[1850] | 1 | !> @file poisfft_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1683] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: poisfft_mod.f90 4182 2019-08-22 15:20:23Z suehring $ |
---|
[4182] | 27 | ! Corrected "Former revisions" section |
---|
| 28 | ! |
---|
| 29 | ! 3690 2019-01-22 22:56:42Z knoop |
---|
[3634] | 30 | ! OpenACC port for SPEC |
---|
[2716] | 31 | ! |
---|
[4182] | 32 | ! Revision 1.1 1997/07/24 11:24:14 raasch |
---|
| 33 | ! Initial revision |
---|
| 34 | ! |
---|
| 35 | ! |
---|
[1] | 36 | ! Description: |
---|
| 37 | ! ------------ |
---|
[1682] | 38 | !> Solves the Poisson equation with a 2D spectral method |
---|
| 39 | !> d^2 p / dx^2 + d^2 p / dy^2 + d^2 p / dz^2 = s |
---|
| 40 | !> |
---|
| 41 | !> Input: |
---|
| 42 | !> real ar contains (nnz,nny,nnx) elements of the velocity divergence, |
---|
| 43 | !> starting from (1,nys,nxl) |
---|
| 44 | !> |
---|
| 45 | !> Output: |
---|
| 46 | !> real ar contains the solution for perturbation pressure p |
---|
[1] | 47 | !------------------------------------------------------------------------------! |
---|
[1682] | 48 | MODULE poisfft_mod |
---|
| 49 | |
---|
[1] | 50 | |
---|
[1320] | 51 | USE fft_xy, & |
---|
| 52 | ONLY: fft_init, fft_y, fft_y_1d, fft_y_m, fft_x, fft_x_1d, fft_x_m |
---|
[1] | 53 | |
---|
[1320] | 54 | USE indices, & |
---|
| 55 | ONLY: nnx, nny, nx, nxl, nxr, ny, nys, nyn, nz |
---|
| 56 | |
---|
| 57 | USE transpose_indices, & |
---|
| 58 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nys_x, nys_z, nyn_x, nyn_z, nzb_x, & |
---|
| 59 | nzb_y, nzt_x, nzt_y |
---|
| 60 | |
---|
| 61 | USE tridia_solver, & |
---|
| 62 | ONLY: tridia_1dd, tridia_init, tridia_substi, tridia_substi_overlap |
---|
| 63 | |
---|
[1] | 64 | IMPLICIT NONE |
---|
| 65 | |
---|
[1111] | 66 | LOGICAL, SAVE :: poisfft_initialized = .FALSE. |
---|
| 67 | |
---|
[1] | 68 | PRIVATE |
---|
[807] | 69 | |
---|
[1] | 70 | PUBLIC poisfft, poisfft_init |
---|
| 71 | |
---|
| 72 | INTERFACE poisfft |
---|
| 73 | MODULE PROCEDURE poisfft |
---|
| 74 | END INTERFACE poisfft |
---|
| 75 | |
---|
| 76 | INTERFACE poisfft_init |
---|
| 77 | MODULE PROCEDURE poisfft_init |
---|
| 78 | END INTERFACE poisfft_init |
---|
| 79 | |
---|
[807] | 80 | |
---|
[1] | 81 | CONTAINS |
---|
| 82 | |
---|
[1682] | 83 | !------------------------------------------------------------------------------! |
---|
| 84 | ! Description: |
---|
| 85 | ! ------------ |
---|
[3241] | 86 | !> Setup coefficients for FFT and the tridiagonal solver |
---|
[1682] | 87 | !------------------------------------------------------------------------------! |
---|
[1] | 88 | SUBROUTINE poisfft_init |
---|
| 89 | |
---|
[1111] | 90 | IMPLICIT NONE |
---|
| 91 | |
---|
| 92 | |
---|
[1] | 93 | CALL fft_init |
---|
| 94 | |
---|
[1212] | 95 | CALL tridia_init |
---|
[1111] | 96 | |
---|
| 97 | poisfft_initialized = .TRUE. |
---|
| 98 | |
---|
[1] | 99 | END SUBROUTINE poisfft_init |
---|
| 100 | |
---|
[1111] | 101 | |
---|
[1804] | 102 | |
---|
[1682] | 103 | !------------------------------------------------------------------------------! |
---|
| 104 | ! Description: |
---|
| 105 | ! ------------ |
---|
| 106 | !> Two-dimensional Fourier Transformation in x- and y-direction. |
---|
| 107 | !------------------------------------------------------------------------------! |
---|
[1306] | 108 | SUBROUTINE poisfft( ar ) |
---|
[1] | 109 | |
---|
[1320] | 110 | USE control_parameters, & |
---|
[3241] | 111 | ONLY: transpose_compute_overlap |
---|
[1320] | 112 | |
---|
| 113 | USE cpulog, & |
---|
| 114 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
| 115 | |
---|
| 116 | USE kinds |
---|
| 117 | |
---|
[1] | 118 | USE pegrid |
---|
| 119 | |
---|
| 120 | IMPLICIT NONE |
---|
| 121 | |
---|
[1682] | 122 | INTEGER(iwp) :: ii !< |
---|
| 123 | INTEGER(iwp) :: iind !< |
---|
| 124 | INTEGER(iwp) :: inew !< |
---|
| 125 | INTEGER(iwp) :: jj !< |
---|
| 126 | INTEGER(iwp) :: jind !< |
---|
| 127 | INTEGER(iwp) :: jnew !< |
---|
| 128 | INTEGER(iwp) :: ki !< |
---|
| 129 | INTEGER(iwp) :: kk !< |
---|
| 130 | INTEGER(iwp) :: knew !< |
---|
| 131 | INTEGER(iwp) :: n !< |
---|
| 132 | INTEGER(iwp) :: nblk !< |
---|
| 133 | INTEGER(iwp) :: nnx_y !< |
---|
| 134 | INTEGER(iwp) :: nny_z !< |
---|
| 135 | INTEGER(iwp) :: nnz_x !< |
---|
| 136 | INTEGER(iwp) :: nxl_y_bound !< |
---|
| 137 | INTEGER(iwp) :: nxr_y_bound !< |
---|
[1] | 138 | |
---|
[1682] | 139 | INTEGER(iwp), DIMENSION(4) :: isave !< |
---|
[1320] | 140 | |
---|
[1682] | 141 | REAL(wp), DIMENSION(1:nz,nys:nyn,nxl:nxr) :: ar !< |
---|
| 142 | REAL(wp), DIMENSION(nys:nyn,nxl:nxr,1:nz) :: ar_inv !< |
---|
[3690] | 143 | |
---|
| 144 | #define __acc_fft_device ( defined( _OPENACC ) && ( defined ( __cuda_fft ) ) ) |
---|
| 145 | #if __acc_fft_device |
---|
[3634] | 146 | !$ACC DECLARE CREATE(ar_inv) |
---|
[3690] | 147 | #endif |
---|
[1] | 148 | |
---|
[1682] | 149 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ar1 !< |
---|
| 150 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_in !< |
---|
| 151 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_inv !< |
---|
| 152 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_y !< |
---|
| 153 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_z !< |
---|
[1216] | 154 | |
---|
| 155 | |
---|
[1] | 156 | CALL cpu_log( log_point_s(3), 'poisfft', 'start' ) |
---|
| 157 | |
---|
[1111] | 158 | IF ( .NOT. poisfft_initialized ) CALL poisfft_init |
---|
| 159 | |
---|
[3690] | 160 | #if !__acc_fft_device |
---|
| 161 | !$ACC UPDATE HOST(ar) |
---|
| 162 | #endif |
---|
| 163 | |
---|
[3634] | 164 | #ifndef _OPENACC |
---|
[1] | 165 | ! |
---|
| 166 | !-- Two-dimensional Fourier Transformation in x- and y-direction. |
---|
[2118] | 167 | IF ( pdims(2) == 1 .AND. pdims(1) > 1 ) THEN |
---|
[1] | 168 | |
---|
| 169 | ! |
---|
| 170 | !-- 1d-domain-decomposition along x: |
---|
| 171 | !-- FFT along y and transposition y --> x |
---|
[1216] | 172 | CALL ffty_tr_yx( ar, ar ) |
---|
[1] | 173 | |
---|
| 174 | ! |
---|
| 175 | !-- FFT along x, solving the tridiagonal system and backward FFT |
---|
| 176 | CALL fftx_tri_fftx( ar ) |
---|
| 177 | |
---|
| 178 | ! |
---|
| 179 | !-- Transposition x --> y and backward FFT along y |
---|
[1216] | 180 | CALL tr_xy_ffty( ar, ar ) |
---|
[1] | 181 | |
---|
