 859 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_ffty !< |
---|
| 860 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: work_ffty_vec !< |
---|
[2300] | 861 | |
---|
[1] | 862 | ! |
---|
[4649] | 863 | !-- Transpose array |
---|
[1111] | 864 | #if defined( __parallel ) |
---|
[4649] | 865 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 866 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 867 | CALL MPI_ALLTOALL( f_in(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, work(nxl,1,0), & |
---|
| 868 | sendrecvcount_xy, MPI_REAL, comm1dx, ierr ) |
---|
| 869 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[4429] | 870 | #else |
---|
| 871 | ! |
---|
[4649] | 872 | !-- Next line required to avoid compile error about unused dummy argument in serial mode |
---|
| 873 | i = SIZE( f_in ) |
---|
[1111] | 874 | #endif |
---|
[1] | 875 | |
---|
| 876 | ! |
---|
[4649] | 877 | !-- Resort the data in a way that y becomes the first index and carry out the backward fft along y. |
---|
| 878 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'continue' ) |
---|
[1] | 879 | |
---|
[4649] | 880 | IF ( loop_optimization == 'vector' ) THEN |
---|
[2300] | 881 | |
---|
[4649] | 882 | ALLOCATE( work_ffty_vec(0:ny+1,1:nz,nxl:nxr) ) |
---|
[1] | 883 | ! |
---|
[4649] | 884 | !-- Code optimized for vector processors |
---|
| 885 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 886 | !$OMP DO |
---|
| 887 | DO k = 1, nz |
---|
| 888 | DO j = 0, ny |
---|
| 889 | DO i = nxl, nxr |
---|
| 890 | work_ffty_vec(j,k,i) = work(i,k,j) |
---|
[1] | 891 | ENDDO |
---|
| 892 | ENDDO |
---|
[4649] | 893 | ENDDO |
---|
[1] | 894 | |
---|
[4649] | 895 | !$OMP DO |
---|
| 896 | DO i = nxl, nxr |
---|
[1] | 897 | |
---|
[4649] | 898 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'backward' ) |
---|
[1] | 899 | |
---|
[4649] | 900 | DO j = 0, ny |
---|
| 901 | DO k = 1, nz |
---|
| 902 | f_out(k,j,i) = work_ffty_vec(j,k,i) |
---|
[1] | 903 | ENDDO |
---|
| 904 | ENDDO |
---|
| 905 | |
---|
[4649] | 906 | ENDDO |
---|
| 907 | !$OMP END PARALLEL |
---|
[2300] | 908 | |
---|
[4649] | 909 | DEALLOCATE( work_ffty_vec ) |
---|
| 910 | |
---|
| 911 | ELSE |
---|
[1] | 912 | ! |
---|
[4649] | 913 | !-- Cache optimized code. |
---|
| 914 | ALLOCATE( work_ffty(0:ny,stridex) ) |
---|
[2300] | 915 | ! |
---|
[4649] | 916 | !-- The i-(x-)direction is split into a strided outer loop and an inner loop for better cache |
---|
| 917 | !-- performance |
---|
| 918 | !$OMP PARALLEL PRIVATE ( i, iend, iouter, ir, j, k, work_ffty ) |
---|
| 919 | !$OMP DO |
---|
| 920 | DO iouter = nxl, nxr, stridex |
---|
[1] | 921 | |
---|
[4649] | 922 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
[1] | 923 | |
---|
[4649] | 924 | DO k = 1, nz |
---|
[1] | 925 | ! |
---|
[4649] | 926 | !-- Resort |
---|
| 927 | DO j = 0, ny |
---|
| 928 | DO i = iouter, iend |
---|
| 929 | work_ffty(j,i-iouter+1) = work(i,k,j) |
---|
[1] | 930 | ENDDO |
