[1850] | 1 | !> @file poisfft_mod.f90 |
---|
[4649] | 2 | !--------------------------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[4649] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
| 6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
| 7 | ! (at your option) any later version. |
---|
[1036] | 8 | ! |
---|
[4649] | 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
| 10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
| 11 | ! Public License for more details. |
---|
[1036] | 12 | ! |
---|
[4649] | 13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
| 14 | ! <http://www.gnu.org/licenses/>. |
---|
[1036] | 15 | ! |
---|
[4360] | 16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[4649] | 17 | !--------------------------------------------------------------------------------------------------! |
---|
[1036] | 18 | ! |
---|
[4649] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[4649] | 22 | ! |
---|
| 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: poisfft_mod.f90 4649 2020-08-25 12:11:17Z eckhard $ |
---|
[4649] | 27 | ! File re-formatted to follow the PALM coding standard |
---|
| 28 | ! |
---|
| 29 | ! |
---|
| 30 | ! 4429 2020-02-27 15:24:30Z raasch |
---|
[4429] | 31 | ! Statements added to avoid compile errors due to unused dummy arguments in serial mode |
---|
[4649] | 32 | ! |
---|
[4429] | 33 | ! 4366 2020-01-09 08:12:43Z raasch |
---|
[4649] | 34 | ! Modification concerning NEC vectorizatio |
---|
| 35 | ! |
---|
[4366] | 36 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4182] | 37 | ! Corrected "Former revisions" section |
---|
[4649] | 38 | ! |
---|
[4182] | 39 | ! 3690 2019-01-22 22:56:42Z knoop |
---|
[3634] | 40 | ! OpenACC port for SPEC |
---|
[2716] | 41 | ! |
---|
[4182] | 42 | ! Revision 1.1 1997/07/24 11:24:14 raasch |
---|
| 43 | ! Initial revision |
---|
| 44 | ! |
---|
| 45 | ! |
---|
[4649] | 46 | !--------------------------------------------------------------------------------------------------! |
---|
[1] | 47 | ! Description: |
---|
| 48 | ! ------------ |
---|
[1682] | 49 | !> Solves the Poisson equation with a 2D spectral method |
---|
| 50 | !> d^2 p / dx^2 + d^2 p / dy^2 + d^2 p / dz^2 = s |
---|
| 51 | !> |
---|
| 52 | !> Input: |
---|
[4649] | 53 | !> real ar contains (nnz,nny,nnx) elements of the velocity divergence, starting from (1,nys,nxl) |
---|
[1682] | 54 | !> |
---|
| 55 | !> Output: |
---|
[4649] | 56 | !> real ar contains the solution for perturbation pressure p |
---|
| 57 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 58 | MODULE poisfft_mod |
---|
[1] | 59 | |
---|
[4649] | 60 | |
---|
| 61 | USE fft_xy, & |
---|
| 62 | ONLY: fft_init, & |
---|
| 63 | fft_y, & |
---|
| 64 | fft_y_1d, & |
---|
| 65 | fft_y_m, & |
---|
| 66 | fft_x, & |
---|
| 67 | fft_x_1d, & |
---|
| 68 | fft_x_m, & |
---|
[4366] | 69 | temperton_fft_vec |
---|
[1] | 70 | |
---|
[4649] | 71 | USE indices, & |
---|
| 72 | ONLY: nnx, & |
---|
| 73 | nny, & |
---|
| 74 | nx, & |
---|
| 75 | nxl, & |
---|
| 76 | nxr, & |
---|
| 77 | ny, & |
---|
| 78 | nys, & |
---|
| 79 | nyn, & |
---|
| 80 | nz |
---|
[1320] | 81 | |
---|
[4649] | 82 | USE transpose_indices, & |
---|
| 83 | ONLY: nxl_y, & |
---|
| 84 | nxl_z, & |
---|
| 85 | nxr_y, & |
---|
| 86 | nxr_z, & |
---|
| 87 | nys_x, & |
---|
| 88 | nys_z, & |
---|
| 89 | nyn_x, & |
---|
| 90 | nyn_z, & |
---|
| 91 | nzb_x, & |
---|
| 92 | nzb_y, & |
---|
| 93 | nzt_x, & |
---|
| 94 | nzt_y |
---|
[1320] | 95 | |
---|
[4649] | 96 | USE tridia_solver, & |
---|
| 97 | ONLY: tridia_1dd, & |
---|
| 98 | tridia_init, & |
---|
| 99 | tridia_substi, & |
---|
| 100 | tridia_substi_overlap |
---|
[1320] | 101 | |
---|
[1] | 102 | IMPLICIT NONE |
---|
| 103 | |
---|
[4649] | 104 | LOGICAL, SAVE :: poisfft_initialized = .FALSE. !< |
---|
[1111] | 105 | |
---|
[1] | 106 | PRIVATE |
---|
[807] | 107 | |
---|
[1] | 108 | PUBLIC poisfft, poisfft_init |
---|
| 109 | |
---|
| 110 | INTERFACE poisfft |
---|
| 111 | MODULE PROCEDURE poisfft |
---|
| 112 | END INTERFACE poisfft |
---|
| 113 | |
---|
| 114 | INTERFACE poisfft_init |
---|
| 115 | MODULE PROCEDURE poisfft_init |
---|
| 116 | END INTERFACE poisfft_init |
---|
| 117 | |
---|
[807] | 118 | |
---|
[1] | 119 | CONTAINS |
---|
| 120 | |
---|
[4649] | 121 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 122 | ! Description: |
---|
| 123 | ! ------------ |
---|
[3241] | 124 | !> Setup coefficients for FFT and the tridiagonal solver |
---|
[4649] | 125 | !--------------------------------------------------------------------------------------------------! |
---|
| 126 | SUBROUTINE poisfft_init |
---|
[1] | 127 | |
---|
[4649] | 128 | IMPLICIT NONE |
---|
[1111] | 129 | |
---|
| 130 | |
---|
[4649] | 131 | CALL fft_init |
---|
[1] | 132 | |
---|
[4649] | 133 | CALL tridia_init |
---|
[1111] | 134 | |
---|
[4649] | 135 | poisfft_initialized = .TRUE. |
---|
[1111] | 136 | |
---|
[4649] | 137 | END SUBROUTINE poisfft_init |
---|
[1] | 138 | |
---|
[1111] | 139 | |
---|
[1804] | 140 | |
---|
[4649] | 141 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 142 | ! Description: |
---|
| 143 | ! ------------ |
---|
| 144 | !> Two-dimensional Fourier Transformation in x- and y-direction. |
---|
[4649] | 145 | !--------------------------------------------------------------------------------------------------! |
---|
| 146 | SUBROUTINE poisfft( ar ) |
---|
[1] | 147 | |
---|
[4649] | 148 | USE control_parameters, & |
---|
| 149 | ONLY: transpose_compute_overlap |
---|
[1320] | 150 | |
---|
[4649] | 151 | USE cpulog, & |
---|
| 152 | ONLY: cpu_log, & |
---|
| 153 | cpu_log_nowait, & |
---|
| 154 | log_point_s |
---|
[1320] | 155 | |
---|
[4649] | 156 | USE kinds |
---|
[1320] | 157 | |
---|
[4649] | 158 | USE pegrid |
---|
[1] | 159 | |
---|
[4649] | 160 | IMPLICIT NONE |
---|
[1] | 161 | |
---|
[4649] | 162 | INTEGER(iwp) :: ii !< |
---|
| 163 | INTEGER(iwp) :: iind !< |
---|
| 164 | INTEGER(iwp) :: inew !< |
---|
| 165 | INTEGER(iwp) :: jj !< |
---|
| 166 | INTEGER(iwp) :: jind !< |
---|
| 167 | INTEGER(iwp) :: jnew !< |
---|
| 168 | INTEGER(iwp) :: ki !< |
---|
| 169 | INTEGER(iwp) :: kk !< |
---|
| 170 | INTEGER(iwp) :: knew !< |
---|
| 171 | INTEGER(iwp) :: n !< |
---|
| 172 | INTEGER(iwp) :: nblk !< |
---|
| 173 | INTEGER(iwp) :: nnx_y !< |
---|
| 174 | INTEGER(iwp) :: nny_z !< |
---|
| 175 | INTEGER(iwp) :: nnz_x !< |
---|
| 176 | INTEGER(iwp) :: nxl_y_bound !< |
---|
| 177 | INTEGER(iwp) :: nxr_y_bound !< |
---|
[1] | 178 | |
---|
[4649] | 179 | INTEGER(iwp), DIMENSION(4) :: isave !< |
---|
[1320] | 180 | |
---|
[4649] | 181 | REAL(wp), DIMENSION(1:nz,nys:nyn,nxl:nxr) :: ar !< |
---|
| 182 | REAL(wp), DIMENSION(nys:nyn,nxl:nxr,1:nz) :: ar_inv !< |
---|
[3690] | 183 | |
---|
| 184 | #define __acc_fft_device ( defined( _OPENACC ) && ( defined ( __cuda_fft ) ) ) |
---|
| 185 | #if __acc_fft_device |
---|
[4649] | 186 | !$ACC DECLARE CREATE(ar_inv) |
---|
[3690] | 187 | #endif |
---|
[1] | 188 | |
---|
[4649] | 189 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ar1 !< |
---|
| 190 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_in !< |
---|
| 191 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_inv !< |
---|
| 192 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_y !< |
---|
| 193 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_z !< |
---|