[2118] | 182 | ELSEIF ( pdims(1) == 1 .AND. pdims(2) > 1 ) THEN |
---|
[1] | 183 | |
---|
| 184 | ! |
---|
| 185 | !-- 1d-domain-decomposition along y: |
---|
| 186 | !-- FFT along x and transposition x --> y |
---|
[1216] | 187 | CALL fftx_tr_xy( ar, ar ) |
---|
[1] | 188 | |
---|
| 189 | ! |
---|
| 190 | !-- FFT along y, solving the tridiagonal system and backward FFT |
---|
| 191 | CALL ffty_tri_ffty( ar ) |
---|
| 192 | |
---|
| 193 | ! |
---|
| 194 | !-- Transposition y --> x and backward FFT along x |
---|
[1216] | 195 | CALL tr_yx_fftx( ar, ar ) |
---|
[1] | 196 | |
---|
[1216] | 197 | ELSEIF ( .NOT. transpose_compute_overlap ) THEN |
---|
[3634] | 198 | #endif |
---|
[1] | 199 | |
---|
| 200 | ! |
---|
[1111] | 201 | !-- 2d-domain-decomposition or no decomposition (1 PE run) |
---|
[1] | 202 | !-- Transposition z --> x |
---|
| 203 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start' ) |
---|
[1216] | 204 | CALL resort_for_zx( ar, ar_inv ) |
---|
| 205 | CALL transpose_zx( ar_inv, ar ) |
---|
[1] | 206 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 207 | |
---|
| 208 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
[1106] | 209 | CALL fft_x( ar, 'forward' ) |
---|
[1] | 210 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
| 211 | |
---|
| 212 | ! |
---|
| 213 | !-- Transposition x --> y |
---|
| 214 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[1216] | 215 | CALL resort_for_xy( ar, ar_inv ) |
---|
| 216 | CALL transpose_xy( ar_inv, ar ) |
---|
[1] | 217 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 218 | |
---|
| 219 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
[1216] | 220 | CALL fft_y( ar, 'forward', ar_tr = ar, & |
---|
| 221 | nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 222 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
[1] | 223 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 224 | |
---|
| 225 | ! |
---|
| 226 | !-- Transposition y --> z |
---|
| 227 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[1216] | 228 | CALL resort_for_yz( ar, ar_inv ) |
---|
| 229 | CALL transpose_yz( ar_inv, ar ) |
---|
[1] | 230 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
| 231 | |
---|
| 232 | ! |
---|
[1106] | 233 | !-- Solve the tridiagonal equation system along z |
---|
[1] | 234 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
[1212] | 235 | CALL tridia_substi( ar ) |
---|
[1] | 236 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
| 237 | |
---|
| 238 | ! |
---|
| 239 | !-- Inverse Fourier Transformation |
---|
| 240 | !-- Transposition z --> y |
---|
| 241 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start' ) |
---|
[1216] | 242 | CALL transpose_zy( ar, ar_inv ) |
---|
| 243 | CALL resort_for_zy( ar_inv, ar ) |
---|
[1] | 244 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 245 | |
---|
| 246 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
[1216] | 247 | CALL fft_y( ar, 'backward', ar_tr = ar, & |
---|
| 248 | nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 249 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
[1] | 250 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 251 | |
---|
| 252 | ! |
---|
| 253 | !-- Transposition y --> x |
---|
| 254 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[1216] | 255 | CALL transpose_yx( ar, ar_inv ) |
---|
| 256 | CALL resort_for_yx( ar_inv, ar ) |
---|
[1] | 257 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 258 | |
---|
| 259 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
[1106] | 260 | CALL fft_x( ar, 'backward' ) |
---|
[1] | 261 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 262 | |
---|
| 263 | ! |
---|
| 264 | !-- Transposition x --> z |
---|
| 265 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[1216] | 266 | CALL transpose_xz( ar, ar_inv ) |
---|
| 267 | CALL resort_for_xz( ar_inv, ar ) |
---|
[1] | 268 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
| 269 | |
---|
[3634] | 270 | #ifndef _OPENACC |
---|
[1216] | 271 | ELSE |
---|
| 272 | |
---|
| 273 | ! |
---|
| 274 | !-- 2d-domain-decomposition or no decomposition (1 PE run) with |
---|
| 275 | !-- overlapping transposition / fft |
---|
[1318] | 276 | !-- cputime logging must not use barriers, which would prevent overlapping |
---|
[1216] | 277 | ALLOCATE( f_out_y(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), & |
---|
| 278 | f_out_z(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
| 279 | ! |
---|
| 280 | !-- Transposition z --> x + subsequent fft along x |
---|
| 281 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 282 | CALL resort_for_zx( ar, f_inv ) |
---|
| 283 | ! |
---|
| 284 | !-- Save original indices and gridpoint counter |
---|
| 285 | isave(1) = nz |
---|
| 286 | isave(2) = nzb_x |
---|
| 287 | isave(3) = nzt_x |
---|
| 288 | isave(4) = sendrecvcount_zx |
---|
| 289 | ! |
---|
| 290 | !-- Set new indices for transformation |
---|
| 291 | nblk = nz / pdims(1) |
---|
| 292 | nz = pdims(1) |
---|
| 293 | nnz_x = 1 |
---|
| 294 | nzb_x = 1 + myidx * nnz_x |
---|
| 295 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
| 296 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
| 297 | |
---|
[1306] | 298 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
[1216] | 299 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 300 | |
---|
[1306] | 301 | DO kk = 1, nblk |
---|
[1216] | 302 | |
---|
[1306] | 303 | IF ( kk == 1 ) THEN |
---|
[1318] | 304 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start', cpu_log_nowait ) |
---|
[1306] | 305 | ELSE |
---|
[1318] | 306 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1306] | 307 | ENDIF |
---|
[1216] | 308 | |
---|
[1306] | 309 | DO knew = 1, nz |
---|
| 310 | ki = kk + nblk * ( knew - 1 ) |
---|
| 311 | f_in(:,:,knew) = f_inv(:,:,ki) |
---|
| 312 | ENDDO |
---|
[1216] | 313 | |
---|
[1306] | 314 | CALL transpose_zx( f_in, ar1(:,:,:)) |
---|
| 315 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 316 | |
---|
[1306] | 317 | IF ( kk == 1 ) THEN |
---|
[1318] | 318 | CALL cpu_log( log_point_s(4), 'fft_x', 'start', cpu_log_nowait ) |
---|
[1306] | 319 | ELSE |
---|
[1318] | 320 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
[1216] | 321 | ENDIF |
---|
| 322 | |
---|
[1306] | 323 | n = isave(2) + kk - 1 |
---|
| 324 | CALL fft_x( ar1(:,:,:), 'forward', ar_2d = f_out_z(:,:,n)) |
---|
| 325 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