---|
[4649] | 931 | ENDDO |
---|
[1] | 932 | |
---|
[4649] | 933 | DO i = iouter, iend |
---|
[1] | 934 | |
---|
| 935 | ! |
---|
[4649] | 936 | !-- FFT along y |
---|
| 937 | ir = i-iouter+1 ! Counter within a stride |
---|
| 938 | CALL fft_y_1d( work_ffty(:,ir), 'backward' ) |
---|
[1] | 939 | |
---|
[4649] | 940 | DO j = 0, ny |
---|
| 941 | f_out(k,j,i) = work_ffty(j,ir) |
---|
[1] | 942 | ENDDO |
---|
| 943 | ENDDO |
---|
| 944 | |
---|
| 945 | ENDDO |
---|
| 946 | |
---|
[4649] | 947 | ENDDO |
---|
| 948 | !$OMP END PARALLEL |
---|
[2300] | 949 | |
---|
[4649] | 950 | DEALLOCATE( work_ffty ) |
---|
[1] | 951 | |
---|
[4649] | 952 | ENDIF |
---|
[1] | 953 | |
---|
[4649] | 954 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'stop' ) |
---|
[1] | 955 | |
---|
[4649] | 956 | END SUBROUTINE tr_xy_ffty |
---|
[1] | 957 | |
---|
[4649] | 958 | |
---|
| 959 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 960 | ! Description: |
---|
| 961 | ! ------------ |
---|
[4649] | 962 | !> FFT along x, solution of the tridiagonal system and backward FFT for a 1d-decomposition along x |
---|
[1682] | 963 | !> |
---|
[4649] | 964 | !> @warning This subroutine may still not work for hybrid parallelization with OpenMP (for possible |
---|
| 965 | !> necessary changes see the original routine poisfft_hybrid, developed by Klaus Ketelsen, |
---|
| 966 | !> May 2002) |
---|
| 967 | !--------------------------------------------------------------------------------------------------! |
---|
| 968 | SUBROUTINE fftx_tri_fftx( ar ) |
---|
[1] | 969 | |
---|
[4649] | 970 | USE control_parameters, & |
---|
| 971 | ONLY: loop_optimization |
---|
[1320] | 972 | |
---|
[4649] | 973 | USE cpulog, & |
---|
| 974 | ONLY: cpu_log, & |
---|
| 975 | log_point_s |
---|
[1320] | 976 | |
---|
[4649] | 977 | USE grid_variables, & |
---|
| 978 | ONLY: ddx2, & |
---|
| 979 | ddy2 |
---|
[1320] | 980 | |
---|
[4649] | 981 | USE kinds |
---|
[1320] | 982 | |
---|
[4649] | 983 | USE pegrid |
---|
[1] | 984 | |
---|
[4649] | 985 | IMPLICIT NONE |
---|
[1] | 986 | |
---|
[4649] | 987 | INTEGER(iwp) :: i !< |
---|
| 988 | INTEGER(iwp) :: j !< |
---|
| 989 | INTEGER(iwp) :: k !< |
---|
| 990 | INTEGER(iwp) :: m !< |
---|
| 991 | INTEGER(iwp) :: n !< |
---|
[4671] | 992 | !$ INTEGER(iwp) :: omp_get_thread_num !< |
---|
[4649] | 993 | INTEGER(iwp) :: tn !< |
---|
[1] | 994 | |
---|
[4649] | 995 | REAL(wp), DIMENSION(0:nx) :: work_fftx !< |
---|
| 996 | REAL(wp), DIMENSION(0:nx,1:nz) :: work_trix !< |
---|
| 997 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: ar !< |
---|
| 998 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !< |
---|
[1] | 999 | |
---|
| 1000 | |
---|
[4649] | 1001 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'start' ) |
---|
[1] | 1002 | |
---|
[4649] | 1003 | ALLOCATE( tri(5,0:nx,0:nz-1,0:threads_per_task-1) ) |
---|
[1] | 1004 | |
---|
[4649] | 1005 | tn = 0 ! Default thread number in case of one thread |
---|