[1216] | 194 | |
---|
| 195 | |
---|
[4649] | 196 | CALL cpu_log( log_point_s(3), 'poisfft', 'start' ) |
---|
[1] | 197 | |
---|
[4649] | 198 | IF ( .NOT. poisfft_initialized ) CALL poisfft_init |
---|
[1111] | 199 | |
---|
[3690] | 200 | #if !__acc_fft_device |
---|
[4649] | 201 | !$ACC UPDATE HOST(ar) |
---|
[3690] | 202 | #endif |
---|
| 203 | |
---|
[3634] | 204 | #ifndef _OPENACC |
---|
[1] | 205 | ! |
---|
[4649] | 206 | !-- Two-dimensional Fourier Transformation in x- and y-direction. |
---|
| 207 | IF ( pdims(2) == 1 .AND. pdims(1) > 1 ) THEN |
---|
[1] | 208 | |
---|
| 209 | ! |
---|
[4649] | 210 | !-- 1d-domain-decomposition along x: |
---|
| 211 | !-- FFT along y and transposition y --> x |
---|
| 212 | CALL ffty_tr_yx( ar, ar ) |
---|
[1] | 213 | |
---|
| 214 | ! |
---|
[4649] | 215 | !-- FFT along x, solving the tridiagonal system and backward FFT |
---|
| 216 | CALL fftx_tri_fftx( ar ) |
---|
[1] | 217 | |
---|
| 218 | ! |
---|
[4649] | 219 | !-- Transposition x --> y and backward FFT along y |
---|
| 220 | CALL tr_xy_ffty( ar, ar ) |
---|
[1] | 221 | |
---|
[4649] | 222 | ELSEIF ( pdims(1) == 1 .AND. pdims(2) > 1 ) THEN |
---|
[1] | 223 | |
---|
| 224 | ! |
---|
[4649] | 225 | !-- 1d-domain-decomposition along y: |
---|
| 226 | !-- FFT along x and transposition x --> y |
---|
| 227 | CALL fftx_tr_xy( ar, ar ) |
---|
[1] | 228 | |
---|
| 229 | ! |
---|
[4649] | 230 | !-- FFT along y, solving the tridiagonal system and backward FFT |
---|
| 231 | CALL ffty_tri_ffty( ar ) |
---|
[1] | 232 | |
---|
| 233 | ! |
---|
[4649] | 234 | !-- Transposition y --> x and backward FFT along x |
---|
| 235 | CALL tr_yx_fftx( ar, ar ) |
---|
[1] | 236 | |
---|
[4649] | 237 | ELSEIF ( .NOT. transpose_compute_overlap ) THEN |
---|
[3634] | 238 | #endif |
---|
[1] | 239 | |
---|
| 240 | ! |
---|
[4649] | 241 | !-- 2d-domain-decomposition or no decomposition (1 PE run) |
---|
| 242 | !-- Transposition z --> x |
---|
| 243 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start' ) |
---|
| 244 | CALL resort_for_zx( ar, ar_inv ) |
---|
| 245 | CALL transpose_zx( ar_inv, ar ) |
---|
| 246 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1] | 247 | |
---|
[4649] | 248 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
| 249 | IF ( temperton_fft_vec ) THEN |
---|
[4366] | 250 | ! |
---|
[4649] | 251 | !-- Vector version outputs a transformed array ar_inv that does not require resorting |
---|
| 252 | !-- (which is done for ar further below) |
---|
| 253 | CALL fft_x( ar, 'forward', ar_inv=ar_inv) |
---|
| 254 | ELSE |
---|
| 255 | CALL fft_x( ar, 'forward') |
---|
| 256 | ENDIF |
---|
| 257 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
[1] | 258 | |
---|
| 259 | ! |
---|
[4649] | 260 | !-- Transposition x --> y |
---|
| 261 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
| 262 | IF( .NOT. temperton_fft_vec ) CALL resort_for_xy( ar, ar_inv ) |
---|
| 263 | CALL transpose_xy( ar_inv, ar ) |
---|
| 264 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1] | 265 | |
---|
[4649] | 266 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
| 267 | IF ( temperton_fft_vec ) THEN |
---|
[4366] | 268 | ! |
---|
[4649] | 269 | !-- Input array ar_inv from fft_x can be directly used here. |
---|
| 270 | !-- The output (also in array ar_inv) does not require resorting below. |
---|
| 271 | CALL fft_y( ar, 'forward', ar_inv = ar_inv, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 272 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 273 | ELSE |
---|
| 274 | CALL fft_y( ar, 'forward', ar_tr = ar, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 275 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 276 | ENDIF |
---|
| 277 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
[1] | 278 | |
---|
| 279 | ! |
---|
[4649] | 280 | !-- Transposition y --> z |
---|
| 281 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
| 282 | IF ( .NOT. temperton_fft_vec ) CALL resort_for_yz( ar, ar_inv ) |
---|
| 283 | CALL transpose_yz( ar_inv, ar ) |
---|
| 284 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
[1] | 285 | |
---|
| 286 | ! |
---|
[4649] | 287 | !-- Solve the tridiagonal equation system along z |
---|
| 288 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
| 289 | CALL tridia_substi( ar ) |
---|
| 290 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
[1] | 291 | |
---|
| 292 | ! |
---|
[4649] | 293 | !-- Inverse Fourier Transformation |
---|
| 294 | !-- Transposition z --> y |
---|
| 295 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start' ) |
---|
| 296 | CALL transpose_zy( ar, ar_inv ) |
---|
[4366] | 297 | ! |
---|
[4649] | 298 | !-- The fft_y below (vector branch) can directly process ar_inv (i.e. does not require a |
---|
| 299 | !-- resorting) |
---|
| 300 | IF ( .NOT. temperton_fft_vec ) CALL resort_for_zy( ar_inv, ar ) |
---|
| 301 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1] | 302 | |
---|
[4649] | 303 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
| 304 | IF ( temperton_fft_vec ) THEN |
---|
[4366] | 305 | ! |
---|
[4649] | 306 | !-- Output array ar_inv can be used as input to the below fft_x routine without resorting |
---|
| 307 | CALL fft_y( ar, 'backward', ar_inv = ar_inv, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 308 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 309 | ELSE |
---|
| 310 | CALL fft_y( ar, 'backward', ar_tr = ar, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 311 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 312 | ENDIF |
---|
[4366] | 313 | |
---|
[4649] | 314 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
[1] | 315 | |
---|
| 316 | ! |
---|
[4649] | 317 | !-- Transposition y --> x |
---|
| 318 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
| 319 | CALL transpose_yx( ar, ar_inv ) |
---|
| 320 | IF ( .NOT. temperton_fft_vec ) CALL resort_for_yx( ar_inv, ar ) |
---|
| 321 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1] | 322 | |
---|
[4649] | 323 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
| 324 | IF ( temperton_fft_vec ) THEN |
---|
| 325 | CALL fft_x( ar, 'backward', ar_inv=ar_inv ) |
---|
| 326 | ELSE |
---|
| 327 | CALL fft_x( ar, 'backward' ) |
---|
| 328 | ENDIF |
---|
| 329 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
[1] | 330 | |
---|
| 331 | ! |
---|
[4649] | 332 | !-- Transposition x --> z |
---|
| 333 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
| 334 | CALL transpose_xz( ar, ar_inv ) |
---|
| 335 | CALL resort_for_xz( ar_inv, ar ) |
---|
| 336 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
[1] | 337 | |
---|
[3634] | 338 | #ifndef _OPENACC |
---|
[4649] | 339 | ELSE |
---|
[1216] | 340 | |
---|
| 341 | ! |
---|
[4649] | 342 | !-- 2d-domain-decomposition or no decomposition (1 PE run) with overlapping transposition / fft |
---|
| 343 | !-- cputime logging must not use barriers, which would prevent overlapping |
---|
| 344 | ALLOCATE( f_out_y(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), & |
---|
| 345 | f_out_z(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
[1216] | 346 | ! |
---|
[4649] | 347 | !-- Transposition z --> x + subsequent fft along x |
---|
| 348 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 349 | CALL resort_for_zx( ar, f_inv ) |
---|
[1216] | 350 | ! |
---|
[4649] | 351 | !-- Save original indices and gridpoint counter |