[1216] | 326 | |
---|
| 327 | ENDDO |
---|
| 328 | ! |
---|
| 329 | !-- Restore original indices/counters |
---|
| 330 | nz = isave(1) |
---|
| 331 | nzb_x = isave(2) |
---|
| 332 | nzt_x = isave(3) |
---|
| 333 | sendrecvcount_zx = isave(4) |
---|
| 334 | |
---|
| 335 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 336 | |
---|
| 337 | ! |
---|
| 338 | !-- Transposition x --> y + subsequent fft along y |
---|
| 339 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 340 | CALL resort_for_xy( f_out_z, f_inv ) |
---|
| 341 | ! |
---|
| 342 | !-- Save original indices and gridpoint counter |
---|
| 343 | isave(1) = nx |
---|
| 344 | isave(2) = nxl_y |
---|
| 345 | isave(3) = nxr_y |
---|
| 346 | isave(4) = sendrecvcount_xy |
---|
| 347 | ! |
---|
| 348 | !-- Set new indices for transformation |
---|
| 349 | nblk = ( ( nx+1 ) / pdims(2) ) - 1 |
---|
| 350 | nx = pdims(2) |
---|
| 351 | nnx_y = 1 |
---|
| 352 | nxl_y = myidy * nnx_y |
---|
| 353 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
| 354 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
| 355 | |
---|
[1306] | 356 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
[1216] | 357 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 358 | |
---|
[1306] | 359 | DO ii = 0, nblk |
---|
[1216] | 360 | |
---|
[1318] | 361 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1216] | 362 | |
---|
[1306] | 363 | DO inew = 0, nx-1 |
---|
| 364 | iind = ii + ( nblk + 1 ) * inew |
---|
| 365 | f_in(:,:,inew) = f_inv(:,:,iind) |
---|
| 366 | ENDDO |
---|
[1216] | 367 | |
---|
[1306] | 368 | CALL transpose_xy( f_in, ar1(:,:,:) ) |
---|
[1216] | 369 | |
---|
[1306] | 370 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 371 | |
---|
[1306] | 372 | IF ( ii == 1 ) THEN |
---|
[1318] | 373 | CALL cpu_log( log_point_s(7), 'fft_y', 'start', cpu_log_nowait ) |
---|
[1306] | 374 | ELSE |
---|
[1318] | 375 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
[1216] | 376 | ENDIF |
---|
| 377 | |
---|
[1306] | 378 | nxl_y_bound = isave(2) |
---|
| 379 | nxr_y_bound = isave(3) |
---|
| 380 | n = isave(2) + ii |
---|
| 381 | CALL fft_y( ar1(:,:,:), 'forward', ar_tr = f_out_y, & |
---|
| 382 | nxl_y_bound = nxl_y_bound, nxr_y_bound = nxr_y_bound, & |
---|
| 383 | nxl_y_l = n, nxr_y_l = n ) |
---|
[1216] | 384 | |
---|
[1306] | 385 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
[1216] | 386 | |
---|
| 387 | ENDDO |
---|
| 388 | ! |
---|
| 389 | !-- Restore original indices/counters |
---|
| 390 | nx = isave(1) |
---|
| 391 | nxl_y = isave(2) |
---|
| 392 | nxr_y = isave(3) |
---|
| 393 | sendrecvcount_xy = isave(4) |
---|
| 394 | |
---|
| 395 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 396 | |
---|
| 397 | ! |
---|
| 398 | !-- Transposition y --> z + subsequent tridia + resort for z --> y |
---|
| 399 | ALLOCATE( f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
| 400 | CALL resort_for_yz( f_out_y, f_inv ) |
---|
| 401 | ! |
---|
| 402 | !-- Save original indices and gridpoint counter |
---|
| 403 | isave(1) = ny |
---|
| 404 | isave(2) = nys_z |
---|
| 405 | isave(3) = nyn_z |
---|
| 406 | isave(4) = sendrecvcount_yz |
---|
| 407 | ! |
---|
| 408 | !-- Set new indices for transformation |
---|
| 409 | nblk = ( ( ny+1 ) / pdims(1) ) - 1 |
---|
| 410 | ny = pdims(1) |
---|
| 411 | nny_z = 1 |
---|
| 412 | nys_z = myidx * nny_z |
---|
| 413 | nyn_z = ( myidx + 1 ) * nny_z - 1 |
---|
| 414 | sendrecvcount_yz = ( nxr_y-nxl_y+1 ) * nny_z * ( nzt_y-nzb_y+1 ) |
---|
| 415 | |
---|
[1306] | 416 | ALLOCATE( ar1(nxl_z:nxr_z,nys_z:nyn_z,1:nz) ) |
---|
[1216] | 417 | ALLOCATE( f_in(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
| 418 | |
---|
[1306] | 419 | DO jj = 0, nblk |
---|
[1216] | 420 | ! |
---|
[1306] | 421 | !-- Forward Fourier Transformation |
---|
| 422 | !-- Transposition y --> z |
---|
[1318] | 423 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1216] | 424 | |
---|
[1306] | 425 | DO jnew = 0, ny-1 |
---|
| 426 | jind = jj + ( nblk + 1 ) * jnew |
---|
| 427 | f_in(:,:,jnew) = f_inv(:,:,jind) |
---|
| 428 | ENDDO |
---|
[1216] | 429 | |
---|
[1306] | 430 | CALL transpose_yz( f_in, ar1(:,:,:) ) |
---|
[1216] | 431 | |
---|
[1306] | 432 | IF ( jj == nblk ) THEN |
---|
| 433 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
| 434 | ELSE |
---|
| 435 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 436 | ENDIF |
---|
| 437 | |
---|
| 438 | ! |
---|
[1306] | 439 | !-- Solve the tridiagonal equation system along z |
---|
[1318] | 440 | CALL cpu_log( log_point_s(6), 'tridia', 'start', cpu_log_nowait ) |
---|
[1216] | 441 | |
---|
[1306] | 442 | n = isave(2) + jj |
---|
| 443 | CALL tridia_substi_overlap( ar1(:,:,:), n ) |
---|
[1216] | 444 | |
---|
[1306] | 445 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
[1216] | 446 | |
---|
[1306] | 447 | ! |
---|
| 448 | !-- Inverse Fourier Transformation |
---|
| 449 | !-- Transposition z --> y |
---|
| 450 | !-- Only one thread should call MPI routines, therefore forward and |
---|
| 451 | !-- backward tranpose are in the same section |
---|
| 452 | IF ( jj == 0 ) THEN |
---|
[1318] | 453 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start', cpu_log_nowait ) |
---|
[1306] | 454 | ELSE |
---|
[1318] | 455 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 456 | ENDIF |
---|
| 457 | |
---|
[1306] | 458 | CALL transpose_zy( ar1(:,:,:), f_in ) |
---|
[1216] | 459 | |
---|
[1306] | 460 | DO jnew = 0, ny-1 |
---|
| 461 | jind = jj + ( nblk + 1 ) * jnew |
---|
| 462 | f_inv(:,:,jind) = f_in(:,:,jnew) |
---|
| 463 | ENDDO |
---|
[1216] | 464 | |
---|
[1306] | 465 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 466 | |
---|
| 467 | ENDDO |
---|
| 468 | ! |
---|
| 469 | !-- Restore original indices/counters |
---|
| 470 | ny = isave(1) |
---|
| 471 | nys_z = isave(2) |
---|
| 472 | nyn_z = isave(3) |
---|
| 473 | sendrecvcount_yz = isave(4) |
---|
| 474 | |
---|
| 475 | CALL resort_for_zy( f_inv, f_out_y ) |
---|
| 476 | |
---|
| 477 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 478 | |
---|
| 479 | ! |
---|
| 480 | !-- fft along y backward + subsequent transposition y --> x |
---|
| 481 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 482 | ! |
---|
| 483 | !-- Save original indices and gridpoint counter |
---|
| 484 | isave(1) = nx |
---|
| 485 | isave(2) = nxl_y |
