[1850] | 1 | !> @file poisfft_mod.f90 |
---|
[4649] | 2 | !--------------------------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[4649] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
| 6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
| 7 | ! (at your option) any later version. |
---|
[1036] | 8 | ! |
---|
[4649] | 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
| 10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
| 11 | ! Public License for more details. |
---|
[1036] | 12 | ! |
---|
[4649] | 13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
| 14 | ! <http://www.gnu.org/licenses/>. |
---|
[1036] | 15 | ! |
---|
[4360] | 16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[4649] | 17 | !--------------------------------------------------------------------------------------------------! |
---|
[1036] | 18 | ! |
---|
[4649] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[4649] | 22 | ! |
---|
| 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: poisfft_mod.f90 4671 2020-09-09 20:27:58Z maronga $ |
---|
[4671] | 27 | ! OMP bugfix |
---|
| 28 | ! |
---|
| 29 | ! 4649 2020-08-25 12:11:17Z raasch |
---|
[4649] | 30 | ! File re-formatted to follow the PALM coding standard |
---|
| 31 | ! |
---|
| 32 | ! 4429 2020-02-27 15:24:30Z raasch |
---|
[4429] | 33 | ! Statements added to avoid compile errors due to unused dummy arguments in serial mode |
---|
[4649] | 34 | ! |
---|
[4429] | 35 | ! 4366 2020-01-09 08:12:43Z raasch |
---|
[4649] | 36 | ! Modification concerning NEC vectorizatio |
---|
| 37 | ! |
---|
[4366] | 38 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4182] | 39 | ! Corrected "Former revisions" section |
---|
[4649] | 40 | ! |
---|
[4182] | 41 | ! 3690 2019-01-22 22:56:42Z knoop |
---|
[3634] | 42 | ! OpenACC port for SPEC |
---|
[2716] | 43 | ! |
---|
[4182] | 44 | ! Revision 1.1 1997/07/24 11:24:14 raasch |
---|
| 45 | ! Initial revision |
---|
| 46 | ! |
---|
| 47 | ! |
---|
[4649] | 48 | !--------------------------------------------------------------------------------------------------! |
---|
[1] | 49 | ! Description: |
---|
| 50 | ! ------------ |
---|
[1682] | 51 | !> Solves the Poisson equation with a 2D spectral method |
---|
| 52 | !> d^2 p / dx^2 + d^2 p / dy^2 + d^2 p / dz^2 = s |
---|
| 53 | !> |
---|
| 54 | !> Input: |
---|
[4649] | 55 | !> real ar contains (nnz,nny,nnx) elements of the velocity divergence, starting from (1,nys,nxl) |
---|
[1682] | 56 | !> |
---|
| 57 | !> Output: |
---|
[4649] | 58 | !> real ar contains the solution for perturbation pressure p |
---|
| 59 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 60 | MODULE poisfft_mod |
---|
[1] | 61 | |
---|
[4649] | 62 | |
---|
| 63 | USE fft_xy, & |
---|
| 64 | ONLY: fft_init, & |
---|
| 65 | fft_y, & |
---|
| 66 | fft_y_1d, & |
---|
| 67 | fft_y_m, & |
---|
| 68 | fft_x, & |
---|
| 69 | fft_x_1d, & |
---|
| 70 | fft_x_m, & |
---|
[4366] | 71 | temperton_fft_vec |
---|
[1] | 72 | |
---|
[4649] | 73 | USE indices, & |
---|
| 74 | ONLY: nnx, & |
---|
| 75 | nny, & |
---|
| 76 | nx, & |
---|
| 77 | nxl, & |
---|
| 78 | nxr, & |
---|
| 79 | ny, & |
---|
| 80 | nys, & |
---|
| 81 | nyn, & |
---|
| 82 | nz |
---|
[1320] | 83 | |
---|
[4649] | 84 | USE transpose_indices, & |
---|
| 85 | ONLY: nxl_y, & |
---|
| 86 | nxl_z, & |
---|
| 87 | nxr_y, & |
---|
| 88 | nxr_z, & |
---|
| 89 | nys_x, & |
---|
| 90 | nys_z, & |
---|
| 91 | nyn_x, & |
---|
| 92 | nyn_z, & |
---|
| 93 | nzb_x, & |
---|
| 94 | nzb_y, & |
---|
| 95 | nzt_x, & |
---|
| 96 | nzt_y |
---|
[1320] | 97 | |
---|
[4649] | 98 | USE tridia_solver, & |
---|
| 99 | ONLY: tridia_1dd, & |
---|
| 100 | tridia_init, & |
---|
| 101 | tridia_substi, & |
---|
| 102 | tridia_substi_overlap |
---|
[1320] | 103 | |
---|
[1] | 104 | IMPLICIT NONE |
---|
| 105 | |
---|
[4649] | 106 | LOGICAL, SAVE :: poisfft_initialized = .FALSE. !< |
---|
[1111] | 107 | |
---|
[1] | 108 | PRIVATE |
---|
[807] | 109 | |
---|
[1] | 110 | PUBLIC poisfft, poisfft_init |
---|
| 111 | |
---|
| 112 | INTERFACE poisfft |
---|
| 113 | MODULE PROCEDURE poisfft |
---|
| 114 | END INTERFACE poisfft |
---|
| 115 | |
---|
| 116 | INTERFACE poisfft_init |
---|
| 117 | MODULE PROCEDURE poisfft_init |
---|
| 118 | END INTERFACE poisfft_init |
---|
| 119 | |
---|
[807] | 120 | |
---|
[1] | 121 | CONTAINS |
---|
| 122 | |
---|
[4649] | 123 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 124 | ! Description: |
---|
| 125 | ! ------------ |
---|
[3241] | 126 | !> Setup coefficients for FFT and the tridiagonal solver |
---|
[4649] | 127 | !--------------------------------------------------------------------------------------------------! |
---|
| 128 | SUBROUTINE poisfft_init |
---|
[1] | 129 | |
---|
[4649] | 130 | IMPLICIT NONE |
---|
[1111] | 131 | |
---|
| 132 | |
---|
[4649] | 133 | CALL fft_init |
---|
[1] | 134 | |
---|
[4649] | 135 | CALL tridia_init |
---|
[1111] | 136 | |
---|
[4649] | 137 | poisfft_initialized = .TRUE. |
---|
[1111] | 138 | |
---|
[4649] | 139 | END SUBROUTINE poisfft_init |
---|
[1] | 140 | |
---|
[1111] | 141 | |
---|
[1804] | 142 | |
---|
[4649] | 143 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 144 | ! Description: |
---|
| 145 | ! ------------ |
---|
| 146 | !> Two-dimensional Fourier Transformation in x- and y-direction. |
---|
[4649] | 147 | !--------------------------------------------------------------------------------------------------! |
---|
| 148 | SUBROUTINE poisfft( ar ) |
---|
[1] | 149 | |
---|
[4649] | 150 | USE control_parameters, & |
---|
| 151 | ONLY: transpose_compute_overlap |
---|
[1320] | 152 | |
---|
[4649] | 153 | USE cpulog, & |
---|
| 154 | ONLY: cpu_log, & |
---|
| 155 | cpu_log_nowait, & |
---|
| 156 | log_point_s |
---|
[1320] | 157 | |
---|
[4649] | 158 | USE kinds |
---|
[1320] | 159 | |
---|
[4649] | 160 | USE pegrid |
---|
[1] | 161 | |
---|
[4649] | 162 | IMPLICIT NONE |
---|
[1] | 163 | |
---|
[4649] | 164 | INTEGER(iwp) :: ii !< |
---|
| 165 | INTEGER(iwp) :: iind !< |
---|
| 166 | INTEGER(iwp) :: inew !< |
---|
| 167 | INTEGER(iwp) :: jj !< |
---|
| 168 | INTEGER(iwp) :: jind !< |
---|
| 169 | INTEGER(iwp) :: jnew !< |
---|
| 170 | INTEGER(iwp) :: ki !< |
---|
| 171 | INTEGER(iwp) :: kk !< |
---|
| 172 | INTEGER(iwp) :: knew !< |
---|
| 173 | INTEGER(iwp) :: n !< |
---|
| 174 | INTEGER(iwp) :: nblk !< |
---|
| 175 | INTEGER(iwp) :: nnx_y !< |
---|
| 176 | INTEGER(iwp) :: nny_z !< |
---|
| 177 | INTEGER(iwp) :: nnz_x !< |
---|
| 178 | INTEGER(iwp) :: nxl_y_bound !< |
---|
| 179 | INTEGER(iwp) :: nxr_y_bound !< |
---|
[1] | 180 | |
---|
[4649] | 181 | INTEGER(iwp), DIMENSION(4) :: isave !< |
---|
[1320] | 182 | |
---|
[4649] | 183 | REAL(wp), DIMENSION(1:nz,nys:nyn,nxl:nxr) :: ar !< |
---|
| 184 | REAL(wp), DIMENSION(nys:nyn,nxl:nxr,1:nz) :: ar_inv !< |
---|
[3690] | 185 | |
---|
| 186 | #define __acc_fft_device ( defined( _OPENACC ) && ( defined ( __cuda_fft ) ) ) |
---|
| 187 | #if __acc_fft_device |
---|
[4649] | 188 | !$ACC DECLARE CREATE(ar_inv) |
---|
[3690] | 189 | #endif |
---|
[1] | 190 | |
---|
[4649] | 191 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ar1 !< |
---|
| 192 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_in !< |
---|
| 193 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_inv !< |
---|
| 194 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_y !< |
---|