---|
| 352 | isave(1) = nz |
---|
| 353 | isave(2) = nzb_x |
---|
| 354 | isave(3) = nzt_x |
---|
| 355 | isave(4) = sendrecvcount_zx |
---|
[1216] | 356 | ! |
---|
[4649] | 357 | !-- Set new indices for transformation |
---|
| 358 | nblk = nz / pdims(1) |
---|
| 359 | nz = pdims(1) |
---|
| 360 | nnz_x = 1 |
---|
| 361 | nzb_x = 1 + myidx * nnz_x |
---|
| 362 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
| 363 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
[1216] | 364 | |
---|
[4649] | 365 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
| 366 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
[1216] | 367 | |
---|
[4649] | 368 | DO kk = 1, nblk |
---|
[1216] | 369 | |
---|
[4649] | 370 | IF ( kk == 1 ) THEN |
---|
| 371 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start', cpu_log_nowait ) |
---|
| 372 | ELSE |
---|
| 373 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
| 374 | ENDIF |
---|
[1216] | 375 | |
---|
[4649] | 376 | DO knew = 1, nz |
---|
| 377 | ki = kk + nblk * ( knew - 1 ) |
---|
| 378 | f_in(:,:,knew) = f_inv(:,:,ki) |
---|
| 379 | ENDDO |
---|
[1216] | 380 | |
---|
[4649] | 381 | CALL transpose_zx( f_in, ar1(:,:,:)) |
---|
| 382 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 383 | |
---|
[4649] | 384 | IF ( kk == 1 ) THEN |
---|
| 385 | CALL cpu_log( log_point_s(4), 'fft_x', 'start', cpu_log_nowait ) |
---|
| 386 | ELSE |
---|
| 387 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
| 388 | ENDIF |
---|
[1216] | 389 | |
---|
[4649] | 390 | n = isave(2) + kk - 1 |
---|
| 391 | CALL fft_x( ar1(:,:,:), 'forward', ar_2d = f_out_z(:,:,n) ) |
---|
| 392 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
[1216] | 393 | |
---|
[4649] | 394 | ENDDO |
---|
[1216] | 395 | ! |
---|
[4649] | 396 | !-- Restore original indices/counters |
---|
| 397 | nz = isave(1) |
---|
| 398 | nzb_x = isave(2) |
---|
| 399 | nzt_x = isave(3) |
---|
| 400 | sendrecvcount_zx = isave(4) |
---|
[1216] | 401 | |
---|
[4649] | 402 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
[1216] | 403 | |
---|
| 404 | ! |
---|
[4649] | 405 | !-- Transposition x --> y + subsequent fft along y |
---|
| 406 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 407 | CALL resort_for_xy( f_out_z, f_inv ) |
---|
[1216] | 408 | ! |
---|
[4649] | 409 | !-- Save original indices and gridpoint counter |
---|
| 410 | isave(1) = nx |
---|
| 411 | isave(2) = nxl_y |
---|
| 412 | isave(3) = nxr_y |
---|
| 413 | isave(4) = sendrecvcount_xy |
---|
[1216] | 414 | ! |
---|
[4649] | 415 | !-- Set new indices for transformation |
---|
| 416 | nblk = ( ( nx+1 ) / pdims(2) ) - 1 |
---|
| 417 | nx = pdims(2) |
---|
| 418 | nnx_y = 1 |
---|
| 419 | nxl_y = myidy * nnx_y |
---|
| 420 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
| 421 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
[1216] | 422 | |
---|
[4649] | 423 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
| 424 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
[1216] | 425 | |
---|
[4649] | 426 | DO ii = 0, nblk |
---|
[1216] | 427 | |
---|
[4649] | 428 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1216] | 429 | |
---|
[4649] | 430 | DO inew = 0, nx-1 |
---|
| 431 | iind = ii + ( nblk + 1 ) * inew |
---|
| 432 | f_in(:,:,inew) = f_inv(:,:,iind) |
---|
| 433 | ENDDO |
---|
[1216] | 434 | |
---|
[4649] | 435 | CALL transpose_xy( f_in, ar1(:,:,:) ) |
---|
[1216] | 436 | |
---|
[4649] | 437 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 438 | |
---|
[4649] | 439 | IF ( ii == 1 ) THEN |
---|
| 440 | CALL cpu_log( log_point_s(7), 'fft_y', 'start', cpu_log_nowait ) |
---|
| 441 | ELSE |
---|
| 442 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
| 443 | ENDIF |
---|
[1216] | 444 | |
---|
[4649] | 445 | nxl_y_bound = isave(2) |
---|
| 446 | nxr_y_bound = isave(3) |
---|
| 447 | n = isave(2) + ii |
---|
| 448 | CALL fft_y( ar1(:,:,:), 'forward', ar_tr = f_out_y, nxl_y_bound = nxl_y_bound, & |
---|
| 449 | nxr_y_bound = nxr_y_bound, nxl_y_l = n, nxr_y_l = n ) |
---|
[1216] | 450 | |
---|
[4649] | 451 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
[1216] | 452 | |
---|
[4649] | 453 | ENDDO |
---|
[1216] | 454 | ! |
---|
[4649] | 455 | !-- Restore original indices/counters |
---|
| 456 | nx = isave(1) |
---|
| 457 | nxl_y = isave(2) |
---|
| 458 | nxr_y = isave(3) |
---|
| 459 | sendrecvcount_xy = isave(4) |
---|
[1216] | 460 | |
---|
[4649] | 461 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
[1216] | 462 | |
---|
| 463 | ! |
---|
[4649] | 464 | !-- Transposition y --> z + subsequent tridia + resort for z --> y |
---|
| 465 | ALLOCATE( f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
| 466 | CALL resort_for_yz( f_out_y, f_inv ) |
---|
[1216] | 467 | ! |
---|
[4649] | 468 | !-- Save original indices and gridpoint counter |
---|
| 469 | isave(1) = ny |
---|
| 470 | isave(2) = nys_z |
---|
| 471 | isave(3) = nyn_z |
---|
| 472 | isave(4) = sendrecvcount_yz |
---|
[1216] | 473 | ! |
---|
[4649] | 474 | !-- Set new indices for transformation |
---|
| 475 | nblk = ( ( ny+1 ) / pdims(1) ) - 1 |
---|
| 476 | ny = pdims(1) |
---|
| 477 | nny_z = 1 |
---|
| 478 | nys_z = myidx * nny_z |
---|
| 479 | nyn_z = ( myidx + 1 ) * nny_z - 1 |
---|
| 480 | sendrecvcount_yz = ( nxr_y-nxl_y+1 ) * nny_z * ( nzt_y-nzb_y+1 ) |
---|
[1216] | 481 | |
---|
[4649] | 482 | ALLOCATE( ar1(nxl_z:nxr_z,nys_z:nyn_z,1:nz) ) |
---|
| 483 | ALLOCATE( f_in(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
[1216] | 484 | |
---|
[4649] | 485 | DO jj = 0, nblk |
---|
[1216] | 486 | ! |
---|
[4649] | 487 | !-- Forward Fourier Transformation |
---|
| 488 | !-- Transposition y --> z |
---|
| 489 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1216] | 490 | |
---|
[4649] | 491 | DO jnew = 0, ny-1 |
---|
| 492 | jind = jj + ( nblk + 1 ) * jnew |
---|
| 493 | f_in(:,:,jnew) = f_inv(:,:,jind) |
---|
| 494 | ENDDO |
---|
[1216] | 495 | |
---|
[4649] | 496 | CALL transpose_yz( f_in, ar1(:,:,:) ) |
---|
[1216] | 497 | |
---|
[4649] | 498 | IF ( jj == nblk ) THEN |
---|
| 499 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
| 500 | ELSE |
---|
| 501 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 502 | ENDIF |
---|
[1216] | 503 | |
---|
| 504 | ! |
---|
[4649] | 505 | !-- Solve the tridiagonal equation system along z |
---|
| 506 | CALL cpu_log( log_point_s(6), 'tridia', 'start', cpu_log_nowait ) |
---|
[1216] | 507 | |
---|
[4649] | 508 | n = isave(2) + jj |
---|
| 509 | CALL tridia_substi_overlap( ar1(:,:,:), n ) |
---|
[1216] | 510 | |
---|
[4649] | 511 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
[1216] | 512 | |
---|
[1306] | 513 | ! |
---|
[4649] | 514 | !-- Inverse Fourier Transformation |
---|
| 515 | !-- Transposition z --> y |
---|
| 516 | !-- Only one thread should call MPI routines, therefore forward and backward tranpose are in |
---|
| 517 | !-- the same section |
---|
| 518 | IF ( jj == 0 ) THEN |
---|
| 519 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start', cpu_log_nowait ) |
---|
| 520 | ELSE |
---|
| 521 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
| 522 | ENDIF |
---|
[1216] | 523 | |
---|
[4649] | 524 | CALL transpose_zy( ar1(:,:,:), f_in ) |
---|
[1216] | 525 | |
---|
[4649] | 526 | DO jnew = 0, ny-1 |
---|
| 527 | jind = jj + ( nblk + 1 ) * jnew |
---|