---|
| 486 | isave(3) = nxr_y |
---|
| 487 | isave(4) = sendrecvcount_xy |
---|
| 488 | ! |
---|
| 489 | !-- Set new indices for transformation |
---|
| 490 | nblk = (( nx+1 ) / pdims(2) ) - 1 |
---|
| 491 | nx = pdims(2) |
---|
| 492 | nnx_y = 1 |
---|
| 493 | nxl_y = myidy * nnx_y |
---|
| 494 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
| 495 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
| 496 | |
---|
[1306] | 497 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
[1216] | 498 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 499 | |
---|
[1306] | 500 | DO ii = 0, nblk |
---|
[1216] | 501 | |
---|
[1318] | 502 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
[1216] | 503 | |
---|
[1306] | 504 | n = isave(2) + ii |
---|
| 505 | nxl_y_bound = isave(2) |
---|
| 506 | nxr_y_bound = isave(3) |
---|
[1216] | 507 | |
---|
[1306] | 508 | CALL fft_y( ar1(:,:,:), 'backward', ar_tr = f_out_y, & |
---|
| 509 | nxl_y_bound = nxl_y_bound, nxr_y_bound = nxr_y_bound, & |
---|
| 510 | nxl_y_l = n, nxr_y_l = n ) |
---|
[1216] | 511 | |
---|
[1306] | 512 | IF ( ii == nblk ) THEN |
---|
| 513 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 514 | ELSE |
---|
| 515 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
[1216] | 516 | ENDIF |
---|
| 517 | |
---|
[1318] | 518 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 519 | |
---|
[1306] | 520 | CALL transpose_yx( ar1(:,:,:), f_in ) |
---|
[1216] | 521 | |
---|
[1306] | 522 | DO inew = 0, nx-1 |
---|
| 523 | iind = ii + (nblk+1) * inew |
---|
| 524 | f_inv(:,:,iind) = f_in(:,:,inew) |
---|
| 525 | ENDDO |
---|
[1216] | 526 | |
---|
[1306] | 527 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 528 | |
---|
| 529 | ENDDO |
---|
| 530 | ! |
---|
| 531 | !-- Restore original indices/counters |
---|
| 532 | nx = isave(1) |
---|
| 533 | nxl_y = isave(2) |
---|
| 534 | nxr_y = isave(3) |
---|
| 535 | sendrecvcount_xy = isave(4) |
---|
| 536 | |
---|
| 537 | CALL resort_for_yx( f_inv, f_out_z ) |
---|
| 538 | |
---|
| 539 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 540 | |
---|
| 541 | ! |
---|
| 542 | !-- fft along x backward + subsequent final transposition x --> z |
---|
| 543 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 544 | ! |
---|
| 545 | !-- Save original indices and gridpoint counter |
---|
| 546 | isave(1) = nz |
---|
| 547 | isave(2) = nzb_x |
---|
| 548 | isave(3) = nzt_x |
---|
| 549 | isave(4) = sendrecvcount_zx |
---|
| 550 | ! |
---|
| 551 | !-- Set new indices for transformation |
---|
| 552 | nblk = nz / pdims(1) |
---|
| 553 | nz = pdims(1) |
---|
| 554 | nnz_x = 1 |
---|
| 555 | nzb_x = 1 + myidx * nnz_x |
---|
| 556 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
| 557 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
| 558 | |
---|
[1306] | 559 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
[1216] | 560 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 561 | |
---|
[1306] | 562 | DO kk = 1, nblk |
---|
[1216] | 563 | |
---|
[1318] | 564 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
[1216] | 565 | |
---|
[1306] | 566 | n = isave(2) + kk - 1 |
---|
| 567 | CALL fft_x( ar1(:,:,:), 'backward', f_out_z(:,:,n)) |
---|
[1216] | 568 | |
---|
[1306] | 569 | IF ( kk == nblk ) THEN |
---|
| 570 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 571 | ELSE |
---|
| 572 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
[1216] | 573 | ENDIF |
---|
| 574 | |
---|
[1318] | 575 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 576 | |
---|
[1306] | 577 | CALL transpose_xz( ar1(:,:,:), f_in ) |
---|
[1216] | 578 | |
---|
[1306] | 579 | DO knew = 1, nz |
---|
| 580 | ki = kk + nblk * (knew-1) |
---|
| 581 | f_inv(:,:,ki) = f_in(:,:,knew) |
---|
| 582 | ENDDO |
---|
[1216] | 583 | |
---|
[1306] | 584 | IF ( kk == nblk ) THEN |
---|
| 585 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
| 586 | ELSE |
---|
| 587 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 588 | ENDIF |
---|
| 589 | |
---|
| 590 | ENDDO |
---|
| 591 | ! |
---|
| 592 | !-- Restore original indices/counters |
---|
| 593 | nz = isave(1) |
---|
| 594 | nzb_x = isave(2) |
---|
| 595 | nzt_x = isave(3) |
---|
| 596 | sendrecvcount_zx = isave(4) |
---|
| 597 | |
---|
| 598 | CALL resort_for_xz( f_inv, ar ) |
---|
| 599 | |
---|
| 600 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 601 | |
---|
[1] | 602 | ENDIF |
---|
[3634] | 603 | #endif |
---|
[1] | 604 | |
---|
[3690] | 605 | #if !__acc_fft_device |
---|
| 606 | !$ACC UPDATE DEVICE(ar) |
---|
| 607 | #endif |
---|
| 608 | |
---|
[1] | 609 | CALL cpu_log( log_point_s(3), 'poisfft', 'stop' ) |
---|
| 610 | |
---|
| 611 | END SUBROUTINE poisfft |
---|
| 612 | |
---|
| 613 | |
---|
| 614 | !------------------------------------------------------------------------------! |
---|
[1682] | 615 | ! Description: |
---|
| 616 | ! ------------ |
---|
| 617 | !> Fourier-transformation along y with subsequent transposition y --> x for |
---|
| 618 | !> a 1d-decomposition along x. |
---|
| 619 | !> |
---|
| 620 | !> @attention The performance of this routine is much faster on the NEC-SX6, |
---|
| 621 | !> if the first index of work_ffty_vec is odd. Otherwise |
---|
| 622 | !> memory bank conflicts may occur (especially if the index is a |
---|
| 623 | !> multiple of 128). That's why work_ffty_vec is dimensioned as |
---|
| 624 | !> 0:ny+1. |
---|
| 625 | !> Of course, this will not work if users are using an odd number |
---|
| 626 | !> of gridpoints along y. |
---|
[1] | 627 | !------------------------------------------------------------------------------! |
---|
[1682] | 628 | SUBROUTINE ffty_tr_yx( f_in, f_out ) |
---|
[1] | 629 | |
---|
[1320] | 630 | USE control_parameters, & |
---|
[2300] | 631 | ONLY: loop_optimization |
---|
[1320] | 632 | |
---|
| 633 | USE cpulog, & |
---|
| 634 | ONLY: cpu_log, log_point_s |
---|
| 635 | |
---|
| 636 | USE kinds |
---|
| 637 | |
---|
[1] | 638 | USE pegrid |
---|
| 639 | |
---|
| 640 | IMPLICIT NONE |
---|
| 641 | |
---|
[1682] | 642 | INTEGER(iwp) :: i !< |
---|
| 643 | INTEGER(iwp) :: iend !< |
---|
| 644 | INTEGER(iwp) :: iouter !< |
---|
| 645 | INTEGER(iwp) :: ir !< |
---|
| 646 | INTEGER(iwp) :: j !< |
---|
| 647 | INTEGER(iwp) :: k !< |
---|
[1] | 648 | |
---|
[1682] | 649 | INTEGER(iwp), PARAMETER :: stridex = 4 !< |
---|
[1320] | 650 | |
---|