[4717] | 1006 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_fftx, work_trix ) |
---|
[4649] | 1007 | DO j = nys_x, nyn_x |
---|
[1] | 1008 | |
---|
[4649] | 1009 | !$ tn = omp_get_thread_num() |
---|
[1] | 1010 | |
---|
[4649] | 1011 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1012 | ! |
---|
[4649] | 1013 | !-- Code optimized for vector processors |
---|
| 1014 | DO k = 1, nz |
---|
[1] | 1015 | |
---|
[4649] | 1016 | m = 0 |
---|
| 1017 | DO n = 1, pdims(1) |
---|
| 1018 | DO i = 1, nnx |
---|
| 1019 | work_trix(m,k) = ar(i,k,j,n) |
---|
| 1020 | m = m + 1 |
---|
[1] | 1021 | ENDDO |
---|
| 1022 | ENDDO |
---|
| 1023 | |
---|
[4649] | 1024 | ENDDO |
---|
[1] | 1025 | |
---|
[4649] | 1026 | CALL fft_x_m( work_trix, 'forward' ) |
---|
| 1027 | |
---|
| 1028 | ELSE |
---|
[1] | 1029 | ! |
---|
[4649] | 1030 | !-- Cache optimized code |
---|
| 1031 | DO k = 1, nz |
---|
[1] | 1032 | |
---|
[4649] | 1033 | m = 0 |
---|
| 1034 | DO n = 1, pdims(1) |
---|
| 1035 | DO i = 1, nnx |
---|
| 1036 | work_fftx(m) = ar(i,k,j,n) |
---|
| 1037 | m = m + 1 |
---|
[1] | 1038 | ENDDO |
---|
[4649] | 1039 | ENDDO |
---|
[1] | 1040 | |
---|
[4649] | 1041 | CALL fft_x_1d( work_fftx, 'forward' ) |
---|
[1] | 1042 | |
---|
[4649] | 1043 | DO i = 0, nx |
---|
| 1044 | work_trix(i,k) = work_fftx(i) |
---|
[1] | 1045 | ENDDO |
---|
| 1046 | |
---|
[4649] | 1047 | ENDDO |
---|
[1] | 1048 | |
---|
[4649] | 1049 | ENDIF |
---|
| 1050 | |
---|
[1] | 1051 | ! |
---|
[4649] | 1052 | !-- Solve the linear equation system |
---|
| 1053 | CALL tridia_1dd( ddx2, ddy2, nx, ny, j, work_trix, tri(:,:,:,tn) ) |
---|
[1] | 1054 | |
---|
[4649] | 1055 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1056 | ! |
---|
[4649] | 1057 | !-- Code optimized for vector processors |
---|
| 1058 | CALL fft_x_m( work_trix, 'backward' ) |
---|
[1] | 1059 | |
---|
[4649] | 1060 | DO k = 1, nz |
---|
[1] | 1061 | |
---|
[4649] | 1062 | m = 0 |
---|
| 1063 | DO n = 1, pdims(1) |
---|
| 1064 | DO i = 1, nnx |
---|
| 1065 | ar(i,k,j,n) = work_trix(m,k) |
---|
| 1066 | m = m + 1 |
---|
[1] | 1067 | ENDDO |
---|
| 1068 | ENDDO |
---|
| 1069 | |
---|
[4649] | 1070 | ENDDO |
---|
| 1071 | |
---|
| 1072 | ELSE |
---|
[1] | 1073 | ! |
---|
[4649] | 1074 | !-- Cache optimized code |
---|
| 1075 | DO k = 1, nz |
---|
[1] | 1076 | |
---|
[4649] | 1077 | DO i = 0, nx |
---|
| 1078 | work_fftx(i) = work_trix(i,k) |
---|
| 1079 | ENDDO |
---|
[1] | 1080 | |
---|
[4649] | 1081 | CALL fft_x_1d( work_fftx, 'backward' ) |
---|
[1] | 1082 | |
---|
[4649] | 1083 | m = 0 |
---|
| 1084 | DO n = 1, pdims(1) |
---|
| 1085 | DO i = 1, nnx |
---|
| 1086 | ar(i,k,j,n) = work_fftx(m) |
---|
| 1087 | m = m + 1 |
---|
[1] | 1088 | ENDDO |
---|
| 1089 | ENDDO |
---|
| 1090 | |
---|
[4649] | 1091 | ENDDO |
---|
[1] | 1092 | |
---|
[4649] | 1093 | ENDIF |
---|
[1] | 1094 | |
---|
[4649] | 1095 | ENDDO |
---|
[1] | 1096 | |
---|
[4649] | 1097 | DEALLOCATE( tri ) |
---|
[1] | 1098 | |
---|
[4649] | 1099 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'stop' ) |
---|
[1] | 1100 | |
---|
[4649] | 1101 | END SUBROUTINE fftx_tri_fftx |
---|
[1] | 1102 | |
---|
[4649] | 1103 | |
---|
| 1104 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 1105 | ! Description: |
---|
| 1106 | ! ------------ |
---|
[4649] | 1107 | !> Fourier-transformation along x with subsequent transposition x --> y for a 1d-decomposition |
---|
| 1108 | !> along y. |
---|
[1682] | 1109 | !> |
---|
[4649] | 1110 | !> @attention NEC-branch of this routine may significantly profit from further optimizations. So |
---|
| 1111 | !> far, performance is much worse than for routine ffty_tr_yx (more than three times |
---|
| 1112 | !> slower). |
---|
| 1113 | !--------------------------------------------------------------------------------------------------! |
---|
| 1114 | SUBROUTINE fftx_tr_xy( f_in, f_out ) |
---|
[1] | 1115 | |
---|
[1682] | 1116 | |
---|
[4649] | 1117 | USE control_parameters, & |
---|
| 1118 | ONLY: loop_optimization |
---|
[1320] | 1119 | |
---|
[4649] | 1120 | USE cpulog, & |
---|
| 1121 | ONLY: cpu_log, & |
---|
| 1122 | log_point_s |
---|
[1320] | 1123 | |
---|
[4649] | 1124 | USE kinds |
---|
[1320] | 1125 | |
---|
[4649] | 1126 | USE pegrid |
---|
[1] | 1127 | |
---|
[4649] | 1128 | IMPLICIT NONE |
---|
[1] | 1129 | |
---|
[4649] | 1130 | INTEGER(iwp) :: i !< |
---|
| 1131 | INTEGER(iwp) :: j !< |
---|
| 1132 | INTEGER(iwp) :: k !< |
---|
[1] | 1133 | |
---|
[4649] | 1134 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !< |
---|
| 1135 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_in !< |
---|
| 1136 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_out !< |
---|
| 1137 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !< |
---|
[1] | 1138 | |
---|
| 1139 | ! |
---|
[4649] | 1140 | !-- Carry out the FFT along x, where all data are present due to the 1d-decomposition along y. |
---|
| 1141 | !-- Resort the data in a way that y becomes the first index. |
---|
| 1142 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'start' ) |
---|
[1] | 1143 | |
---|
[4649] | 1144 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1145 | ! |
---|
[4649] | 1146 | !-- Code for vector processors |
---|
[4717] | 1147 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 1148 | !$OMP DO |
---|
[4649] | 1149 | DO i = 0, nx |
---|
[1] | 1150 | |
---|
[4649] | 1151 | DO j = nys, nyn |
---|
| 1152 | DO k = 1, nz |
---|
| 1153 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
[1] | 1154 | ENDDO |
---|
| 1155 | ENDDO |
---|
| 1156 | |
---|
[4649] | 1157 | ENDDO |
---|
[1] | 1158 | |
---|
[4717] | 1159 | !$OMP DO |
---|
[4649] | 1160 | DO j = nys, nyn |
---|
[1] | 1161 | |
---|
[4649] | 1162 | CALL fft_x_m( work_fftx(:,:,j), 'forward' ) |
---|
| 1163 | |
---|
| 1164 | DO k = 1, nz |
---|
| 1165 | DO i = 0, nx |
---|
| 1166 | work(j,k,i) = work_fftx(i,k,j) |
---|
[1] | 1167 | ENDDO |
---|
| 1168 | ENDDO |
---|
| 1169 | |
---|
[4649] | 1170 | ENDDO |
---|
[4717] | 1171 | !$OMP END PARALLEL |
---|
[1] | 1172 | |
---|
[4649] | 1173 | ELSE |
---|
| 1174 | |
---|
[1] | 1175 | ! |
---|
[4649] | 1176 | !-- Cache optimized code (there might still be a potential for better optimization). |
---|
[4717] | 1177 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
| 1178 | !$OMP DO |
---|
[4649] | 1179 | DO i = 0, nx |
---|
[1] | 1180 | |
---|
[4649] | 1181 | DO j = nys, nyn |
---|
| 1182 | DO k = 1, nz |
---|
| 1183 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
[1] | 1184 | ENDDO |
---|
| 1185 | ENDDO |
---|
| 1186 | |
---|
[4649] | 1187 | ENDDO |
---|
[1] | 1188 | |
---|
[4717] | 1189 | !$OMP DO |
---|
[4649] | 1190 | DO j = nys, nyn |
---|
| 1191 | DO k = 1, nz |
---|
[1] | 1192 | |
---|
[4649] | 1193 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'forward' ) |
---|
| 1194 | |
---|
| 1195 | DO i = 0, nx |
---|
| 1196 | work(j,k,i) = work_fftx(i,k,j) |
---|
[1] | 1197 | ENDDO |
---|
| 1198 | ENDDO |
---|
| 1199 | |
---|
[4649] | 1200 | ENDDO |
---|
[4717] | 1201 | !$OMP END PARALLEL |
---|
[1] | 1202 | |
---|
[4649] | 1203 | ENDIF |
---|
| 1204 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'pause' ) |
---|
| 1205 | |
---|
[1] | 1206 | ! |
---|
[4649] | 1207 | !-- Transpose array |
---|
[1111] | 1208 | #if defined( __parallel ) |
---|
[4649] | 1209 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 1210 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1211 | CALL MPI_ALLTOALL( work(nys,1,0), sendrecvcount_xy, MPI_REAL, f_out(1,1,nxl_y,1), & |
---|
| 1212 | sendrecvcount_xy, MPI_REAL, comm1dy, ierr ) |
---|
| 1213 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[4429] | 1214 | #else |
---|
| 1215 | ! |
---|
[4649] | 1216 | !-- Next line required to avoid compile error about unused dummy argument in serial mode |
---|
| 1217 | i = SIZE( f_out ) |
---|
[1111] | 1218 | #endif |
---|
[1] | 1219 | |
---|
[4649] | 1220 | END SUBROUTINE fftx_tr_xy |
---|
[1] | 1221 | |
---|
| 1222 | |
---|
[4649] | 1223 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 1224 | ! Description: |
---|
| 1225 | ! ------------ |
---|
[4649] | 1226 | !> Transposition y --> x with a subsequent backward Fourier transformation for a 1d-decomposition |
---|
| 1227 | !> along x. |
---|
| 1228 | !--------------------------------------------------------------------------------------------------! |
---|
| 1229 | SUBROUTINE tr_yx_fftx( f_in, f_out ) |
---|
[1] | 1230 | |
---|
[1682] | 1231 | |
---|
[4649] | 1232 | USE control_parameters, & |
---|
| 1233 | ONLY: loop_optimization |
---|
[1320] | 1234 | |
---|
[4649] | 1235 | USE cpulog, & |
---|
| 1236 | ONLY: cpu_log, & |
---|
| 1237 | log_point_s |
---|
[1320] | 1238 | |
---|
[4649] | 1239 | USE kinds |
---|
[1320] | 1240 | |
---|
[4649] | 1241 | USE pegrid |
---|
[1] | 1242 | |
---|
[4649] | 1243 | IMPLICIT NONE |
---|
[1] | 1244 | |
---|
[4649] | 1245 | INTEGER(iwp) :: i !< |
---|
| 1246 | INTEGER(iwp) :: j !< |
---|
| 1247 | INTEGER(iwp) :: k !< |
---|
[1] | 1248 | |
---|
[4649] | 1249 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_in !< |
---|
| 1250 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_out !< |
---|
| 1251 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !< |
---|
| 1252 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !< |
---|
[1] | 1253 | |
---|
[4429] | 1254 | |
---|
[1] | 1255 | ! |
---|
[4649] | 1256 | !-- Transpose array |
---|
[1111] | 1257 | #if defined( __parallel ) |
---|
[4649] | 1258 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 1259 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1260 | CALL MPI_ALLTOALL( f_in(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, work(nys,1,0), & |
---|
| 1261 | sendrecvcount_xy, MPI_REAL, comm1dy, ierr ) |
---|
| 1262 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[4429] | 1263 | #else |
---|
| 1264 | ! |
---|
[4649] | 1265 | !-- Next line required to avoid compile error about unused dummy argument in serial mode |
---|
| 1266 | i = SIZE( f_in ) |
---|
[1111] | 1267 | #endif |
---|
[1] | 1268 | |
---|
| 1269 | ! |
---|
[4649] | 1270 | !-- Carry out the FFT along x, where all data are present due to the 1d-decomposition along y. |
---|
| 1271 | !-- Resort the data in a way that y becomes the first index. |
---|
| 1272 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'continue' ) |
---|
[1] | 1273 | |
---|
[4649] | 1274 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1275 | ! |
---|
[4649] | 1276 | !-- Code optimized for vector processors |
---|
| 1277 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 1278 | !$OMP DO |
---|
| 1279 | DO j = nys, nyn |
---|
[1] | 1280 | |
---|
[4649] | 1281 | DO k = 1, nz |
---|
| 1282 | DO i = 0, nx |
---|
| 1283 | work_fftx(i,k,j) = work(j,k,i) |
---|
[1] | 1284 | ENDDO |
---|
[4649] | 1285 | ENDDO |
---|
[1] | 1286 | |
---|
[4649] | 1287 | CALL fft_x_m( work_fftx(:,:,j), 'backward' ) |
---|
[1] | 1288 | |
---|
[4649] | 1289 | ENDDO |
---|
[1] | 1290 | |
---|
[4649] | 1291 | !$OMP DO |
---|
| 1292 | DO i = 0, nx |
---|
| 1293 | DO j = nys, nyn |
---|
| 1294 | DO k = 1, nz |
---|
| 1295 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
[1] | 1296 | ENDDO |
---|
| 1297 | ENDDO |
---|
[4649] | 1298 | ENDDO |
---|
| 1299 | !$OMP END PARALLEL |
---|
[1] | 1300 | |
---|
[4649] | 1301 | ELSE |
---|
[1] | 1302 | |
---|
| 1303 | ! |
---|
[4649] | 1304 | !-- Cache optimized code (there might be still a potential for better optimization). |
---|
| 1305 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
| 1306 | !$OMP DO |
---|
| 1307 | DO j = nys, nyn |
---|
| 1308 | DO k = 1, nz |
---|
[1] | 1309 | |
---|
[4649] | 1310 | DO i = 0, nx |
---|
| 1311 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1312 | ENDDO |
---|
[1] | 1313 | |
---|
[4649] | 1314 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'backward' ) |
---|
[1] | 1315 | |