| 528 | f_inv(:,:,jind) = f_in(:,:,jnew) |
---|
| 529 | ENDDO |
---|
[1216] | 530 | |
---|
[4649] | 531 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 532 | |
---|
[4649] | 533 | ENDDO |
---|
[1216] | 534 | ! |
---|
[4649] | 535 | !-- Restore original indices/counters |
---|
| 536 | ny = isave(1) |
---|
| 537 | nys_z = isave(2) |
---|
| 538 | nyn_z = isave(3) |
---|
| 539 | sendrecvcount_yz = isave(4) |
---|
[1216] | 540 | |
---|
[4649] | 541 | CALL resort_for_zy( f_inv, f_out_y ) |
---|
[1216] | 542 | |
---|
[4649] | 543 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
[1216] | 544 | |
---|
| 545 | ! |
---|
[4649] | 546 | !-- fft along y backward + subsequent transposition y --> x |
---|
| 547 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
[1216] | 548 | ! |
---|
[4649] | 549 | !-- Save original indices and gridpoint counter |
---|
| 550 | isave(1) = nx |
---|
| 551 | isave(2) = nxl_y |
---|
| 552 | isave(3) = nxr_y |
---|
| 553 | isave(4) = sendrecvcount_xy |
---|
[1216] | 554 | ! |
---|
[4649] | 555 | !-- Set new indices for transformation |
---|
| 556 | nblk = ( ( nx+1 ) / pdims(2) ) - 1 |
---|
| 557 | nx = pdims(2) |
---|
| 558 | nnx_y = 1 |
---|
| 559 | nxl_y = myidy * nnx_y |
---|
| 560 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
| 561 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
[1216] | 562 | |
---|
[4649] | 563 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
| 564 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
[1216] | 565 | |
---|
[4649] | 566 | DO ii = 0, nblk |
---|
[1216] | 567 | |
---|
[4649] | 568 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
[1216] | 569 | |
---|
[4649] | 570 | n = isave(2) + ii |
---|
| 571 | nxl_y_bound = isave(2) |
---|
| 572 | nxr_y_bound = isave(3) |
---|
[1216] | 573 | |
---|
[4649] | 574 | CALL fft_y( ar1(:,:,:), 'backward', ar_tr = f_out_y, nxl_y_bound = nxl_y_bound, & |
---|
| 575 | nxr_y_bound = nxr_y_bound, nxl_y_l = n, nxr_y_l = n ) |
---|
[1216] | 576 | |
---|
[4649] | 577 | IF ( ii == nblk ) THEN |
---|
| 578 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 579 | ELSE |
---|
| 580 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 581 | ENDIF |
---|
[1216] | 582 | |
---|
[4649] | 583 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 584 | |
---|
[4649] | 585 | CALL transpose_yx( ar1(:,:,:), f_in ) |
---|
[1216] | 586 | |
---|
[4649] | 587 | DO inew = 0, nx-1 |
---|
| 588 | iind = ii + (nblk+1) * inew |
---|
| 589 | f_inv(:,:,iind) = f_in(:,:,inew) |
---|
| 590 | ENDDO |
---|
[1216] | 591 | |
---|
[4649] | 592 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 593 | |
---|
[4649] | 594 | ENDDO |
---|
[1216] | 595 | ! |
---|
[4649] | 596 | !-- Restore original indices/counters |
---|
| 597 | nx = isave(1) |
---|
| 598 | nxl_y = isave(2) |
---|
| 599 | nxr_y = isave(3) |
---|
| 600 | sendrecvcount_xy = isave(4) |
---|
[1216] | 601 | |
---|
[4649] | 602 | CALL resort_for_yx( f_inv, f_out_z ) |
---|
[1216] | 603 | |
---|
[4649] | 604 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
[1216] | 605 | |
---|
| 606 | ! |
---|
[4649] | 607 | !-- fft along x backward + subsequent final transposition x --> z |
---|
| 608 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
[1216] | 609 | ! |
---|
[4649] | 610 | !-- Save original indices and gridpoint counter |
---|
| 611 | isave(1) = nz |
---|
| 612 | isave(2) = nzb_x |
---|
| 613 | isave(3) = nzt_x |
---|
| 614 | isave(4) = sendrecvcount_zx |
---|
[1216] | 615 | ! |
---|
[4649] | 616 | !-- Set new indices for transformation |
---|
| 617 | nblk = nz / pdims(1) |
---|
| 618 | nz = pdims(1) |
---|
| 619 | nnz_x = 1 |
---|
| 620 | nzb_x = 1 + myidx * nnz_x |
---|
| 621 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
| 622 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
[1216] | 623 | |
---|
[4649] | 624 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
| 625 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
[1216] | 626 | |
---|
[4649] | 627 | DO kk = 1, nblk |
---|
[1216] | 628 | |
---|
[4649] | 629 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
[1216] | 630 | |
---|
[4649] | 631 | n = isave(2) + kk - 1 |
---|
| 632 | CALL fft_x( ar1(:,:,:), 'backward', f_out_z(:,:,n) ) |
---|
[1216] | 633 | |
---|
[4649] | 634 | IF ( kk == nblk ) THEN |
---|
| 635 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 636 | ELSE |
---|
| 637 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
| 638 | ENDIF |
---|
[1216] | 639 | |
---|
[4649] | 640 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 641 | |
---|
[4649] | 642 | CALL transpose_xz( ar1(:,:,:), f_in ) |
---|
[1216] | 643 | |
---|
[4649] | 644 | DO knew = 1, nz |
---|
| 645 | ki = kk + nblk * ( knew - 1 ) |
---|
| 646 | f_inv(:,:,ki) = f_in(:,:,knew) |
---|
| 647 | ENDDO |
---|
[1216] | 648 | |
---|
[4649] | 649 | IF ( kk == nblk ) THEN |
---|
| 650 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
| 651 | ELSE |
---|
| 652 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 653 | ENDIF |
---|
[1216] | 654 | |
---|
[4649] | 655 | ENDDO |
---|
[1216] | 656 | ! |
---|
[4649] | 657 | !-- Restore original indices/counters |
---|
| 658 | nz = isave(1) |
---|
| 659 | nzb_x = isave(2) |
---|
| 660 | nzt_x = isave(3) |
---|
| 661 | sendrecvcount_zx = isave(4) |
---|
[1216] | 662 | |
---|
[4649] | 663 | CALL resort_for_xz( f_inv, ar ) |
---|
[1216] | 664 | |
---|
[4649] | 665 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
[1216] | 666 | |
---|
[4649] | 667 | ENDIF |
---|
[3634] | 668 | #endif |
---|
[1] | 669 | |
---|
[3690] | 670 | #if !__acc_fft_device |
---|
[4649] | 671 | !$ACC UPDATE DEVICE(ar) |
---|
[3690] | 672 | #endif |
---|
| 673 | |
---|
[4649] | 674 | CALL cpu_log( log_point_s(3), 'poisfft', 'stop' ) |
---|
[1] | 675 | |
---|
[4649] | 676 | END SUBROUTINE poisfft |
---|
[1] | 677 | |
---|
| 678 | |
---|
[4649] | 679 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 680 | ! Description: |
---|
| 681 | ! ------------ |
---|
[4649] | 682 | !> Fourier-transformation along y with subsequent transposition y --> x for a 1d-decomposition |
---|
| 683 | !> along x. |
---|
[1682] | 684 | !> |
---|
[4649] | 685 | !> @attention The performance of this routine is much faster on the NEC-SX6, if the first index of |
---|
| 686 | !> work_ffty_vec is odd. Otherwise memory bank conflicts may occur (especially if the |
---|
| 687 | !> index is a multiple of 128). That's why work_ffty_vec is dimensioned as 0:ny+1. |
---|
| 688 | !> Of course, this will not work if users are using an odd number of gridpoints along y. |
---|
| 689 | !--------------------------------------------------------------------------------------------------! |
---|
| 690 | SUBROUTINE ffty_tr_yx( f_in, f_out ) |
---|
[1] | 691 | |
---|
[4649] | 692 | USE control_parameters, & |
---|
| 693 | ONLY: loop_optimization |
---|
[1320] | 694 | |
---|
[4649] | 695 | USE cpulog, & |
---|
| 696 | ONLY: cpu_log, & |
---|
| 697 | log_point_s |
---|
[1320] | 698 | |
---|
[4649] | 699 | USE kinds |
---|
[1320] | 700 | |
---|
[4649] | 701 | USE pegrid |
---|
[1] | 702 | |
---|
[4649] | 703 | IMPLICIT NONE |
---|
[1] | 704 | |
---|
[4649] | 705 | INTEGER(iwp) :: i !< |
---|
| 706 | INTEGER(iwp) :: iend !< |
---|
| 707 | INTEGER(iwp) :: iouter !< |
---|
| 708 | INTEGER(iwp) :: ir !< |
---|
| 709 | INTEGER(iwp) :: j !< |