[1682] | 651 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_in !< |
---|
| 652 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_out !< |
---|
| 653 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !< |
---|
[1] | 654 | |
---|
[2300] | 655 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_ffty !< |
---|
| 656 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: work_ffty_vec !< |
---|
| 657 | |
---|
[1] | 658 | ! |
---|
| 659 | !-- Carry out the FFT along y, where all data are present due to the |
---|
| 660 | !-- 1d-decomposition along x. Resort the data in a way that x becomes |
---|
| 661 | !-- the first index. |
---|
[1106] | 662 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'start' ) |
---|
[1] | 663 | |
---|
[2300] | 664 | IF ( loop_optimization == 'vector' ) THEN |
---|
| 665 | |
---|
| 666 | ALLOCATE( work_ffty_vec(0:ny+1,1:nz,nxl:nxr) ) |
---|
[1] | 667 | ! |
---|
| 668 | !-- Code optimized for vector processors |
---|
[2300] | 669 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 670 | !$OMP DO |
---|
[1] | 671 | DO i = nxl, nxr |
---|
| 672 | |
---|
| 673 | DO j = 0, ny |
---|
| 674 | DO k = 1, nz |
---|
| 675 | work_ffty_vec(j,k,i) = f_in(k,j,i) |
---|
| 676 | ENDDO |
---|
| 677 | ENDDO |
---|
| 678 | |
---|
| 679 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'forward' ) |
---|
| 680 | |
---|
| 681 | ENDDO |
---|
| 682 | |
---|
[2300] | 683 | !$OMP DO |
---|
[1] | 684 | DO k = 1, nz |
---|
| 685 | DO j = 0, ny |
---|
| 686 | DO i = nxl, nxr |
---|
| 687 | work(i,k,j) = work_ffty_vec(j,k,i) |
---|
| 688 | ENDDO |
---|
| 689 | ENDDO |
---|
| 690 | ENDDO |
---|
[2300] | 691 | !$OMP END PARALLEL |
---|
[1] | 692 | |
---|
[2300] | 693 | DEALLOCATE( work_ffty_vec ) |
---|
| 694 | |
---|
[1] | 695 | ELSE |
---|
| 696 | ! |
---|
| 697 | !-- Cache optimized code. |
---|
[2300] | 698 | ALLOCATE( work_ffty(0:ny,stridex) ) |
---|
| 699 | ! |
---|
[1] | 700 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 701 | !-- loop for better cache performance |
---|
[2300] | 702 | !$OMP PARALLEL PRIVATE (i,iend,iouter,ir,j,k,work_ffty) |
---|
| 703 | !$OMP DO |
---|
[1] | 704 | DO iouter = nxl, nxr, stridex |
---|
| 705 | |
---|
| 706 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 707 | |
---|
| 708 | DO k = 1, nz |
---|
| 709 | |
---|
| 710 | DO i = iouter, iend |
---|
| 711 | |
---|
| 712 | ir = i-iouter+1 ! counter within a stride |
---|
| 713 | DO j = 0, ny |
---|
| 714 | work_ffty(j,ir) = f_in(k,j,i) |
---|
| 715 | ENDDO |
---|
| 716 | ! |
---|
| 717 | !-- FFT along y |
---|
[1106] | 718 | CALL fft_y_1d( work_ffty(:,ir), 'forward' ) |
---|
[1] | 719 | |
---|
| 720 | ENDDO |
---|
| 721 | |
---|
| 722 | ! |
---|
| 723 | !-- Resort |
---|
| 724 | DO j = 0, ny |
---|
| 725 | DO i = iouter, iend |
---|
| 726 | work(i,k,j) = work_ffty(j,i-iouter+1) |
---|
| 727 | ENDDO |
---|
| 728 | ENDDO |
---|
| 729 | |
---|
| 730 | ENDDO |
---|
| 731 | |
---|
| 732 | ENDDO |
---|
[2300] | 733 | !$OMP END PARALLEL |
---|
[1] | 734 | |
---|
[2300] | 735 | DEALLOCATE( work_ffty ) |
---|
| 736 | |
---|
[1] | 737 | ENDIF |
---|
[2300] | 738 | |
---|
[1106] | 739 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'pause' ) |
---|
[1] | 740 | |
---|
| 741 | ! |
---|
| 742 | !-- Transpose array |
---|
[1111] | 743 | #if defined( __parallel ) |
---|
[1] | 744 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 745 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 746 | CALL MPI_ALLTOALL( work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 747 | f_out(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 748 | comm1dx, ierr ) |
---|
| 749 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 750 | #endif |
---|
[1] | 751 | |
---|
| 752 | END SUBROUTINE ffty_tr_yx |
---|
| 753 | |
---|
| 754 | |
---|
| 755 | !------------------------------------------------------------------------------! |
---|
[1682] | 756 | ! Description: |
---|
| 757 | ! ------------ |
---|
| 758 | !> Transposition x --> y with a subsequent backward Fourier transformation for |
---|
| 759 | !> a 1d-decomposition along x |
---|
[1] | 760 | !------------------------------------------------------------------------------! |
---|
[1682] | 761 | SUBROUTINE tr_xy_ffty( f_in, f_out ) |
---|
[1] | 762 | |
---|
[1320] | 763 | USE control_parameters, & |
---|
[2300] | 764 | ONLY: loop_optimization |
---|
[1320] | 765 | |
---|
| 766 | USE cpulog, & |
---|
| 767 | ONLY: cpu_log, log_point_s |
---|
| 768 | |
---|
| 769 | USE kinds |
---|
| 770 | |
---|
[1] | 771 | USE pegrid |
---|
| 772 | |
---|
| 773 | IMPLICIT NONE |
---|
| 774 | |
---|
[1682] | 775 | INTEGER(iwp) :: i !< |
---|
| 776 | INTEGER(iwp) :: iend !< |
---|
| 777 | INTEGER(iwp) :: iouter !< |
---|
| 778 | INTEGER(iwp) :: ir !< |
---|
| 779 | INTEGER(iwp) :: j !< |
---|
| 780 | INTEGER(iwp) :: k !< |
---|
[1] | 781 | |
---|
[1682] | 782 | INTEGER(iwp), PARAMETER :: stridex = 4 !< |
---|
[1320] | 783 | |
---|
[1682] | 784 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_in !< |
---|
| 785 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_out !< |
---|
| 786 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !< |
---|
[1] | 787 | |
---|
[2300] | 788 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_ffty !< |
---|
| 789 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: work_ffty_vec !< |
---|
| 790 | |
---|
[1] | 791 | ! |
---|
| 792 | !-- Transpose array |
---|
[1111] | 793 | #if defined( __parallel ) |
---|
[1] | 794 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 795 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 796 | CALL MPI_ALLTOALL( f_in(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 797 | work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 798 | comm1dx, ierr ) |
---|
| 799 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 800 | #endif |
---|
[1] | 801 | |
---|
| 802 | ! |
---|
| 803 | !-- Resort the data in a way that y becomes the first index and carry out the |
---|
| 804 | !-- backward fft along y. |
---|
[1106] | 805 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'continue' ) |
---|
[1] | 806 | |
---|
[2300] | 807 | IF ( loop_optimization == 'vector' ) THEN |
---|
| 808 | |
---|
| 809 | ALLOCATE( work_ffty_vec(0:ny+1,1:nz,nxl:nxr) ) |
---|
[1] | 810 | ! |
---|
| 811 | !-- Code optimized for vector processors |
---|
