[1850] | 1 | !> @file poisfft_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[4360] | 17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1683] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: poisfft_mod.f90 4366 2020-01-09 08:12:43Z maronga $ |
---|
[4366] | 27 | ! modification concerning NEC vectorizatio |
---|
| 28 | ! |
---|
| 29 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4182] | 30 | ! Corrected "Former revisions" section |
---|
| 31 | ! |
---|
| 32 | ! 3690 2019-01-22 22:56:42Z knoop |
---|
[3634] | 33 | ! OpenACC port for SPEC |
---|
[2716] | 34 | ! |
---|
[4182] | 35 | ! Revision 1.1 1997/07/24 11:24:14 raasch |
---|
| 36 | ! Initial revision |
---|
| 37 | ! |
---|
| 38 | ! |
---|
[1] | 39 | ! Description: |
---|
| 40 | ! ------------ |
---|
[1682] | 41 | !> Solves the Poisson equation with a 2D spectral method |
---|
| 42 | !> d^2 p / dx^2 + d^2 p / dy^2 + d^2 p / dz^2 = s |
---|
| 43 | !> |
---|
| 44 | !> Input: |
---|
| 45 | !> real ar contains (nnz,nny,nnx) elements of the velocity divergence, |
---|
| 46 | !> starting from (1,nys,nxl) |
---|
| 47 | !> |
---|
| 48 | !> Output: |
---|
| 49 | !> real ar contains the solution for perturbation pressure p |
---|
[1] | 50 | !------------------------------------------------------------------------------! |
---|
[1682] | 51 | MODULE poisfft_mod |
---|
| 52 | |
---|
[1] | 53 | |
---|
[1320] | 54 | USE fft_xy, & |
---|
[4366] | 55 | ONLY: fft_init, fft_y, fft_y_1d, fft_y_m, fft_x, fft_x_1d, fft_x_m, & |
---|
| 56 | temperton_fft_vec |
---|
[1] | 57 | |
---|
[1320] | 58 | USE indices, & |
---|
| 59 | ONLY: nnx, nny, nx, nxl, nxr, ny, nys, nyn, nz |
---|
| 60 | |
---|
| 61 | USE transpose_indices, & |
---|
| 62 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nys_x, nys_z, nyn_x, nyn_z, nzb_x, & |
---|
| 63 | nzb_y, nzt_x, nzt_y |
---|
| 64 | |
---|
| 65 | USE tridia_solver, & |
---|
| 66 | ONLY: tridia_1dd, tridia_init, tridia_substi, tridia_substi_overlap |
---|
| 67 | |
---|
[1] | 68 | IMPLICIT NONE |
---|
| 69 | |
---|
[1111] | 70 | LOGICAL, SAVE :: poisfft_initialized = .FALSE. |
---|
| 71 | |
---|
[1] | 72 | PRIVATE |
---|
[807] | 73 | |
---|
[1] | 74 | PUBLIC poisfft, poisfft_init |
---|
| 75 | |
---|
| 76 | INTERFACE poisfft |
---|
| 77 | MODULE PROCEDURE poisfft |
---|
| 78 | END INTERFACE poisfft |
---|
| 79 | |
---|
| 80 | INTERFACE poisfft_init |
---|
| 81 | MODULE PROCEDURE poisfft_init |
---|
| 82 | END INTERFACE poisfft_init |
---|
| 83 | |
---|
[807] | 84 | |
---|
[1] | 85 | CONTAINS |
---|
| 86 | |
---|
[1682] | 87 | !------------------------------------------------------------------------------! |
---|
| 88 | ! Description: |
---|
| 89 | ! ------------ |
---|
[3241] | 90 | !> Setup coefficients for FFT and the tridiagonal solver |
---|
[1682] | 91 | !------------------------------------------------------------------------------! |
---|
[1] | 92 | SUBROUTINE poisfft_init |
---|
| 93 | |
---|
[1111] | 94 | IMPLICIT NONE |
---|
| 95 | |
---|
| 96 | |
---|
[1] | 97 | CALL fft_init |
---|
| 98 | |
---|
[1212] | 99 | CALL tridia_init |
---|
[1111] | 100 | |
---|
| 101 | poisfft_initialized = .TRUE. |
---|
| 102 | |
---|
[1] | 103 | END SUBROUTINE poisfft_init |
---|
| 104 | |
---|
[1111] | 105 | |
---|
[1804] | 106 | |
---|
[1682] | 107 | !------------------------------------------------------------------------------! |
---|
| 108 | ! Description: |
---|
| 109 | ! ------------ |
---|
| 110 | !> Two-dimensional Fourier Transformation in x- and y-direction. |
---|
| 111 | !------------------------------------------------------------------------------! |
---|
[1306] | 112 | SUBROUTINE poisfft( ar ) |
---|
[1] | 113 | |
---|
[1320] | 114 | USE control_parameters, & |
---|
[3241] | 115 | ONLY: transpose_compute_overlap |
---|
[1320] | 116 | |
---|
| 117 | USE cpulog, & |
---|
| 118 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
| 119 | |
---|
| 120 | USE kinds |
---|
| 121 | |
---|
[1] | 122 | USE pegrid |
---|
| 123 | |
---|
| 124 | IMPLICIT NONE |
---|
| 125 | |
---|
[1682] | 126 | INTEGER(iwp) :: ii !< |
---|
| 127 | INTEGER(iwp) :: iind !< |
---|
| 128 | INTEGER(iwp) :: inew !< |
---|
| 129 | INTEGER(iwp) :: jj !< |
---|
| 130 | INTEGER(iwp) :: jind !< |
---|
| 131 | INTEGER(iwp) :: jnew !< |
---|
| 132 | INTEGER(iwp) :: ki !< |
---|
| 133 | INTEGER(iwp) :: kk !< |
---|
| 134 | INTEGER(iwp) :: knew !< |
---|
| 135 | INTEGER(iwp) :: n !< |
---|
| 136 | INTEGER(iwp) :: nblk !< |
---|
| 137 | INTEGER(iwp) :: nnx_y !< |
---|
| 138 | INTEGER(iwp) :: nny_z !< |
---|
| 139 | INTEGER(iwp) :: nnz_x !< |
---|
| 140 | INTEGER(iwp) :: nxl_y_bound !< |
---|
| 141 | INTEGER(iwp) :: nxr_y_bound !< |
---|
[1] | 142 | |
---|
[1682] | 143 | INTEGER(iwp), DIMENSION(4) :: isave !< |
---|
[1320] | 144 | |
---|
[1682] | 145 | REAL(wp), DIMENSION(1:nz,nys:nyn,nxl:nxr) :: ar !< |
---|
| 146 | REAL(wp), DIMENSION(nys:nyn,nxl:nxr,1:nz) :: ar_inv !< |
---|
[3690] | 147 | |
---|
| 148 | #define __acc_fft_device ( defined( _OPENACC ) && ( defined ( __cuda_fft ) ) ) |
---|
| 149 | #if __acc_fft_device |
---|
[3634] | 150 | !$ACC DECLARE CREATE(ar_inv) |
---|
[3690] | 151 | #endif |
---|
[1] | 152 | |
---|
[1682] | 153 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ar1 !< |
---|
| 154 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_in !< |
---|
| 155 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_inv !< |
---|
| 156 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_y !< |
---|
| 157 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_z !< |
---|
[1216] | 158 | |
---|
| 159 | |
---|
[1] | 160 | CALL cpu_log( log_point_s(3), 'poisfft', 'start' ) |
---|
| 161 | |
---|
[1111] | 162 | IF ( .NOT. poisfft_initialized ) CALL poisfft_init |
---|
| 163 | |
---|
[3690] | 164 | #if !__acc_fft_device |
---|
| 165 | !$ACC UPDATE HOST(ar) |
---|
| 166 | #endif |
---|
| 167 | |
---|
[3634] | 168 | #ifndef _OPENACC |
---|
[1] | 169 | ! |
---|
| 170 | !-- Two-dimensional Fourier Transformation in x- and y-direction. |
---|
[2118] | 171 | IF ( pdims(2) == 1 .AND. pdims(1) > 1 ) THEN |
---|
[1] | 172 | |
---|
| 173 | ! |
---|
| 174 | !-- 1d-domain-decomposition along x: |
---|
| 175 | !-- FFT along y and transposition y --> x |
---|
[1216] | 176 | CALL ffty_tr_yx( ar, ar ) |
---|
[1] | 177 | |
---|
| 178 | ! |
---|
| 179 | !-- FFT along x, solving the tridiagonal system and backward FFT |
---|
| 180 | CALL fftx_tri_fftx( ar ) |
---|
| 181 | |
---|
| 182 | ! |
---|
| 183 | !-- Transposition x --> y and backward FFT along y |
---|
[1216] | 184 | CALL tr_xy_ffty( ar, ar ) |
---|
[1] | 185 | |
---|
[2118] | 186 | ELSEIF ( pdims(1) == 1 .AND. pdims(2) > 1 ) THEN |
---|
[1] | 187 | |
---|
| 188 | ! |
---|
| 189 | !-- 1d-domain-decomposition along y: |
---|
| 190 | !-- FFT along x and transposition x --> y |