---|
| 710 | INTEGER(iwp) :: k !< |
---|
[1] | 711 | |
---|
[4649] | 712 | INTEGER(iwp), PARAMETER :: stridex = 4 !< |
---|
[1320] | 713 | |
---|
[4649] | 714 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_in !< |
---|
| 715 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_out !< |
---|
| 716 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !< |
---|
[1] | 717 | |
---|
[4649] | 718 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_ffty !< |
---|
| 719 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: work_ffty_vec !< |
---|
[2300] | 720 | |
---|
[1] | 721 | ! |
---|
[4649] | 722 | !-- Carry out the FFT along y, where all data are present due to the 1d-decomposition along x. |
---|
| 723 | !-- Resort the data in a way that x becomes the first index. |
---|
| 724 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'start' ) |
---|
[1] | 725 | |
---|
[4649] | 726 | IF ( loop_optimization == 'vector' ) THEN |
---|
[2300] | 727 | |
---|
[4649] | 728 | ALLOCATE( work_ffty_vec(0:ny+1,1:nz,nxl:nxr) ) |
---|
[1] | 729 | ! |
---|
[4649] | 730 | !-- Code optimized for vector processors |
---|
| 731 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 732 | !$OMP DO |
---|
| 733 | DO i = nxl, nxr |
---|
[1] | 734 | |
---|
[4649] | 735 | DO j = 0, ny |
---|
| 736 | DO k = 1, nz |
---|
| 737 | work_ffty_vec(j,k,i) = f_in(k,j,i) |
---|
[1] | 738 | ENDDO |
---|
[4649] | 739 | ENDDO |
---|
[1] | 740 | |
---|
[4649] | 741 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'forward' ) |
---|
[1] | 742 | |
---|
[4649] | 743 | ENDDO |
---|
[1] | 744 | |
---|
[4649] | 745 | !$OMP DO |
---|
| 746 | DO k = 1, nz |
---|
| 747 | DO j = 0, ny |
---|
| 748 | DO i = nxl, nxr |
---|
| 749 | work(i,k,j) = work_ffty_vec(j,k,i) |
---|
[1] | 750 | ENDDO |
---|
| 751 | ENDDO |
---|
[4649] | 752 | ENDDO |
---|
| 753 | !$OMP END PARALLEL |
---|
[1] | 754 | |
---|
[4649] | 755 | DEALLOCATE( work_ffty_vec ) |
---|
[2300] | 756 | |
---|
[4649] | 757 | ELSE |
---|
[1] | 758 | ! |
---|
[4649] | 759 | !-- Cache optimized code. |
---|
| 760 | ALLOCATE( work_ffty(0:ny,stridex) ) |
---|
[2300] | 761 | ! |
---|
[4649] | 762 | !-- The i-(x-)direction is split into a strided outer loop and an inner loop for better cache |
---|
| 763 | !-- performance |
---|
| 764 | !$OMP PARALLEL PRIVATE (i,iend,iouter,ir,j,k,work_ffty) |
---|
| 765 | !$OMP DO |
---|
| 766 | DO iouter = nxl, nxr, stridex |
---|
[1] | 767 | |
---|
[4649] | 768 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
[1] | 769 | |
---|
[4649] | 770 | DO k = 1, nz |
---|
[1] | 771 | |
---|
[4649] | 772 | DO i = iouter, iend |
---|
[1] | 773 | |
---|
[4649] | 774 | ir = i-iouter+1 ! Counter within a stride |
---|
| 775 | DO j = 0, ny |
---|
| 776 | work_ffty(j,ir) = f_in(k,j,i) |
---|
| 777 | ENDDO |
---|
[1] | 778 | ! |
---|
[4649] | 779 | !-- FFT along y |
---|
| 780 | CALL fft_y_1d( work_ffty(:,ir), 'forward' ) |
---|
[1] | 781 | |
---|
[4649] | 782 | ENDDO |
---|
[1] | 783 | |
---|
| 784 | ! |
---|
[4649] | 785 | !-- Resort |
---|
| 786 | DO j = 0, ny |
---|
| 787 | DO i = iouter, iend |
---|
| 788 | work(i,k,j) = work_ffty(j,i-iouter+1) |
---|
[1] | 789 | ENDDO |
---|
| 790 | ENDDO |
---|
| 791 | |
---|
| 792 | ENDDO |
---|
| 793 | |
---|
[4649] | 794 | ENDDO |
---|
| 795 | !$OMP END PARALLEL |
---|
[2300] | 796 | |
---|
[4649] | 797 | DEALLOCATE( work_ffty ) |
---|
[2300] | 798 | |
---|
[4649] | 799 | ENDIF |
---|
[1] | 800 | |
---|
[4649] | 801 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'pause' ) |
---|
| 802 | |
---|
[1] | 803 | ! |
---|
[4649] | 804 | !-- Transpose array |
---|
[1111] | 805 | #if defined( __parallel ) |
---|
[4649] | 806 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 807 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 808 | CALL MPI_ALLTOALL( work(nxl,1,0), sendrecvcount_xy, MPI_REAL, f_out(1,1,nys_x,1), & |
---|
| 809 | sendrecvcount_xy, MPI_REAL, comm1dx, ierr ) |
---|
| 810 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[4429] | 811 | #else |
---|
| 812 | ! |
---|
[4649] | 813 | !-- Next line required to avoid compile error about unused dummy argument in serial mode |
---|
| 814 | i = SIZE( f_out ) |
---|
[1111] | 815 | #endif |
---|
[1] | 816 | |
---|
[4649] | 817 | END SUBROUTINE ffty_tr_yx |
---|
[1] | 818 | |
---|
| 819 | |
---|
[4649] | 820 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 821 | ! Description: |
---|
| 822 | ! ------------ |
---|
[4649] | 823 | !> Transposition x --> y with a subsequent backward Fourier transformation for a 1d-decomposition |
---|
| 824 | !> along x |
---|
| 825 | !--------------------------------------------------------------------------------------------------! |
---|
| 826 | SUBROUTINE tr_xy_ffty( f_in, f_out ) |
---|
[1] | 827 | |
---|
[4649] | 828 | USE control_parameters, & |
---|
| 829 | ONLY: loop_optimization |
---|
[1320] | 830 | |
---|
[4649] | 831 | USE cpulog, & |
---|
| 832 | ONLY: cpu_log, & |
---|
| 833 | log_point_s |
---|
[1320] | 834 | |
---|
[4649] | 835 | USE kinds |
---|
[1320] | 836 | |
---|
[4649] | 837 | USE pegrid |
---|
[1] | 838 | |
---|
[4649] | 839 | IMPLICIT NONE |
---|
[1] | 840 | |
---|
[4649] | 841 | INTEGER(iwp) :: i !< |
---|
| 842 | INTEGER(iwp) :: iend !< |
---|
| 843 | INTEGER(iwp) :: iouter !< |
---|
| 844 | INTEGER(iwp) :: ir !< |
---|
| 845 | INTEGER(iwp) :: j !< |
---|
| 846 | INTEGER(iwp) :: k !< |
---|
[1] | 847 | |
---|
[4649] | 848 | INTEGER(iwp), PARAMETER :: stridex = 4 !< |
---|
[1320] | 849 | |
---|
[4649] | 850 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_in !< |
---|
| 851 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_out !< |
---|
| 852 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !< |
---|
[1] | 853 | |
---|
[4649] | 854 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_ffty !< |
---|
| 855 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: work_ffty_vec !< |
---|
[2300] | 856 | |
---|
[1] | 857 | ! |
---|
[4649] | 858 | !-- Transpose array |
---|
[1111] | 859 | #if defined( __parallel ) |
---|
[4649] | 860 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 861 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 862 | CALL MPI_ALLTOALL( f_in(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, work(nxl,1,0), & |
---|
| 863 | sendrecvcount_xy, MPI_REAL, comm1dx, ierr ) |
---|
| 864 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[4429] | 865 | #else |
---|
| 866 | ! |
---|
[4649] | 867 | !-- Next line required to avoid compile error about unused dummy argument in serial mode |
---|
| 868 | i = SIZE( f_in ) |
---|
[1111] | 869 | #endif |
---|
[1] | 870 | |
---|
| 871 | ! |
---|
[4649] | 872 | !-- Resort the data in a way that y becomes the first index and carry out the backward fft along y. |
---|
| 873 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'continue' ) |
---|
[1] | 874 | |
---|
[4649] | 875 | IF ( loop_optimization == 'vector' ) THEN |
---|
[2300] | 876 | |
---|
[4649] | 877 | ALLOCATE( work_ffty_vec(0:ny+1,1:nz,nxl:nxr) ) |
---|
[1] | 878 | ! |
---|
[4649] | 879 | !-- Code optimized for vector processors |
---|
| 880 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 881 | !$OMP DO |
---|
| 882 | DO k = 1, nz |
---|
| 883 | DO j = 0, ny |
---|
| 884 | DO i = nxl, nxr |
---|
| 885 | work_ffty_vec(j,k,i) = work(i,k,j) |
---|
[1] | 886 | ENDDO |
---|
| 887 | ENDDO |
---|
[4649] | 888 | ENDDO |
---|
[1] | 889 | |
---|
[4649] | 890 | !$OMP DO |
---|
| 891 | DO i = nxl, nxr |
---|
[1] | 892 | |
---|
[4649] | 893 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'backward' ) |
---|
[1] | 894 | |
---|
[4649] | 895 | DO j = 0, ny |
---|
| 896 | DO k = 1, nz |
---|
| 897 | f_out(k,j,i) = work_ffty_vec(j,k,i) |
---|
[1] | 898 | ENDDO |
---|
| 899 | ENDDO |
---|
| 900 | |
---|
[4649] | 901 | ENDDO |
---|
| 902 | !$OMP END PARALLEL |
---|
[2300] | 903 | |
---|
[4649] | 904 | DEALLOCATE( work_ffty_vec ) |
---|
| 905 | |
---|
| 906 | ELSE |
---|
[1] | 907 | ! |
---|
[4649] | 908 | !-- Cache optimized code. |
---|
| 909 | ALLOCATE( work_ffty(0:ny,stridex) ) |
---|
[2300] | 910 | ! |
---|
[4649] | 911 | !-- The i-(x-)direction is split into a strided outer loop and an inner loop for better cache |
---|
| 912 | !-- performance |
---|
| 913 | !$OMP PARALLEL PRIVATE ( i, iend, iouter, ir, j, k, work_ffty ) |
---|
| 914 | !$OMP DO |
---|
| 915 | DO iouter = nxl, nxr, stridex |
---|
[1] | 916 | |
---|
[4649] | 917 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
[1] | 918 | |
---|
[4649] | 919 | DO k = 1, nz |
---|
[1] | 920 | ! |
---|
[4649] | 921 | !-- Resort |
---|
| 922 | DO j = 0, ny |
---|
| 923 | DO i = iouter, iend |
---|
| 924 | work_ffty(j,i-iouter+1) = work(i,k,j) |
---|
[1] | 925 | ENDDO |
---|
[4649] | 926 | ENDDO |
---|
[1] | 927 | |
---|
[4649] | 928 | DO i = iouter, iend |
---|
[1] | 929 | |
---|
| 930 | ! |
---|
[4649] | 931 | !-- FFT along y |
---|
| 932 | ir = i-iouter+1 ! Counter within a stride |
---|
| 933 | CALL fft_y_1d( work_ffty(:,ir), 'backward' ) |
---|
[1] | 934 | |
---|
[4649] | 935 | DO j = 0, ny |
---|
| 936 | f_out(k,j,i) = work_ffty(j,ir) |
---|
[1] | 937 | ENDDO |
---|
| 938 | ENDDO |
---|
| 939 | |
---|
| 940 | ENDDO |
---|
| 941 | |
---|
[4649] | 942 | ENDDO |
---|
| 943 | !$OMP END PARALLEL |
---|
[2300] | 944 | |
---|
[4649] | 945 | DEALLOCATE( work_ffty ) |
---|
[1] | 946 | |
---|
[4649] | 947 | ENDIF |
---|
[1] | 948 | |
---|
[4649] | 949 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'stop' ) |
---|
[1] | 950 | |
---|
[4649] | 951 | END SUBROUTINE tr_xy_ffty |
---|
[1] | 952 | |
---|
[4649] | 953 | |
---|
| 954 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 955 | ! Description: |
---|
| 956 | ! ------------ |
---|
[4649] | 957 | !> FFT along x, solution of the tridiagonal system and backward FFT for a 1d-decomposition along x |
---|
[1682] | 958 | !> |
---|
[4649] | 959 | !> @warning This subroutine may still not work for hybrid parallelization with OpenMP (for possible |
---|
| 960 | !> necessary changes see the original routine poisfft_hybrid, developed by Klaus Ketelsen, |
---|
| 961 | !> May 2002) |
---|
| 962 | !--------------------------------------------------------------------------------------------------! |
---|
| 963 | SUBROUTINE fftx_tri_fftx( ar ) |
---|
[1] | 964 | |
---|
[4649] | 965 | USE control_parameters, & |
---|
| 966 | ONLY: loop_optimization |
---|
[1320] | 967 | |
---|
[4649] | 968 | USE cpulog, & |
---|
| 969 | ONLY: cpu_log, & |
---|
| 970 | log_point_s |
---|
[1320] | 971 | |
---|
[4649] | 972 | USE grid_variables, & |
---|
| 973 | ONLY: ddx2, & |
---|
| 974 | ddy2 |
---|
[1320] | 975 | |
---|
[4649] | 976 | USE kinds |
---|
[1320] | 977 | |
---|
[4649] | 978 | USE pegrid |
---|
[1] | 979 | |
---|
[4649] | 980 | IMPLICIT NONE |
---|
[1] | 981 | |
---|
[4649] | 982 | INTEGER(iwp) :: i !< |
---|
| 983 | INTEGER(iwp) :: j !< |
---|
| 984 | INTEGER(iwp) :: k !< |
---|
| 985 | INTEGER(iwp) :: m !< |
---|
| 986 | INTEGER(iwp) :: n !< |
---|
| 987 | ! INTEGER(iwp) :: omp_get_thread_num !< |
---|
| 988 | INTEGER(iwp) :: tn !< |
---|
[1] | 989 | |
---|
[4649] | 990 | REAL(wp), DIMENSION(0:nx) :: work_fftx !< |
---|
| 991 | REAL(wp), DIMENSION(0:nx,1:nz) :: work_trix !< |
---|
| 992 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: ar !< |
---|
| 993 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !< |
---|
[1] | 994 | |
---|
| 995 | |
---|
[4649] | 996 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'start' ) |
---|
[1] | 997 | |
---|
[4649] | 998 | ALLOCATE( tri(5,0:nx,0:nz-1,0:threads_per_task-1) ) |
---|
[1] | 999 | |
---|
[4649] | 1000 | tn = 0 ! Default thread number in case of one thread |
---|
[1] | 1001 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_fftx, work_trix ) |
---|
[4649] | 1002 | DO j = nys_x, nyn_x |
---|
[1] | 1003 | |
---|
[4649] | 1004 | !$ tn = omp_get_thread_num() |
---|
[1] | 1005 | |
---|
[4649] | 1006 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1007 | ! |
---|
[4649] | 1008 | !-- Code optimized for vector processors |
---|
| 1009 | DO k = 1, nz |
---|
[1] | 1010 | |
---|
[4649] | 1011 | m = 0 |
---|
| 1012 | DO n = 1, pdims(1) |
---|
| 1013 | DO i = 1, nnx |
---|
| 1014 | work_trix(m,k) = ar(i,k,j,n) |
---|
| 1015 | m = m + 1 |
---|
[1] | 1016 | ENDDO |
---|
| 1017 | ENDDO |
---|
| 1018 | |
---|
[4649] | 1019 | ENDDO |
---|
[1] | 1020 | |
---|
[4649] | 1021 | CALL fft_x_m( work_trix, 'forward' ) |
---|
| 1022 | |
---|
| 1023 | ELSE |
---|
[1] | 1024 | ! |
---|
[4649] | 1025 | !-- Cache optimized code |
---|
| 1026 | DO k = 1, nz |
---|
[1] | 1027 | |
---|
[4649] | 1028 | m = 0 |
---|
| 1029 | DO n = 1, pdims(1) |
---|
| 1030 | DO i = 1, nnx |
---|
| 1031 | work_fftx(m) = ar(i,k,j,n) |
---|
| 1032 | m = m + 1 |
---|
[1] | 1033 | ENDDO |
---|
[4649] | 1034 | ENDDO |
---|
[1] | 1035 | |
---|
[4649] | 1036 | CALL fft_x_1d( work_fftx, 'forward' ) |
---|
[1] | 1037 | |
---|
[4649] | 1038 | DO i = 0, nx |
---|
| 1039 | work_trix(i,k) = work_fftx(i) |
---|
[1] | 1040 | ENDDO |
---|
| 1041 | |
---|
[4649] | 1042 | ENDDO |
---|
[1] | 1043 | |
---|
[4649] | 1044 | ENDIF |
---|
| 1045 | |
---|
[1] | 1046 | ! |
---|
[4649] | 1047 | !-- Solve the linear equation system |
---|
| 1048 | CALL tridia_1dd( ddx2, ddy2, nx, ny, j, work_trix, tri(:,:,:,tn) ) |
---|
[1] | 1049 | |
---|
[4649] | 1050 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1051 | ! |
---|
[4649] | 1052 | !-- Code optimized for vector processors |
---|
| 1053 | CALL fft_x_m( work_trix, 'backward' ) |
---|
[1] | 1054 | |
---|
[4649] | 1055 | DO k = 1, nz |
---|
[1] | 1056 | |
---|
[4649] | 1057 | m = 0 |
---|
| 1058 | DO n = 1, pdims(1) |
---|
| 1059 | DO i = 1, nnx |
---|
| 1060 | ar(i,k,j,n) = work_trix(m,k) |
---|
| 1061 | m = m + 1 |
---|
[1] | 1062 | ENDDO |
---|
| 1063 | ENDDO |
---|
| 1064 | |
---|
[4649] | 1065 | ENDDO |
---|
| 1066 | |
---|
| 1067 | ELSE |
---|
[1] | 1068 | ! |
---|
[4649] | 1069 | !-- Cache optimized code |
---|
| 1070 | DO k = 1, nz |
---|
[1] | 1071 | |
---|
[4649] | 1072 | DO i = 0, nx |
---|
| 1073 | work_fftx(i) = work_trix(i,k) |
---|
| 1074 | ENDDO |
---|
[1] | 1075 | |
---|
[4649] | 1076 | CALL fft_x_1d( work_fftx, 'backward' ) |
---|
[1] | 1077 | |
---|
[4649] | 1078 | m = 0 |
---|
| 1079 | DO n = 1, pdims(1) |
---|
| 1080 | DO i = 1, nnx |
---|
| 1081 | ar(i,k,j,n) = work_fftx(m) |
---|
| 1082 | m = m + 1 |
---|
[1] | 1083 | ENDDO |
---|
| 1084 | ENDDO |
---|
| 1085 | |
---|
[4649] | 1086 | ENDDO |
---|
[1] | 1087 | |
---|
[4649] | 1088 | ENDIF |
---|
[1] | 1089 | |
---|
[4649] | 1090 | ENDDO |
---|
[1] | 1091 | |
---|
[4649] | 1092 | DEALLOCATE( tri ) |
---|
[1] | 1093 | |
---|
[4649] | 1094 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'stop' ) |
---|
[1] | 1095 | |
---|
[4649] | 1096 | END SUBROUTINE fftx_tri_fftx |
---|
[1] | 1097 | |
---|
[4649] | 1098 | |
---|
| 1099 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 1100 | ! Description: |
---|
| 1101 | ! ------------ |
---|
[4649] | 1102 | !> Fourier-transformation along x with subsequent transposition x --> y for a 1d-decomposition |
---|
| 1103 | !> along y. |
---|
[1682] | 1104 | !> |
---|
[4649] | 1105 | !> @attention NEC-branch of this routine may significantly profit from further optimizations. So |
---|
| 1106 | !> far, performance is much worse than for routine ffty_tr_yx (more than three times |
---|
| 1107 | !> slower). |
---|
| 1108 | !--------------------------------------------------------------------------------------------------! |
---|
| 1109 | SUBROUTINE fftx_tr_xy( f_in, f_out ) |
---|
[1] | 1110 | |
---|
[1682] | 1111 | |
---|
[4649] | 1112 | USE control_parameters, & |
---|
| 1113 | ONLY: loop_optimization |
---|
[1320] | 1114 | |
---|
[4649] | 1115 | USE cpulog, & |
---|
| 1116 | ONLY: cpu_log, & |
---|
| 1117 | log_point_s |
---|
[1320] | 1118 | |
---|
[4649] | 1119 | USE kinds |
---|
[1320] | 1120 | |
---|
[4649] | 1121 | USE pegrid |
---|
[1] | 1122 | |
---|
[4649] | 1123 | IMPLICIT NONE |
---|
[1] | 1124 | |
---|
[4649] | 1125 | INTEGER(iwp) :: i !< |
---|
| 1126 | INTEGER(iwp) :: j !< |
---|
| 1127 | INTEGER(iwp) :: k !< |
---|
[1] | 1128 | |
---|
[4649] | 1129 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !< |
---|
| 1130 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_in !< |
---|
| 1131 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_out !< |
---|
| 1132 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !< |
---|
[1] | 1133 | |
---|
| 1134 | ! |
---|
[4649] | 1135 | !-- Carry out the FFT along x, where all data are present due to the 1d-decomposition along y. |
---|
| 1136 | !-- Resort the data in a way that y becomes the first index. |
---|
| 1137 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'start' ) |
---|
[1] | 1138 | |
---|
[4649] | 1139 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1140 | ! |
---|
[4649] | 1141 | !-- Code for vector processors |
---|
| 1142 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 1143 | !$OMP DO |
---|
| 1144 | DO i = 0, nx |
---|
[1] | 1145 | |
---|
[4649] | 1146 | DO j = nys, nyn |
---|
| 1147 | DO k = 1, nz |
---|
| 1148 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
[1] | 1149 | ENDDO |
---|
| 1150 | ENDDO |
---|
| 1151 | |
---|
[4649] | 1152 | ENDDO |
---|
[1] | 1153 | |
---|
[4649] | 1154 | !$OMP DO |
---|
| 1155 | DO j = nys, nyn |
---|
[1] | 1156 | |
---|
[4649] | 1157 | CALL fft_x_m( work_fftx(:,:,j), 'forward' ) |
---|
| 1158 | |
---|
| 1159 | DO k = 1, nz |
---|
| 1160 | DO i = 0, nx |
---|
| 1161 | work(j,k,i) = work_fftx(i,k,j) |
---|
[1] | 1162 | ENDDO |
---|
| 1163 | ENDDO |
---|
| 1164 | |
---|
[4649] | 1165 | ENDDO |
---|
| 1166 | !$OMP END PARALLEL |
---|
[1] | 1167 | |
---|
[4649] | 1168 | ELSE |
---|
| 1169 | |
---|
[1] | 1170 | ! |
---|
[4649] | 1171 | !-- Cache optimized code (there might still be a potential for better optimization). |
---|
| 1172 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
| 1173 | !$OMP DO |
---|
| 1174 | DO i = 0, nx |
---|
[1] | 1175 | |
---|
[4649] | 1176 | DO j = nys, nyn |
---|
| 1177 | DO k = 1, nz |
---|
| 1178 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
[1] | 1179 | ENDDO |
---|
| 1180 | ENDDO |
---|
| 1181 | |
---|
[4649] | 1182 | ENDDO |
---|
[1] | 1183 | |
---|
[4649] | 1184 | !$OMP DO |
---|
| 1185 | DO j = nys, nyn |
---|
| 1186 | DO k = 1, nz |
---|
[1] | 1187 | |
---|
[4649] | 1188 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'forward' ) |
---|
| 1189 | |
---|
| 1190 | DO i = 0, nx |
---|
| 1191 | work(j,k,i) = work_fftx(i,k,j) |
---|
[1] | 1192 | ENDDO |
---|
| 1193 | ENDDO |
---|
| 1194 | |
---|
[4649] | 1195 | ENDDO |
---|
| 1196 | !$OMP END PARALLEL |
---|
[1] | 1197 | |
---|
[4649] | 1198 | ENDIF |
---|
| 1199 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'pause' ) |
---|
| 1200 | |
---|
[1] | 1201 | ! |
---|
[4649] | 1202 | !-- Transpose array |
---|
[1111] | 1203 | #if defined( __parallel ) |
---|
[4649] | 1204 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 1205 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1206 | CALL MPI_ALLTOALL( work(nys,1,0), sendrecvcount_xy, MPI_REAL, f_out(1,1,nxl_y,1), & |
---|
| 1207 | sendrecvcount_xy, MPI_REAL, comm1dy, ierr ) |
---|
| 1208 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[4429] | 1209 | #else |
---|
| 1210 | ! |
---|
[4649] | 1211 | !-- Next line required to avoid compile error about unused dummy argument in serial mode |
---|
| 1212 | i = SIZE( f_out ) |
---|
[1111] | 1213 | #endif |
---|
[1] | 1214 | |
---|
[4649] | 1215 | END SUBROUTINE fftx_tr_xy |
---|
[1] | 1216 | |
---|
| 1217 | |
---|
[4649] | 1218 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 1219 | ! Description: |
---|
| 1220 | ! ------------ |
---|
[4649] | 1221 | !> Transposition y --> x with a subsequent backward Fourier transformation for a 1d-decomposition |
---|
| 1222 | !> along x. |
---|
| 1223 | !--------------------------------------------------------------------------------------------------! |
---|
| 1224 | SUBROUTINE tr_yx_fftx( f_in, f_out ) |
---|
[1] | 1225 | |
---|
[1682] | 1226 | |
---|
[4649] | 1227 | USE control_parameters, & |
---|
| 1228 | ONLY: loop_optimization |
---|
[1320] | 1229 | |
---|
[4649] | 1230 | USE cpulog, & |
---|
| 1231 | ONLY: cpu_log, & |
---|
| 1232 | log_point_s |
---|
[1320] | 1233 | |
---|
[4649] | 1234 | USE kinds |
---|
[1320] | 1235 | |
---|
[4649] | 1236 | USE pegrid |
---|
[1] | 1237 | |
---|
[4649] | 1238 | IMPLICIT NONE |
---|
[1] | 1239 | |
---|
[4649] | 1240 | INTEGER(iwp) :: i !< |
---|
| 1241 | INTEGER(iwp) :: j !< |
---|
| 1242 | INTEGER(iwp) :: k !< |
---|
[1] | 1243 | |
---|
[4649] | 1244 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_in !< |
---|
| 1245 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_out !< |
---|
| 1246 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !< |
---|
| 1247 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !< |
---|
[1] | 1248 | |
---|
[4429] | 1249 | |
---|
[1] | 1250 | ! |
---|
[4649] | 1251 | !-- Transpose array |
---|
[1111] | 1252 | #if defined( __parallel ) |
---|
[4649] | 1253 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 1254 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1255 | CALL MPI_ALLTOALL( f_in(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, work(nys,1,0), & |
---|
| 1256 | sendrecvcount_xy, MPI_REAL, comm1dy, ierr ) |
---|
| 1257 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[4429] | 1258 | #else |
---|
| 1259 | ! |
---|
[4649] | 1260 | !-- Next line required to avoid compile error about unused dummy argument in serial mode |
---|
| 1261 | i = SIZE( f_in ) |
---|
[1111] | 1262 | #endif |
---|
[1] | 1263 | |
---|
| 1264 | ! |
---|
[4649] | 1265 | !-- Carry out the FFT along x, where all data are present due to the 1d-decomposition along y. |
---|
| 1266 | !-- Resort the data in a way that y becomes the first index. |
---|
| 1267 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'continue' ) |
---|
[1] | 1268 | |
---|
[4649] | 1269 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1270 | ! |
---|
[4649] | 1271 | !-- Code optimized for vector processors |
---|
| 1272 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 1273 | !$OMP DO |
---|
| 1274 | DO j = nys, nyn |
---|
[1] | 1275 | |
---|
[4649] | 1276 | DO k = 1, nz |
---|
| 1277 | DO i = 0, nx |
---|
| 1278 | work_fftx(i,k,j) = work(j,k,i) |
---|
[1] | 1279 | ENDDO |
---|
[4649] | 1280 | ENDDO |
---|
[1] | 1281 | |
---|
[4649] | 1282 | CALL fft_x_m( work_fftx(:,:,j), 'backward' ) |
---|
[1] | 1283 | |
---|
[4649] | 1284 | ENDDO |
---|
[1] | 1285 | |
---|
[4649] | 1286 | !$OMP DO |
---|
| 1287 | DO i = 0, nx |
---|
| 1288 | DO j = nys, nyn |
---|
| 1289 | DO k = 1, nz |
---|
| 1290 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
[1] | 1291 | ENDDO |
---|
| 1292 | ENDDO |
---|
[4649] | 1293 | ENDDO |
---|
| 1294 | !$OMP END PARALLEL |
---|
[1] | 1295 | |
---|
[4649] | 1296 | ELSE |
---|
[1] | 1297 | |
---|
| 1298 | ! |
---|
[4649] | 1299 | !-- Cache optimized code (there might be still a potential for better optimization). |
---|
| 1300 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
| 1301 | !$OMP DO |
---|
| 1302 | DO j = nys, nyn |
---|
| 1303 | DO k = 1, nz |
---|
[1] | 1304 | |
---|
[4649] | 1305 | DO i = 0, nx |
---|
| 1306 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1307 | ENDDO |
---|
[1] | 1308 | |
---|
[4649] | 1309 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'backward' ) |
---|
[1] | 1310 | |
---|
| 1311 | ENDDO |
---|
[4649] | 1312 | ENDDO |
---|
[1] | 1313 | |
---|
[4649] | 1314 | !$OMP DO |
---|
| 1315 | DO i = 0, nx |
---|
| 1316 | DO j = nys, nyn |
---|
| 1317 | DO k = 1, nz |
---|
| 1318 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
[1] | 1319 | ENDDO |
---|
| 1320 | ENDDO |
---|
[4649] | 1321 | ENDDO |
---|
| 1322 | !$OMP END PARALLEL |
---|
[1] | 1323 | |
---|
[4649] | 1324 | ENDIF |
---|
| 1325 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'stop' ) |
---|
[1] | 1326 | |
---|
[4649] | 1327 | END SUBROUTINE tr_yx_fftx |
---|
[1] | 1328 | |
---|
| 1329 | |
---|
[4649] | 1330 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 1331 | ! Description: |
---|
| 1332 | ! ------------ |
---|
[4649] | 1333 | !> FFT along y, solution of the tridiagonal system and backward FFT for a 1d-decomposition along y. |
---|
[1682] | 1334 | !> |
---|
[4649] | 1335 | !> @warning This subroutine may still not work for hybrid parallelization with OpenMP (for possible |
---|
| 1336 | !> necessary changes see the original routine poisfft_hybrid, developed by Klaus Ketelsen, |
---|
| 1337 | !> May 2002) |
---|
| 1338 | !--------------------------------------------------------------------------------------------------! |
---|
| 1339 | SUBROUTINE ffty_tri_ffty( ar ) |
---|
[1] | 1340 | |
---|
[1682] | 1341 | |
---|
[4649] | 1342 | USE control_parameters, & |
---|
| 1343 | ONLY: loop_optimization |
---|
[1320] | 1344 | |
---|
[4649] | 1345 | USE cpulog, & |
---|
| 1346 | ONLY: cpu_log, & |
---|
| 1347 | log_point_s |
---|
[1320] | 1348 | |
---|
[4649] | 1349 | USE grid_variables, & |
---|
| 1350 | ONLY: ddx2, & |
---|
| 1351 | ddy2 |
---|
[1320] | 1352 | |
---|
[4649] | 1353 | USE kinds |
---|
[1320] | 1354 | |
---|
[4649] | 1355 | USE pegrid |
---|
[1] | 1356 | |
---|
[4649] | 1357 | IMPLICIT NONE |
---|
[1] | 1358 | |
---|
[4649] | 1359 | INTEGER(iwp) :: i !< |
---|
| 1360 | INTEGER(iwp) :: j !< |
---|
| 1361 | INTEGER(iwp) :: k !< |
---|
| 1362 | INTEGER(iwp) :: m !< |
---|
| 1363 | INTEGER(iwp) :: n !< |
---|
| 1364 | !$ INTEGER(iwp) :: omp_get_thread_num !< |
---|
| 1365 | INTEGER(iwp) :: tn !< |
---|
[1] | 1366 | |
---|
[4649] | 1367 | REAL(wp), DIMENSION(0:ny) :: work_ffty !< |
---|
| 1368 | REAL(wp), DIMENSION(0:ny,1:nz) :: work_triy !< |
---|
| 1369 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: ar !< |
---|
| 1370 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !< |
---|
[1] | 1371 | |
---|
| 1372 | |
---|
[4649] | 1373 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'start' ) |
---|
[1] | 1374 | |
---|
[4649] | 1375 | ALLOCATE( tri(5,0:ny,0:nz-1,0:threads_per_task-1) ) |
---|
[1] | 1376 | |
---|
[4649] | 1377 | tn = 0 ! Default thread number in case of one thread |
---|
| 1378 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_ffty, work_triy ) |
---|
| 1379 | DO i = nxl_y, nxr_y |
---|
[1] | 1380 | |
---|
[4649] | 1381 | !$ tn = omp_get_thread_num() |
---|
[1] | 1382 | |
---|
[4649] | 1383 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1384 | ! |
---|
[4649] | 1385 | !-- Code optimized for vector processors |
---|
| 1386 | DO k = 1, nz |
---|
[1] | 1387 | |
---|
[4649] | 1388 | m = 0 |
---|
| 1389 | DO n = 1, pdims(2) |
---|
| 1390 | DO j = 1, nny |
---|
| 1391 | work_triy(m,k) = ar(j,k,i,n) |
---|
| 1392 | m = m + 1 |
---|
[1] | 1393 | ENDDO |
---|
| 1394 | ENDDO |
---|
| 1395 | |
---|
[4649] | 1396 | ENDDO |
---|
[1] | 1397 | |
---|
[4649] | 1398 | CALL fft_y_m( work_triy, ny, 'forward' ) |
---|
| 1399 | |
---|
| 1400 | ELSE |
---|
[1] | 1401 | ! |
---|
[4649] | 1402 | !-- Cache optimized code |
---|
| 1403 | DO k = 1, nz |
---|
[1] | 1404 | |
---|
[4649] | 1405 | m = 0 |
---|
| 1406 | DO n = 1, pdims(2) |
---|
| 1407 | DO j = 1, nny |
---|
| 1408 | work_ffty(m) = ar(j,k,i,n) |
---|
| 1409 | m = m + 1 |
---|
[1] | 1410 | ENDDO |
---|
[4649] | 1411 | ENDDO |
---|
[1] | 1412 | |
---|
[4649] | 1413 | CALL fft_y_1d( work_ffty, 'forward' ) |
---|
[1] | 1414 | |
---|
[4649] | 1415 | DO j = 0, ny |
---|
| 1416 | work_triy(j,k) = work_ffty(j) |
---|
[1] | 1417 | ENDDO |
---|
| 1418 | |
---|
[4649] | 1419 | ENDDO |
---|
[1] | 1420 | |
---|
[4649] | 1421 | ENDIF |
---|
| 1422 | |
---|
[1] | 1423 | ! |
---|
[4649] | 1424 | !-- Solve the linear equation system |
---|
| 1425 | CALL tridia_1dd( ddy2, ddx2, ny, nx, i, work_triy, tri(:,:,:,tn) ) |
---|
[1] | 1426 | |
---|
[4649] | 1427 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1428 | ! |
---|
[4649] | 1429 | !-- Code optimized for vector processors |
---|
| 1430 | CALL fft_y_m( work_triy, ny, 'backward' ) |
---|
[1] | 1431 | |
---|
[4649] | 1432 | DO k = 1, nz |
---|
[1] | 1433 | |
---|
[4649] | 1434 | m = 0 |
---|
| 1435 | DO n = 1, pdims(2) |
---|
| 1436 | DO j = 1, nny |
---|
| 1437 | ar(j,k,i,n) = work_triy(m,k) |
---|
| 1438 | m = m + 1 |
---|
[1] | 1439 | ENDDO |
---|
| 1440 | ENDDO |
---|
| 1441 | |
---|
[4649] | 1442 | ENDDO |
---|
| 1443 | |
---|
| 1444 | ELSE |
---|
[1] | 1445 | ! |
---|
[4649] | 1446 | !-- Cache optimized code |
---|
| 1447 | DO k = 1, nz |
---|
[1] | 1448 | |
---|
[4649] | 1449 | DO j = 0, ny |
---|
| 1450 | work_ffty(j) = work_triy(j,k) |
---|
| 1451 | ENDDO |
---|
[1] | 1452 | |
---|
[4649] | 1453 | CALL fft_y_1d( work_ffty, 'backward' ) |
---|
[1] | 1454 | |
---|
[4649] | 1455 | m = 0 |
---|
| 1456 | DO n = 1, pdims(2) |
---|
| 1457 | DO j = 1, nny |
---|
| 1458 | ar(j,k,i,n) = work_ffty(m) |
---|
| 1459 | m = m + 1 |
---|
[1] | 1460 | ENDDO |
---|
| 1461 | ENDDO |
---|
| 1462 | |
---|
[4649] | 1463 | ENDDO |
---|
[1] | 1464 | |
---|
[4649] | 1465 | ENDIF |
---|
[1] | 1466 | |
---|
[4649] | 1467 | ENDDO |
---|
[1] | 1468 | |
---|
[4649] | 1469 | DEALLOCATE( tri ) |
---|
[1] | 1470 | |
---|
[4649] | 1471 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'stop' ) |
---|
[1] | 1472 | |
---|
[4649] | 1473 | END SUBROUTINE ffty_tri_ffty |
---|
| 1474 | |
---|
| 1475 | END MODULE poisfft_mod |
---|