[2300] | 812 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 813 | !$OMP DO |
---|
[1] | 814 | DO k = 1, nz |
---|
| 815 | DO j = 0, ny |
---|
| 816 | DO i = nxl, nxr |
---|
| 817 | work_ffty_vec(j,k,i) = work(i,k,j) |
---|
| 818 | ENDDO |
---|
| 819 | ENDDO |
---|
| 820 | ENDDO |
---|
| 821 | |
---|
[2300] | 822 | !$OMP DO |
---|
[1] | 823 | DO i = nxl, nxr |
---|
| 824 | |
---|
| 825 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'backward' ) |
---|
| 826 | |
---|
| 827 | DO j = 0, ny |
---|
| 828 | DO k = 1, nz |
---|
| 829 | f_out(k,j,i) = work_ffty_vec(j,k,i) |
---|
| 830 | ENDDO |
---|
| 831 | ENDDO |
---|
| 832 | |
---|
| 833 | ENDDO |
---|
[2300] | 834 | !$OMP END PARALLEL |
---|
[1] | 835 | |
---|
[2300] | 836 | DEALLOCATE( work_ffty_vec ) |
---|
| 837 | |
---|
[1] | 838 | ELSE |
---|
| 839 | ! |
---|
| 840 | !-- Cache optimized code. |
---|
[2300] | 841 | ALLOCATE( work_ffty(0:ny,stridex) ) |
---|
| 842 | ! |
---|
[1] | 843 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 844 | !-- loop for better cache performance |
---|
[2300] | 845 | !$OMP PARALLEL PRIVATE ( i, iend, iouter, ir, j, k, work_ffty ) |
---|
| 846 | !$OMP DO |
---|
[1] | 847 | DO iouter = nxl, nxr, stridex |
---|
| 848 | |
---|
| 849 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 850 | |
---|
| 851 | DO k = 1, nz |
---|
| 852 | ! |
---|
| 853 | !-- Resort |
---|
| 854 | DO j = 0, ny |
---|
| 855 | DO i = iouter, iend |
---|
| 856 | work_ffty(j,i-iouter+1) = work(i,k,j) |
---|
| 857 | ENDDO |
---|
| 858 | ENDDO |
---|
| 859 | |
---|
| 860 | DO i = iouter, iend |
---|
| 861 | |
---|
| 862 | ! |
---|
| 863 | !-- FFT along y |
---|
| 864 | ir = i-iouter+1 ! counter within a stride |
---|
[1106] | 865 | CALL fft_y_1d( work_ffty(:,ir), 'backward' ) |
---|
[1] | 866 | |
---|
| 867 | DO j = 0, ny |
---|
| 868 | f_out(k,j,i) = work_ffty(j,ir) |
---|
| 869 | ENDDO |
---|
| 870 | ENDDO |
---|
| 871 | |
---|
| 872 | ENDDO |
---|
| 873 | |
---|
| 874 | ENDDO |
---|
[2300] | 875 | !$OMP END PARALLEL |
---|
[1] | 876 | |
---|
[2300] | 877 | DEALLOCATE( work_ffty ) |
---|
| 878 | |
---|
[1] | 879 | ENDIF |
---|
| 880 | |
---|
[1106] | 881 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'stop' ) |
---|
[1] | 882 | |
---|
| 883 | END SUBROUTINE tr_xy_ffty |
---|
| 884 | |
---|
| 885 | |
---|
| 886 | !------------------------------------------------------------------------------! |
---|
[1682] | 887 | ! Description: |
---|
| 888 | ! ------------ |
---|
| 889 | !> FFT along x, solution of the tridiagonal system and backward FFT for |
---|
| 890 | !> a 1d-decomposition along x |
---|
| 891 | !> |
---|
| 892 | !> @warning this subroutine may still not work for hybrid parallelization |
---|
| 893 | !> with OpenMP (for possible necessary changes see the original |
---|
| 894 | !> routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
[1] | 895 | !------------------------------------------------------------------------------! |
---|
[1682] | 896 | SUBROUTINE fftx_tri_fftx( ar ) |
---|
[1] | 897 | |
---|
[1320] | 898 | USE control_parameters, & |
---|
[2300] | 899 | ONLY: loop_optimization |
---|
[1320] | 900 | |
---|
| 901 | USE cpulog, & |
---|
| 902 | ONLY: cpu_log, log_point_s |
---|
| 903 | |
---|
| 904 | USE grid_variables, & |
---|
| 905 | ONLY: ddx2, ddy2 |
---|
| 906 | |
---|
| 907 | USE kinds |
---|
| 908 | |
---|
[1] | 909 | USE pegrid |
---|
| 910 | |
---|
| 911 | IMPLICIT NONE |
---|
| 912 | |
---|
[1682] | 913 | INTEGER(iwp) :: i !< |
---|
| 914 | INTEGER(iwp) :: j !< |
---|
| 915 | INTEGER(iwp) :: k !< |
---|
| 916 | INTEGER(iwp) :: m !< |
---|
| 917 | INTEGER(iwp) :: n !< |
---|
[3241] | 918 | !$ INTEGER(iwp) :: omp_get_thread_num !< |
---|
[1682] | 919 | INTEGER(iwp) :: tn !< |
---|
[1] | 920 | |
---|
[1682] | 921 | REAL(wp), DIMENSION(0:nx) :: work_fftx !< |
---|
| 922 | REAL(wp), DIMENSION(0:nx,1:nz) :: work_trix !< |
---|
| 923 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: ar !< |
---|
| 924 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !< |
---|
[1] | 925 | |
---|
| 926 | |
---|
[1106] | 927 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'start' ) |
---|
[1] | 928 | |
---|
| 929 | ALLOCATE( tri(5,0:nx,0:nz-1,0:threads_per_task-1) ) |
---|
| 930 | |
---|
| 931 | tn = 0 ! Default thread number in case of one thread |
---|
| 932 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_fftx, work_trix ) |
---|
| 933 | DO j = nys_x, nyn_x |
---|
| 934 | |
---|
| 935 | !$ tn = omp_get_thread_num() |
---|
| 936 | |
---|
[2300] | 937 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 938 | ! |
---|
| 939 | !-- Code optimized for vector processors |
---|
| 940 | DO k = 1, nz |
---|
| 941 | |
---|
| 942 | m = 0 |
---|
| 943 | DO n = 1, pdims(1) |
---|
[1003] | 944 | DO i = 1, nnx |
---|
[1] | 945 | work_trix(m,k) = ar(i,k,j,n) |
---|
| 946 | m = m + 1 |
---|
| 947 | ENDDO |
---|
| 948 | ENDDO |
---|
| 949 | |
---|
| 950 | ENDDO |
---|
| 951 | |
---|
| 952 | CALL fft_x_m( work_trix, 'forward' ) |
---|
| 953 | |
---|
| 954 | ELSE |
---|
| 955 | ! |
---|
| 956 | !-- Cache optimized code |
---|
| 957 | DO k = 1, nz |
---|
| 958 | |
---|
| 959 | m = 0 |
---|
| 960 | DO n = 1, pdims(1) |
---|
[1003] | 961 | DO i = 1, nnx |
---|
[1] | 962 | work_fftx(m) = ar(i,k,j,n) |
---|
| 963 | m = m + 1 |
---|
| 964 | ENDDO |
---|
| 965 | ENDDO |
---|
| 966 | |
---|
[1106] | 967 | CALL fft_x_1d( work_fftx, 'forward' ) |
---|
[1] | 968 | |
---|
| 969 | DO i = 0, nx |
---|
| 970 | work_trix(i,k) = work_fftx(i) |
---|
| 971 | ENDDO |
---|
| 972 | |
---|
| 973 | ENDDO |
---|
| 974 | |
---|
| 975 | ENDIF |
---|
| 976 | |
---|
| 977 | ! |
---|
| 978 | !-- Solve the linear equation system |
---|
| 979 | CALL tridia_1dd( ddx2, ddy2, nx, ny, j, work_trix, tri(:,:,:,tn) ) |
---|
| 980 | |
---|
[2300] | 981 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 982 | ! |
---|
| 983 | !-- Code optimized for vector processors |
---|
| 984 | CALL fft_x_m( work_trix, 'backward' ) |
---|
| 985 | |
---|
| 986 | DO k = 1, nz |
---|
| 987 | |
---|
| 988 | m = 0 |
---|
| 989 | DO n = 1, pdims(1) |
---|
[1003] | 990 | DO i = 1, nnx |
---|
[1] | 991 | ar(i,k,j,n) = work_trix(m,k) |
---|
| 992 | m = m + 1 |
---|
| 993 | ENDDO |
---|
| 994 | ENDDO |
---|
| 995 | |
---|
| 996 | ENDDO |
---|
| 997 | |
---|
| 998 | ELSE |
---|
| 999 | ! |
---|
| 1000 | !-- Cache optimized code |
---|
| 1001 | DO k = 1, nz |