---|
[1216] | 191 | CALL fftx_tr_xy( ar, ar ) |
---|
[1] | 192 | |
---|
| 193 | ! |
---|
| 194 | !-- FFT along y, solving the tridiagonal system and backward FFT |
---|
| 195 | CALL ffty_tri_ffty( ar ) |
---|
| 196 | |
---|
| 197 | ! |
---|
| 198 | !-- Transposition y --> x and backward FFT along x |
---|
[1216] | 199 | CALL tr_yx_fftx( ar, ar ) |
---|
[1] | 200 | |
---|
[1216] | 201 | ELSEIF ( .NOT. transpose_compute_overlap ) THEN |
---|
[3634] | 202 | #endif |
---|
[1] | 203 | |
---|
| 204 | ! |
---|
[1111] | 205 | !-- 2d-domain-decomposition or no decomposition (1 PE run) |
---|
[1] | 206 | !-- Transposition z --> x |
---|
| 207 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start' ) |
---|
[1216] | 208 | CALL resort_for_zx( ar, ar_inv ) |
---|
| 209 | CALL transpose_zx( ar_inv, ar ) |
---|
[1] | 210 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 211 | |
---|
| 212 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
[4366] | 213 | IF ( temperton_fft_vec ) THEN |
---|
| 214 | ! |
---|
| 215 | !-- Vector version outputs a transformed array ar_inv that does not require resorting |
---|
| 216 | !-- (which is done for ar further below) |
---|
| 217 | CALL fft_x( ar, 'forward', ar_inv=ar_inv) |
---|
| 218 | ELSE |
---|
| 219 | CALL fft_x( ar, 'forward') |
---|
| 220 | ENDIF |
---|
[1] | 221 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
| 222 | |
---|
| 223 | ! |
---|
| 224 | !-- Transposition x --> y |
---|
| 225 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[4366] | 226 | IF( .NOT. temperton_fft_vec ) CALL resort_for_xy( ar, ar_inv ) |
---|
[1216] | 227 | CALL transpose_xy( ar_inv, ar ) |
---|
[1] | 228 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 229 | |
---|
| 230 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
[4366] | 231 | IF ( temperton_fft_vec ) THEN |
---|
| 232 | ! |
---|
| 233 | !-- Input array ar_inv from fft_x can be directly used here. |
---|
| 234 | !-- The output (also in array ar_inv) does not require resorting below. |
---|
| 235 | CALL fft_y( ar, 'forward', ar_inv = ar_inv, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 236 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 237 | ELSE |
---|
| 238 | CALL fft_y( ar, 'forward', ar_tr = ar, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 239 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 240 | ENDIF |
---|
[1] | 241 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 242 | |
---|
| 243 | ! |
---|
| 244 | !-- Transposition y --> z |
---|
| 245 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[4366] | 246 | IF ( .NOT. temperton_fft_vec ) CALL resort_for_yz( ar, ar_inv ) |
---|
[1216] | 247 | CALL transpose_yz( ar_inv, ar ) |
---|
[1] | 248 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
| 249 | |
---|
| 250 | ! |
---|
[1106] | 251 | !-- Solve the tridiagonal equation system along z |
---|
[1] | 252 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
[1212] | 253 | CALL tridia_substi( ar ) |
---|
[1] | 254 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
| 255 | |
---|
| 256 | ! |
---|
| 257 | !-- Inverse Fourier Transformation |
---|
| 258 | !-- Transposition z --> y |
---|
| 259 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start' ) |
---|
[1216] | 260 | CALL transpose_zy( ar, ar_inv ) |
---|
[4366] | 261 | ! |
---|
| 262 | !-- The fft_y below (vector branch) can directly process ar_inv (i.e. does not require a |
---|
| 263 | !-- resorting) |
---|
| 264 | IF ( .NOT. temperton_fft_vec ) CALL resort_for_zy( ar_inv, ar ) |
---|
[1] | 265 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 266 | |
---|
| 267 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
[4366] | 268 | IF ( temperton_fft_vec ) THEN |
---|
| 269 | ! |
---|
| 270 | !-- Output array ar_inv can be used as input to the below fft_x routine without resorting |
---|
| 271 | CALL fft_y( ar, 'backward', ar_inv = ar_inv, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y,& |
---|
| 272 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 273 | ELSE |
---|
| 274 | CALL fft_y( ar, 'backward', ar_tr = ar, nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 275 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
| 276 | ENDIF |
---|
| 277 | |
---|
[1] | 278 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 279 | |
---|
| 280 | ! |
---|
| 281 | !-- Transposition y --> x |
---|
| 282 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[1216] | 283 | CALL transpose_yx( ar, ar_inv ) |
---|
[4366] | 284 | IF ( .NOT. temperton_fft_vec ) CALL resort_for_yx( ar_inv, ar ) |
---|
[1] | 285 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 286 | |
---|
| 287 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
[4366] | 288 | IF ( temperton_fft_vec ) THEN |
---|
| 289 | CALL fft_x( ar, 'backward', ar_inv=ar_inv ) |
---|
| 290 | ELSE |
---|
| 291 | CALL fft_x( ar, 'backward' ) |
---|
| 292 | ENDIF |
---|
[1] | 293 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 294 | |
---|
| 295 | ! |
---|
| 296 | !-- Transposition x --> z |
---|
| 297 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[1216] | 298 | CALL transpose_xz( ar, ar_inv ) |
---|
| 299 | CALL resort_for_xz( ar_inv, ar ) |
---|
[1] | 300 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
| 301 | |
---|
[3634] | 302 | #ifndef _OPENACC |
---|
[1216] | 303 | ELSE |
---|
| 304 | |
---|
| 305 | ! |
---|
| 306 | !-- 2d-domain-decomposition or no decomposition (1 PE run) with |
---|
| 307 | !-- overlapping transposition / fft |
---|
[1318] | 308 | !-- cputime logging must not use barriers, which would prevent overlapping |
---|
[1216] | 309 | ALLOCATE( f_out_y(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), & |
---|
| 310 | f_out_z(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
| 311 | ! |
---|
| 312 | !-- Transposition z --> x + subsequent fft along x |
---|
| 313 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 314 | CALL resort_for_zx( ar, f_inv ) |
---|
| 315 | ! |
---|
| 316 | !-- Save original indices and gridpoint counter |
---|
| 317 | isave(1) = nz |
---|
| 318 | isave(2) = nzb_x |
---|
| 319 | isave(3) = nzt_x |
---|
| 320 | isave(4) = sendrecvcount_zx |
---|
| 321 | ! |
---|
| 322 | !-- Set new indices for transformation |
---|
| 323 | nblk = nz / pdims(1) |
---|
| 324 | nz = pdims(1) |
---|
| 325 | nnz_x = 1 |
---|
| 326 | nzb_x = 1 + myidx * nnz_x |
---|
| 327 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
| 328 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
| 329 | |
---|
[1306] | 330 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
[1216] | 331 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 332 | |
---|
[1306] | 333 | DO kk = 1, nblk |
---|
[1216] | 334 | |
---|
[1306] | 335 | IF ( kk == 1 ) THEN |
---|
[1318] | 336 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start', cpu_log_nowait ) |
---|
[1306] | 337 | ELSE |
---|
[1318] | 338 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1306] | 339 | ENDIF |
---|
[1216] | 340 | |
---|
[1306] | 341 | DO knew = 1, nz |
---|
| 342 | ki = kk + nblk * ( knew - 1 ) |
---|
| 343 | f_in(:,:,knew) = f_inv(:,:,ki) |
---|
| 344 | ENDDO |
---|
[1216] | 345 | |
---|
[1306] | 346 | CALL transpose_zx( f_in, ar1(:,:,:)) |
---|
| 347 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 348 | |
---|
[1306] | 349 | IF ( kk == 1 ) THEN |
---|
[1318] | 350 | CALL cpu_log( log_point_s(4), 'fft_x', 'start', cpu_log_nowait ) |
---|
[1306] | 351 | ELSE |
---|
[1318] | 352 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
[1216] | 353 | ENDIF |
---|
| 354 | |
---|
[1306] | 355 | n = isave(2) + kk - 1 |
---|
| 356 | CALL fft_x( ar1(:,:,:), 'forward', ar_2d = f_out_z(:,:,n)) |
---|
| 357 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
[1216] | 358 | |
---|
| 359 | ENDDO |
---|
| 360 | ! |
---|
| 361 | !-- Restore original indices/counters |
---|
| 362 | nz = isave(1) |
---|
| 363 | nzb_x = isave(2) |
---|
| 364 | nzt_x = isave(3) |
---|
| 365 | sendrecvcount_zx = isave(4) |
---|
| 366 | |
---|
| 367 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 368 | |
---|
| 369 | ! |
---|
| 370 | !-- Transposition x --> y + subsequent fft along y |
---|
| 371 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 372 | CALL resort_for_xy( f_out_z, f_inv ) |
---|
| 373 | ! |
---|
| 374 | !-- Save original indices and gridpoint counter |
---|
| 375 | isave(1) = nx |
---|
| 376 | isave(2) = nxl_y |
---|
| 377 | isave(3) = nxr_y |
---|
| 378 | isave(4) = sendrecvcount_xy |
---|
| 379 | ! |
---|
| 380 | !-- Set new indices for transformation |
---|
| 381 | nblk = ( ( nx+1 ) / pdims(2) ) - 1 |
---|
| 382 | nx = pdims(2) |
---|
| 383 | nnx_y = 1 |
---|
| 384 | nxl_y = myidy * nnx_y |
---|
| 385 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
| 386 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
| 387 | |
---|
[1306] | 388 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
[1216] | 389 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 390 | |
---|
[1306] | 391 | DO ii = 0, nblk |
---|
[1216] | 392 | |
---|
[1318] | 393 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1216] | 394 | |
---|
[1306] | 395 | DO inew = 0, nx-1 |
---|
| 396 | iind = ii + ( nblk + 1 ) * inew |
---|
| 397 | f_in(:,:,inew) = f_inv(:,:,iind) |
---|
| 398 | ENDDO |
---|
[1216] | 399 | |
---|
[1306] | 400 | CALL transpose_xy( f_in, ar1(:,:,:) ) |
---|
[1216] | 401 | |
---|
[1306] | 402 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 403 | |
---|
[1306] | 404 | IF ( ii == 1 ) THEN |
---|
[1318] | 405 | CALL cpu_log( log_point_s(7), 'fft_y', 'start', cpu_log_nowait ) |
---|
[1306] | 406 | ELSE |
---|
[1318] | 407 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
[1216] | 408 | ENDIF |
---|
| 409 | |
---|
[1306] | 410 | nxl_y_bound = isave(2) |
---|
| 411 | nxr_y_bound = isave(3) |
---|
| 412 | n = isave(2) + ii |
---|
| 413 | CALL fft_y( ar1(:,:,:), 'forward', ar_tr = f_out_y, & |
---|
| 414 | nxl_y_bound = nxl_y_bound, nxr_y_bound = nxr_y_bound, & |
---|
| 415 | nxl_y_l = n, nxr_y_l = n ) |
---|
[1216] | 416 | |
---|
[1306] | 417 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
[1216] | 418 | |
---|
| 419 | ENDDO |
---|
| 420 | ! |
---|
| 421 | !-- Restore original indices/counters |
---|
| 422 | nx = isave(1) |
---|
| 423 | nxl_y = isave(2) |
---|
| 424 | nxr_y = isave(3) |
---|
| 425 | sendrecvcount_xy = isave(4) |
---|
| 426 | |
---|
| 427 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 428 | |
---|
| 429 | ! |
---|
| 430 | !-- Transposition y --> z + subsequent tridia + resort for z --> y |
---|
| 431 | ALLOCATE( f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
| 432 | CALL resort_for_yz( f_out_y, f_inv ) |
---|
| 433 | ! |
---|
| 434 | !-- Save original indices and gridpoint counter |
---|
| 435 | isave(1) = ny |
---|
| 436 | isave(2) = nys_z |
---|
| 437 | isave(3) = nyn_z |
---|
| 438 | isave(4) = sendrecvcount_yz |
---|
| 439 | ! |
---|
| 440 | !-- Set new indices for transformation |
---|
| 441 | nblk = ( ( ny+1 ) / pdims(1) ) - 1 |
---|
| 442 | ny = pdims(1) |
---|
| 443 | nny_z = 1 |
---|
| 444 | nys_z = myidx * nny_z |
---|
| 445 | nyn_z = ( myidx + 1 ) * nny_z - 1 |
---|
| 446 | sendrecvcount_yz = ( nxr_y-nxl_y+1 ) * nny_z * ( nzt_y-nzb_y+1 ) |
---|
| 447 | |
---|
[1306] | 448 | ALLOCATE( ar1(nxl_z:nxr_z,nys_z:nyn_z,1:nz) ) |
---|
[1216] | 449 | ALLOCATE( f_in(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
| 450 | |
---|
[1306] | 451 | DO jj = 0, nblk |
---|
[1216] | 452 | ! |
---|
[1306] | 453 | !-- Forward Fourier Transformation |
---|
| 454 | !-- Transposition y --> z |
---|
[1318] | 455 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1216] | 456 | |
---|
[1306] | 457 | DO jnew = 0, ny-1 |
---|
| 458 | jind = jj + ( nblk + 1 ) * jnew |
---|
| 459 | f_in(:,:,jnew) = f_inv(:,:,jind) |
---|
| 460 | ENDDO |
---|
[1216] | 461 | |
---|
[1306] | 462 | CALL transpose_yz( f_in, ar1(:,:,:) ) |
---|
[1216] | 463 | |
---|
[1306] | 464 | IF ( jj == nblk ) THEN |
---|
| 465 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
| 466 | ELSE |
---|
| 467 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 468 | ENDIF |
---|
| 469 | |
---|
| 470 | ! |
---|
[1306] | 471 | !-- Solve the tridiagonal equation system along z |
---|
[1318] | 472 | CALL cpu_log( log_point_s(6), 'tridia', 'start', cpu_log_nowait ) |
---|
[1216] | 473 | |
---|
[1306] | 474 | n = isave(2) + jj |
---|
| 475 | CALL tridia_substi_overlap( ar1(:,:,:), n ) |
---|
[1216] | 476 | |
---|
[1306] | 477 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
[1216] | 478 | |
---|
[1306] | 479 | ! |
---|
| 480 | !-- Inverse Fourier Transformation |
---|
| 481 | !-- Transposition z --> y |
---|
| 482 | !-- Only one thread should call MPI routines, therefore forward and |
---|
| 483 | !-- backward tranpose are in the same section |
---|
| 484 | IF ( jj == 0 ) THEN |
---|
[1318] | 485 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start', cpu_log_nowait ) |
---|
[1306] | 486 | ELSE |
---|
[1318] | 487 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 488 | ENDIF |
---|
| 489 | |
---|
[1306] | 490 | CALL transpose_zy( ar1(:,:,:), f_in ) |
---|
[1216] | 491 | |
---|
[1306] | 492 | DO jnew = 0, ny-1 |
---|
| 493 | jind = jj + ( nblk + 1 ) * jnew |
---|
| 494 | f_inv(:,:,jind) = f_in(:,:,jnew) |
---|
| 495 | ENDDO |
---|
[1216] | 496 | |
---|
[1306] | 497 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 498 | |
---|
| 499 | ENDDO |
---|
| 500 | ! |
---|
| 501 | !-- Restore original indices/counters |
---|
| 502 | ny = isave(1) |
---|
| 503 | nys_z = isave(2) |
---|
| 504 | nyn_z = isave(3) |
---|
| 505 | sendrecvcount_yz = isave(4) |
---|
| 506 | |
---|
| 507 | CALL resort_for_zy( f_inv, f_out_y ) |
---|
| 508 | |
---|
| 509 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 510 | |
---|
| 511 | ! |
---|
| 512 | !-- fft along y backward + subsequent transposition y --> x |
---|
| 513 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 514 | ! |
---|
| 515 | !-- Save original indices and gridpoint counter |
---|
| 516 | isave(1) = nx |
---|
| 517 | isave(2) = nxl_y |
---|
| 518 | isave(3) = nxr_y |
---|
| 519 | isave(4) = sendrecvcount_xy |
---|
| 520 | ! |
---|
| 521 | !-- Set new indices for transformation |
---|
| 522 | nblk = (( nx+1 ) / pdims(2) ) - 1 |
---|
| 523 | nx = pdims(2) |
---|
| 524 | nnx_y = 1 |
---|
| 525 | nxl_y = myidy * nnx_y |
---|
| 526 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
| 527 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
| 528 | |
---|
[1306] | 529 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
[1216] | 530 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 531 | |
---|
[1306] | 532 | DO ii = 0, nblk |
---|
[1216] | 533 | |
---|
[1318] | 534 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
[1216] | 535 | |
---|
[1306] | 536 | n = isave(2) + ii |
---|
| 537 | nxl_y_bound = isave(2) |
---|
| 538 | nxr_y_bound = isave(3) |
---|
[1216] | 539 | |
---|
[1306] | 540 | CALL fft_y( ar1(:,:,:), 'backward', ar_tr = f_out_y, & |
---|
| 541 | nxl_y_bound = nxl_y_bound, nxr_y_bound = nxr_y_bound, & |
---|
| 542 | nxl_y_l = n, nxr_y_l = n ) |
---|
[1216] | 543 | |
---|
[1306] | 544 | IF ( ii == nblk ) THEN |
---|
| 545 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 546 | ELSE |
---|
| 547 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
[1216] | 548 | ENDIF |
---|
| 549 | |
---|
[1318] | 550 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 551 | |
---|
[1306] | 552 | CALL transpose_yx( ar1(:,:,:), f_in ) |
---|
[1216] | 553 | |
---|
[1306] | 554 | DO inew = 0, nx-1 |
---|
| 555 | iind = ii + (nblk+1) * inew |
---|
| 556 | f_inv(:,:,iind) = f_in(:,:,inew) |
---|
| 557 | ENDDO |
---|
[1216] | 558 | |
---|
[1306] | 559 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 560 | |
---|
| 561 | ENDDO |
---|
| 562 | ! |
---|
| 563 | !-- Restore original indices/counters |
---|
| 564 | nx = isave(1) |
---|
| 565 | nxl_y = isave(2) |
---|
| 566 | nxr_y = isave(3) |
---|
| 567 | sendrecvcount_xy = isave(4) |
---|
| 568 | |
---|
| 569 | CALL resort_for_yx( f_inv, f_out_z ) |
---|
| 570 | |
---|
| 571 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 572 | |
---|
| 573 | ! |
---|
| 574 | !-- fft along x backward + subsequent final transposition x --> z |
---|
| 575 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 576 | ! |
---|
| 577 | !-- Save original indices and gridpoint counter |
---|
| 578 | isave(1) = nz |
---|
| 579 | isave(2) = nzb_x |
---|
| 580 | isave(3) = nzt_x |
---|
| 581 | isave(4) = sendrecvcount_zx |
---|
| 582 | ! |
---|
| 583 | !-- Set new indices for transformation |
---|
| 584 | nblk = nz / pdims(1) |
---|
| 585 | nz = pdims(1) |
---|
| 586 | nnz_x = 1 |
---|
| 587 | nzb_x = 1 + myidx * nnz_x |
---|
| 588 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
| 589 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
| 590 | |
---|
[1306] | 591 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
[1216] | 592 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 593 | |
---|
[1306] | 594 | DO kk = 1, nblk |
---|
[1216] | 595 | |
---|
[1318] | 596 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
[1216] | 597 | |
---|
[1306] | 598 | n = isave(2) + kk - 1 |
---|
| 599 | CALL fft_x( ar1(:,:,:), 'backward', f_out_z(:,:,n)) |
---|
[1216] | 600 | |
---|
[1306] | 601 | IF ( kk == nblk ) THEN |
---|
| 602 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 603 | ELSE |
---|
| 604 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
[1216] | 605 | ENDIF |
---|
| 606 | |
---|
[1318] | 607 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 608 | |
---|
[1306] | 609 | CALL transpose_xz( ar1(:,:,:), f_in ) |
---|
[1216] | 610 | |
---|
[1306] | 611 | DO knew = 1, nz |
---|
| 612 | ki = kk + nblk * (knew-1) |
---|
| 613 | f_inv(:,:,ki) = f_in(:,:,knew) |
---|
| 614 | ENDDO |
---|
[1216] | 615 | |
---|
[1306] | 616 | IF ( kk == nblk ) THEN |
---|
| 617 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
| 618 | ELSE |
---|
| 619 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 620 | ENDIF |
---|
| 621 | |
---|
| 622 | ENDDO |
---|
| 623 | ! |
---|
| 624 | !-- Restore original indices/counters |
---|
| 625 | nz = isave(1) |
---|
| 626 | nzb_x = isave(2) |
---|
| 627 | nzt_x = isave(3) |
---|
| 628 | sendrecvcount_zx = isave(4) |
---|
| 629 | |
---|
| 630 | CALL resort_for_xz( f_inv, ar ) |
---|
| 631 | |
---|
| 632 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 633 | |
---|
[1] | 634 | ENDIF |
---|
[3634] | 635 | #endif |
---|
[1] | 636 | |
---|
[3690] | 637 | #if !__acc_fft_device |
---|
| 638 | !$ACC UPDATE DEVICE(ar) |
---|
| 639 | #endif |
---|
| 640 | |
---|
[1] | 641 | CALL cpu_log( log_point_s(3), 'poisfft', 'stop' ) |
---|
| 642 | |
---|
| 643 | END SUBROUTINE poisfft |
---|
| 644 | |
---|
| 645 | |
---|
| 646 | !------------------------------------------------------------------------------! |
---|
[1682] | 647 | ! Description: |
---|
| 648 | ! ------------ |
---|
| 649 | !> Fourier-transformation along y with subsequent transposition y --> x for |
---|
| 650 | !> a 1d-decomposition along x. |
---|
| 651 | !> |
---|
| 652 | !> @attention The performance of this routine is much faster on the NEC-SX6, |
---|
| 653 | !> if the first index of work_ffty_vec is odd. Otherwise |
---|
| 654 | !> memory bank conflicts may occur (especially if the index is a |
---|
| 655 | !> multiple of 128). That's why work_ffty_vec is dimensioned as |
---|
| 656 | !> 0:ny+1. |
---|
| 657 | !> Of course, this will not work if users are using an odd number |
---|
| 658 | !> of gridpoints along y. |
---|
[1] | 659 | !------------------------------------------------------------------------------! |
---|
[1682] | 660 | SUBROUTINE ffty_tr_yx( f_in, f_out ) |
---|
[1] | 661 | |
---|
[1320] | 662 | USE control_parameters, & |
---|
[2300] | 663 | ONLY: loop_optimization |
---|
[1320] | 664 | |
---|
| 665 | USE cpulog, & |
---|
| 666 | ONLY: cpu_log, log_point_s |
---|
| 667 | |
---|
| 668 | USE kinds |
---|
| 669 | |
---|
[1] | 670 | USE pegrid |
---|
| 671 | |
---|
| 672 | IMPLICIT NONE |
---|
| 673 | |
---|
[1682] | 674 | INTEGER(iwp) :: i !< |
---|
| 675 | INTEGER(iwp) :: iend !< |
---|
| 676 | INTEGER(iwp) :: iouter !< |
---|
| 677 | INTEGER(iwp) :: ir !< |
---|
| 678 | INTEGER(iwp) :: j !< |
---|
| 679 | INTEGER(iwp) :: k !< |
---|
[1] | 680 | |
---|
[1682] | 681 | INTEGER(iwp), PARAMETER :: stridex = 4 !< |
---|
[1320] | 682 | |
---|
[1682] | 683 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_in !< |
---|
| 684 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_out !< |
---|
| 685 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !< |
---|
[1] | 686 | |
---|
[2300] | 687 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_ffty !< |
---|
| 688 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: work_ffty_vec !< |
---|
| 689 | |
---|
[1] | 690 | ! |
---|
| 691 | !-- Carry out the FFT along y, where all data are present due to the |
---|
| 692 | !-- 1d-decomposition along x. Resort the data in a way that x becomes |
---|
| 693 | !-- the first index. |
---|
[1106] | 694 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'start' ) |
---|
[1] | 695 | |
---|
[2300] | 696 | IF ( loop_optimization == 'vector' ) THEN |
---|
| 697 | |
---|
| 698 | ALLOCATE( work_ffty_vec(0:ny+1,1:nz,nxl:nxr) ) |
---|
[1] | 699 | ! |
---|
| 700 | !-- Code optimized for vector processors |
---|
[2300] | 701 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 702 | !$OMP DO |
---|
[1] | 703 | DO i = nxl, nxr |
---|
| 704 | |
---|
| 705 | DO j = 0, ny |
---|
| 706 | DO k = 1, nz |
---|
| 707 | work_ffty_vec(j,k,i) = f_in(k,j,i) |
---|
| 708 | ENDDO |
---|
| 709 | ENDDO |
---|
| 710 | |
---|
| 711 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'forward' ) |
---|
| 712 | |
---|
| 713 | ENDDO |
---|
| 714 | |
---|
[2300] | 715 | !$OMP DO |
---|
[1] | 716 | DO k = 1, nz |
---|
| 717 | DO j = 0, ny |
---|
| 718 | DO i = nxl, nxr |
---|
| 719 | work(i,k,j) = work_ffty_vec(j,k,i) |
---|
| 720 | ENDDO |
---|
| 721 | ENDDO |
---|
| 722 | ENDDO |
---|
[2300] | 723 | !$OMP END PARALLEL |
---|
[1] | 724 | |
---|
[2300] | 725 | DEALLOCATE( work_ffty_vec ) |
---|
| 726 | |
---|
[1] | 727 | ELSE |
---|
| 728 | ! |
---|
| 729 | !-- Cache optimized code. |
---|
[2300] | 730 | ALLOCATE( work_ffty(0:ny,stridex) ) |
---|
| 731 | ! |
---|
[1] | 732 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 733 | !-- loop for better cache performance |
---|
[2300] | 734 | !$OMP PARALLEL PRIVATE (i,iend,iouter,ir,j,k,work_ffty) |
---|
| 735 | !$OMP DO |
---|
[1] | 736 | DO iouter = nxl, nxr, stridex |
---|
| 737 | |
---|
| 738 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 739 | |
---|
| 740 | DO k = 1, nz |
---|
| 741 | |
---|
| 742 | DO i = iouter, iend |
---|
| 743 | |
---|
| 744 | ir = i-iouter+1 ! counter within a stride |
---|
| 745 | DO j = 0, ny |
---|
| 746 | work_ffty(j,ir) = f_in(k,j,i) |
---|
| 747 | ENDDO |
---|
| 748 | ! |
---|
| 749 | !-- FFT along y |
---|
[1106] | 750 | CALL fft_y_1d( work_ffty(:,ir), 'forward' ) |
---|
[1] | 751 | |
---|
| 752 | ENDDO |
---|
| 753 | |
---|
| 754 | ! |
---|
| 755 | !-- Resort |
---|
| 756 | DO j = 0, ny |
---|
| 757 | DO i = iouter, iend |
---|
| 758 | work(i,k,j) = work_ffty(j,i-iouter+1) |
---|
| 759 | ENDDO |
---|
| 760 | ENDDO |
---|
| 761 | |
---|
| 762 | ENDDO |
---|
| 763 | |
---|
| 764 | ENDDO |
---|
[2300] | 765 | !$OMP END PARALLEL |
---|
[1] | 766 | |
---|
[2300] | 767 | DEALLOCATE( work_ffty ) |
---|
| 768 | |
---|
[1] | 769 | ENDIF |
---|
[2300] | 770 | |
---|
[1106] | 771 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'pause' ) |
---|
[1] | 772 | |
---|
| 773 | ! |
---|
| 774 | !-- Transpose array |
---|
[1111] | 775 | #if defined( __parallel ) |
---|
[1] | 776 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 777 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 778 | CALL MPI_ALLTOALL( work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 779 | f_out(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 780 | comm1dx, ierr ) |
---|
| 781 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 782 | #endif |
---|
[1] | 783 | |
---|
| 784 | END SUBROUTINE ffty_tr_yx |
---|
| 785 | |
---|
| 786 | |
---|
| 787 | !------------------------------------------------------------------------------! |
---|
[1682] | 788 | ! Description: |
---|
| 789 | ! ------------ |
---|
| 790 | !> Transposition x --> y with a subsequent backward Fourier transformation for |
---|
| 791 | !> a 1d-decomposition along x |
---|
[1] | 792 | !------------------------------------------------------------------------------! |
---|
[1682] | 793 | SUBROUTINE tr_xy_ffty( f_in, f_out ) |
---|
[1] | 794 | |
---|
[1320] | 795 | USE control_parameters, & |
---|
[2300] | 796 | ONLY: loop_optimization |
---|
[1320] | 797 | |
---|
| 798 | USE cpulog, & |
---|
| 799 | ONLY: cpu_log, log_point_s |
---|
| 800 | |
---|
| 801 | USE kinds |
---|
| 802 | |
---|
[1] | 803 | USE pegrid |
---|
| 804 | |
---|
| 805 | IMPLICIT NONE |
---|
| 806 | |
---|
[1682] | 807 | INTEGER(iwp) :: i !< |
---|
| 808 | INTEGER(iwp) :: iend !< |
---|
| 809 | INTEGER(iwp) :: iouter !< |
---|
| 810 | INTEGER(iwp) :: ir !< |
---|
| 811 | INTEGER(iwp) :: j !< |
---|
| 812 | INTEGER(iwp) :: k !< |
---|
[1] | 813 | |
---|
[1682] | 814 | INTEGER(iwp), PARAMETER :: stridex = 4 !< |
---|
[1320] | 815 | |
---|
[1682] | 816 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_in !< |
---|
| 817 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_out !< |
---|
| 818 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !< |
---|
[1] | 819 | |
---|
[2300] | 820 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_ffty !< |
---|
| 821 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: work_ffty_vec !< |
---|
| 822 | |
---|
[1] | 823 | ! |
---|
| 824 | !-- Transpose array |
---|
[1111] | 825 | #if defined( __parallel ) |
---|
[1] | 826 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 827 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 828 | CALL MPI_ALLTOALL( f_in(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 829 | work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 830 | comm1dx, ierr ) |
---|
| 831 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 832 | #endif |
---|
[1] | 833 | |
---|
| 834 | ! |
---|
| 835 | !-- Resort the data in a way that y becomes the first index and carry out the |
---|
| 836 | !-- backward fft along y. |
---|
[1106] | 837 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'continue' ) |
---|
[1] | 838 | |
---|
[2300] | 839 | IF ( loop_optimization == 'vector' ) THEN |
---|
| 840 | |
---|
| 841 | ALLOCATE( work_ffty_vec(0:ny+1,1:nz,nxl:nxr) ) |
---|
[1] | 842 | ! |
---|
| 843 | !-- Code optimized for vector processors |
---|
[2300] | 844 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 845 | !$OMP DO |
---|
[1] | 846 | DO k = 1, nz |
---|
| 847 | DO j = 0, ny |
---|
| 848 | DO i = nxl, nxr |
---|
| 849 | work_ffty_vec(j,k,i) = work(i,k,j) |
---|
| 850 | ENDDO |
---|
| 851 | ENDDO |
---|
| 852 | ENDDO |
---|
| 853 | |
---|
[2300] | 854 | !$OMP DO |
---|
[1] | 855 | DO i = nxl, nxr |
---|
| 856 | |
---|
| 857 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'backward' ) |
---|
| 858 | |
---|
| 859 | DO j = 0, ny |
---|
| 860 | DO k = 1, nz |
---|
| 861 | f_out(k,j,i) = work_ffty_vec(j,k,i) |
---|
| 862 | ENDDO |
---|
| 863 | ENDDO |
---|
| 864 | |
---|
| 865 | ENDDO |
---|
[2300] | 866 | !$OMP END PARALLEL |
---|
[1] | 867 | |
---|
[2300] | 868 | DEALLOCATE( work_ffty_vec ) |
---|
| 869 | |
---|
[1] | 870 | ELSE |
---|
| 871 | ! |
---|
| 872 | !-- Cache optimized code. |
---|
[2300] | 873 | ALLOCATE( work_ffty(0:ny,stridex) ) |
---|
| 874 | ! |
---|
[1] | 875 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 876 | !-- loop for better cache performance |
---|
[2300] | 877 | !$OMP PARALLEL PRIVATE ( i, iend, iouter, ir, j, k, work_ffty ) |
---|
| 878 | !$OMP DO |
---|
[1] | 879 | DO iouter = nxl, nxr, stridex |
---|
| 880 | |
---|
| 881 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 882 | |
---|
| 883 | DO k = 1, nz |
---|
| 884 | ! |
---|
| 885 | !-- Resort |
---|
| 886 | DO j = 0, ny |
---|
| 887 | DO i = iouter, iend |
---|
| 888 | work_ffty(j,i-iouter+1) = work(i,k,j) |
---|
| 889 | ENDDO |
---|
| 890 | ENDDO |
---|
| 891 | |
---|
| 892 | DO i = iouter, iend |
---|
| 893 | |
---|
| 894 | ! |
---|
| 895 | !-- FFT along y |
---|
| 896 | ir = i-iouter+1 ! counter within a stride |
---|
[1106] | 897 | CALL fft_y_1d( work_ffty(:,ir), 'backward' ) |
---|
[1] | 898 | |
---|
| 899 | DO j = 0, ny |
---|
| 900 | f_out(k,j,i) = work_ffty(j,ir) |
---|
| 901 | ENDDO |
---|
| 902 | ENDDO |
---|
| 903 | |
---|
| 904 | ENDDO |
---|
| 905 | |
---|
| 906 | ENDDO |
---|
[2300] | 907 | !$OMP END PARALLEL |
---|
[1] | 908 | |
---|
[2300] | 909 | DEALLOCATE( work_ffty ) |
---|
| 910 | |
---|
[1] | 911 | ENDIF |
---|
| 912 | |
---|
[1106] | 913 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'stop' ) |
---|
[1] | 914 | |
---|
| 915 | END SUBROUTINE tr_xy_ffty |
---|
| 916 | |
---|
| 917 | |
---|
| 918 | !------------------------------------------------------------------------------! |
---|
[1682] | 919 | ! Description: |
---|
| 920 | ! ------------ |
---|
| 921 | !> FFT along x, solution of the tridiagonal system and backward FFT for |
---|
| 922 | !> a 1d-decomposition along x |
---|
| 923 | !> |
---|
| 924 | !> @warning this subroutine may still not work for hybrid parallelization |
---|
| 925 | !> with OpenMP (for possible necessary changes see the original |
---|
| 926 | !> routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
[1] | 927 | !------------------------------------------------------------------------------! |
---|
[1682] | 928 | SUBROUTINE fftx_tri_fftx( ar ) |
---|
[1] | 929 | |
---|
[1320] | 930 | USE control_parameters, & |
---|
[2300] | 931 | ONLY: loop_optimization |
---|
[1320] | 932 | |
---|
| 933 | USE cpulog, & |
---|
| 934 | ONLY: cpu_log, log_point_s |
---|
| 935 | |
---|
| 936 | USE grid_variables, & |
---|
| 937 | ONLY: ddx2, ddy2 |
---|
| 938 | |
---|
| 939 | USE kinds |
---|
| 940 | |
---|
[1] | 941 | USE pegrid |
---|
| 942 | |
---|
| 943 | IMPLICIT NONE |
---|
| 944 | |
---|
[1682] | 945 | INTEGER(iwp) :: i !< |
---|
| 946 | INTEGER(iwp) :: j !< |
---|
| 947 | INTEGER(iwp) :: k !< |
---|
| 948 | INTEGER(iwp) :: m !< |
---|
| 949 | INTEGER(iwp) :: n !< |
---|
[3241] | 950 | !$ INTEGER(iwp) :: omp_get_thread_num !< |
---|
[1682] | 951 | INTEGER(iwp) :: tn !< |
---|
[1] | 952 | |
---|
[1682] | 953 | REAL(wp), DIMENSION(0:nx) :: work_fftx !< |
---|
| 954 | REAL(wp), DIMENSION(0:nx,1:nz) :: work_trix !< |
---|
| 955 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: ar !< |
---|
| 956 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !< |
---|
[1] | 957 | |
---|
| 958 | |
---|
[1106] | 959 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'start' ) |
---|
[1] | 960 | |
---|
| 961 | ALLOCATE( tri(5,0:nx,0:nz-1,0:threads_per_task-1) ) |
---|
| 962 | |
---|
| 963 | tn = 0 ! Default thread number in case of one thread |
---|
| 964 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_fftx, work_trix ) |
---|
| 965 | DO j = nys_x, nyn_x |
---|
| 966 | |
---|
| 967 | !$ tn = omp_get_thread_num() |
---|
| 968 | |
---|
[2300] | 969 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 970 | ! |
---|
| 971 | !-- Code optimized for vector processors |
---|
| 972 | DO k = 1, nz |
---|
| 973 | |
---|
| 974 | m = 0 |
---|
| 975 | DO n = 1, pdims(1) |
---|
[1003] | 976 | DO i = 1, nnx |
---|
[1] | 977 | work_trix(m,k) = ar(i,k,j,n) |
---|
| 978 | m = m + 1 |
---|
| 979 | ENDDO |
---|
| 980 | ENDDO |
---|
| 981 | |
---|
| 982 | ENDDO |
---|
| 983 | |
---|
| 984 | CALL fft_x_m( work_trix, 'forward' ) |
---|
| 985 | |
---|
| 986 | ELSE |
---|
| 987 | ! |
---|
| 988 | !-- Cache optimized code |
---|
| 989 | DO k = 1, nz |
---|
| 990 | |
---|
| 991 | m = 0 |
---|
| 992 | DO n = 1, pdims(1) |
---|
[1003] | 993 | DO i = 1, nnx |
---|
[1] | 994 | work_fftx(m) = ar(i,k,j,n) |
---|
| 995 | m = m + 1 |
---|
| 996 | ENDDO |
---|
| 997 | ENDDO |
---|
| 998 | |
---|
[1106] | 999 | CALL fft_x_1d( work_fftx, 'forward' ) |
---|
[1] | 1000 | |
---|
| 1001 | DO i = 0, nx |
---|
| 1002 | work_trix(i,k) = work_fftx(i) |
---|
| 1003 | ENDDO |
---|
| 1004 | |
---|
| 1005 | ENDDO |
---|
| 1006 | |
---|
| 1007 | ENDIF |
---|
| 1008 | |
---|
| 1009 | ! |
---|
| 1010 | !-- Solve the linear equation system |
---|
| 1011 | CALL tridia_1dd( ddx2, ddy2, nx, ny, j, work_trix, tri(:,:,:,tn) ) |
---|
| 1012 | |
---|
[2300] | 1013 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1014 | ! |
---|
| 1015 | !-- Code optimized for vector processors |
---|
| 1016 | CALL fft_x_m( work_trix, 'backward' ) |
---|
| 1017 | |
---|
| 1018 | DO k = 1, nz |
---|
| 1019 | |
---|
| 1020 | m = 0 |
---|
| 1021 | DO n = 1, pdims(1) |
---|
[1003] | 1022 | DO i = 1, nnx |
---|
[1] | 1023 | ar(i,k,j,n) = work_trix(m,k) |
---|
| 1024 | m = m + 1 |
---|
| 1025 | ENDDO |
---|
| 1026 | ENDDO |
---|
| 1027 | |
---|
| 1028 | ENDDO |
---|
| 1029 | |
---|
| 1030 | ELSE |
---|
| 1031 | ! |
---|
| 1032 | !-- Cache optimized code |
---|
| 1033 | DO k = 1, nz |
---|
| 1034 | |
---|
| 1035 | DO i = 0, nx |
---|
| 1036 | work_fftx(i) = work_trix(i,k) |
---|
| 1037 | ENDDO |
---|
| 1038 | |
---|
[1106] | 1039 | CALL fft_x_1d( work_fftx, 'backward' ) |
---|
[1] | 1040 | |
---|
| 1041 | m = 0 |
---|
| 1042 | DO n = 1, pdims(1) |
---|
[1003] | 1043 | DO i = 1, nnx |
---|
[1] | 1044 | ar(i,k,j,n) = work_fftx(m) |
---|
| 1045 | m = m + 1 |
---|
| 1046 | ENDDO |
---|
| 1047 | ENDDO |
---|
| 1048 | |
---|
| 1049 | ENDDO |
---|
| 1050 | |
---|
| 1051 | ENDIF |
---|
| 1052 | |
---|
| 1053 | ENDDO |
---|
| 1054 | |
---|
| 1055 | DEALLOCATE( tri ) |
---|
| 1056 | |
---|
[1106] | 1057 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'stop' ) |
---|
[1] | 1058 | |
---|
| 1059 | END SUBROUTINE fftx_tri_fftx |
---|
| 1060 | |
---|
| 1061 | |
---|
| 1062 | !------------------------------------------------------------------------------! |
---|
[1682] | 1063 | ! Description: |
---|
| 1064 | ! ------------ |
---|
| 1065 | !> Fourier-transformation along x with subsequent transposition x --> y for |
---|
| 1066 | !> a 1d-decomposition along y. |
---|
| 1067 | !> |
---|
| 1068 | !> @attention NEC-branch of this routine may significantly profit from |
---|
| 1069 | !> further optimizations. So far, performance is much worse than |
---|
| 1070 | !> for routine ffty_tr_yx (more than three times slower). |
---|
[1] | 1071 | !------------------------------------------------------------------------------! |
---|
[1682] | 1072 | SUBROUTINE fftx_tr_xy( f_in, f_out ) |
---|
[1] | 1073 | |
---|
[1682] | 1074 | |
---|
[1320] | 1075 | USE control_parameters, & |
---|
[2300] | 1076 | ONLY: loop_optimization |
---|
[1320] | 1077 | |
---|
| 1078 | USE cpulog, & |
---|
| 1079 | ONLY: cpu_log, log_point_s |
---|
| 1080 | |
---|
| 1081 | USE kinds |
---|
| 1082 | |
---|
[1] | 1083 | USE pegrid |
---|
| 1084 | |
---|
| 1085 | IMPLICIT NONE |
---|
| 1086 | |
---|
[1682] | 1087 | INTEGER(iwp) :: i !< |
---|
| 1088 | INTEGER(iwp) :: j !< |
---|
| 1089 | INTEGER(iwp) :: k !< |
---|
[1] | 1090 | |
---|
[1682] | 1091 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !< |
---|
| 1092 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_in !< |
---|
| 1093 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_out !< |
---|
| 1094 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !< |
---|
[1] | 1095 | |
---|
| 1096 | ! |
---|
| 1097 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 1098 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 1099 | !-- the first index. |
---|
[1106] | 1100 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'start' ) |
---|
[1] | 1101 | |
---|
[2300] | 1102 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1103 | ! |
---|
| 1104 | !-- Code for vector processors |
---|
[85] | 1105 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 1106 | !$OMP DO |
---|
| 1107 | DO i = 0, nx |
---|
| 1108 | |
---|
| 1109 | DO j = nys, nyn |
---|
| 1110 | DO k = 1, nz |
---|
| 1111 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 1112 | ENDDO |
---|
| 1113 | ENDDO |
---|
| 1114 | |
---|
| 1115 | ENDDO |
---|
| 1116 | |
---|
| 1117 | !$OMP DO |
---|
| 1118 | DO j = nys, nyn |
---|
| 1119 | |
---|
| 1120 | CALL fft_x_m( work_fftx(:,:,j), 'forward' ) |
---|
| 1121 | |
---|
| 1122 | DO k = 1, nz |
---|
| 1123 | DO i = 0, nx |
---|
| 1124 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 1125 | ENDDO |
---|
| 1126 | ENDDO |
---|
| 1127 | |
---|
| 1128 | ENDDO |
---|
| 1129 | !$OMP END PARALLEL |
---|
| 1130 | |
---|
| 1131 | ELSE |
---|
| 1132 | |
---|
| 1133 | ! |
---|
| 1134 | !-- Cache optimized code (there might be still a potential for better |
---|
| 1135 | !-- optimization). |
---|
[696] | 1136 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
[1] | 1137 | !$OMP DO |
---|
| 1138 | DO i = 0, nx |
---|
| 1139 | |
---|
| 1140 | DO j = nys, nyn |
---|
| 1141 | DO k = 1, nz |
---|
| 1142 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 1143 | ENDDO |
---|
| 1144 | ENDDO |
---|
| 1145 | |
---|
| 1146 | ENDDO |
---|
| 1147 | |
---|
| 1148 | !$OMP DO |
---|
| 1149 | DO j = nys, nyn |
---|
| 1150 | DO k = 1, nz |
---|
| 1151 | |
---|
[1106] | 1152 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'forward' ) |
---|
[1] | 1153 | |
---|
| 1154 | DO i = 0, nx |
---|
| 1155 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 1156 | ENDDO |
---|
| 1157 | ENDDO |
---|
| 1158 | |
---|
| 1159 | ENDDO |
---|
| 1160 | !$OMP END PARALLEL |
---|
| 1161 | |
---|
| 1162 | ENDIF |
---|
[1106] | 1163 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'pause' ) |
---|
[1] | 1164 | |
---|
| 1165 | ! |
---|
| 1166 | !-- Transpose array |
---|
[1111] | 1167 | #if defined( __parallel ) |
---|
[1] | 1168 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1169 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1170 | CALL MPI_ALLTOALL( work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 1171 | f_out(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 1172 | comm1dy, ierr ) |
---|
| 1173 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 1174 | #endif |
---|
[1] | 1175 | |
---|
| 1176 | END SUBROUTINE fftx_tr_xy |
---|
| 1177 | |
---|
| 1178 | |
---|
| 1179 | !------------------------------------------------------------------------------! |
---|
[1682] | 1180 | ! Description: |
---|
| 1181 | ! ------------ |
---|
| 1182 | !> Transposition y --> x with a subsequent backward Fourier transformation for |
---|
| 1183 | !> a 1d-decomposition along x. |
---|
[1] | 1184 | !------------------------------------------------------------------------------! |
---|
[1682] | 1185 | SUBROUTINE tr_yx_fftx( f_in, f_out ) |
---|
[1] | 1186 | |
---|
[1682] | 1187 | |
---|
[1320] | 1188 | USE control_parameters, & |
---|
[2300] | 1189 | ONLY: loop_optimization |
---|
[1320] | 1190 | |
---|
| 1191 | USE cpulog, & |
---|
| 1192 | ONLY: cpu_log, log_point_s |
---|
| 1193 | |
---|
| 1194 | USE kinds |
---|
| 1195 | |
---|
[1] | 1196 | USE pegrid |
---|
| 1197 | |
---|
| 1198 | IMPLICIT NONE |
---|
| 1199 | |
---|
[1682] | 1200 | INTEGER(iwp) :: i !< |
---|
| 1201 | INTEGER(iwp) :: j !< |
---|
| 1202 | INTEGER(iwp) :: k !< |
---|
[1] | 1203 | |
---|
[1682] | 1204 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !< |
---|
| 1205 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_in !< |
---|
| 1206 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_out !< |
---|
| 1207 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !< |
---|
[1] | 1208 | |
---|
| 1209 | ! |
---|
| 1210 | !-- Transpose array |
---|
[1111] | 1211 | #if defined( __parallel ) |
---|
[1] | 1212 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1213 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1214 | CALL MPI_ALLTOALL( f_in(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 1215 | work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 1216 | comm1dy, ierr ) |
---|
| 1217 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 1218 | #endif |
---|
[1] | 1219 | |
---|
| 1220 | ! |
---|
| 1221 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 1222 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 1223 | !-- the first index. |
---|
[1106] | 1224 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'continue' ) |
---|
[1] | 1225 | |
---|
[2300] | 1226 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1227 | ! |
---|
| 1228 | !-- Code optimized for vector processors |
---|
[85] | 1229 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 1230 | !$OMP DO |
---|
| 1231 | DO j = nys, nyn |
---|
| 1232 | |
---|
| 1233 | DO k = 1, nz |
---|
| 1234 | DO i = 0, nx |
---|
| 1235 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1236 | ENDDO |
---|
| 1237 | ENDDO |
---|
| 1238 | |
---|
| 1239 | CALL fft_x_m( work_fftx(:,:,j), 'backward' ) |
---|
| 1240 | |
---|
| 1241 | ENDDO |
---|
| 1242 | |
---|
| 1243 | !$OMP DO |
---|
| 1244 | DO i = 0, nx |
---|
| 1245 | DO j = nys, nyn |
---|
| 1246 | DO k = 1, nz |
---|
| 1247 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 1248 | ENDDO |
---|
| 1249 | ENDDO |
---|
| 1250 | ENDDO |
---|
| 1251 | !$OMP END PARALLEL |
---|
| 1252 | |
---|
| 1253 | ELSE |
---|
| 1254 | |
---|
| 1255 | ! |
---|
| 1256 | !-- Cache optimized code (there might be still a potential for better |
---|
| 1257 | !-- optimization). |
---|
[696] | 1258 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
[1] | 1259 | !$OMP DO |
---|
| 1260 | DO j = nys, nyn |
---|
| 1261 | DO k = 1, nz |
---|
| 1262 | |
---|
| 1263 | DO i = 0, nx |
---|
| 1264 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1265 | ENDDO |
---|
| 1266 | |
---|
[1106] | 1267 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'backward' ) |
---|
[1] | 1268 | |
---|
| 1269 | ENDDO |
---|
| 1270 | ENDDO |
---|
| 1271 | |
---|
| 1272 | !$OMP DO |
---|
| 1273 | DO i = 0, nx |
---|
| 1274 | DO j = nys, nyn |
---|
| 1275 | DO k = 1, nz |
---|
| 1276 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 1277 | ENDDO |
---|
| 1278 | ENDDO |
---|
| 1279 | ENDDO |
---|
| 1280 | !$OMP END PARALLEL |
---|
| 1281 | |
---|
| 1282 | ENDIF |
---|
[1106] | 1283 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'stop' ) |
---|
[1] | 1284 | |
---|
| 1285 | END SUBROUTINE tr_yx_fftx |
---|
| 1286 | |
---|
| 1287 | |
---|
| 1288 | !------------------------------------------------------------------------------! |
---|
[1682] | 1289 | ! Description: |
---|
| 1290 | ! ------------ |
---|
| 1291 | !> FFT along y, solution of the tridiagonal system and backward FFT for |
---|
| 1292 | !> a 1d-decomposition along y. |
---|
| 1293 | !> |
---|
| 1294 | !> @warning this subroutine may still not work for hybrid parallelization |
---|
| 1295 | !> with OpenMP (for possible necessary changes see the original |
---|
| 1296 | !> routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
[1] | 1297 | !------------------------------------------------------------------------------! |
---|
[1682] | 1298 | SUBROUTINE ffty_tri_ffty( ar ) |
---|
[1] | 1299 | |
---|
[1682] | 1300 | |
---|
[1320] | 1301 | USE control_parameters, & |
---|
[2300] | 1302 | ONLY: loop_optimization |
---|
[1320] | 1303 | |
---|
| 1304 | USE cpulog, & |
---|
| 1305 | ONLY: cpu_log, log_point_s |
---|
| 1306 | |
---|
| 1307 | USE grid_variables, & |
---|
| 1308 | ONLY: ddx2, ddy2 |
---|
| 1309 | |
---|
| 1310 | USE kinds |
---|
| 1311 | |
---|
[1] | 1312 | USE pegrid |
---|
| 1313 | |
---|
| 1314 | IMPLICIT NONE |
---|
| 1315 | |
---|
[1682] | 1316 | INTEGER(iwp) :: i !< |
---|
| 1317 | INTEGER(iwp) :: j !< |
---|
| 1318 | INTEGER(iwp) :: k !< |
---|
| 1319 | INTEGER(iwp) :: m !< |
---|
| 1320 | INTEGER(iwp) :: n !< |
---|
[3241] | 1321 | !$ INTEGER(iwp) :: omp_get_thread_num !< |
---|
[1682] | 1322 | INTEGER(iwp) :: tn !< |
---|
[1] | 1323 | |
---|
[1682] | 1324 | REAL(wp), DIMENSION(0:ny) :: work_ffty !< |
---|
| 1325 | REAL(wp), DIMENSION(0:ny,1:nz) :: work_triy !< |
---|
| 1326 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: ar !< |
---|
| 1327 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !< |
---|
[1] | 1328 | |
---|
| 1329 | |
---|
[1106] | 1330 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'start' ) |
---|
[1] | 1331 | |
---|
| 1332 | ALLOCATE( tri(5,0:ny,0:nz-1,0:threads_per_task-1) ) |
---|
| 1333 | |
---|
| 1334 | tn = 0 ! Default thread number in case of one thread |
---|
[696] | 1335 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_ffty, work_triy ) |
---|
[1] | 1336 | DO i = nxl_y, nxr_y |
---|
| 1337 | |
---|
| 1338 | !$ tn = omp_get_thread_num() |
---|
| 1339 | |
---|
[2300] | 1340 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1341 | ! |
---|
| 1342 | !-- Code optimized for vector processors |
---|
| 1343 | DO k = 1, nz |
---|
| 1344 | |
---|
| 1345 | m = 0 |
---|
| 1346 | DO n = 1, pdims(2) |
---|
[1003] | 1347 | DO j = 1, nny |
---|
[1] | 1348 | work_triy(m,k) = ar(j,k,i,n) |
---|
| 1349 | m = m + 1 |
---|
| 1350 | ENDDO |
---|
| 1351 | ENDDO |
---|
| 1352 | |
---|
| 1353 | ENDDO |
---|
| 1354 | |
---|
| 1355 | CALL fft_y_m( work_triy, ny, 'forward' ) |
---|
| 1356 | |
---|
| 1357 | ELSE |
---|
| 1358 | ! |
---|
| 1359 | !-- Cache optimized code |
---|
| 1360 | DO k = 1, nz |
---|
| 1361 | |
---|
| 1362 | m = 0 |
---|
| 1363 | DO n = 1, pdims(2) |
---|
[1003] | 1364 | DO j = 1, nny |
---|
[1] | 1365 | work_ffty(m) = ar(j,k,i,n) |
---|
| 1366 | m = m + 1 |
---|
| 1367 | ENDDO |
---|
| 1368 | ENDDO |
---|
| 1369 | |
---|
[1106] | 1370 | CALL fft_y_1d( work_ffty, 'forward' ) |
---|
[1] | 1371 | |
---|
| 1372 | DO j = 0, ny |
---|
| 1373 | work_triy(j,k) = work_ffty(j) |
---|
| 1374 | ENDDO |
---|
| 1375 | |
---|
| 1376 | ENDDO |
---|
| 1377 | |
---|
| 1378 | ENDIF |
---|
| 1379 | |
---|
| 1380 | ! |
---|
| 1381 | !-- Solve the linear equation system |
---|
| 1382 | CALL tridia_1dd( ddy2, ddx2, ny, nx, i, work_triy, tri(:,:,:,tn) ) |
---|
| 1383 | |
---|
[2300] | 1384 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1385 | ! |
---|
| 1386 | !-- Code optimized for vector processors |
---|
| 1387 | CALL fft_y_m( work_triy, ny, 'backward' ) |
---|
| 1388 | |
---|
| 1389 | DO k = 1, nz |
---|
| 1390 | |
---|
| 1391 | m = 0 |
---|
| 1392 | DO n = 1, pdims(2) |
---|
[1003] | 1393 | DO j = 1, nny |
---|
[1] | 1394 | ar(j,k,i,n) = work_triy(m,k) |
---|
| 1395 | m = m + 1 |
---|
| 1396 | ENDDO |
---|
| 1397 | ENDDO |
---|
| 1398 | |
---|
| 1399 | ENDDO |
---|
| 1400 | |
---|
| 1401 | ELSE |
---|
| 1402 | ! |
---|
| 1403 | !-- Cache optimized code |
---|
| 1404 | DO k = 1, nz |
---|
| 1405 | |
---|
| 1406 | DO j = 0, ny |
---|
| 1407 | work_ffty(j) = work_triy(j,k) |
---|
| 1408 | ENDDO |
---|
| 1409 | |
---|
[1106] | 1410 | CALL fft_y_1d( work_ffty, 'backward' ) |
---|
[1] | 1411 | |
---|
| 1412 | m = 0 |
---|
| 1413 | DO n = 1, pdims(2) |
---|
[1003] | 1414 | DO j = 1, nny |
---|
[1] | 1415 | ar(j,k,i,n) = work_ffty(m) |
---|
| 1416 | m = m + 1 |
---|
| 1417 | ENDDO |
---|
| 1418 | ENDDO |
---|
| 1419 | |
---|
| 1420 | ENDDO |
---|
| 1421 | |
---|
| 1422 | ENDIF |
---|
| 1423 | |
---|
| 1424 | ENDDO |
---|
| 1425 | |
---|
| 1426 | DEALLOCATE( tri ) |
---|
| 1427 | |
---|
[1106] | 1428 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'stop' ) |
---|
[1] | 1429 | |
---|
| 1430 | END SUBROUTINE ffty_tri_ffty |
---|
| 1431 | |
---|
| 1432 | END MODULE poisfft_mod |
---|