| 195 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_z !< |
---|
[1216] | 196 | |
---|
| 197 | |
---|
[4649] | 198 | CALL cpu_log( log_point_s(3), 'poisfft', 'start' ) |
---|
[1] | 199 | |
---|
[4649] | 200 | IF ( .NOT. poisfft_initialized ) CALL poisfft_init |
---|
[1111] | 201 | |
---|
[3690] | 202 | #if !__acc_fft_device |
---|
[4649] | 203 | !$ACC UPDATE HOST(ar) |
---|
[3690] | 204 | #endif |
---|
| 205 | |
---|
[3634] | 206 | #ifndef _OPENACC |
---|
[1] | 207 | ! |
---|
[4649] | 208 | !-- Two-dimensional Fourier Transformation in x- and y-direction. |
---|
| 209 | IF ( pdims(2) == 1 .AND. pdims(1) > 1 ) THEN |
---|
[1] | 210 | |
---|
| 211 | ! |
---|
[4649] | 212 | !-- 1d-domain-decomposition along x: |
---|
| 213 | !-- FFT along y and transposition y --> x |
---|
| 214 | CALL ffty_tr_yx( ar, ar ) |
---|
[1] | 215 | |
---|
| 216 | ! |
---|
[4649] | 217 | !-- FFT along x, solving the tridiagonal system and backward FFT |
---|
| 218 | CALL fftx_tri_fftx( ar ) |
---|
[1] | 219 | |
---|
| 220 | ! |
---|
[4649] | 221 | !-- Transposition x --> y and backward FFT along y |
---|
| 222 | CALL tr_xy_ffty( ar, ar ) |
---|
[1] | 223 | |
---|
[4649] | 224 | ELSEIF ( pdims(1) == 1 .AND. pdims(2) > 1 ) THEN |
---|
[1] | 225 | |
---|
| 226 | ! |
---|
[4649] | 227 | !-- 1d-domain-decomposition along y: |
---|
| 228 | !-- FFT along x and transposition x --> y |
---|
| 229 | CALL fftx_tr_xy( ar, ar ) |
---|
[1] | 230 | |
---|
| 231 | ! |
---|
[4649] | 232 | !-- FFT along y, solving the tridiagonal system and backward FFT |
---|
| 233 | CALL ffty_tri_ffty( ar ) |
---|
[1] | 234 | |
---|
| 235 | ! |
---|
[4649] | 236 | !-- Transposition y --> x and backward FFT along x |
---|
| 237 | CALL tr_yx_fftx( ar, ar ) |
---|
[1] | 238 | |
---|
[4649] | 239 | ELSEIF ( .NOT. transpose_compute_overlap ) THEN |
---|
[3634] | 240 | #endif |
---|
[1] | 241 | |
---|
| 242 | ! |
---|
[4649] | 243 | !-- 2d-domain-decomposition or no decomposition (1 PE run) |
---|
| 244 | !-- Transposition z --> x |
---|
| 245 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start' ) |
---|
| 246 | CALL resort_for_zx( ar, ar_inv ) |
---|
| 247 | CALL transpose_zx( ar_inv, ar ) |
---|
| 248 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1] | 249 | |
---|
[4649] | 250 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
| 251 | IF ( temperton_fft_vec ) THEN |
---|
[4366] | 252 | ! |
---|
[4649] | 253 | !-- Vector version outputs a transformed array ar_inv that does not require resorting |
---|
| 254 | !-- (which is done for ar further below) |
---|
| 255 | CALL fft_x( ar, 'forward', ar_inv=ar_inv) |
---|
| 256 | ELSE |
---|
| 257 | CALL fft_x( ar, 'forward') |
---|
| 258 | ENDIF |
---|
| 259 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
[1] | 260 | |
---|
| 261 | ! |
---|
[4649] | 262 | !-- Transposition x --> y |
---|
| 263 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
| 264 | IF( .NOT. temperton_fft_vec ) CALL resort_for_xy( ar, ar_inv ) |
---|
| 265 | CALL transpose_xy( ar_inv, ar ) |
---|
| 266 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1] | 267 | |
---|
[4649] | 268 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
| 269 | IF ( temperton_fft_vec ) THEN |
---|
[4366] | 270 | ! |
---|
[4649] | 271 | !-- Input array ar_inv from fft_x can be directly used here. |
---|
| 272 | !-- The output (also in array ar_inv) does not require resorting below. |
---|
| 273 | CALL fft_y( ar, 'forward', ar_inv = ar_inv, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 274 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 275 | ELSE |
---|
| 276 | CALL fft_y( ar, 'forward', ar_tr = ar, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 277 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 278 | ENDIF |
---|
| 279 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
[1] | 280 | |
---|
| 281 | ! |
---|
[4649] | 282 | !-- Transposition y --> z |
---|
| 283 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
| 284 | IF ( .NOT. temperton_fft_vec ) CALL resort_for_yz( ar, ar_inv ) |
---|
| 285 | CALL transpose_yz( ar_inv, ar ) |
---|
| 286 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
[1] | 287 | |
---|
| 288 | ! |
---|
[4649] | 289 | !-- Solve the tridiagonal equation system along z |
---|
| 290 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
| 291 | CALL tridia_substi( ar ) |
---|
| 292 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
[1] | 293 | |
---|
| 294 | ! |
---|
[4649] | 295 | !-- Inverse Fourier Transformation |
---|
| 296 | !-- Transposition z --> y |
---|
| 297 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start' ) |
---|
| 298 | CALL transpose_zy( ar, ar_inv ) |
---|
[4366] | 299 | ! |
---|
[4649] | 300 | !-- The fft_y below (vector branch) can directly process ar_inv (i.e. does not require a |
---|
| 301 | !-- resorting) |
---|
| 302 | IF ( .NOT. temperton_fft_vec ) CALL resort_for_zy( ar_inv, ar ) |
---|
| 303 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1] | 304 | |
---|
[4649] | 305 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
| 306 | IF ( temperton_fft_vec ) THEN |
---|
[4366] | 307 | ! |
---|
[4649] | 308 | !-- Output array ar_inv can be used as input to the below fft_x routine without resorting |
---|
| 309 | CALL fft_y( ar, 'backward', ar_inv = ar_inv, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 310 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 311 | ELSE |
---|
| 312 | CALL fft_y( ar, 'backward', ar_tr = ar, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 313 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 314 | ENDIF |
---|
[4366] | 315 | |
---|
[4649] | 316 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
[1] | 317 | |
---|
| 318 | ! |
---|
[4649] | 319 | !-- Transposition y --> x |
---|
| 320 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
| 321 | CALL transpose_yx( ar, ar_inv ) |
---|
| 322 | IF ( .NOT. temperton_fft_vec ) CALL resort_for_yx( ar_inv, ar ) |
---|
| 323 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1] | 324 | |
---|
[4649] | 325 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
| 326 | IF ( temperton_fft_vec ) THEN |
---|
| 327 | CALL fft_x( ar, 'backward', ar_inv=ar_inv ) |
---|
| 328 | ELSE |
---|
| 329 | CALL fft_x( ar, 'backward' ) |
---|
| 330 | ENDIF |
---|
| 331 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
[1] | 332 | |
---|
| 333 | ! |
---|
[4649] | 334 | !-- Transposition x --> z |
---|
| 335 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
| 336 | CALL transpose_xz( ar, ar_inv ) |
---|
| 337 | CALL resort_for_xz( ar_inv, ar ) |
---|
| 338 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
[1] | 339 | |
---|
[3634] | 340 | #ifndef _OPENACC |
---|
[4649] | 341 | ELSE |
---|
[1216] | 342 | |
---|
| 343 | ! |
---|
[4649] | 344 | !-- 2d-domain-decomposition or no decomposition (1 PE run) with overlapping transposition / fft |
---|
| 345 | !-- cputime logging must not use barriers, which would prevent overlapping |
---|
| 346 | ALLOCATE( f_out_y(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), & |
---|
| 347 | f_out_z(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
[1216] | 348 | ! |
---|
[4649] | 349 | !-- Transposition z --> x + subsequent fft along x |
---|
| 350 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 351 | CALL resort_for_zx( ar, f_inv ) |
---|
[1216] | 352 | ! |
---|
[4649] | 353 | !-- Save original indices and gridpoint counter |
---|
| 354 | isave(1) = nz |
---|
| 355 | isave(2) = nzb_x |
---|
| 356 | isave(3) = nzt_x |
---|
| 357 | isave(4) = sendrecvcount_zx |
---|
[1216] | 358 | ! |
---|
[4649] | 359 | !-- Set new indices for transformation |
---|
| 360 | nblk = nz / pdims(1) |
---|
| 361 | nz = pdims(1) |
---|
| 362 | nnz_x = 1 |
---|
| 363 | nzb_x = 1 + myidx * nnz_x |
---|
| 364 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
| 365 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
[1216] | 366 | |
---|
[4649] | 367 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
| 368 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
[1216] | 369 | |
---|
[4649] | 370 | DO kk = 1, nblk |
---|
[1216] | 371 | |
---|
[4649] | 372 | IF ( kk == 1 ) THEN |
---|
| 373 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start', cpu_log_nowait ) |
---|
| 374 | ELSE |
---|
| 375 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
| 376 | ENDIF |
---|
[1216] | 377 | |
---|
[4649] | 378 | DO knew = 1, nz |
---|
| 379 | ki = kk + nblk * ( knew - 1 ) |
---|
| 380 | f_in(:,:,knew) = f_inv(:,:,ki) |
---|
| 381 | ENDDO |
---|
[1216] | 382 | |
---|
[4649] | 383 | CALL transpose_zx( f_in, ar1(:,:,:)) |
---|
| 384 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 385 | |
---|
[4649] | 386 | IF ( kk == 1 ) THEN |
---|
| 387 | CALL cpu_log( log_point_s(4), 'fft_x', 'start', cpu_log_nowait ) |
---|
| 388 | ELSE |
---|
| 389 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
| 390 | ENDIF |
---|
[1216] | 391 | |
---|
[4649] | 392 | n = isave(2) + kk - 1 |
---|
| 393 | CALL fft_x( ar1(:,:,:), 'forward', ar_2d = f_out_z(:,:,n) ) |
---|
| 394 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
[1216] | 395 | |
---|
[4649] | 396 | ENDDO |
---|
[1216] | 397 | ! |
---|
[4649] | 398 | !-- Restore original indices/counters |
---|
| 399 | nz = isave(1) |
---|
| 400 | nzb_x = isave(2) |
---|
| 401 | nzt_x = isave(3) |
---|
| 402 | sendrecvcount_zx = isave(4) |
---|
[1216] | 403 | |
---|
[4649] | 404 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
[1216] | 405 | |
---|
| 406 | ! |
---|
[4649] | 407 | !-- Transposition x --> y + subsequent fft along y |
---|
| 408 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 409 | CALL resort_for_xy( f_out_z, f_inv ) |
---|
[1216] | 410 | ! |
---|
[4649] | 411 | !-- Save original indices and gridpoint counter |
---|
| 412 | isave(1) = nx |
---|
| 413 | isave(2) = nxl_y |
---|
| 414 | isave(3) = nxr_y |
---|
| 415 | isave(4) = sendrecvcount_xy |
---|
[1216] | 416 | ! |
---|
[4649] | 417 | !-- Set new indices for transformation |
---|
| 418 | nblk = ( ( nx+1 ) / pdims(2) ) - 1 |
---|
| 419 | nx = pdims(2) |
---|
| 420 | nnx_y = 1 |
---|
| 421 | nxl_y = myidy * nnx_y |
---|
| 422 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
| 423 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
[1216] | 424 | |
---|
[4649] | 425 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
| 426 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
[1216] | 427 | |
---|
[4649] | 428 | DO ii = 0, nblk |
---|
[1216] | 429 | |
---|
[4649] | 430 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1216] | 431 | |
---|
[4649] | 432 | DO inew = 0, nx-1 |
---|
| 433 | iind = ii + ( nblk + 1 ) * inew |
---|
| 434 | f_in(:,:,inew) = f_inv(:,:,iind) |
---|
| 435 | ENDDO |
---|
[1216] | 436 | |
---|
[4649] | 437 | CALL transpose_xy( f_in, ar1(:,:,:) ) |
---|
[1216] | 438 | |
---|
[4649] | 439 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 440 | |
---|
[4649] | 441 | IF ( ii == 1 ) THEN |
---|
| 442 | CALL cpu_log( log_point_s(7), 'fft_y', 'start', cpu_log_nowait ) |
---|
| 443 | ELSE |
---|
| 444 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
| 445 | ENDIF |
---|
[1216] | 446 | |
---|
[4649] | 447 | nxl_y_bound = isave(2) |
---|
| 448 | nxr_y_bound = isave(3) |
---|
| 449 | n = isave(2) + ii |
---|
| 450 | CALL fft_y( ar1(:,:,:), 'forward', ar_tr = f_out_y, nxl_y_bound = nxl_y_bound, & |
---|
| 451 | nxr_y_bound = nxr_y_bound, nxl_y_l = n, nxr_y_l = n ) |
---|
[1216] | 452 | |
---|
[4649] | 453 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
[1216] | 454 | |
---|
[4649] | 455 | ENDDO |
---|
[1216] | 456 | ! |
---|
[4649] | 457 | !-- Restore original indices/counters |
---|
| 458 | nx = isave(1) |
---|
| 459 | nxl_y = isave(2) |
---|
| 460 | nxr_y = isave(3) |
---|
| 461 | sendrecvcount_xy = isave(4) |
---|
[1216] | 462 | |
---|
[4649] | 463 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
[1216] | 464 | |
---|
| 465 | ! |
---|
[4649] | 466 | !-- Transposition y --> z + subsequent tridia + resort for z --> y |
---|
| 467 | ALLOCATE( f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
| 468 | CALL resort_for_yz( f_out_y, f_inv ) |
---|
[1216] | 469 | ! |
---|
[4649] | 470 | !-- Save original indices and gridpoint counter |
---|
| 471 | isave(1) = ny |
---|
| 472 | isave(2) = nys_z |
---|
| 473 | isave(3) = nyn_z |
---|
| 474 | isave(4) = sendrecvcount_yz |
---|
[1216] | 475 | ! |
---|
[4649] | 476 | !-- Set new indices for transformation |
---|
| 477 | nblk = ( ( ny+1 ) / pdims(1) ) - 1 |
---|
| 478 | ny = pdims(1) |
---|
| 479 | nny_z = 1 |
---|
| 480 | nys_z = myidx * nny_z |
---|
| 481 | nyn_z = ( myidx + 1 ) * nny_z - 1 |
---|
| 482 | sendrecvcount_yz = ( nxr_y-nxl_y+1 ) * nny_z * ( nzt_y-nzb_y+1 ) |
---|
[1216] | 483 | |
---|
[4649] | 484 | ALLOCATE( ar1(nxl_z:nxr_z,nys_z:nyn_z,1:nz) ) |
---|
| 485 | ALLOCATE( f_in(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
[1216] | 486 | |
---|
[4649] | 487 | DO jj = 0, nblk |
---|
[1216] | 488 | ! |
---|
[4649] | 489 | !-- Forward Fourier Transformation |
---|
| 490 | !-- Transposition y --> z |
---|
| 491 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1216] | 492 | |
---|
[4649] | 493 | DO jnew = 0, ny-1 |
---|
| 494 | jind = jj + ( nblk + 1 ) * jnew |
---|
| 495 | f_in(:,:,jnew) = f_inv(:,:,jind) |
---|
| 496 | ENDDO |
---|
[1216] | 497 | |
---|
[4649] | 498 | CALL transpose_yz( f_in, ar1(:,:,:) ) |
---|
[1216] | 499 | |
---|
[4649] | 500 | IF ( jj == nblk ) THEN |
---|
| 501 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
| 502 | ELSE |
---|
| 503 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 504 | ENDIF |
---|
[1216] | 505 | |
---|
| 506 | ! |
---|
[4649] | 507 | !-- Solve the tridiagonal equation system along z |
---|
| 508 | CALL cpu_log( log_point_s(6), 'tridia', 'start', cpu_log_nowait ) |
---|
[1216] | 509 | |
---|
[4649] | 510 | n = isave(2) + jj |
---|
| 511 | CALL tridia_substi_overlap( ar1(:,:,:), n ) |
---|
[1216] | 512 | |
---|
[4649] | 513 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
[1216] | 514 | |
---|
[1306] | 515 | ! |
---|
[4649] | 516 | !-- Inverse Fourier Transformation |
---|
| 517 | !-- Transposition z --> y |
---|
| 518 | !-- Only one thread should call MPI routines, therefore forward and backward tranpose are in |
---|
| 519 | !-- the same section |
---|
| 520 | IF ( jj == 0 ) THEN |
---|
| 521 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start', cpu_log_nowait ) |
---|
| 522 | ELSE |
---|
| 523 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
| 524 | ENDIF |
---|
[1216] | 525 | |
---|
[4649] | 526 | CALL transpose_zy( ar1(:,:,:), f_in ) |
---|
[1216] | 527 | |
---|
[4649] | 528 | DO jnew = 0, ny-1 |
---|
| 529 | jind = jj + ( nblk + 1 ) * jnew |
---|
| 530 | f_inv(:,:,jind) = f_in(:,:,jnew) |
---|
| 531 | ENDDO |
---|
[1216] | 532 | |
---|
[4649] | 533 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 534 | |
---|
[4649] | 535 | ENDDO |
---|
[1216] | 536 | ! |
---|
[4649] | 537 | !-- Restore original indices/counters |
---|
| 538 | ny = isave(1) |
---|
| 539 | nys_z = isave(2) |
---|
| 540 | nyn_z = isave(3) |
---|
| 541 | sendrecvcount_yz = isave(4) |
---|
[1216] | 542 | |
---|
[4649] | 543 | CALL resort_for_zy( f_inv, f_out_y ) |
---|
[1216] | 544 | |
---|
[4649] | 545 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
[1216] | 546 | |
---|
| 547 | ! |
---|
[4649] | 548 | !-- fft along y backward + subsequent transposition y --> x |
---|
| 549 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
[1216] | 550 | ! |
---|
[4649] | 551 | !-- Save original indices and gridpoint counter |
---|
| 552 | isave(1) = nx |
---|
| 553 | isave(2) = nxl_y |
---|
| 554 | isave(3) = nxr_y |
---|
| 555 | isave(4) = sendrecvcount_xy |
---|
[1216] | 556 | ! |
---|
[4649] | 557 | !-- Set new indices for transformation |
---|
| 558 | nblk = ( ( nx+1 ) / pdims(2) ) - 1 |
---|
| 559 | nx = pdims(2) |
---|
| 560 | nnx_y = 1 |
---|
| 561 | nxl_y = myidy * nnx_y |
---|
| 562 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
| 563 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
[1216] | 564 | |
---|
[4649] | 565 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
| 566 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
[1216] | 567 | |
---|
[4649] | 568 | DO ii = 0, nblk |
---|
[1216] | 569 | |
---|
[4649] | 570 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
[1216] | 571 | |
---|
[4649] | 572 | n = isave(2) + ii |
---|
| 573 | nxl_y_bound = isave(2) |
---|
| 574 | nxr_y_bound = isave(3) |
---|
[1216] | 575 | |
---|
[4649] | 576 | CALL fft_y( ar1(:,:,:), 'backward', ar_tr = f_out_y, nxl_y_bound = nxl_y_bound, & |
---|
| 577 | nxr_y_bound = nxr_y_bound, nxl_y_l = n, nxr_y_l = n ) |
---|
[1216] | 578 | |
---|
[4649] | 579 | IF ( ii == nblk ) THEN |
---|
| 580 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 581 | ELSE |
---|
| 582 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 583 | ENDIF |
---|
[1216] | 584 | |
---|
[4649] | 585 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 586 | |
---|
[4649] | 587 | CALL transpose_yx( ar1(:,:,:), f_in ) |
---|
[1216] | 588 | |
---|
[4649] | 589 | DO inew = 0, nx-1 |
---|
| 590 | iind = ii + (nblk+1) * inew |
---|
| 591 | f_inv(:,:,iind) = f_in(:,:,inew) |
---|
| 592 | ENDDO |
---|
[1216] | 593 | |
---|
[4649] | 594 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 595 | |
---|
[4649] | 596 | ENDDO |
---|
[1216] | 597 | ! |
---|
[4649] | 598 | !-- Restore original indices/counters |
---|
| 599 | nx = isave(1) |
---|
| 600 | nxl_y = isave(2) |
---|
| 601 | nxr_y = isave(3) |
---|
| 602 | sendrecvcount_xy = isave(4) |
---|
[1216] | 603 | |
---|
[4649] | 604 | CALL resort_for_yx( f_inv, f_out_z ) |
---|
[1216] | 605 | |
---|
[4649] | 606 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
[1216] | 607 | |
---|
| 608 | ! |
---|
[4649] | 609 | !-- fft along x backward + subsequent final transposition x --> z |
---|
| 610 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
[1216] | 611 | ! |
---|
[4649] | 612 | !-- Save original indices and gridpoint counter |
---|
| 613 | isave(1) = nz |
---|
| 614 | isave(2) = nzb_x |
---|
| 615 | isave(3) = nzt_x |
---|
| 616 | isave(4) = sendrecvcount_zx |
---|
[1216] | 617 | ! |
---|
[4649] | 618 | !-- Set new indices for transformation |
---|
| 619 | nblk = nz / pdims(1) |
---|
| 620 | nz = pdims(1) |
---|
| 621 | nnz_x = 1 |
---|
| 622 | nzb_x = 1 + myidx * nnz_x |
---|
| 623 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
| 624 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
[1216] | 625 | |
---|
[4649] | 626 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
| 627 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
[1216] | 628 | |
---|
[4649] | 629 | DO kk = 1, nblk |
---|
[1216] | 630 | |
---|
[4649] | 631 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
[1216] | 632 | |
---|
[4649] | 633 | n = isave(2) + kk - 1 |
---|
| 634 | CALL fft_x( ar1(:,:,:), 'backward', f_out_z(:,:,n) ) |
---|
[1216] | 635 | |
---|
[4649] | 636 | IF ( kk == nblk ) THEN |
---|
| 637 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 638 | ELSE |
---|
| 639 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
| 640 | ENDIF |
---|
[1216] | 641 | |
---|
[4649] | 642 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 643 | |
---|
[4649] | 644 | CALL transpose_xz( ar1(:,:,:), f_in ) |
---|
[1216] | 645 | |
---|
[4649] | 646 | DO knew = 1, nz |
---|
| 647 | ki = kk + nblk * ( knew - 1 ) |
---|
| 648 | f_inv(:,:,ki) = f_in(:,:,knew) |
---|
| 649 | ENDDO |
---|
[1216] | 650 | |
---|
[4649] | 651 | IF ( kk == nblk ) THEN |
---|
| 652 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
| 653 | ELSE |
---|
| 654 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 655 | ENDIF |
---|
[1216] | 656 | |
---|
[4649] | 657 | ENDDO |
---|
[1216] | 658 | ! |
---|
[4649] | 659 | !-- Restore original indices/counters |
---|
| 660 | nz = isave(1) |
---|
| 661 | nzb_x = isave(2) |
---|
| 662 | nzt_x = isave(3) |
---|
| 663 | sendrecvcount_zx = isave(4) |
---|
[1216] | 664 | |
---|
[4649] | 665 | CALL resort_for_xz( f_inv, ar ) |
---|
[1216] | 666 | |
---|
[4649] | 667 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
[1216] | 668 | |
---|
[4649] | 669 | ENDIF |
---|
[3634] | 670 | #endif |
---|
[1] | 671 | |
---|
[3690] | 672 | #if !__acc_fft_device |
---|
[4649] | 673 | !$ACC UPDATE DEVICE(ar) |
---|
[3690] | 674 | #endif |
---|
| 675 | |
---|
[4649] | 676 | CALL cpu_log( log_point_s(3), 'poisfft', 'stop' ) |
---|
[1] | 677 | |
---|
[4649] | 678 | END SUBROUTINE poisfft |
---|
[1] | 679 | |
---|
| 680 | |
---|
[4649] | 681 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 682 | ! Description: |
---|
| 683 | ! ------------ |
---|
[4649] | 684 | !> Fourier-transformation along y with subsequent transposition y --> x for a 1d-decomposition |
---|
| 685 | !> along x. |
---|
[1682] | 686 | !> |
---|
[4649] | 687 | !> @attention The performance of this routine is much faster on the NEC-SX6, if the first index of |
---|
| 688 | !> work_ffty_vec is odd. Otherwise memory bank conflicts may occur (especially if the |
---|
| 689 | !> index is a multiple of 128). That's why work_ffty_vec is dimensioned as 0:ny+1. |
---|
| 690 | !> Of course, this will not work if users are using an odd number of gridpoints along y. |
---|
| 691 | !--------------------------------------------------------------------------------------------------! |
---|
| 692 | SUBROUTINE ffty_tr_yx( f_in, f_out ) |
---|
[1] | 693 | |
---|
[4649] | 694 | USE control_parameters, & |
---|
| 695 | ONLY: loop_optimization |
---|
[1320] | 696 | |
---|
[4649] | 697 | USE cpulog, & |
---|
| 698 | ONLY: cpu_log, & |
---|
| 699 | log_point_s |
---|
[1320] | 700 | |
---|
[4649] | 701 | USE kinds |
---|
[1320] | 702 | |
---|
[4649] | 703 | USE pegrid |
---|
[1] | 704 | |
---|
[4649] | 705 | IMPLICIT NONE |
---|
[1] | 706 | |
---|
[4649] | 707 | INTEGER(iwp) :: i !< |
---|
| 708 | INTEGER(iwp) :: iend !< |
---|
| 709 | INTEGER(iwp) :: iouter !< |
---|
| 710 | INTEGER(iwp) :: ir !< |
---|
| 711 | INTEGER(iwp) :: j !< |
---|
| 712 | INTEGER(iwp) :: k !< |
---|
[1] | 713 | |
---|
[4649] | 714 | INTEGER(iwp), PARAMETER :: stridex = 4 !< |
---|
[1320] | 715 | |
---|
[4649] | 716 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_in !< |
---|
| 717 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_out !< |
---|
| 718 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !< |
---|
[1] | 719 | |
---|
[4649] | 720 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_ffty !< |
---|
| 721 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: work_ffty_vec !< |
---|
[2300] | 722 | |
---|
[1] | 723 | ! |
---|
[4649] | 724 | !-- Carry out the FFT along y, where all data are present due to the 1d-decomposition along x. |
---|
| 725 | !-- Resort the data in a way that x becomes the first index. |
---|
| 726 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'start' ) |
---|
[1] | 727 | |
---|
[4649] | 728 | IF ( loop_optimization == 'vector' ) THEN |
---|
[2300] | 729 | |
---|
[4649] | 730 | ALLOCATE( work_ffty_vec(0:ny+1,1:nz,nxl:nxr) ) |
---|
[1] | 731 | ! |
---|
[4649] | 732 | !-- Code optimized for vector processors |
---|
| 733 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 734 | !$OMP DO |
---|
| 735 | DO i = nxl, nxr |
---|
[1] | 736 | |
---|
[4649] | 737 | DO j = 0, ny |
---|
| 738 | DO k = 1, nz |
---|
| 739 | work_ffty_vec(j,k,i) = f_in(k,j,i) |
---|
[1] | 740 | ENDDO |
---|
[4649] | 741 | ENDDO |
---|
[1] | 742 | |
---|
[4649] | 743 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'forward' ) |
---|
[1] | 744 | |
---|
[4649] | 745 | ENDDO |
---|
[1] | 746 | |
---|
[4649] | 747 | !$OMP DO |
---|
| 748 | DO k = 1, nz |
---|
| 749 | DO j = 0, ny |
---|
| 750 | DO i = nxl, nxr |
---|
| 751 | work(i,k,j) = work_ffty_vec(j,k,i) |
---|
[1] | 752 | ENDDO |
---|
| 753 | ENDDO |
---|
[4649] | 754 | ENDDO |
---|
| 755 | !$OMP END PARALLEL |
---|
[1] | 756 | |
---|
[4649] | 757 | DEALLOCATE( work_ffty_vec ) |
---|
[2300] | 758 | |
---|
[4649] | 759 | ELSE |
---|
[1] | 760 | ! |
---|
[4649] | 761 | !-- Cache optimized code. |
---|
| 762 | ALLOCATE( work_ffty(0:ny,stridex) ) |
---|
[2300] | 763 | ! |
---|
[4649] | 764 | !-- The i-(x-)direction is split into a strided outer loop and an inner loop for better cache |
---|
| 765 | !-- performance |
---|
| 766 | !$OMP PARALLEL PRIVATE (i,iend,iouter,ir,j,k,work_ffty) |
---|
| 767 | !$OMP DO |
---|
| 768 | DO iouter = nxl, nxr, stridex |
---|
[1] | 769 | |
---|
[4649] | 770 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
[1] | 771 | |
---|
[4649] | 772 | DO k = 1, nz |
---|
[1] | 773 | |
---|
[4649] | 774 | DO i = iouter, iend |
---|
[1] | 775 | |
---|
[4649] | 776 | ir = i-iouter+1 ! Counter within a stride |
---|
| 777 | DO j = 0, ny |
---|
| 778 | work_ffty(j,ir) = f_in(k,j,i) |
---|
| 779 | ENDDO |
---|
[1] | 780 | ! |
---|
[4649] | 781 | !-- FFT along y |
---|
| 782 | CALL fft_y_1d( work_ffty(:,ir), 'forward' ) |
---|
[1] | 783 | |
---|
[4649] | 784 | ENDDO |
---|
[1] | 785 | |
---|
| 786 | ! |
---|
[4649] | 787 | !-- Resort |
---|
| 788 | DO j = 0, ny |
---|
| 789 | DO i = iouter, iend |
---|
| 790 | work(i,k,j) = work_ffty(j,i-iouter+1) |
---|
[1] | 791 | ENDDO |
---|
| 792 | ENDDO |
---|
| 793 | |
---|
| 794 | ENDDO |
---|
| 795 | |
---|
[4649] | 796 | ENDDO |
---|
| 797 | !$OMP END PARALLEL |
---|
[2300] | 798 | |
---|
[4649] | 799 | DEALLOCATE( work_ffty ) |
---|
[2300] | 800 | |
---|
[4649] | 801 | ENDIF |
---|
[1] | 802 | |
---|
[4649] | 803 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'pause' ) |
---|
| 804 | |
---|
[1] | 805 | ! |
---|
[4649] | 806 | !-- Transpose array |
---|
[1111] | 807 | #if defined( __parallel ) |
---|
[4649] | 808 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 809 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 810 | CALL MPI_ALLTOALL( work(nxl,1,0), sendrecvcount_xy, MPI_REAL, f_out(1,1,nys_x,1), & |
---|
| 811 | sendrecvcount_xy, MPI_REAL, comm1dx, ierr ) |
---|
| 812 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[4429] | 813 | #else |
---|
| 814 | ! |
---|
[4649] | 815 | !-- Next line required to avoid compile error about unused dummy argument in serial mode |
---|
| 816 | i = SIZE( f_out ) |
---|
[1111] | 817 | #endif |
---|
[1] | 818 | |
---|
[4649] | 819 | END SUBROUTINE ffty_tr_yx |
---|
[1] | 820 | |
---|
| 821 | |
---|
[4649] | 822 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 823 | ! Description: |
---|
| 824 | ! ------------ |
---|
[4649] | 825 | !> Transposition x --> y with a subsequent backward Fourier transformation for a 1d-decomposition |
---|
| 826 | !> along x |
---|
| 827 | !--------------------------------------------------------------------------------------------------! |
---|
| 828 | SUBROUTINE tr_xy_ffty( f_in, f_out ) |
---|
[1] | 829 | |
---|
[4649] | 830 | USE control_parameters, & |
---|
| 831 | ONLY: loop_optimization |
---|
[1320] | 832 | |
---|
[4649] | 833 | USE cpulog, & |
---|
| 834 | ONLY: cpu_log, & |
---|
| 835 | log_point_s |
---|
[1320] | 836 | |
---|
[4649] | 837 | USE kinds |
---|
[1320] | 838 | |
---|
[4649] | 839 | USE pegrid |
---|
[1] | 840 | |
---|
[4649] | 841 | IMPLICIT NONE |
---|
[1] | 842 | |
---|
[4649] | 843 | INTEGER(iwp) :: i !< |
---|
| 844 | INTEGER(iwp) :: iend !< |
---|
| 845 | INTEGER(iwp) :: iouter !< |
---|
| 846 | INTEGER(iwp) :: ir !< |
---|
| 847 | INTEGER(iwp) :: j !< |
---|
| 848 | INTEGER(iwp) :: k !< |
---|
[1] | 849 | |
---|
[4649] | 850 | INTEGER(iwp), PARAMETER :: stridex = 4 !< |
---|
[1320] | 851 | |
---|
[4649] | 852 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_in !< |
---|
| 853 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_out !< |
---|
| 854 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !< |
---|
[1] | 855 | |
---|
[4649] | 856 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_ffty !< |
---|
| 857 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: work_ffty_vec !< |
---|
[2300] | 858 | |
---|
[1] | 859 | ! |
---|
[4649] | 860 | !-- Transpose array |
---|
[1111] | 861 | #if defined( __parallel ) |
---|
[4649] | 862 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 863 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 864 | CALL MPI_ALLTOALL( f_in(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, work(nxl,1,0), & |
---|
| 865 | sendrecvcount_xy, MPI_REAL, comm1dx, ierr ) |
---|
| 866 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[4429] | 867 | #else |
---|
| 868 | ! |
---|
[4649] | 869 | !-- Next line required to avoid compile error about unused dummy argument in serial mode |
---|
| 870 | i = SIZE( f_in ) |
---|
[1111] | 871 | #endif |
---|
[1] | 872 | |
---|
| 873 | ! |
---|
[4649] | 874 | !-- Resort the data in a way that y becomes the first index and carry out the backward fft along y. |
---|
| 875 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'continue' ) |
---|
[1] | 876 | |
---|
[4649] | 877 | IF ( loop_optimization == 'vector' ) THEN |
---|
[2300] | 878 | |
---|
[4649] | 879 | ALLOCATE( work_ffty_vec(0:ny+1,1:nz,nxl:nxr) ) |
---|
[1] | 880 | ! |
---|
[4649] | 881 | !-- Code optimized for vector processors |
---|
| 882 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 883 | !$OMP DO |
---|
| 884 | DO k = 1, nz |
---|
| 885 | DO j = 0, ny |
---|
| 886 | DO i = nxl, nxr |
---|
| 887 | work_ffty_vec(j,k,i) = work(i,k,j) |
---|
[1] | 888 | ENDDO |
---|
| 889 | ENDDO |
---|
[4649] | 890 | ENDDO |
---|
[1] | 891 | |
---|
[4649] | 892 | !$OMP DO |
---|
| 893 | DO i = nxl, nxr |
---|
[1] | 894 | |
---|
[4649] | 895 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'backward' ) |
---|
[1] | 896 | |
---|
[4649] | 897 | DO j = 0, ny |
---|
| 898 | DO k = 1, nz |
---|
| 899 | f_out(k,j,i) = work_ffty_vec(j,k,i) |
---|
[1] | 900 | ENDDO |
---|
| 901 | ENDDO |
---|
| 902 | |
---|
[4649] | 903 | ENDDO |
---|
| 904 | !$OMP END PARALLEL |
---|
[2300] | 905 | |
---|
[4649] | 906 | DEALLOCATE( work_ffty_vec ) |
---|
| 907 | |
---|
| 908 | ELSE |
---|
[1] | 909 | ! |
---|
[4649] | 910 | !-- Cache optimized code. |
---|
| 911 | ALLOCATE( work_ffty(0:ny,stridex) ) |
---|
[2300] | 912 | ! |
---|
[4649] | 913 | !-- The i-(x-)direction is split into a strided outer loop and an inner loop for better cache |
---|
| 914 | !-- performance |
---|
| 915 | !$OMP PARALLEL PRIVATE ( i, iend, iouter, ir, j, k, work_ffty ) |
---|
| 916 | !$OMP DO |
---|
| 917 | DO iouter = nxl, nxr, stridex |
---|
[1] | 918 | |
---|
[4649] | 919 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
[1] | 920 | |
---|
[4649] | 921 | DO k = 1, nz |
---|
[1] | 922 | ! |
---|
[4649] | 923 | !-- Resort |
---|
| 924 | DO j = 0, ny |
---|
| 925 | DO i = iouter, iend |
---|
| 926 | work_ffty(j,i-iouter+1) = work(i,k,j) |
---|
[1] | 927 | ENDDO |
---|
[4649] | 928 | ENDDO |
---|
[1] | 929 | |
---|
[4649] | 930 | DO i = iouter, iend |
---|
[1] | 931 | |
---|
| 932 | ! |
---|
[4649] | 933 | !-- FFT along y |
---|
| 934 | ir = i-iouter+1 ! Counter within a stride |
---|
| 935 | CALL fft_y_1d( work_ffty(:,ir), 'backward' ) |
---|
[1] | 936 | |
---|
[4649] | 937 | DO j = 0, ny |
---|
| 938 | f_out(k,j,i) = work_ffty(j,ir) |
---|
[1] | 939 | ENDDO |
---|
| 940 | ENDDO |
---|
| 941 | |
---|
| 942 | ENDDO |
---|
| 943 | |
---|
[4649] | 944 | ENDDO |
---|
| 945 | !$OMP END PARALLEL |
---|
[2300] | 946 | |
---|
[4649] | 947 | DEALLOCATE( work_ffty ) |
---|
[1] | 948 | |
---|
[4649] | 949 | ENDIF |
---|
[1] | 950 | |
---|
[4649] | 951 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'stop' ) |
---|
[1] | 952 | |
---|
[4649] | 953 | END SUBROUTINE tr_xy_ffty |
---|
[1] | 954 | |
---|
[4649] | 955 | |
---|
| 956 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 957 | ! Description: |
---|
| 958 | ! ------------ |
---|
[4649] | 959 | !> FFT along x, solution of the tridiagonal system and backward FFT for a 1d-decomposition along x |
---|
[1682] | 960 | !> |
---|
[4649] | 961 | !> @warning This subroutine may still not work for hybrid parallelization with OpenMP (for possible |
---|
| 962 | !> necessary changes see the original routine poisfft_hybrid, developed by Klaus Ketelsen, |
---|
| 963 | !> May 2002) |
---|
| 964 | !--------------------------------------------------------------------------------------------------! |
---|
| 965 | SUBROUTINE fftx_tri_fftx( ar ) |
---|
[1] | 966 | |
---|
[4649] | 967 | USE control_parameters, & |
---|
| 968 | ONLY: loop_optimization |
---|
[1320] | 969 | |
---|
[4649] | 970 | USE cpulog, & |
---|
| 971 | ONLY: cpu_log, & |
---|
| 972 | log_point_s |
---|
[1320] | 973 | |
---|
[4649] | 974 | USE grid_variables, & |
---|
| 975 | ONLY: ddx2, & |
---|
| 976 | ddy2 |
---|
[1320] | 977 | |
---|
[4649] | 978 | USE kinds |
---|
[1320] | 979 | |
---|
[4649] | 980 | USE pegrid |
---|
[1] | 981 | |
---|
[4649] | 982 | IMPLICIT NONE |
---|
[1] | 983 | |
---|
[4649] | 984 | INTEGER(iwp) :: i !< |
---|
| 985 | INTEGER(iwp) :: j !< |
---|
| 986 | INTEGER(iwp) :: k !< |
---|
| 987 | INTEGER(iwp) :: m !< |
---|
| 988 | INTEGER(iwp) :: n !< |
---|
[4671] | 989 | !$ INTEGER(iwp) :: omp_get_thread_num !< |
---|
[4649] | 990 | INTEGER(iwp) :: tn !< |
---|
[1] | 991 | |
---|
[4649] | 992 | REAL(wp), DIMENSION(0:nx) :: work_fftx !< |
---|
| 993 | REAL(wp), DIMENSION(0:nx,1:nz) :: work_trix !< |
---|
| 994 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: ar !< |
---|
| 995 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !< |
---|
[1] | 996 | |
---|
| 997 | |
---|
[4649] | 998 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'start' ) |
---|
[1] | 999 | |
---|
[4649] | 1000 | ALLOCATE( tri(5,0:nx,0:nz-1,0:threads_per_task-1) ) |
---|
[1] | 1001 | |
---|
[4649] | 1002 | tn = 0 ! Default thread number in case of one thread |
---|
[1] | 1003 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_fftx, work_trix ) |
---|
[4649] | 1004 | DO j = nys_x, nyn_x |
---|
[1] | 1005 | |
---|
[4649] | 1006 | !$ tn = omp_get_thread_num() |
---|
[1] | 1007 | |
---|
[4649] | 1008 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1009 | ! |
---|
[4649] | 1010 | !-- Code optimized for vector processors |
---|
| 1011 | DO k = 1, nz |
---|
[1] | 1012 | |
---|
[4649] | 1013 | m = 0 |
---|
| 1014 | DO n = 1, pdims(1) |
---|
| 1015 | DO i = 1, nnx |
---|
| 1016 | work_trix(m,k) = ar(i,k,j,n) |
---|
| 1017 | m = m + 1 |
---|
[1] | 1018 | ENDDO |
---|
| 1019 | ENDDO |
---|
| 1020 | |
---|
[4649] | 1021 | ENDDO |
---|
[1] | 1022 | |
---|
[4649] | 1023 | CALL fft_x_m( work_trix, 'forward' ) |
---|
| 1024 | |
---|
| 1025 | ELSE |
---|
[1] | 1026 | ! |
---|
[4649] | 1027 | !-- Cache optimized code |
---|
| 1028 | DO k = 1, nz |
---|
[1] | 1029 | |
---|
[4649] | 1030 | m = 0 |
---|
| 1031 | DO n = 1, pdims(1) |
---|
| 1032 | DO i = 1, nnx |
---|
| 1033 | work_fftx(m) = ar(i,k,j,n) |
---|
| 1034 | m = m + 1 |
---|
[1] | 1035 | ENDDO |
---|
[4649] | 1036 | ENDDO |
---|
[1] | 1037 | |
---|
[4649] | 1038 | CALL fft_x_1d( work_fftx, 'forward' ) |
---|
[1] | 1039 | |
---|
[4649] | 1040 | DO i = 0, nx |
---|
| 1041 | work_trix(i,k) = work_fftx(i) |
---|
[1] | 1042 | ENDDO |
---|
| 1043 | |
---|
[4649] | 1044 | ENDDO |
---|
[1] | 1045 | |
---|
[4649] | 1046 | ENDIF |
---|
| 1047 | |
---|
[1] | 1048 | ! |
---|
[4649] | 1049 | !-- Solve the linear equation system |
---|
| 1050 | CALL tridia_1dd( ddx2, ddy2, nx, ny, j, work_trix, tri(:,:,:,tn) ) |
---|
[1] | 1051 | |
---|
[4649] | 1052 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1053 | ! |
---|
[4649] | 1054 | !-- Code optimized for vector processors |
---|
| 1055 | CALL fft_x_m( work_trix, 'backward' ) |
---|
[1] | 1056 | |
---|
[4649] | 1057 | DO k = 1, nz |
---|
[1] | 1058 | |
---|
[4649] | 1059 | m = 0 |
---|
| 1060 | DO n = 1, pdims(1) |
---|
| 1061 | DO i = 1, nnx |
---|
| 1062 | ar(i,k,j,n) = work_trix(m,k) |
---|
| 1063 | m = m + 1 |
---|
[1] | 1064 | ENDDO |
---|
| 1065 | ENDDO |
---|
| 1066 | |
---|
[4649] | 1067 | ENDDO |
---|
| 1068 | |
---|
| 1069 | ELSE |
---|
[1] | 1070 | ! |
---|
[4649] | 1071 | !-- Cache optimized code |
---|
| 1072 | DO k = 1, nz |
---|
[1] | 1073 | |
---|
[4649] | 1074 | DO i = 0, nx |
---|
| 1075 | work_fftx(i) = work_trix(i,k) |
---|
| 1076 | ENDDO |
---|
[1] | 1077 | |
---|
[4649] | 1078 | CALL fft_x_1d( work_fftx, 'backward' ) |
---|
[1] | 1079 | |
---|
[4649] | 1080 | m = 0 |
---|
| 1081 | DO n = 1, pdims(1) |
---|
| 1082 | DO i = 1, nnx |
---|
| 1083 | ar(i,k,j,n) = work_fftx(m) |
---|
| 1084 | m = m + 1 |
---|
[1] | 1085 | ENDDO |
---|
| 1086 | ENDDO |
---|
| 1087 | |
---|
[4649] | 1088 | ENDDO |
---|
[1] | 1089 | |
---|
[4649] | 1090 | ENDIF |
---|
[1] | 1091 | |
---|
[4649] | 1092 | ENDDO |
---|
[1] | 1093 | |
---|
[4649] | 1094 | DEALLOCATE( tri ) |
---|
[1] | 1095 | |
---|
[4649] | 1096 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'stop' ) |
---|
[1] | 1097 | |
---|
[4649] | 1098 | END SUBROUTINE fftx_tri_fftx |
---|
[1] | 1099 | |
---|
[4649] | 1100 | |
---|
| 1101 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 1102 | ! Description: |
---|
| 1103 | ! ------------ |
---|
[4649] | 1104 | !> Fourier-transformation along x with subsequent transposition x --> y for a 1d-decomposition |
---|
| 1105 | !> along y. |
---|
[1682] | 1106 | !> |
---|
[4649] | 1107 | !> @attention NEC-branch of this routine may significantly profit from further optimizations. So |
---|
| 1108 | !> far, performance is much worse than for routine ffty_tr_yx (more than three times |
---|
| 1109 | !> slower). |
---|
| 1110 | !--------------------------------------------------------------------------------------------------! |
---|
| 1111 | SUBROUTINE fftx_tr_xy( f_in, f_out ) |
---|
[1] | 1112 | |
---|
[1682] | 1113 | |
---|
[4649] | 1114 | USE control_parameters, & |
---|
| 1115 | ONLY: loop_optimization |
---|
[1320] | 1116 | |
---|
[4649] | 1117 | USE cpulog, & |
---|
| 1118 | ONLY: cpu_log, & |
---|
| 1119 | log_point_s |
---|
[1320] | 1120 | |
---|
[4649] | 1121 | USE kinds |
---|
[1320] | 1122 | |
---|
[4649] | 1123 | USE pegrid |
---|
[1] | 1124 | |
---|
[4649] | 1125 | IMPLICIT NONE |
---|
[1] | 1126 | |
---|
[4649] | 1127 | INTEGER(iwp) :: i !< |
---|
| 1128 | INTEGER(iwp) :: j !< |
---|
| 1129 | INTEGER(iwp) :: k !< |
---|
[1] | 1130 | |
---|
[4649] | 1131 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !< |
---|
| 1132 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_in !< |
---|
| 1133 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_out !< |
---|
| 1134 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !< |
---|
[1] | 1135 | |
---|
| 1136 | ! |
---|
[4649] | 1137 | !-- Carry out the FFT along x, where all data are present due to the 1d-decomposition along y. |
---|
| 1138 | !-- Resort the data in a way that y becomes the first index. |
---|
| 1139 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'start' ) |
---|
[1] | 1140 | |
---|
[4649] | 1141 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1142 | ! |
---|
[4649] | 1143 | !-- Code for vector processors |
---|
| 1144 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 1145 | !$OMP DO |
---|
| 1146 | DO i = 0, nx |
---|
[1] | 1147 | |
---|
[4649] | 1148 | DO j = nys, nyn |
---|
| 1149 | DO k = 1, nz |
---|
| 1150 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
[1] | 1151 | ENDDO |
---|
| 1152 | ENDDO |
---|
| 1153 | |
---|
[4649] | 1154 | ENDDO |
---|
[1] | 1155 | |
---|
[4649] | 1156 | !$OMP DO |
---|
| 1157 | DO j = nys, nyn |
---|
[1] | 1158 | |
---|
[4649] | 1159 | CALL fft_x_m( work_fftx(:,:,j), 'forward' ) |
---|
| 1160 | |
---|
| 1161 | DO k = 1, nz |
---|
| 1162 | DO i = 0, nx |
---|
| 1163 | work(j,k,i) = work_fftx(i,k,j) |
---|
[1] | 1164 | ENDDO |
---|
| 1165 | ENDDO |
---|
| 1166 | |
---|
[4649] | 1167 | ENDDO |
---|
| 1168 | !$OMP END PARALLEL |
---|
[1] | 1169 | |
---|
[4649] | 1170 | ELSE |
---|
| 1171 | |
---|
[1] | 1172 | ! |
---|
[4649] | 1173 | !-- Cache optimized code (there might still be a potential for better optimization). |
---|
| 1174 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
| 1175 | !$OMP DO |
---|
| 1176 | DO i = 0, nx |
---|
[1] | 1177 | |
---|
[4649] | 1178 | DO j = nys, nyn |
---|
| 1179 | DO k = 1, nz |
---|
| 1180 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
[1] | 1181 | ENDDO |
---|
| 1182 | ENDDO |
---|
| 1183 | |
---|
[4649] | 1184 | ENDDO |
---|
[1] | 1185 | |
---|
[4649] | 1186 | !$OMP DO |
---|
| 1187 | DO j = nys, nyn |
---|
| 1188 | DO k = 1, nz |
---|
[1] | 1189 | |
---|
[4649] | 1190 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'forward' ) |
---|
| 1191 | |
---|
| 1192 | DO i = 0, nx |
---|
| 1193 | work(j,k,i) = work_fftx(i,k,j) |
---|
[1] | 1194 | ENDDO |
---|
| 1195 | ENDDO |
---|
| 1196 | |
---|
[4649] | 1197 | ENDDO |
---|
| 1198 | !$OMP END PARALLEL |
---|
[1] | 1199 | |
---|
[4649] | 1200 | ENDIF |
---|
| 1201 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'pause' ) |
---|
| 1202 | |
---|
[1] | 1203 | ! |
---|
[4649] | 1204 | !-- Transpose array |
---|
[1111] | 1205 | #if defined( __parallel ) |
---|
[4649] | 1206 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 1207 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1208 | CALL MPI_ALLTOALL( work(nys,1,0), sendrecvcount_xy, MPI_REAL, f_out(1,1,nxl_y,1), & |
---|
| 1209 | sendrecvcount_xy, MPI_REAL, comm1dy, ierr ) |
---|
| 1210 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[4429] | 1211 | #else |
---|
| 1212 | ! |
---|
[4649] | 1213 | !-- Next line required to avoid compile error about unused dummy argument in serial mode |
---|
| 1214 | i = SIZE( f_out ) |
---|
[1111] | 1215 | #endif |
---|
[1] | 1216 | |
---|
[4649] | 1217 | END SUBROUTINE fftx_tr_xy |
---|
[1] | 1218 | |
---|
| 1219 | |
---|
[4649] | 1220 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 1221 | ! Description: |
---|
| 1222 | ! ------------ |
---|
[4649] | 1223 | !> Transposition y --> x with a subsequent backward Fourier transformation for a 1d-decomposition |
---|
| 1224 | !> along x. |
---|
| 1225 | !--------------------------------------------------------------------------------------------------! |
---|
| 1226 | SUBROUTINE tr_yx_fftx( f_in, f_out ) |
---|
[1] | 1227 | |
---|
[1682] | 1228 | |
---|
[4649] | 1229 | USE control_parameters, & |
---|
| 1230 | ONLY: loop_optimization |
---|
[1320] | 1231 | |
---|
[4649] | 1232 | USE cpulog, & |
---|
| 1233 | ONLY: cpu_log, & |
---|
| 1234 | log_point_s |
---|
[1320] | 1235 | |
---|
[4649] | 1236 | USE kinds |
---|
[1320] | 1237 | |
---|
[4649] | 1238 | USE pegrid |
---|
[1] | 1239 | |
---|
[4649] | 1240 | IMPLICIT NONE |
---|
[1] | 1241 | |
---|
[4649] | 1242 | INTEGER(iwp) :: i !< |
---|
| 1243 | INTEGER(iwp) :: j !< |
---|
| 1244 | INTEGER(iwp) :: k !< |
---|
[1] | 1245 | |
---|
[4649] | 1246 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_in !< |
---|
| 1247 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_out !< |
---|
| 1248 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !< |
---|
| 1249 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !< |
---|
[1] | 1250 | |
---|
[4429] | 1251 | |
---|
[1] | 1252 | ! |
---|
[4649] | 1253 | !-- Transpose array |
---|
[1111] | 1254 | #if defined( __parallel ) |
---|
[4649] | 1255 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 1256 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1257 | CALL MPI_ALLTOALL( f_in(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, work(nys,1,0), & |
---|
| 1258 | sendrecvcount_xy, MPI_REAL, comm1dy, ierr ) |
---|
| 1259 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[4429] | 1260 | #else |
---|
| 1261 | ! |
---|
[4649] | 1262 | !-- Next line required to avoid compile error about unused dummy argument in serial mode |
---|
| 1263 | i = SIZE( f_in ) |
---|
[1111] | 1264 | #endif |
---|
[1] | 1265 | |
---|
| 1266 | ! |
---|
[4649] | 1267 | !-- Carry out the FFT along x, where all data are present due to the 1d-decomposition along y. |
---|
| 1268 | !-- Resort the data in a way that y becomes the first index. |
---|
| 1269 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'continue' ) |
---|
[1] | 1270 | |
---|
[4649] | 1271 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1272 | ! |
---|
[4649] | 1273 | !-- Code optimized for vector processors |
---|
| 1274 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 1275 | !$OMP DO |
---|
| 1276 | DO j = nys, nyn |
---|
[1] | 1277 | |
---|
[4649] | 1278 | DO k = 1, nz |
---|
| 1279 | DO i = 0, nx |
---|
| 1280 | work_fftx(i,k,j) = work(j,k,i) |
---|
[1] | 1281 | ENDDO |
---|
[4649] | 1282 | ENDDO |
---|
[1] | 1283 | |
---|
[4649] | 1284 | CALL fft_x_m( work_fftx(:,:,j), 'backward' ) |
---|
[1] | 1285 | |
---|
[4649] | 1286 | ENDDO |
---|
[1] | 1287 | |
---|
[4649] | 1288 | !$OMP DO |
---|
| 1289 | DO i = 0, nx |
---|
| 1290 | DO j = nys, nyn |
---|
| 1291 | DO k = 1, nz |
---|
| 1292 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
[1] | 1293 | ENDDO |
---|
| 1294 | ENDDO |
---|
[4649] | 1295 | ENDDO |
---|
| 1296 | !$OMP END PARALLEL |
---|
[1] | 1297 | |
---|
[4649] | 1298 | ELSE |
---|
[1] | 1299 | |
---|
| 1300 | ! |
---|
[4649] | 1301 | !-- Cache optimized code (there might be still a potential for better optimization). |
---|
| 1302 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
| 1303 | !$OMP DO |
---|
| 1304 | DO j = nys, nyn |
---|
| 1305 | DO k = 1, nz |
---|
[1] | 1306 | |
---|
[4649] | 1307 | DO i = 0, nx |
---|
| 1308 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1309 | ENDDO |
---|
[1] | 1310 | |
---|
[4649] | 1311 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'backward' ) |
---|
[1] | 1312 | |
---|
| 1313 | ENDDO |
---|
[4649] | 1314 | ENDDO |
---|
[1] | 1315 | |
---|
[4649] | 1316 | !$OMP DO |
---|
| 1317 | DO i = 0, nx |
---|
| 1318 | DO j = nys, nyn |
---|
| 1319 | DO k = 1, nz |
---|
| 1320 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
[1] | 1321 | ENDDO |
---|
| 1322 | ENDDO |
---|
[4649] | 1323 | ENDDO |
---|
| 1324 | !$OMP END PARALLEL |
---|
[1] | 1325 | |
---|
[4649] | 1326 | ENDIF |
---|
| 1327 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'stop' ) |
---|
[1] | 1328 | |
---|
[4649] | 1329 | END SUBROUTINE tr_yx_fftx |
---|
[1] | 1330 | |
---|
| 1331 | |
---|
[4649] | 1332 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 1333 | ! Description: |
---|
| 1334 | ! ------------ |
---|
[4649] | 1335 | !> FFT along y, solution of the tridiagonal system and backward FFT for a 1d-decomposition along y. |
---|
[1682] | 1336 | !> |
---|
[4649] | 1337 | !> @warning This subroutine may still not work for hybrid parallelization with OpenMP (for possible |
---|
| 1338 | !> necessary changes see the original routine poisfft_hybrid, developed by Klaus Ketelsen, |
---|
| 1339 | !> May 2002) |
---|
| 1340 | !--------------------------------------------------------------------------------------------------! |
---|
| 1341 | SUBROUTINE ffty_tri_ffty( ar ) |
---|
[1] | 1342 | |
---|
[1682] | 1343 | |
---|
[4649] | 1344 | USE control_parameters, & |
---|
| 1345 | ONLY: loop_optimization |
---|
[1320] | 1346 | |
---|
[4649] | 1347 | USE cpulog, & |
---|
| 1348 | ONLY: cpu_log, & |
---|
| 1349 | log_point_s |
---|
[1320] | 1350 | |
---|
[4649] | 1351 | USE grid_variables, & |
---|
| 1352 | ONLY: ddx2, & |
---|
| 1353 | ddy2 |
---|
[1320] | 1354 | |
---|
[4649] | 1355 | USE kinds |
---|
[1320] | 1356 | |
---|
[4649] | 1357 | USE pegrid |
---|
[1] | 1358 | |
---|
[4649] | 1359 | IMPLICIT NONE |
---|
[1] | 1360 | |
---|
[4649] | 1361 | INTEGER(iwp) :: i !< |
---|
| 1362 | INTEGER(iwp) :: j !< |
---|
| 1363 | INTEGER(iwp) :: k !< |
---|
| 1364 | INTEGER(iwp) :: m !< |
---|
| 1365 | INTEGER(iwp) :: n !< |
---|
| 1366 | !$ INTEGER(iwp) :: omp_get_thread_num !< |
---|
| 1367 | INTEGER(iwp) :: tn !< |
---|
[1] | 1368 | |
---|
[4649] | 1369 | REAL(wp), DIMENSION(0:ny) :: work_ffty !< |
---|
| 1370 | REAL(wp), DIMENSION(0:ny,1:nz) :: work_triy !< |
---|
| 1371 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: ar !< |
---|
| 1372 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !< |
---|
[1] | 1373 | |
---|
| 1374 | |
---|
[4649] | 1375 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'start' ) |
---|
[1] | 1376 | |
---|
[4649] | 1377 | ALLOCATE( tri(5,0:ny,0:nz-1,0:threads_per_task-1) ) |
---|
[1] | 1378 | |
---|
[4649] | 1379 | tn = 0 ! Default thread number in case of one thread |
---|
| 1380 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_ffty, work_triy ) |
---|
| 1381 | DO i = nxl_y, nxr_y |
---|
[1] | 1382 | |
---|
[4649] | 1383 | !$ tn = omp_get_thread_num() |
---|
[1] | 1384 | |
---|
[4649] | 1385 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1386 | ! |
---|
[4649] | 1387 | !-- Code optimized for vector processors |
---|
| 1388 | DO k = 1, nz |
---|
[1] | 1389 | |
---|
[4649] | 1390 | m = 0 |
---|
| 1391 | DO n = 1, pdims(2) |
---|
| 1392 | DO j = 1, nny |
---|
| 1393 | work_triy(m,k) = ar(j,k,i,n) |
---|
| 1394 | m = m + 1 |
---|
[1] | 1395 | ENDDO |
---|
| 1396 | ENDDO |
---|
| 1397 | |
---|
[4649] | 1398 | ENDDO |
---|
[1] | 1399 | |
---|
[4649] | 1400 | CALL fft_y_m( work_triy, ny, 'forward' ) |
---|
| 1401 | |
---|
| 1402 | ELSE |
---|
[1] | 1403 | ! |
---|
[4649] | 1404 | !-- Cache optimized code |
---|
| 1405 | DO k = 1, nz |
---|
[1] | 1406 | |
---|
[4649] | 1407 | m = 0 |
---|
| 1408 | DO n = 1, pdims(2) |
---|
| 1409 | DO j = 1, nny |
---|
| 1410 | work_ffty(m) = ar(j,k,i,n) |
---|
| 1411 | m = m + 1 |
---|
[1] | 1412 | ENDDO |
---|
[4649] | 1413 | ENDDO |
---|
[1] | 1414 | |
---|
[4649] | 1415 | CALL fft_y_1d( work_ffty, 'forward' ) |
---|
[1] | 1416 | |
---|
[4649] | 1417 | DO j = 0, ny |
---|
| 1418 | work_triy(j,k) = work_ffty(j) |
---|
[1] | 1419 | ENDDO |
---|
| 1420 | |
---|
[4649] | 1421 | ENDDO |
---|
[1] | 1422 | |
---|
[4649] | 1423 | ENDIF |
---|
| 1424 | |
---|
[1] | 1425 | ! |
---|
[4649] | 1426 | !-- Solve the linear equation system |
---|
| 1427 | CALL tridia_1dd( ddy2, ddx2, ny, nx, i, work_triy, tri(:,:,:,tn) ) |
---|
[1] | 1428 | |
---|
[4649] | 1429 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1430 | ! |
---|
[4649] | 1431 | !-- Code optimized for vector processors |
---|
| 1432 | CALL fft_y_m( work_triy, ny, 'backward' ) |
---|
[1] | 1433 | |
---|
[4649] | 1434 | DO k = 1, nz |
---|
[1] | 1435 | |
---|
[4649] | 1436 | m = 0 |
---|
| 1437 | DO n = 1, pdims(2) |
---|
| 1438 | DO j = 1, nny |
---|
| 1439 | ar(j,k,i,n) = work_triy(m,k) |
---|
| 1440 | m = m + 1 |
---|
[1] | 1441 | ENDDO |
---|
| 1442 | ENDDO |
---|
| 1443 | |
---|
[4649] | 1444 | ENDDO |
---|
| 1445 | |
---|
| 1446 | ELSE |
---|
[1] | 1447 | ! |
---|
[4649] | 1448 | !-- Cache optimized code |
---|
| 1449 | DO k = 1, nz |
---|
[1] | 1450 | |
---|
[4649] | 1451 | DO j = 0, ny |
---|
| 1452 | work_ffty(j) = work_triy(j,k) |
---|
| 1453 | ENDDO |
---|
[1] | 1454 | |
---|
[4649] | 1455 | CALL fft_y_1d( work_ffty, 'backward' ) |
---|
[1] | 1456 | |
---|
[4649] | 1457 | m = 0 |
---|
| 1458 | DO n = 1, pdims(2) |
---|
| 1459 | DO j = 1, nny |
---|
| 1460 | ar(j,k,i,n) = work_ffty(m) |
---|
| 1461 | m = m + 1 |
---|
[1] | 1462 | ENDDO |
---|
| 1463 | ENDDO |
---|
| 1464 | |
---|
[4649] | 1465 | ENDDO |
---|
[1] | 1466 | |
---|
[4649] | 1467 | ENDIF |
---|
[1] | 1468 | |
---|
[4649] | 1469 | ENDDO |
---|
[1] | 1470 | |
---|
[4649] | 1471 | DEALLOCATE( tri ) |
---|
[1] | 1472 | |
---|
[4649] | 1473 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'stop' ) |
---|
[1] | 1474 | |
---|
[4649] | 1475 | END SUBROUTINE ffty_tri_ffty |
---|
| 1476 | |
---|
[4671] | 1477 | END MODULE poisfft_mod |
---|