---|
| 1316 | ENDDO |
---|
[4649] | 1317 | ENDDO |
---|
[1] | 1318 | |
---|
[4649] | 1319 | !$OMP DO |
---|
| 1320 | DO i = 0, nx |
---|
| 1321 | DO j = nys, nyn |
---|
| 1322 | DO k = 1, nz |
---|
| 1323 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
[1] | 1324 | ENDDO |
---|
| 1325 | ENDDO |
---|
[4649] | 1326 | ENDDO |
---|
| 1327 | !$OMP END PARALLEL |
---|
[1] | 1328 | |
---|
[4649] | 1329 | ENDIF |
---|
| 1330 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'stop' ) |
---|
[1] | 1331 | |
---|
[4649] | 1332 | END SUBROUTINE tr_yx_fftx |
---|
[1] | 1333 | |
---|
| 1334 | |
---|
[4649] | 1335 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 1336 | ! Description: |
---|
| 1337 | ! ------------ |
---|
[4649] | 1338 | !> FFT along y, solution of the tridiagonal system and backward FFT for a 1d-decomposition along y. |
---|
[1682] | 1339 | !> |
---|
[4649] | 1340 | !> @warning This subroutine may still not work for hybrid parallelization with OpenMP (for possible |
---|
| 1341 | !> necessary changes see the original routine poisfft_hybrid, developed by Klaus Ketelsen, |
---|
| 1342 | !> May 2002) |
---|
| 1343 | !--------------------------------------------------------------------------------------------------! |
---|
| 1344 | SUBROUTINE ffty_tri_ffty( ar ) |
---|
[1] | 1345 | |
---|
[1682] | 1346 | |
---|
[4649] | 1347 | USE control_parameters, & |
---|
| 1348 | ONLY: loop_optimization |
---|
[1320] | 1349 | |
---|
[4649] | 1350 | USE cpulog, & |
---|
| 1351 | ONLY: cpu_log, & |
---|
| 1352 | log_point_s |
---|
[1320] | 1353 | |
---|
[4649] | 1354 | USE grid_variables, & |
---|
| 1355 | ONLY: ddx2, & |
---|
| 1356 | ddy2 |
---|
[1320] | 1357 | |
---|
[4649] | 1358 | USE kinds |
---|
[1320] | 1359 | |
---|
[4649] | 1360 | USE pegrid |
---|
[1] | 1361 | |
---|
[4649] | 1362 | IMPLICIT NONE |
---|
[1] | 1363 | |
---|
[4649] | 1364 | INTEGER(iwp) :: i !< |
---|
| 1365 | INTEGER(iwp) :: j !< |
---|
| 1366 | INTEGER(iwp) :: k !< |
---|
| 1367 | INTEGER(iwp) :: m !< |
---|
| 1368 | INTEGER(iwp) :: n !< |
---|
| 1369 | !$ INTEGER(iwp) :: omp_get_thread_num !< |
---|
| 1370 | INTEGER(iwp) :: tn !< |
---|
[1] | 1371 | |
---|
[4649] | 1372 | REAL(wp), DIMENSION(0:ny) :: work_ffty !< |
---|
| 1373 | REAL(wp), DIMENSION(0:ny,1:nz) :: work_triy !< |
---|
| 1374 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: ar !< |
---|
| 1375 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !< |
---|
[1] | 1376 | |
---|
| 1377 | |
---|
[4649] | 1378 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'start' ) |
---|
[1] | 1379 | |
---|
[4649] | 1380 | ALLOCATE( tri(5,0:ny,0:nz-1,0:threads_per_task-1) ) |
---|
[1] | 1381 | |
---|
[4649] | 1382 | tn = 0 ! Default thread number in case of one thread |
---|
| 1383 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_ffty, work_triy ) |
---|
| 1384 | DO i = nxl_y, nxr_y |
---|
[1] | 1385 | |
---|
[4649] | 1386 | !$ tn = omp_get_thread_num() |
---|
[1] | 1387 | |
---|