---|
| 1002 | |
---|
| 1003 | DO i = 0, nx |
---|
| 1004 | work_fftx(i) = work_trix(i,k) |
---|
| 1005 | ENDDO |
---|
| 1006 | |
---|
[1106] | 1007 | CALL fft_x_1d( work_fftx, 'backward' ) |
---|
[1] | 1008 | |
---|
| 1009 | m = 0 |
---|
| 1010 | DO n = 1, pdims(1) |
---|
[1003] | 1011 | DO i = 1, nnx |
---|
[1] | 1012 | ar(i,k,j,n) = work_fftx(m) |
---|
| 1013 | m = m + 1 |
---|
| 1014 | ENDDO |
---|
| 1015 | ENDDO |
---|
| 1016 | |
---|
| 1017 | ENDDO |
---|
| 1018 | |
---|
| 1019 | ENDIF |
---|
| 1020 | |
---|
| 1021 | ENDDO |
---|
| 1022 | |
---|
| 1023 | DEALLOCATE( tri ) |
---|
| 1024 | |
---|
[1106] | 1025 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'stop' ) |
---|
[1] | 1026 | |
---|
| 1027 | END SUBROUTINE fftx_tri_fftx |
---|
| 1028 | |
---|
| 1029 | |
---|
| 1030 | !------------------------------------------------------------------------------! |
---|
[1682] | 1031 | ! Description: |
---|
| 1032 | ! ------------ |
---|
| 1033 | !> Fourier-transformation along x with subsequent transposition x --> y for |
---|
| 1034 | !> a 1d-decomposition along y. |
---|
| 1035 | !> |
---|
| 1036 | !> @attention NEC-branch of this routine may significantly profit from |
---|
| 1037 | !> further optimizations. So far, performance is much worse than |
---|
| 1038 | !> for routine ffty_tr_yx (more than three times slower). |
---|
[1] | 1039 | !------------------------------------------------------------------------------! |
---|
[1682] | 1040 | SUBROUTINE fftx_tr_xy( f_in, f_out ) |
---|
[1] | 1041 | |
---|
[1682] | 1042 | |
---|
[1320] | 1043 | USE control_parameters, & |
---|
[2300] | 1044 | ONLY: loop_optimization |
---|
[1320] | 1045 | |
---|
| 1046 | USE cpulog, & |
---|
| 1047 | ONLY: cpu_log, log_point_s |
---|
| 1048 | |
---|
| 1049 | USE kinds |
---|
| 1050 | |
---|
[1] | 1051 | USE pegrid |
---|
| 1052 | |
---|
| 1053 | IMPLICIT NONE |
---|
| 1054 | |
---|
[1682] | 1055 | INTEGER(iwp) :: i !< |
---|
| 1056 | INTEGER(iwp) :: j !< |
---|
| 1057 | INTEGER(iwp) :: k !< |
---|
[1] | 1058 | |
---|
[1682] | 1059 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !< |
---|
| 1060 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_in !< |
---|
| 1061 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_out !< |
---|
| 1062 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !< |
---|
[1] | 1063 | |
---|
| 1064 | ! |
---|
| 1065 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 1066 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 1067 | !-- the first index. |
---|
[1106] | 1068 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'start' ) |
---|
[1] | 1069 | |
---|
[2300] | 1070 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1071 | ! |
---|
| 1072 | !-- Code for vector processors |
---|
[85] | 1073 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 1074 | !$OMP DO |
---|
| 1075 | DO i = 0, nx |
---|
| 1076 | |
---|
| 1077 | DO j = nys, nyn |
---|
| 1078 | DO k = 1, nz |
---|
| 1079 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 1080 | ENDDO |
---|
| 1081 | ENDDO |
---|
| 1082 | |
---|
| 1083 | ENDDO |
---|
| 1084 | |
---|
| 1085 | !$OMP DO |
---|
| 1086 | DO j = nys, nyn |
---|
| 1087 | |
---|
| 1088 | CALL fft_x_m( work_fftx(:,:,j), 'forward' ) |
---|
| 1089 | |
---|
| 1090 | DO k = 1, nz |
---|
| 1091 | DO i = 0, nx |
---|
| 1092 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 1093 | ENDDO |
---|
| 1094 | ENDDO |
---|
| 1095 | |
---|
| 1096 | ENDDO |
---|
| 1097 | !$OMP END PARALLEL |
---|
| 1098 | |
---|
| 1099 | ELSE |
---|
| 1100 | |
---|
| 1101 | ! |
---|
| 1102 | !-- Cache optimized code (there might be still a potential for better |
---|
| 1103 | !-- optimization). |
---|
[696] | 1104 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
[1] | 1105 | !$OMP DO |
---|
| 1106 | DO i = 0, nx |
---|
| 1107 | |
---|
| 1108 | DO j = nys, nyn |
---|
| 1109 | DO k = 1, nz |
---|
| 1110 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 1111 | ENDDO |
---|
| 1112 | ENDDO |
---|
| 1113 | |
---|
| 1114 | ENDDO |
---|
| 1115 | |
---|
| 1116 | !$OMP DO |
---|
| 1117 | DO j = nys, nyn |
---|
| 1118 | DO k = 1, nz |
---|
| 1119 | |
---|
[1106] | 1120 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'forward' ) |
---|
[1] | 1121 | |
---|
| 1122 | DO i = 0, nx |
---|
| 1123 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 1124 | ENDDO |
---|
| 1125 | ENDDO |
---|
| 1126 | |
---|
| 1127 | ENDDO |
---|
| 1128 | !$OMP END PARALLEL |
---|
| 1129 | |
---|
| 1130 | ENDIF |
---|
[1106] | 1131 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'pause' ) |
---|
[1] | 1132 | |
---|
| 1133 | ! |
---|
| 1134 | !-- Transpose array |
---|
[1111] | 1135 | #if defined( __parallel ) |
---|
[1] | 1136 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1137 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1138 | CALL MPI_ALLTOALL( work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 1139 | f_out(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 1140 | comm1dy, ierr ) |
---|
| 1141 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 1142 | #endif |
---|
[1] | 1143 | |
---|
| 1144 | END SUBROUTINE fftx_tr_xy |
---|
| 1145 | |
---|
| 1146 | |
---|
| 1147 | !------------------------------------------------------------------------------! |
---|
[1682] | 1148 | ! Description: |
---|
| 1149 | ! ------------ |
---|
| 1150 | !> Transposition y --> x with a subsequent backward Fourier transformation for |
---|
| 1151 | !> a 1d-decomposition along x. |
---|
[1] | 1152 | !------------------------------------------------------------------------------! |
---|
[1682] | 1153 | SUBROUTINE tr_yx_fftx( f_in, f_out ) |
---|
[1] | 1154 | |
---|
[1682] | 1155 | |
---|
[1320] | 1156 | USE control_parameters, & |
---|
[2300] | 1157 | ONLY: loop_optimization |
---|
[1320] | 1158 | |
---|
| 1159 | USE cpulog, & |
---|
| 1160 | ONLY: cpu_log, log_point_s |
---|
| 1161 | |
---|
| 1162 | USE kinds |
---|
| 1163 | |
---|
[1] | 1164 | USE pegrid |
---|
| 1165 | |
---|
| 1166 | IMPLICIT NONE |
---|
| 1167 | |
---|
[1682] | 1168 | INTEGER(iwp) :: i !< |
---|
| 1169 | INTEGER(iwp) :: j !< |
---|
| 1170 | INTEGER(iwp) :: k !< |
---|
[1] | 1171 | |
---|
[1682] | 1172 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !< |
---|
| 1173 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_in !< |
---|
| 1174 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_out !< |
---|
| 1175 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !< |
---|
[1] | 1176 | |
---|
| 1177 | ! |
---|
| 1178 | !-- Transpose array |
---|
[1111] | 1179 | #if defined( __parallel ) |
---|
[1] | 1180 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1181 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1182 | CALL MPI_ALLTOALL( f_in(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 1183 | work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 1184 | comm1dy, ierr ) |
---|
| 1185 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 1186 | #endif |
---|
[1] | 1187 | |
---|
| 1188 | ! |
---|
| 1189 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 1190 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 1191 | !-- the first index. |
---|
[1106] | 1192 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'continue' ) |
---|
[1] | 1193 | |
---|
[2300] | 1194 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1195 | ! |
---|
| 1196 | !-- Code optimized for vector processors |
---|
[85] | 1197 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 1198 | !$OMP DO |
---|
| 1199 | DO j = nys, nyn |
---|
| 1200 | |
---|
| 1201 | DO k = 1, nz |
---|
| 1202 | DO i = 0, nx |
---|
| 1203 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1204 | ENDDO |
---|
| 1205 | ENDDO |
---|
| 1206 | |
---|
| 1207 | CALL fft_x_m( work_fftx(:,:,j), 'backward' ) |
---|
| 1208 | |
---|
| 1209 | ENDDO |
---|
| 1210 | |
---|
| 1211 | !$OMP DO |
---|
| 1212 | DO i = 0, nx |
---|
| 1213 | DO j = nys, nyn |
---|
| 1214 | DO k = 1, nz |
---|
| 1215 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 1216 | ENDDO |
---|
| 1217 | ENDDO |
---|
| 1218 | ENDDO |
---|
| 1219 | !$OMP END PARALLEL |
---|
| 1220 | |
---|
| 1221 | ELSE |
---|
| 1222 | |
---|
| 1223 | ! |
---|
| 1224 | !-- Cache optimized code (there might be still a potential for better |
---|
| 1225 | !-- optimization). |
---|
[696] | 1226 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
[1] | 1227 | !$OMP DO |
---|
| 1228 | DO j = nys, nyn |
---|
| 1229 | DO k = 1, nz |
---|
| 1230 | |
---|
| 1231 | DO i = 0, nx |
---|
| 1232 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1233 | ENDDO |
---|
| 1234 | |
---|
[1106] | 1235 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'backward' ) |
---|
[1] | 1236 | |
---|
| 1237 | ENDDO |
---|
| 1238 | ENDDO |
---|
| 1239 | |
---|
| 1240 | !$OMP DO |
---|
| 1241 | DO i = 0, nx |
---|
| 1242 | DO j = nys, nyn |
---|
| 1243 | DO k = 1, nz |
---|
| 1244 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 1245 | ENDDO |
---|
| 1246 | ENDDO |
---|
| 1247 | ENDDO |
---|
| 1248 | !$OMP END PARALLEL |
---|
| 1249 | |
---|
| 1250 | ENDIF |
---|
[1106] | 1251 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'stop' ) |
---|
[1] | 1252 | |
---|
| 1253 | END SUBROUTINE tr_yx_fftx |
---|
| 1254 | |
---|
| 1255 | |
---|
| 1256 | !------------------------------------------------------------------------------! |
---|
[1682] | 1257 | ! Description: |
---|
| 1258 | ! ------------ |
---|
| 1259 | !> FFT along y, solution of the tridiagonal system and backward FFT for |
---|
| 1260 | !> a 1d-decomposition along y. |
---|
| 1261 | !> |
---|
| 1262 | !> @warning this subroutine may still not work for hybrid parallelization |
---|
| 1263 | !> with OpenMP (for possible necessary changes see the original |
---|
| 1264 | !> routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
[1] | 1265 | !------------------------------------------------------------------------------! |
---|
[1682] | 1266 | SUBROUTINE ffty_tri_ffty( ar ) |
---|
[1] | 1267 | |
---|
[1682] | 1268 | |
---|
[1320] | 1269 | USE control_parameters, & |
---|
[2300] | 1270 | ONLY: loop_optimization |
---|
[1320] | 1271 | |
---|
| 1272 | USE cpulog, & |
---|
| 1273 | ONLY: cpu_log, log_point_s |
---|
| 1274 | |
---|
| 1275 | USE grid_variables, & |
---|
| 1276 | ONLY: ddx2, ddy2 |
---|
| 1277 | |
---|
| 1278 | USE kinds |
---|
| 1279 | |
---|
[1] | 1280 | USE pegrid |
---|
| 1281 | |
---|
| 1282 | IMPLICIT NONE |
---|
| 1283 | |
---|
[1682] | 1284 | INTEGER(iwp) :: i !< |
---|
| 1285 | INTEGER(iwp) :: j !< |
---|
| 1286 | INTEGER(iwp) :: k !< |
---|
| 1287 | INTEGER(iwp) :: m !< |
---|
| 1288 | INTEGER(iwp) :: n !< |
---|
[3241] | 1289 | !$ INTEGER(iwp) :: omp_get_thread_num !< |
---|
[1682] | 1290 | INTEGER(iwp) :: tn !< |
---|
[1] | 1291 | |
---|
[1682] | 1292 | REAL(wp), DIMENSION(0:ny) :: work_ffty !< |
---|
| 1293 | REAL(wp), DIMENSION(0:ny,1:nz) :: work_triy !< |
---|
| 1294 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: ar !< |
---|
| 1295 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !< |
---|
[1] | 1296 | |
---|
| 1297 | |
---|
[1106] | 1298 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'start' ) |
---|
[1] | 1299 | |
---|
| 1300 | ALLOCATE( tri(5,0:ny,0:nz-1,0:threads_per_task-1) ) |
---|
| 1301 | |
---|
| 1302 | tn = 0 ! Default thread number in case of one thread |
---|
[696] | 1303 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_ffty, work_triy ) |
---|
[1] | 1304 | DO i = nxl_y, nxr_y |
---|
| 1305 | |
---|
| 1306 | !$ tn = omp_get_thread_num() |
---|
| 1307 | |
---|
[2300] | 1308 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1309 | ! |
---|
| 1310 | !-- Code optimized for vector processors |
---|
| 1311 | DO k = 1, nz |
---|
| 1312 | |
---|
| 1313 | m = 0 |
---|
| 1314 | DO n = 1, pdims(2) |
---|
[1003] | 1315 | DO j = 1, nny |
---|
[1] | 1316 | work_triy(m,k) = ar(j,k,i,n) |
---|
| 1317 | m = m + 1 |
---|
| 1318 | ENDDO |
---|
| 1319 | ENDDO |
---|
| 1320 | |
---|
| 1321 | ENDDO |
---|
| 1322 | |
---|
| 1323 | CALL fft_y_m( work_triy, ny, 'forward' ) |
---|
| 1324 | |
---|
| 1325 | ELSE |
---|
| 1326 | ! |
---|
| 1327 | !-- Cache optimized code |
---|
| 1328 | DO k = 1, nz |
---|
| 1329 | |
---|
| 1330 | m = 0 |
---|
| 1331 | DO n = 1, pdims(2) |
---|
[1003] | 1332 | DO j = 1, nny |
---|
[1] | 1333 | work_ffty(m) = ar(j,k,i,n) |
---|
| 1334 | m = m + 1 |
---|
| 1335 | ENDDO |
---|
| 1336 | ENDDO |
---|
| 1337 | |
---|
[1106] | 1338 | CALL fft_y_1d( work_ffty, 'forward' ) |
---|
[1] | 1339 | |
---|
| 1340 | DO j = 0, ny |
---|
| 1341 | work_triy(j,k) = work_ffty(j) |
---|
| 1342 | ENDDO |
---|
| 1343 | |
---|
| 1344 | ENDDO |
---|
| 1345 | |
---|
| 1346 | ENDIF |
---|
| 1347 | |
---|
| 1348 | ! |
---|
| 1349 | !-- