[1850] | 1 | !> @file poisfft_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[4360] | 17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1683] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: poisfft_mod.f90 4429 2020-02-27 15:24:30Z moh.hefny $ |
---|
[4429] | 27 | ! Statements added to avoid compile errors due to unused dummy arguments in serial mode |
---|
| 28 | ! |
---|
| 29 | ! 4366 2020-01-09 08:12:43Z raasch |
---|
[4366] | 30 | ! modification concerning NEC vectorizatio |
---|
| 31 | ! |
---|
| 32 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4182] | 33 | ! Corrected "Former revisions" section |
---|
| 34 | ! |
---|
| 35 | ! 3690 2019-01-22 22:56:42Z knoop |
---|
[3634] | 36 | ! OpenACC port for SPEC |
---|
[2716] | 37 | ! |
---|
[4182] | 38 | ! Revision 1.1 1997/07/24 11:24:14 raasch |
---|
| 39 | ! Initial revision |
---|
| 40 | ! |
---|
| 41 | ! |
---|
[1] | 42 | ! Description: |
---|
| 43 | ! ------------ |
---|
[1682] | 44 | !> Solves the Poisson equation with a 2D spectral method |
---|
| 45 | !> d^2 p / dx^2 + d^2 p / dy^2 + d^2 p / dz^2 = s |
---|
| 46 | !> |
---|
| 47 | !> Input: |
---|
| 48 | !> real ar contains (nnz,nny,nnx) elements of the velocity divergence, |
---|
| 49 | !> starting from (1,nys,nxl) |
---|
| 50 | !> |
---|
| 51 | !> Output: |
---|
| 52 | !> real ar contains the solution for perturbation pressure p |
---|
[1] | 53 | !------------------------------------------------------------------------------! |
---|
[1682] | 54 | MODULE poisfft_mod |
---|
| 55 | |
---|
[1] | 56 | |
---|
[1320] | 57 | USE fft_xy, & |
---|
[4366] | 58 | ONLY: fft_init, fft_y, fft_y_1d, fft_y_m, fft_x, fft_x_1d, fft_x_m, & |
---|
| 59 | temperton_fft_vec |
---|
[1] | 60 | |
---|
[1320] | 61 | USE indices, & |
---|
| 62 | ONLY: nnx, nny, nx, nxl, nxr, ny, nys, nyn, nz |
---|
| 63 | |
---|
| 64 | USE transpose_indices, & |
---|
| 65 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nys_x, nys_z, nyn_x, nyn_z, nzb_x, & |
---|
| 66 | nzb_y, nzt_x, nzt_y |
---|
| 67 | |
---|
| 68 | USE tridia_solver, & |
---|
| 69 | ONLY: tridia_1dd, tridia_init, tridia_substi, tridia_substi_overlap |
---|
| 70 | |
---|
[1] | 71 | IMPLICIT NONE |
---|
| 72 | |
---|
[1111] | 73 | LOGICAL, SAVE :: poisfft_initialized = .FALSE. |
---|
| 74 | |
---|
[1] | 75 | PRIVATE |
---|
[807] | 76 | |
---|
[1] | 77 | PUBLIC poisfft, poisfft_init |
---|
| 78 | |
---|
| 79 | INTERFACE poisfft |
---|
| 80 | MODULE PROCEDURE poisfft |
---|
| 81 | END INTERFACE poisfft |
---|
| 82 | |
---|
| 83 | INTERFACE poisfft_init |
---|
| 84 | MODULE PROCEDURE poisfft_init |
---|
| 85 | END INTERFACE poisfft_init |
---|
| 86 | |
---|
[807] | 87 | |
---|
[1] | 88 | CONTAINS |
---|
| 89 | |
---|
[1682] | 90 | !------------------------------------------------------------------------------! |
---|
| 91 | ! Description: |
---|
| 92 | ! ------------ |
---|
[3241] | 93 | !> Setup coefficients for FFT and the tridiagonal solver |
---|
[1682] | 94 | !------------------------------------------------------------------------------! |
---|
[1] | 95 | SUBROUTINE poisfft_init |
---|
| 96 | |
---|
[1111] | 97 | IMPLICIT NONE |
---|
| 98 | |
---|
| 99 | |
---|
[1] | 100 | CALL fft_init |
---|
| 101 | |
---|
[1212] | 102 | CALL tridia_init |
---|
[1111] | 103 | |
---|
| 104 | poisfft_initialized = .TRUE. |
---|
| 105 | |
---|
[1] | 106 | END SUBROUTINE poisfft_init |
---|
| 107 | |
---|
[1111] | 108 | |
---|
[1804] | 109 | |
---|
[1682] | 110 | !------------------------------------------------------------------------------! |
---|
| 111 | ! Description: |
---|
| 112 | ! ------------ |
---|
| 113 | !> Two-dimensional Fourier Transformation in x- and y-direction. |
---|
| 114 | !------------------------------------------------------------------------------! |
---|
[1306] | 115 | SUBROUTINE poisfft( ar ) |
---|
[1] | 116 | |
---|
[1320] | 117 | USE control_parameters, & |
---|
[3241] | 118 | ONLY: transpose_compute_overlap |
---|
[1320] | 119 | |
---|
| 120 | USE cpulog, & |
---|
| 121 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
| 122 | |
---|
| 123 | USE kinds |
---|
| 124 | |
---|
[1] | 125 | USE pegrid |
---|
| 126 | |
---|
| 127 | IMPLICIT NONE |
---|
| 128 | |
---|
[1682] | 129 | INTEGER(iwp) :: ii !< |
---|
| 130 | INTEGER(iwp) :: iind !< |
---|
| 131 | INTEGER(iwp) :: inew !< |
---|
| 132 | INTEGER(iwp) :: jj !< |
---|
| 133 | INTEGER(iwp) :: jind !< |
---|
| 134 | INTEGER(iwp) :: jnew !< |
---|
| 135 | INTEGER(iwp) :: ki !< |
---|
| 136 | INTEGER(iwp) :: kk !< |
---|
| 137 | INTEGER(iwp) :: knew !< |
---|
| 138 | INTEGER(iwp) :: n !< |
---|
| 139 | INTEGER(iwp) :: nblk !< |
---|
| 140 | INTEGER(iwp) :: nnx_y !< |
---|
| 141 | INTEGER(iwp) :: nny_z !< |
---|
| 142 | INTEGER(iwp) :: nnz_x !< |
---|
| 143 | INTEGER(iwp) :: nxl_y_bound !< |
---|
| 144 | INTEGER(iwp) :: nxr_y_bound !< |
---|
[1] | 145 | |
---|
[1682] | 146 | INTEGER(iwp), DIMENSION(4) :: isave !< |
---|
[1320] | 147 | |
---|
[1682] | 148 | REAL(wp), DIMENSION(1:nz,nys:nyn,nxl:nxr) :: ar !< |
---|
| 149 | REAL(wp), DIMENSION(nys:nyn,nxl:nxr,1:nz) :: ar_inv !< |
---|
[3690] | 150 | |
---|
| 151 | #define __acc_fft_device ( defined( _OPENACC ) && ( defined ( __cuda_fft ) ) ) |
---|
| 152 | #if __acc_fft_device |
---|
[3634] | 153 | !$ACC DECLARE CREATE(ar_inv) |
---|
[3690] | 154 | #endif |
---|
[1] | 155 | |
---|
[1682] | 156 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ar1 !< |
---|
| 157 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_in !< |
---|
| 158 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_inv !< |
---|
| 159 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_y !< |
---|
| 160 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_z !< |
---|
[1216] | 161 | |
---|
| 162 | |
---|
[1] | 163 | CALL cpu_log( log_point_s(3), 'poisfft', 'start' ) |
---|
| 164 | |
---|
[1111] | 165 | IF ( .NOT. poisfft_initialized ) CALL poisfft_init |
---|
| 166 | |
---|
[3690] | 167 | #if !__acc_fft_device |
---|
| 168 | !$ACC UPDATE HOST(ar) |
---|
| 169 | #endif |
---|
| 170 | |
---|
[3634] | 171 | #ifndef _OPENACC |
---|
[1] | 172 | ! |
---|
| 173 | !-- Two-dimensional Fourier Transformation in x- and y-direction. |
---|
[2118] | 174 | IF ( pdims(2) == 1 .AND. pdims(1) > 1 ) THEN |
---|
[1] | 175 | |
---|
| 176 | ! |
---|
| 177 | !-- 1d-domain-decomposition along x: |
---|
| 178 | !-- FFT along y and transposition y --> x |
---|
[1216] | 179 | CALL ffty_tr_yx( ar, ar ) |
---|
[1] | 180 | |
---|
| 181 | ! |
---|
| 182 | !-- FFT along x, solving the tridiagonal system and backward FFT |
---|
| 183 | CALL fftx_tri_fftx( ar ) |
---|
| 184 | |
---|
| 185 | ! |
---|
| 186 | !-- Transposition x --> y and backward FFT along y |
---|
[1216] | 187 | CALL tr_xy_ffty( ar, ar ) |
---|
[1] | 188 | |
---|
[2118] | 189 | ELSEIF ( pdims(1) == 1 .AND. pdims(2) > 1 ) THEN |
---|
[1] | 190 | |
---|
| 191 | ! |
---|
| 192 | !-- 1d-domain-decomposition along y: |
---|
| 193 | !-- FFT along x and transposition x --> y |
---|
[1216] | 194 | CALL fftx_tr_xy( ar, ar ) |
---|
[1] | 195 | |
---|
| 196 | ! |
---|
| 197 | !-- FFT along y, solving the tridiagonal system and backward FFT |
---|
| 198 | CALL ffty_tri_ffty( ar ) |
---|
| 199 | |
---|
| 200 | ! |
---|
| 201 | !-- Transposition y --> x and backward FFT along x |
---|
[1216] | 202 | CALL tr_yx_fftx( ar, ar ) |
---|
[1] | 203 | |
---|
[1216] | 204 | ELSEIF ( .NOT. transpose_compute_overlap ) THEN |
---|
[3634] | 205 | #endif |
---|
[1] | 206 | |
---|
| 207 | ! |
---|
[1111] | 208 | !-- 2d-domain-decomposition or no decomposition (1 PE run) |
---|
[1] | 209 | !-- Transposition z --> x |
---|
| 210 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start' ) |
---|
[1216] | 211 | CALL resort_for_zx( ar, ar_inv ) |
---|
| 212 | CALL transpose_zx( ar_inv, ar ) |
---|
[1] | 213 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 214 | |
---|
| 215 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
[4366] | 216 | IF ( temperton_fft_vec ) THEN |
---|
| 217 | ! |
---|
| 218 | !-- Vector version outputs a transformed array ar_inv that does not require resorting |
---|
| 219 | !-- (which is done for ar further below) |
---|
| 220 | CALL fft_x( ar, 'forward', ar_inv=ar_inv) |
---|
| 221 | ELSE |
---|
| 222 | CALL fft_x( ar, 'forward') |
---|
| 223 | ENDIF |
---|
[1] | 224 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
| 225 | |
---|
| 226 | ! |
---|
| 227 | !-- Transposition x --> y |
---|
| 228 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[4366] | 229 | IF( .NOT. temperton_fft_vec ) CALL resort_for_xy( ar, ar_inv ) |
---|
[1216] | 230 | CALL transpose_xy( ar_inv, ar ) |
---|
[1] | 231 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 232 | |
---|
| 233 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
[4366] | 234 | IF ( temperton_fft_vec ) THEN |
---|
| 235 | ! |
---|
| 236 | !-- Input array ar_inv from fft_x can be directly used here. |
---|
| 237 | !-- The output (also in array ar_inv) does not require resorting below. |
---|
| 238 | CALL fft_y( ar, 'forward', ar_inv = ar_inv, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 239 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 240 | ELSE |
---|
| 241 | CALL fft_y( ar, 'forward', ar_tr = ar, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 242 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 243 | ENDIF |
---|
[1] | 244 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 245 | |
---|
| 246 | ! |
---|
| 247 | !-- Transposition y --> z |
---|
| 248 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[4366] | 249 | IF ( .NOT. temperton_fft_vec ) CALL resort_for_yz( ar, ar_inv ) |
---|
[1216] | 250 | CALL transpose_yz( ar_inv, ar ) |
---|
[1] | 251 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
| 252 | |
---|
| 253 | ! |
---|
[1106] | 254 | !-- Solve the tridiagonal equation system along z |
---|
[1] | 255 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
[1212] | 256 | CALL tridia_substi( ar ) |
---|
[1] | 257 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
| 258 | |
---|
| 259 | ! |
---|
| 260 | !-- Inverse Fourier Transformation |
---|
| 261 | !-- Transposition z --> y |
---|
| 262 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start' ) |
---|
[1216] | 263 | CALL transpose_zy( ar, ar_inv ) |
---|
[4366] | 264 | ! |
---|
| 265 | !-- The fft_y below (vector branch) can directly process ar_inv (i.e. does not require a |
---|
| 266 | !-- resorting) |
---|
| 267 | IF ( .NOT. temperton_fft_vec ) CALL resort_for_zy( ar_inv, ar ) |
---|
[1] | 268 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 269 | |
---|
| 270 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
[4366] | 271 | IF ( temperton_fft_vec ) THEN |
---|
| 272 | ! |
---|
| 273 | !-- Output array ar_inv can be used as input to the below fft_x routine without resorting |
---|
| 274 | CALL fft_y( ar, 'backward', ar_inv = ar_inv, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y,& |
---|
| 275 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 276 | ELSE |
---|
| 277 | CALL fft_y( ar, 'backward', ar_tr = ar, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 278 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 279 | ENDIF |
---|
| 280 | |
---|
[1] | 281 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 282 | |
---|
| 283 | ! |
---|
| 284 | !-- Transposition y --> x |
---|
| 285 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[1216] | 286 | CALL transpose_yx( ar, ar_inv ) |
---|
[4366] | 287 | IF ( .NOT. temperton_fft_vec ) CALL resort_for_yx( ar_inv, ar ) |
---|
[1] | 288 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 289 | |
---|
| 290 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
[4366] | 291 | IF ( temperton_fft_vec ) THEN |
---|
| 292 | CALL fft_x( ar, 'backward', ar_inv=ar_inv ) |
---|
| 293 | ELSE |
---|
| 294 | CALL fft_x( ar, 'backward' ) |
---|
| 295 | ENDIF |
---|
[1] | 296 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 297 | |
---|
| 298 | ! |
---|
| 299 | !-- Transposition x --> z |
---|
| 300 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[1216] | 301 | CALL transpose_xz( ar, ar_inv ) |
---|
| 302 | CALL resort_for_xz( ar_inv, ar ) |
---|
[1] | 303 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
| 304 | |
---|
[3634] | 305 | #ifndef _OPENACC |
---|
[1216] | 306 | ELSE |
---|
| 307 | |
---|
| 308 | ! |
---|
| 309 | !-- 2d-domain-decomposition or no decomposition (1 PE run) with |
---|
| 310 | !-- overlapping transposition / fft |
---|
[1318] | 311 | !-- cputime logging must not use barriers, which would prevent overlapping |
---|
[1216] | 312 | ALLOCATE( f_out_y(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), & |
---|
| 313 | f_out_z(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
| 314 | ! |
---|
| 315 | !-- Transposition z --> x + subsequent fft along x |
---|
| 316 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 317 | CALL resort_for_zx( ar, f_inv ) |
---|
| 318 | ! |
---|
| 319 | !-- Save original indices and gridpoint counter |
---|
| 320 | isave(1) = nz |
---|
| 321 | isave(2) = nzb_x |
---|
| 322 | isave(3) = nzt_x |
---|
| 323 | isave(4) = sendrecvcount_zx |
---|
| 324 | ! |
---|
| 325 | !-- Set new indices for transformation |
---|
| 326 | nblk = nz / pdims(1) |
---|
| 327 | nz = pdims(1) |
---|
| 328 | nnz_x = 1 |
---|
| 329 | nzb_x = 1 + myidx * nnz_x |
---|
| 330 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
| 331 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
| 332 | |
---|
[1306] | 333 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
[1216] | 334 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 335 | |
---|
[1306] | 336 | DO kk = 1, nblk |
---|
[1216] | 337 | |
---|
[1306] | 338 | IF ( kk == 1 ) THEN |
---|
[1318] | 339 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start', cpu_log_nowait ) |
---|
[1306] | 340 | ELSE |
---|
[1318] | 341 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1306] | 342 | ENDIF |
---|
[1216] | 343 | |
---|
[1306] | 344 | DO knew = 1, nz |
---|
| 345 | ki = kk + nblk * ( knew - 1 ) |
---|
| 346 | f_in(:,:,knew) = f_inv(:,:,ki) |
---|
| 347 | ENDDO |
---|
[1216] | 348 | |
---|
[1306] | 349 | CALL transpose_zx( f_in, ar1(:,:,:)) |
---|
| 350 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 351 | |
---|
[1306] | 352 | IF ( kk == 1 ) THEN |
---|
[1318] | 353 | CALL cpu_log( log_point_s(4), 'fft_x', 'start', cpu_log_nowait ) |
---|
[1306] | 354 | ELSE |
---|
[1318] | 355 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
[1216] | 356 | ENDIF |
---|
| 357 | |
---|
[1306] | 358 | n = isave(2) + kk - 1 |
---|
| 359 | CALL fft_x( ar1(:,:,:), 'forward', ar_2d = f_out_z(:,:,n)) |
---|
| 360 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
[1216] | 361 | |
---|
| 362 | ENDDO |
---|
| 363 | ! |
---|
| 364 | !-- Restore original indices/counters |
---|
| 365 | nz = isave(1) |
---|
| 366 | nzb_x = isave(2) |
---|
| 367 | nzt_x = isave(3) |
---|
| 368 | sendrecvcount_zx = isave(4) |
---|
| 369 | |
---|
| 370 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 371 | |
---|
| 372 | ! |
---|
| 373 | !-- Transposition x --> y + subsequent fft along y |
---|
| 374 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 375 | CALL resort_for_xy( f_out_z, f_inv ) |
---|
| 376 | ! |
---|
| 377 | !-- Save original indices and gridpoint counter |
---|
| 378 | isave(1) = nx |
---|
| 379 | isave(2) = nxl_y |
---|
| 380 | isave(3) = nxr_y |
---|
| 381 | isave(4) = sendrecvcount_xy |
---|
| 382 | ! |
---|
| 383 | !-- Set new indices for transformation |
---|
| 384 | nblk = ( ( nx+1 ) / pdims(2) ) - 1 |
---|
| 385 | nx = pdims(2) |
---|
| 386 | nnx_y = 1 |
---|
| 387 | nxl_y = myidy * nnx_y |
---|
| 388 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
| 389 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
| 390 | |
---|
[1306] | 391 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
[1216] | 392 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 393 | |
---|
[1306] | 394 | DO ii = 0, nblk |
---|
[1216] | 395 | |
---|
[1318] | 396 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1216] | 397 | |
---|
[1306] | 398 | DO inew = 0, nx-1 |
---|
| 399 | iind = ii + ( nblk + 1 ) * inew |
---|
| 400 | f_in(:,:,inew) = f_inv(:,:,iind) |
---|
| 401 | ENDDO |
---|
[1216] | 402 | |
---|
[1306] | 403 | CALL transpose_xy( f_in, ar1(:,:,:) ) |
---|
[1216] | 404 | |
---|
[1306] | 405 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 406 | |
---|
[1306] | 407 | IF ( ii == 1 ) THEN |
---|
[1318] | 408 | CALL cpu_log( log_point_s(7), 'fft_y', 'start', cpu_log_nowait ) |
---|
[1306] | 409 | ELSE |
---|
[1318] | 410 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
[1216] | 411 | ENDIF |
---|
| 412 | |
---|
[1306] | 413 | nxl_y_bound = isave(2) |
---|
| 414 | nxr_y_bound = isave(3) |
---|
| 415 | n = isave(2) + ii |
---|
| 416 | CALL fft_y( ar1(:,:,:), 'forward', ar_tr = f_out_y, & |
---|
| 417 | nxl_y_bound = nxl_y_bound, nxr_y_bound = nxr_y_bound, & |
---|
| 418 | nxl_y_l = n, nxr_y_l = n ) |
---|
[1216] | 419 | |
---|
[1306] | 420 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
[1216] | 421 | |
---|
| 422 | ENDDO |
---|
| 423 | ! |
---|
| 424 | !-- Restore original indices/counters |
---|
| 425 | nx = isave(1) |
---|
| 426 | nxl_y = isave(2) |
---|
| 427 | nxr_y = isave(3) |
---|
| 428 | sendrecvcount_xy = isave(4) |
---|
| 429 | |
---|
| 430 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 431 | |
---|
| 432 | ! |
---|
| 433 | !-- Transposition y --> z + subsequent tridia + resort for z --> y |
---|
| 434 | ALLOCATE( f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
| 435 | CALL resort_for_yz( f_out_y, f_inv ) |
---|
| 436 | ! |
---|
| 437 | !-- Save original indices and gridpoint counter |
---|
| 438 | isave(1) = ny |
---|
| 439 | isave(2) = nys_z |
---|
| 440 | isave(3) = nyn_z |
---|
| 441 | isave(4) = sendrecvcount_yz |
---|
| 442 | ! |
---|
| 443 | !-- Set new indices for transformation |
---|
| 444 | nblk = ( ( ny+1 ) / pdims(1) ) - 1 |
---|
| 445 | ny = pdims(1) |
---|
| 446 | nny_z = 1 |
---|
| 447 | nys_z = myidx * nny_z |
---|
| 448 | nyn_z = ( myidx + 1 ) * nny_z - 1 |
---|
| 449 | sendrecvcount_yz = ( nxr_y-nxl_y+1 ) * nny_z * ( nzt_y-nzb_y+1 ) |
---|
| 450 | |
---|
[1306] | 451 | ALLOCATE( ar1(nxl_z:nxr_z,nys_z:nyn_z,1:nz) ) |
---|
[1216] | 452 | ALLOCATE( f_in(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
| 453 | |
---|
[1306] | 454 | DO jj = 0, nblk |
---|
[1216] | 455 | ! |
---|
[1306] | 456 | !-- Forward Fourier Transformation |
---|
| 457 | !-- Transposition y --> z |
---|
[1318] | 458 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1216] | 459 | |
---|
[1306] | 460 | DO jnew = 0, ny-1 |
---|
| 461 | jind = jj + ( nblk + 1 ) * jnew |
---|
| 462 | f_in(:,:,jnew) = f_inv(:,:,jind) |
---|
| 463 | ENDDO |
---|
[1216] | 464 | |
---|
[1306] | 465 | CALL transpose_yz( f_in, ar1(:,:,:) ) |
---|
[1216] | 466 | |
---|
[1306] | 467 | IF ( jj == nblk ) THEN |
---|
| 468 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
| 469 | ELSE |
---|
| 470 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 471 | ENDIF |
---|
| 472 | |
---|
| 473 | ! |
---|
[1306] | 474 | !-- Solve the tridiagonal equation system along z |
---|
[1318] | 475 | CALL cpu_log( log_point_s(6), 'tridia', 'start', cpu_log_nowait ) |
---|
[1216] | 476 | |
---|
[1306] | 477 | n = isave(2) + jj |
---|
| 478 | CALL tridia_substi_overlap( ar1(:,:,:), n ) |
---|
[1216] | 479 | |
---|
[1306] | 480 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
[1216] | 481 | |
---|
[1306] | 482 | ! |
---|
| 483 | !-- Inverse Fourier Transformation |
---|
| 484 | !-- Transposition z --> y |
---|
| 485 | !-- Only one thread should call MPI routines, therefore forward and |
---|
| 486 | !-- backward tranpose are in the same section |
---|
| 487 | IF ( jj == 0 ) THEN |
---|
[1318] | 488 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start', cpu_log_nowait ) |
---|
[1306] | 489 | ELSE |
---|
[1318] | 490 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 491 | ENDIF |
---|
| 492 | |
---|
[1306] | 493 | CALL transpose_zy( ar1(:,:,:), f_in ) |
---|
[1216] | 494 | |
---|
[1306] | 495 | DO jnew = 0, ny-1 |
---|
| 496 | jind = jj + ( nblk + 1 ) * jnew |
---|
| 497 | f_inv(:,:,jind) = f_in(:,:,jnew) |
---|
| 498 | ENDDO |
---|
[1216] | 499 | |
---|
[1306] | 500 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 501 | |
---|
| 502 | ENDDO |
---|
| 503 | ! |
---|
| 504 | !-- Restore original indices/counters |
---|
| 505 | ny = isave(1) |
---|
| 506 | nys_z = isave(2) |
---|
| 507 | nyn_z = isave(3) |
---|
| 508 | sendrecvcount_yz = isave(4) |
---|
| 509 | |
---|
| 510 | CALL resort_for_zy( f_inv, f_out_y ) |
---|
| 511 | |
---|
| 512 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 513 | |
---|
| 514 | ! |
---|
| 515 | !-- fft along y backward + subsequent transposition y --> x |
---|
| 516 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 517 | ! |
---|
| 518 | !-- Save original indices and gridpoint counter |
---|
| 519 | isave(1) = nx |
---|
| 520 | isave(2) = nxl_y |
---|
| 521 | isave(3) = nxr_y |
---|
| 522 | isave(4) = sendrecvcount_xy |
---|
| 523 | ! |
---|
| 524 | !-- Set new indices for transformation |
---|
| 525 | nblk = (( nx+1 ) / pdims(2) ) - 1 |
---|
| 526 | nx = pdims(2) |
---|
| 527 | nnx_y = 1 |
---|
| 528 | nxl_y = myidy * nnx_y |
---|
| 529 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
| 530 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
| 531 | |
---|
[1306] | 532 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
[1216] | 533 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 534 | |
---|
[1306] | 535 | DO ii = 0, nblk |
---|
[1216] | 536 | |
---|
[1318] | 537 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
[1216] | 538 | |
---|
[1306] | 539 | n = isave(2) + ii |
---|
| 540 | nxl_y_bound = isave(2) |
---|
| 541 | nxr_y_bound = isave(3) |
---|
[1216] | 542 | |
---|
[1306] | 543 | CALL fft_y( ar1(:,:,:), 'backward', ar_tr = f_out_y, & |
---|
| 544 | nxl_y_bound = nxl_y_bound, nxr_y_bound = nxr_y_bound, & |
---|
| 545 | nxl_y_l = n, nxr_y_l = n ) |
---|
[1216] | 546 | |
---|
[1306] | 547 | IF ( ii == nblk ) THEN |
---|
| 548 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 549 | ELSE |
---|
| 550 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
[1216] | 551 | ENDIF |
---|
| 552 | |
---|
[1318] | 553 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 554 | |
---|
[1306] | 555 | CALL transpose_yx( ar1(:,:,:), f_in ) |
---|
[1216] | 556 | |
---|
[1306] | 557 | DO inew = 0, nx-1 |
---|
| 558 | iind = ii + (nblk+1) * inew |
---|
| 559 | f_inv(:,:,iind) = f_in(:,:,inew) |
---|
| 560 | ENDDO |
---|
[1216] | 561 | |
---|
[1306] | 562 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 563 | |
---|
| 564 | ENDDO |
---|
| 565 | ! |
---|
| 566 | !-- Restore original indices/counters |
---|
| 567 | nx = isave(1) |
---|
| 568 | nxl_y = isave(2) |
---|
| 569 | nxr_y = isave(3) |
---|
| 570 | sendrecvcount_xy = isave(4) |
---|
| 571 | |
---|
| 572 | CALL resort_for_yx( f_inv, f_out_z ) |
---|
| 573 | |
---|
| 574 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 575 | |
---|
| 576 | ! |
---|
| 577 | !-- fft along x backward + subsequent final transposition x --> z |
---|
| 578 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 579 | ! |
---|
| 580 | !-- Save original indices and gridpoint counter |
---|
| 581 | isave(1) = nz |
---|
| 582 | isave(2) = nzb_x |
---|
| 583 | isave(3) = nzt_x |
---|
| 584 | isave(4) = sendrecvcount_zx |
---|
| 585 | ! |
---|
| 586 | !-- Set new indices for transformation |
---|
| 587 | nblk = nz / pdims(1) |
---|
| 588 | nz = pdims(1) |
---|
| 589 | nnz_x = 1 |
---|
| 590 | nzb_x = 1 + myidx * nnz_x |
---|
| 591 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
| 592 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
| 593 | |
---|
[1306] | 594 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
[1216] | 595 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 596 | |
---|
[1306] | 597 | DO kk = 1, nblk |
---|
[1216] | 598 | |
---|
[1318] | 599 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
[1216] | 600 | |
---|
[1306] | 601 | n = isave(2) + kk - 1 |
---|
| 602 | CALL fft_x( ar1(:,:,:), 'backward', f_out_z(:,:,n)) |
---|
[1216] | 603 | |
---|
[1306] | 604 | IF ( kk == nblk ) THEN |
---|
| 605 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 606 | ELSE |
---|
| 607 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
[1216] | 608 | ENDIF |
---|
| 609 | |
---|
[1318] | 610 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 611 | |
---|
[1306] | 612 | CALL transpose_xz( ar1(:,:,:), f_in ) |
---|
[1216] | 613 | |
---|
[1306] | 614 | DO knew = 1, nz |
---|
| 615 | ki = kk + nblk * (knew-1) |
---|
| 616 | f_inv(:,:,ki) = f_in(:,:,knew) |
---|
| 617 | ENDDO |
---|
[1216] | 618 | |
---|
[1306] | 619 | IF ( kk == nblk ) THEN |
---|
| 620 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
| 621 | ELSE |
---|
| 622 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 623 | ENDIF |
---|
| 624 | |
---|
| 625 | ENDDO |
---|
| 626 | ! |
---|
| 627 | !-- Restore original indices/counters |
---|
| 628 | nz = isave(1) |
---|
| 629 | nzb_x = isave(2) |
---|
| 630 | nzt_x = isave(3) |
---|
| 631 | sendrecvcount_zx = isave(4) |
---|
| 632 | |
---|
| 633 | CALL resort_for_xz( f_inv, ar ) |
---|
| 634 | |
---|
| 635 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 636 | |
---|
[1] | 637 | ENDIF |
---|
[3634] | 638 | #endif |
---|
[1] | 639 | |
---|
[3690] | 640 | #if !__acc_fft_device |
---|
| 641 | !$ACC UPDATE DEVICE(ar) |
---|
| 642 | #endif |
---|
| 643 | |
---|
[1] | 644 | CALL cpu_log( log_point_s(3), 'poisfft', 'stop' ) |
---|
| 645 | |
---|
| 646 | END SUBROUTINE poisfft |
---|
| 647 | |
---|
| 648 | |
---|
| 649 | !------------------------------------------------------------------------------! |
---|
[1682] | 650 | ! Description: |
---|
| 651 | ! ------------ |
---|
| 652 | !> Fourier-transformation along y with subsequent transposition y --> x for |
---|
| 653 | !> a 1d-decomposition along x. |
---|
| 654 | !> |
---|
| 655 | !> @attention The performance of this routine is much faster on the NEC-SX6, |
---|
| 656 | !> if the first index of work_ffty_vec is odd. Otherwise |
---|
| 657 | !> memory bank conflicts may occur (especially if the index is a |
---|
| 658 | !> multiple of 128). That's why work_ffty_vec is dimensioned as |
---|
| 659 | !> 0:ny+1. |
---|
| 660 | !> Of course, this will not work if users are using an odd number |
---|
| 661 | !> of gridpoints along y. |
---|
[1] | 662 | !------------------------------------------------------------------------------! |
---|
[1682] | 663 | SUBROUTINE ffty_tr_yx( f_in, f_out ) |
---|
[1] | 664 | |
---|
[1320] | 665 | USE control_parameters, & |
---|
[2300] | 666 | ONLY: loop_optimization |
---|
[1320] | 667 | |
---|
| 668 | USE cpulog, & |
---|
| 669 | ONLY: cpu_log, log_point_s |
---|
| 670 | |
---|
| 671 | USE kinds |
---|
| 672 | |
---|
[1] | 673 | USE pegrid |
---|
| 674 | |
---|
| 675 | IMPLICIT NONE |
---|
| 676 | |
---|
[1682] | 677 | INTEGER(iwp) :: i !< |
---|
| 678 | INTEGER(iwp) :: iend !< |
---|
| 679 | INTEGER(iwp) :: iouter !< |
---|
| 680 | INTEGER(iwp) :: ir !< |
---|
| 681 | INTEGER(iwp) :: j !< |
---|
| 682 | INTEGER(iwp) :: k !< |
---|
[1] | 683 | |
---|
[1682] | 684 | INTEGER(iwp), PARAMETER :: stridex = 4 !< |
---|
[1320] | 685 | |
---|
[1682] | 686 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_in !< |
---|
| 687 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_out !< |
---|
| 688 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !< |
---|
[1] | 689 | |
---|
[2300] | 690 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_ffty !< |
---|
| 691 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: work_ffty_vec !< |
---|
| 692 | |
---|
[1] | 693 | ! |
---|
| 694 | !-- Carry out the FFT along y, where all data are present due to the |
---|
| 695 | !-- 1d-decomposition along x. Resort the data in a way that x becomes |
---|
| 696 | !-- the first index. |
---|
[1106] | 697 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'start' ) |
---|
[1] | 698 | |
---|
[2300] | 699 | IF ( loop_optimization == 'vector' ) THEN |
---|
| 700 | |
---|
| 701 | ALLOCATE( work_ffty_vec(0:ny+1,1:nz,nxl:nxr) ) |
---|
[1] | 702 | ! |
---|
| 703 | !-- Code optimized for vector processors |
---|
[2300] | 704 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 705 | !$OMP DO |
---|
[1] | 706 | DO i = nxl, nxr |
---|
| 707 | |
---|
| 708 | DO j = 0, ny |
---|
| 709 | DO k = 1, nz |
---|
| 710 | work_ffty_vec(j,k,i) = f_in(k,j,i) |
---|
| 711 | ENDDO |
---|
| 712 | ENDDO |
---|
| 713 | |
---|
| 714 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'forward' ) |
---|
| 715 | |
---|
| 716 | ENDDO |
---|
| 717 | |
---|
[2300] | 718 | !$OMP DO |
---|
[1] | 719 | DO k = 1, nz |
---|
| 720 | DO j = 0, ny |
---|
| 721 | DO i = nxl, nxr |
---|
| 722 | work(i,k,j) = work_ffty_vec(j,k,i) |
---|
| 723 | ENDDO |
---|
| 724 | ENDDO |
---|
| 725 | ENDDO |
---|
[2300] | 726 | !$OMP END PARALLEL |
---|
[1] | 727 | |
---|
[2300] | 728 | DEALLOCATE( work_ffty_vec ) |
---|
| 729 | |
---|
[1] | 730 | ELSE |
---|
| 731 | ! |
---|
| 732 | !-- Cache optimized code. |
---|
[2300] | 733 | ALLOCATE( work_ffty(0:ny,stridex) ) |
---|
| 734 | ! |
---|
[1] | 735 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 736 | !-- loop for better cache performance |
---|
[2300] | 737 | !$OMP PARALLEL PRIVATE (i,iend,iouter,ir,j,k,work_ffty) |
---|
| 738 | !$OMP DO |
---|
[1] | 739 | DO iouter = nxl, nxr, stridex |
---|
| 740 | |
---|
| 741 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 742 | |
---|
| 743 | DO k = 1, nz |
---|
| 744 | |
---|
| 745 | DO i = iouter, iend |
---|
| 746 | |
---|
| 747 | ir = i-iouter+1 ! counter within a stride |
---|
| 748 | DO j = 0, ny |
---|
| 749 | work_ffty(j,ir) = f_in(k,j,i) |
---|
| 750 | ENDDO |
---|
| 751 | ! |
---|
| 752 | !-- FFT along y |
---|
[1106] | 753 | CALL fft_y_1d( work_ffty(:,ir), 'forward' ) |
---|
[1] | 754 | |
---|
| 755 | ENDDO |
---|
| 756 | |
---|
| 757 | ! |
---|
| 758 | !-- Resort |
---|
| 759 | DO j = 0, ny |
---|
| 760 | DO i = iouter, iend |
---|
| 761 | work(i,k,j) = work_ffty(j,i-iouter+1) |
---|
| 762 | ENDDO |
---|
| 763 | ENDDO |
---|
| 764 | |
---|
| 765 | ENDDO |
---|
| 766 | |
---|
| 767 | ENDDO |
---|
[2300] | 768 | !$OMP END PARALLEL |
---|
[1] | 769 | |
---|
[2300] | 770 | DEALLOCATE( work_ffty ) |
---|
| 771 | |
---|
[1] | 772 | ENDIF |
---|
[2300] | 773 | |
---|
[1106] | 774 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'pause' ) |
---|
[1] | 775 | |
---|
| 776 | ! |
---|
| 777 | !-- Transpose array |
---|
[1111] | 778 | #if defined( __parallel ) |
---|
[1] | 779 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 780 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 781 | CALL MPI_ALLTOALL( work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 782 | f_out(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 783 | comm1dx, ierr ) |
---|
| 784 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[4429] | 785 | #else |
---|
| 786 | ! |
---|
| 787 | !-- Next line required to avoid compile error about unused dummy argument in serial mode |
---|
| 788 | i = SIZE( f_out ) |
---|
[1111] | 789 | #endif |
---|
[1] | 790 | |
---|
| 791 | END SUBROUTINE ffty_tr_yx |
---|
| 792 | |
---|
| 793 | |
---|
| 794 | !------------------------------------------------------------------------------! |
---|
[1682] | 795 | ! Description: |
---|
| 796 | ! ------------ |
---|
| 797 | !> Transposition x --> y with a subsequent backward Fourier transformation for |
---|
| 798 | !> a 1d-decomposition along x |
---|
[1] | 799 | !------------------------------------------------------------------------------! |
---|
[1682] | 800 | SUBROUTINE tr_xy_ffty( f_in, f_out ) |
---|
[1] | 801 | |
---|
[1320] | 802 | USE control_parameters, & |
---|
[2300] | 803 | ONLY: loop_optimization |
---|
[1320] | 804 | |
---|
| 805 | USE cpulog, & |
---|
| 806 | ONLY: cpu_log, log_point_s |
---|
| 807 | |
---|
| 808 | USE kinds |
---|
| 809 | |
---|
[1] | 810 | USE pegrid |
---|
| 811 | |
---|
| 812 | IMPLICIT NONE |
---|
| 813 | |
---|
[1682] | 814 | INTEGER(iwp) :: i !< |
---|
| 815 | INTEGER(iwp) :: iend !< |
---|
| 816 | INTEGER(iwp) :: iouter !< |
---|
| 817 | INTEGER(iwp) :: ir !< |
---|
| 818 | INTEGER(iwp) :: j !< |
---|
| 819 | INTEGER(iwp) :: k !< |
---|
[1] | 820 | |
---|
[1682] | 821 | INTEGER(iwp), PARAMETER :: stridex = 4 !< |
---|
[1320] | 822 | |
---|
[1682] | 823 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_in !< |
---|
| 824 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_out !< |
---|
| 825 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !< |
---|
[1] | 826 | |
---|
[2300] | 827 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_ffty !< |
---|
| 828 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: work_ffty_vec !< |
---|
| 829 | |
---|
[1] | 830 | ! |
---|
| 831 | !-- Transpose array |
---|
[1111] | 832 | #if defined( __parallel ) |
---|
[1] | 833 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 834 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 835 | CALL MPI_ALLTOALL( f_in(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 836 | work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 837 | comm1dx, ierr ) |
---|
| 838 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[4429] | 839 | #else |
---|
| 840 | ! |
---|
| 841 | !-- Next line required to avoid compile error about unused dummy argument in serial mode |
---|
| 842 | i = SIZE( f_in ) |
---|
[1111] | 843 | #endif |
---|
[1] | 844 | |
---|
| 845 | ! |
---|
| 846 | !-- Resort the data in a way that y becomes the first index and carry out the |
---|
| 847 | !-- backward fft along y. |
---|
[1106] | 848 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'continue' ) |
---|
[1] | 849 | |
---|
[2300] | 850 | IF ( loop_optimization == 'vector' ) THEN |
---|
| 851 | |
---|
| 852 | ALLOCATE( work_ffty_vec(0:ny+1,1:nz,nxl:nxr) ) |
---|
[1] | 853 | ! |
---|
| 854 | !-- Code optimized for vector processors |
---|
[2300] | 855 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 856 | !$OMP DO |
---|
[1] | 857 | DO k = 1, nz |
---|
| 858 | DO j = 0, ny |
---|
| 859 | DO i = nxl, nxr |
---|
| 860 | work_ffty_vec(j,k,i) = work(i,k,j) |
---|
| 861 | ENDDO |
---|
| 862 | ENDDO |
---|
| 863 | ENDDO |
---|
| 864 | |
---|
[2300] | 865 | !$OMP DO |
---|
[1] | 866 | DO i = nxl, nxr |
---|
| 867 | |
---|
| 868 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'backward' ) |
---|
| 869 | |
---|
| 870 | DO j = 0, ny |
---|
| 871 | DO k = 1, nz |
---|
| 872 | f_out(k,j,i) = work_ffty_vec(j,k,i) |
---|
| 873 | ENDDO |
---|
| 874 | ENDDO |
---|
| 875 | |
---|
| 876 | ENDDO |
---|
[2300] | 877 | !$OMP END PARALLEL |
---|
[1] | 878 | |
---|
[2300] | 879 | DEALLOCATE( work_ffty_vec ) |
---|
| 880 | |
---|
[1] | 881 | ELSE |
---|
| 882 | ! |
---|
| 883 | !-- Cache optimized code. |
---|
[2300] | 884 | ALLOCATE( work_ffty(0:ny,stridex) ) |
---|
| 885 | ! |
---|
[1] | 886 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 887 | !-- loop for better cache performance |
---|
[2300] | 888 | !$OMP PARALLEL PRIVATE ( i, iend, iouter, ir, j, k, work_ffty ) |
---|
| 889 | !$OMP DO |
---|
[1] | 890 | DO iouter = nxl, nxr, stridex |
---|
| 891 | |
---|
| 892 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 893 | |
---|
| 894 | DO k = 1, nz |
---|
| 895 | ! |
---|
| 896 | !-- Resort |
---|
| 897 | DO j = 0, ny |
---|
| 898 | DO i = iouter, iend |
---|
| 899 | work_ffty(j,i-iouter+1) = work(i,k,j) |
---|
| 900 | ENDDO |
---|
| 901 | ENDDO |
---|
| 902 | |
---|
| 903 | DO i = iouter, iend |
---|
| 904 | |
---|
| 905 | ! |
---|
| 906 | !-- FFT along y |
---|
| 907 | ir = i-iouter+1 ! counter within a stride |
---|
[1106] | 908 | CALL fft_y_1d( work_ffty(:,ir), 'backward' ) |
---|
[1] | 909 | |
---|
| 910 | DO j = 0, ny |
---|
| 911 | f_out(k,j,i) = work_ffty(j,ir) |
---|
| 912 | ENDDO |
---|
| 913 | ENDDO |
---|
| 914 | |
---|
| 915 | ENDDO |
---|
| 916 | |
---|
| 917 | ENDDO |
---|
[2300] | 918 | !$OMP END PARALLEL |
---|
[1] | 919 | |
---|
[2300] | 920 | DEALLOCATE( work_ffty ) |
---|
| 921 | |
---|
[1] | 922 | ENDIF |
---|
| 923 | |
---|
[1106] | 924 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'stop' ) |
---|
[1] | 925 | |
---|
| 926 | END SUBROUTINE tr_xy_ffty |
---|
| 927 | |
---|
| 928 | |
---|
| 929 | !------------------------------------------------------------------------------! |
---|
[1682] | 930 | ! Description: |
---|
| 931 | ! ------------ |
---|
| 932 | !> FFT along x, solution of the tridiagonal system and backward FFT for |
---|
| 933 | !> a 1d-decomposition along x |
---|
| 934 | !> |
---|
| 935 | !> @warning this subroutine may still not work for hybrid parallelization |
---|
| 936 | !> with OpenMP (for possible necessary changes see the original |
---|
| 937 | !> routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
[1] | 938 | !------------------------------------------------------------------------------! |
---|
[1682] | 939 | SUBROUTINE fftx_tri_fftx( ar ) |
---|
[1] | 940 | |
---|
[1320] | 941 | USE control_parameters, & |
---|
[2300] | 942 | ONLY: loop_optimization |
---|
[1320] | 943 | |
---|
| 944 | USE cpulog, & |
---|
| 945 | ONLY: cpu_log, log_point_s |
---|
| 946 | |
---|
| 947 | USE grid_variables, & |
---|
| 948 | ONLY: ddx2, ddy2 |
---|
| 949 | |
---|
| 950 | USE kinds |
---|
| 951 | |
---|
[1] | 952 | USE pegrid |
---|
| 953 | |
---|
| 954 | IMPLICIT NONE |
---|
| 955 | |
---|
[1682] | 956 | INTEGER(iwp) :: i !< |
---|
| 957 | INTEGER(iwp) :: j !< |
---|
| 958 | INTEGER(iwp) :: k !< |
---|
| 959 | INTEGER(iwp) :: m !< |
---|
| 960 | INTEGER(iwp) :: n !< |
---|
[3241] | 961 | !$ INTEGER(iwp) :: omp_get_thread_num !< |
---|
[1682] | 962 | INTEGER(iwp) :: tn !< |
---|
[1] | 963 | |
---|
[1682] | 964 | REAL(wp), DIMENSION(0:nx) :: work_fftx !< |
---|
| 965 | REAL(wp), DIMENSION(0:nx,1:nz) :: work_trix !< |
---|
| 966 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: ar !< |
---|
| 967 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !< |
---|
[1] | 968 | |
---|
| 969 | |
---|
[1106] | 970 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'start' ) |
---|
[1] | 971 | |
---|
| 972 | ALLOCATE( tri(5,0:nx,0:nz-1,0:threads_per_task-1) ) |
---|
| 973 | |
---|
| 974 | tn = 0 ! Default thread number in case of one thread |
---|
| 975 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_fftx, work_trix ) |
---|
| 976 | DO j = nys_x, nyn_x |
---|
| 977 | |
---|
| 978 | !$ tn = omp_get_thread_num() |
---|
| 979 | |
---|
[2300] | 980 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 981 | ! |
---|
| 982 | !-- Code optimized for vector processors |
---|
| 983 | DO k = 1, nz |
---|
| 984 | |
---|
| 985 | m = 0 |
---|
| 986 | DO n = 1, pdims(1) |
---|
[1003] | 987 | DO i = 1, nnx |
---|
[1] | 988 | work_trix(m,k) = ar(i,k,j,n) |
---|
| 989 | m = m + 1 |
---|
| 990 | ENDDO |
---|
| 991 | ENDDO |
---|
| 992 | |
---|
| 993 | ENDDO |
---|
| 994 | |
---|
| 995 | CALL fft_x_m( work_trix, 'forward' ) |
---|
| 996 | |
---|
| 997 | ELSE |
---|
| 998 | ! |
---|
| 999 | !-- Cache optimized code |
---|
| 1000 | DO k = 1, nz |
---|
| 1001 | |
---|
| 1002 | m = 0 |
---|
| 1003 | DO n = 1, pdims(1) |
---|
[1003] | 1004 | DO i = 1, nnx |
---|
[1] | 1005 | work_fftx(m) = ar(i,k,j,n) |
---|
| 1006 | m = m + 1 |
---|
| 1007 | ENDDO |
---|
| 1008 | ENDDO |
---|
| 1009 | |
---|
[1106] | 1010 | CALL fft_x_1d( work_fftx, 'forward' ) |
---|
[1] | 1011 | |
---|
| 1012 | DO i = 0, nx |
---|
| 1013 | work_trix(i,k) = work_fftx(i) |
---|
| 1014 | ENDDO |
---|
| 1015 | |
---|
| 1016 | ENDDO |
---|
| 1017 | |
---|
| 1018 | ENDIF |
---|
| 1019 | |
---|
| 1020 | ! |
---|
| 1021 | !-- Solve the linear equation system |
---|
| 1022 | CALL tridia_1dd( ddx2, ddy2, nx, ny, j, work_trix, tri(:,:,:,tn) ) |
---|
| 1023 | |
---|
[2300] | 1024 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1025 | ! |
---|
| 1026 | !-- Code optimized for vector processors |
---|
| 1027 | CALL fft_x_m( work_trix, 'backward' ) |
---|
| 1028 | |
---|
| 1029 | DO k = 1, nz |
---|
| 1030 | |
---|
| 1031 | m = 0 |
---|
| 1032 | DO n = 1, pdims(1) |
---|
[1003] | 1033 | DO i = 1, nnx |
---|
[1] | 1034 | ar(i,k,j,n) = work_trix(m,k) |
---|
| 1035 | m = m + 1 |
---|
| 1036 | ENDDO |
---|
| 1037 | ENDDO |
---|
| 1038 | |
---|
| 1039 | ENDDO |
---|
| 1040 | |
---|
| 1041 | ELSE |
---|
| 1042 | ! |
---|
| 1043 | !-- Cache optimized code |
---|
| 1044 | DO k = 1, nz |
---|
| 1045 | |
---|
| 1046 | DO i = 0, nx |
---|
| 1047 | work_fftx(i) = work_trix(i,k) |
---|
| 1048 | ENDDO |
---|
| 1049 | |
---|
[1106] | 1050 | CALL fft_x_1d( work_fftx, 'backward' ) |
---|
[1] | 1051 | |
---|
| 1052 | m = 0 |
---|
| 1053 | DO n = 1, pdims(1) |
---|
[1003] | 1054 | DO i = 1, nnx |
---|
[1] | 1055 | ar(i,k,j,n) = work_fftx(m) |
---|
| 1056 | m = m + 1 |
---|
| 1057 | ENDDO |
---|
| 1058 | ENDDO |
---|
| 1059 | |
---|
| 1060 | ENDDO |
---|
| 1061 | |
---|
| 1062 | ENDIF |
---|
| 1063 | |
---|
| 1064 | ENDDO |
---|
| 1065 | |
---|
| 1066 | DEALLOCATE( tri ) |
---|
| 1067 | |
---|
[1106] | 1068 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'stop' ) |
---|
[1] | 1069 | |
---|
| 1070 | END SUBROUTINE fftx_tri_fftx |
---|
| 1071 | |
---|
| 1072 | |
---|
| 1073 | !------------------------------------------------------------------------------! |
---|
[1682] | 1074 | ! Description: |
---|
| 1075 | ! ------------ |
---|
| 1076 | !> Fourier-transformation along x with subsequent transposition x --> y for |
---|
| 1077 | !> a 1d-decomposition along y. |
---|
| 1078 | !> |
---|
| 1079 | !> @attention NEC-branch of this routine may significantly profit from |
---|
| 1080 | !> further optimizations. So far, performance is much worse than |
---|
| 1081 | !> for routine ffty_tr_yx (more than three times slower). |
---|
[1] | 1082 | !------------------------------------------------------------------------------! |
---|
[1682] | 1083 | SUBROUTINE fftx_tr_xy( f_in, f_out ) |
---|
[1] | 1084 | |
---|
[1682] | 1085 | |
---|
[1320] | 1086 | USE control_parameters, & |
---|
[2300] | 1087 | ONLY: loop_optimization |
---|
[1320] | 1088 | |
---|
| 1089 | USE cpulog, & |
---|
| 1090 | ONLY: cpu_log, log_point_s |
---|
| 1091 | |
---|
| 1092 | USE kinds |
---|
| 1093 | |
---|
[1] | 1094 | USE pegrid |
---|
| 1095 | |
---|
| 1096 | IMPLICIT NONE |
---|
| 1097 | |
---|
[1682] | 1098 | INTEGER(iwp) :: i !< |
---|
| 1099 | INTEGER(iwp) :: j !< |
---|
| 1100 | INTEGER(iwp) :: k !< |
---|
[1] | 1101 | |
---|
[1682] | 1102 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !< |
---|
| 1103 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_in !< |
---|
| 1104 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_out !< |
---|
| 1105 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !< |
---|
[1] | 1106 | |
---|
| 1107 | ! |
---|
| 1108 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 1109 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 1110 | !-- the first index. |
---|
[1106] | 1111 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'start' ) |
---|
[1] | 1112 | |
---|
[2300] | 1113 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1114 | ! |
---|
| 1115 | !-- Code for vector processors |
---|
[85] | 1116 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 1117 | !$OMP DO |
---|
| 1118 | DO i = 0, nx |
---|
| 1119 | |
---|
| 1120 | DO j = nys, nyn |
---|
| 1121 | DO k = 1, nz |
---|
| 1122 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 1123 | ENDDO |
---|
| 1124 | ENDDO |
---|
| 1125 | |
---|
| 1126 | ENDDO |
---|
| 1127 | |
---|
| 1128 | !$OMP DO |
---|
| 1129 | DO j = nys, nyn |
---|
| 1130 | |
---|
| 1131 | CALL fft_x_m( work_fftx(:,:,j), 'forward' ) |
---|
| 1132 | |
---|
| 1133 | DO k = 1, nz |
---|
| 1134 | DO i = 0, nx |
---|
| 1135 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 1136 | ENDDO |
---|
| 1137 | ENDDO |
---|
| 1138 | |
---|
| 1139 | ENDDO |
---|
| 1140 | !$OMP END PARALLEL |
---|
| 1141 | |
---|
| 1142 | ELSE |
---|
| 1143 | |
---|
| 1144 | ! |
---|
| 1145 | !-- Cache optimized code (there might be still a potential for better |
---|
| 1146 | !-- optimization). |
---|
[696] | 1147 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
[1] | 1148 | !$OMP DO |
---|
| 1149 | DO i = 0, nx |
---|
| 1150 | |
---|
| 1151 | DO j = nys, nyn |
---|
| 1152 | DO k = 1, nz |
---|
| 1153 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 1154 | ENDDO |
---|
| 1155 | ENDDO |
---|
| 1156 | |
---|
| 1157 | ENDDO |
---|
| 1158 | |
---|
| 1159 | !$OMP DO |
---|
| 1160 | DO j = nys, nyn |
---|
| 1161 | DO k = 1, nz |
---|
| 1162 | |
---|
[1106] | 1163 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'forward' ) |
---|
[1] | 1164 | |
---|
| 1165 | DO i = 0, nx |
---|
| 1166 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 1167 | ENDDO |
---|
| 1168 | ENDDO |
---|
| 1169 | |
---|
| 1170 | ENDDO |
---|
| 1171 | !$OMP END PARALLEL |
---|
| 1172 | |
---|
| 1173 | ENDIF |
---|
[1106] | 1174 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'pause' ) |
---|
[1] | 1175 | |
---|
| 1176 | ! |
---|
| 1177 | !-- Transpose array |
---|
[1111] | 1178 | #if defined( __parallel ) |
---|
[1] | 1179 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1180 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1181 | CALL MPI_ALLTOALL( work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 1182 | f_out(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 1183 | comm1dy, ierr ) |
---|
| 1184 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[4429] | 1185 | #else |
---|
| 1186 | ! |
---|
| 1187 | !-- Next line required to avoid compile error about unused dummy argument in serial mode |
---|
| 1188 | i = SIZE( f_out ) |
---|
[1111] | 1189 | #endif |
---|
[1] | 1190 | |
---|
| 1191 | END SUBROUTINE fftx_tr_xy |
---|
| 1192 | |
---|
| 1193 | |
---|
| 1194 | !------------------------------------------------------------------------------! |
---|
[1682] | 1195 | ! Description: |
---|
| 1196 | ! ------------ |
---|
| 1197 | !> Transposition y --> x with a subsequent backward Fourier transformation for |
---|
| 1198 | !> a 1d-decomposition along x. |
---|
[1] | 1199 | !------------------------------------------------------------------------------! |
---|
[1682] | 1200 | SUBROUTINE tr_yx_fftx( f_in, f_out ) |
---|
[1] | 1201 | |
---|
[1682] | 1202 | |
---|
[1320] | 1203 | USE control_parameters, & |
---|
[2300] | 1204 | ONLY: loop_optimization |
---|
[1320] | 1205 | |
---|
| 1206 | USE cpulog, & |
---|
| 1207 | ONLY: cpu_log, log_point_s |
---|
| 1208 | |
---|
| 1209 | USE kinds |
---|
| 1210 | |
---|
[1] | 1211 | USE pegrid |
---|
| 1212 | |
---|
| 1213 | IMPLICIT NONE |
---|
| 1214 | |
---|
[1682] | 1215 | INTEGER(iwp) :: i !< |
---|
| 1216 | INTEGER(iwp) :: j !< |
---|
| 1217 | INTEGER(iwp) :: k !< |
---|
[1] | 1218 | |
---|
[1682] | 1219 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !< |
---|
| 1220 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_in !< |
---|
| 1221 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_out !< |
---|
| 1222 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !< |
---|
[1] | 1223 | |
---|
[4429] | 1224 | |
---|
[1] | 1225 | ! |
---|
| 1226 | !-- Transpose array |
---|
[1111] | 1227 | #if defined( __parallel ) |
---|
[1] | 1228 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1229 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1230 | CALL MPI_ALLTOALL( f_in(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 1231 | work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 1232 | comm1dy, ierr ) |
---|
| 1233 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[4429] | 1234 | #else |
---|
| 1235 | ! |
---|
| 1236 | !-- Next line required to avoid compile error about unused dummy argument in serial mode |
---|
| 1237 | i = SIZE( f_in ) |
---|
[1111] | 1238 | #endif |
---|
[1] | 1239 | |
---|
| 1240 | ! |
---|
| 1241 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 1242 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 1243 | !-- the first index. |
---|
[1106] | 1244 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'continue' ) |
---|
[1] | 1245 | |
---|
[2300] | 1246 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1247 | ! |
---|
| 1248 | !-- Code optimized for vector processors |
---|
[85] | 1249 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 1250 | !$OMP DO |
---|
| 1251 | DO j = nys, nyn |
---|
| 1252 | |
---|
| 1253 | DO k = 1, nz |
---|
| 1254 | DO i = 0, nx |
---|
| 1255 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1256 | ENDDO |
---|
| 1257 | ENDDO |
---|
| 1258 | |
---|
| 1259 | CALL fft_x_m( work_fftx(:,:,j), 'backward' ) |
---|
| 1260 | |
---|
| 1261 | ENDDO |
---|
| 1262 | |
---|
| 1263 | !$OMP DO |
---|
| 1264 | DO i = 0, nx |
---|
| 1265 | DO j = nys, nyn |
---|
| 1266 | DO k = 1, nz |
---|
| 1267 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 1268 | ENDDO |
---|
| 1269 | ENDDO |
---|
| 1270 | ENDDO |
---|
| 1271 | !$OMP END PARALLEL |
---|
| 1272 | |
---|
| 1273 | ELSE |
---|
| 1274 | |
---|
| 1275 | ! |
---|
| 1276 | !-- Cache optimized code (there might be still a potential for better |
---|
| 1277 | !-- optimization). |
---|
[696] | 1278 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
[1] | 1279 | !$OMP DO |
---|
| 1280 | DO j = nys, nyn |
---|
| 1281 | DO k = 1, nz |
---|
| 1282 | |
---|
| 1283 | DO i = 0, nx |
---|
| 1284 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1285 | ENDDO |
---|
| 1286 | |
---|
[1106] | 1287 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'backward' ) |
---|
[1] | 1288 | |
---|
| 1289 | ENDDO |
---|
| 1290 | ENDDO |
---|
| 1291 | |
---|
| 1292 | !$OMP DO |
---|
| 1293 | DO i = 0, nx |
---|
| 1294 | DO j = nys, nyn |
---|
| 1295 | DO k = 1, nz |
---|
| 1296 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 1297 | ENDDO |
---|
| 1298 | ENDDO |
---|
| 1299 | ENDDO |
---|
| 1300 | !$OMP END PARALLEL |
---|
| 1301 | |
---|
| 1302 | ENDIF |
---|
[1106] | 1303 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'stop' ) |
---|
[1] | 1304 | |
---|
| 1305 | END SUBROUTINE tr_yx_fftx |
---|
| 1306 | |
---|
| 1307 | |
---|
| 1308 | !------------------------------------------------------------------------------! |
---|
[1682] | 1309 | ! Description: |
---|
| 1310 | ! ------------ |
---|
| 1311 | !> FFT along y, solution of the tridiagonal system and backward FFT for |
---|
| 1312 | !> a 1d-decomposition along y. |
---|
| 1313 | !> |
---|
| 1314 | !> @warning this subroutine may still not work for hybrid parallelization |
---|
| 1315 | !> with OpenMP (for possible necessary changes see the original |
---|
| 1316 | !> routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
[1] | 1317 | !------------------------------------------------------------------------------! |
---|
[1682] | 1318 | SUBROUTINE ffty_tri_ffty( ar ) |
---|
[1] | 1319 | |
---|
[1682] | 1320 | |
---|
[1320] | 1321 | USE control_parameters, & |
---|
[2300] | 1322 | ONLY: loop_optimization |
---|
[1320] | 1323 | |
---|
| 1324 | USE cpulog, & |
---|
| 1325 | ONLY: cpu_log, log_point_s |
---|
| 1326 | |
---|
| 1327 | USE grid_variables, & |
---|
| 1328 | ONLY: ddx2, ddy2 |
---|
| 1329 | |
---|
| 1330 | USE kinds |
---|
| 1331 | |
---|
[1] | 1332 | USE pegrid |
---|
| 1333 | |
---|
| 1334 | IMPLICIT NONE |
---|
| 1335 | |
---|
[1682] | 1336 | INTEGER(iwp) :: i !< |
---|
| 1337 | INTEGER(iwp) :: j !< |
---|
| 1338 | INTEGER(iwp) :: k !< |
---|
| 1339 | INTEGER(iwp) :: m !< |
---|
| 1340 | INTEGER(iwp) :: n !< |
---|
[3241] | 1341 | !$ INTEGER(iwp) :: omp_get_thread_num !< |
---|
[1682] | 1342 | INTEGER(iwp) :: tn !< |
---|
[1] | 1343 | |
---|
[1682] | 1344 | REAL(wp), DIMENSION(0:ny) :: work_ffty !< |
---|
| 1345 | REAL(wp), DIMENSION(0:ny,1:nz) :: work_triy !< |
---|
| 1346 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: ar !< |
---|
| 1347 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !< |
---|
[1] | 1348 | |
---|
| 1349 | |
---|
[1106] | 1350 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'start' ) |
---|
[1] | 1351 | |
---|
| 1352 | ALLOCATE( tri(5,0:ny,0:nz-1,0:threads_per_task-1) ) |
---|
| 1353 | |
---|
| 1354 | tn = 0 ! Default thread number in case of one thread |
---|
[696] | 1355 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_ffty, work_triy ) |
---|
[1] | 1356 | DO i = nxl_y, nxr_y |
---|
| 1357 | |
---|
| 1358 | !$ tn = omp_get_thread_num() |
---|
| 1359 | |
---|
[2300] | 1360 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1361 | ! |
---|
| 1362 | !-- Code optimized for vector processors |
---|
| 1363 | DO k = 1, nz |
---|
| 1364 | |
---|
| 1365 | m = 0 |
---|
| 1366 | DO n = 1, pdims(2) |
---|
[1003] | 1367 | DO j = 1, nny |
---|
[1] | 1368 | work_triy(m,k) = ar(j,k,i,n) |
---|
| 1369 | m = m + 1 |
---|
| 1370 | ENDDO |
---|
| 1371 | ENDDO |
---|
| 1372 | |
---|
| 1373 | ENDDO |
---|
| 1374 | |
---|
| 1375 | CALL fft_y_m( work_triy, ny, 'forward' ) |
---|
| 1376 | |
---|
| 1377 | ELSE |
---|
| 1378 | ! |
---|
| 1379 | !-- Cache optimized code |
---|
| 1380 | DO k = 1, nz |
---|
| 1381 | |
---|
| 1382 | m = 0 |
---|
| 1383 | DO n = 1, pdims(2) |
---|
[1003] | 1384 | DO j = 1, nny |
---|
[1] | 1385 | work_ffty(m) = ar(j,k,i,n) |
---|
| 1386 | m = m + 1 |
---|
| 1387 | ENDDO |
---|
| 1388 | ENDDO |
---|
| 1389 | |
---|
[1106] | 1390 | CALL fft_y_1d( work_ffty, 'forward' ) |
---|
[1] | 1391 | |
---|
| 1392 | DO j = 0, ny |
---|
| 1393 | work_triy(j,k) = work_ffty(j) |
---|
| 1394 | ENDDO |
---|
| 1395 | |
---|
| 1396 | ENDDO |
---|
| 1397 | |
---|
| 1398 | ENDIF |
---|
| 1399 | |
---|
| 1400 | ! |
---|
| 1401 | !-- Solve the linear equation system |
---|
| 1402 | CALL tridia_1dd( ddy2, ddx2, ny, nx, i, work_triy, tri(:,:,:,tn) ) |
---|
| 1403 | |
---|
[2300] | 1404 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1405 | ! |
---|
| 1406 | !-- Code optimized for vector processors |
---|
| 1407 | CALL fft_y_m( work_triy, ny, 'backward' ) |
---|
| 1408 | |
---|
| 1409 | DO k = 1, nz |
---|
| 1410 | |
---|
| 1411 | m = 0 |
---|
| 1412 | DO n = 1, pdims(2) |
---|
[1003] | 1413 | DO j = 1, nny |
---|
[1] | 1414 | ar(j,k,i,n) = work_triy(m,k) |
---|
| 1415 | m = m + 1 |
---|
| 1416 | ENDDO |
---|
| 1417 | ENDDO |
---|
| 1418 | |
---|
| 1419 | ENDDO |
---|
| 1420 | |
---|
| 1421 | ELSE |
---|
| 1422 | ! |
---|
| 1423 | !-- Cache optimized code |
---|
| 1424 | DO k = 1, nz |
---|
| 1425 | |
---|
| 1426 | DO j = 0, ny |
---|
| 1427 | work_ffty(j) = work_triy(j,k) |
---|
| 1428 | ENDDO |
---|
| 1429 | |
---|
[1106] | 1430 | CALL fft_y_1d( work_ffty, 'backward' ) |
---|
[1] | 1431 | |
---|
| 1432 | m = 0 |
---|
| 1433 | DO n = 1, pdims(2) |
---|
[1003] | 1434 | DO j = 1, nny |
---|
[1] | 1435 | ar(j,k,i,n) = work_ffty(m) |
---|
| 1436 | m = m + 1 |
---|
| 1437 | ENDDO |
---|
| 1438 | ENDDO |
---|
| 1439 | |
---|
| 1440 | ENDDO |
---|
| 1441 | |
---|
| 1442 | ENDIF |
---|
| 1443 | |
---|
| 1444 | ENDDO |
---|
| 1445 | |
---|
| 1446 | DEALLOCATE( tri ) |
---|
| 1447 | |
---|
[1106] | 1448 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'stop' ) |
---|
[1] | 1449 | |
---|
| 1450 | END SUBROUTINE ffty_tri_ffty |
---|
| 1451 | |
---|
| 1452 | END MODULE poisfft_mod |
---|