[4649] | 1388 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1389 | ! |
---|
[4649] | 1390 | !-- Code optimized for vector processors |
---|
| 1391 | DO k = 1, nz |
---|
[1] | 1392 | |
---|
[4649] | 1393 | m = 0 |
---|
| 1394 | DO n = 1, pdims(2) |
---|
| 1395 | DO j = 1, nny |
---|
| 1396 | work_triy(m,k) = ar(j,k,i,n) |
---|
| 1397 | m = m + 1 |
---|
[1] | 1398 | ENDDO |
---|
| 1399 | ENDDO |
---|
| 1400 | |
---|
[4649] | 1401 | ENDDO |
---|
[1] | 1402 | |
---|
[4649] | 1403 | CALL fft_y_m( work_triy, ny, 'forward' ) |
---|
| 1404 | |
---|
| 1405 | ELSE |
---|
[1] | 1406 | ! |
---|
[4649] | 1407 | !-- Cache optimized code |
---|
| 1408 | DO k = 1, nz |
---|
[1] | 1409 | |
---|
[4649] | 1410 | m = 0 |
---|
| 1411 | DO n = 1, pdims(2) |
---|
| 1412 | DO j = 1, nny |
---|
| 1413 | work_ffty(m) = ar(j,k,i,n) |
---|
| 1414 | m = m + 1 |
---|
[1] | 1415 | ENDDO |
---|
[4649] | 1416 | ENDDO |
---|
[1] | 1417 | |
---|
[4649] | 1418 | CALL fft_y_1d( work_ffty, 'forward' ) |
---|
[1] | 1419 | |
---|
[4649] | 1420 | DO j = 0, ny |
---|
| 1421 | work_triy(j,k) = work_ffty(j) |
---|
[1] | 1422 | ENDDO |
---|
| 1423 | |
---|
[4649] | 1424 | ENDDO |
---|
[1] | 1425 | |
---|
[4649] | 1426 | ENDIF |
---|
| 1427 | |
---|
[1] | 1428 | ! |
---|
[4649] | 1429 | !-- Solve the linear equation system |
---|
| 1430 | CALL tridia_1dd( ddy2, ddx2, ny, nx, i, work_triy, tri(:,:,:,tn) ) |
---|
[1] | 1431 | |
---|
[4649] | 1432 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1433 | ! |
---|
[4649] | 1434 | !-- Code optimized for vector processors |
---|
| 1435 | CALL fft_y_m( work_triy, ny, 'backward' ) |
---|
[1] | 1436 | |
---|
[4649] | 1437 | DO k = 1, nz |
---|
[1] | 1438 | |
---|
[4649] | 1439 | m = 0 |
---|
| 1440 | DO n = 1, pdims(2) |
---|
| 1441 | DO j = 1, nny |
---|
| 1442 | ar(j,k,i,n) = work_triy(m,k) |
---|
| 1443 | m = m + 1 |
---|
[1] | 1444 | ENDDO |
---|
| 1445 | ENDDO |
---|
| 1446 | |
---|
[4649] | 1447 | ENDDO |
---|
| 1448 | |
---|
| 1449 | ELSE |
---|
[1] | 1450 | ! |
---|
[4649] | 1451 | !-- Cache optimized code |
---|
| 1452 | DO k = 1, nz |
---|
[1] | 1453 | |
---|
[4649] | 1454 | DO j = 0, ny |
---|
| 1455 | work_ffty(j) = work_triy(j,k) |
---|
| 1456 | ENDDO |
---|
[1] | 1457 | |
---|
[4649] | 1458 | CALL fft_y_1d( work_ffty, 'backward' ) |
---|
[1] | 1459 | |
---|
[4649] | 1460 | m = 0 |
---|
| 1461 | DO n = 1, pdims(2) |
---|
| 1462 | DO j = 1, nny |
---|
| 1463 | ar(j,k,i,n) = work_ffty(m) |
---|
| 1464 | m = m + 1 |
---|
[1] | 1465 | ENDDO |
---|
| 1466 | ENDDO |
---|
| 1467 | |
---|
[4649] | 1468 | ENDDO |
---|
[1] | 1469 | |
---|
[4649] | 1470 | ENDIF |
---|
[1] | 1471 | |
---|
[4649] | 1472 | ENDDO |
---|
[1] | 1473 | |
---|
[4649] | 1474 | DEALLOCATE( tri ) |
---|
[1] | 1475 | |
---|
[4649] | 1476 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'stop' ) |
---|
[1] | 1477 | |
---|
[4649] | 1478 | END SUBROUTINE ffty_tri_ffty |
---|
| 1479 | |
---|
[4671] | 1480 | END MODULE poisfft_mod |
---|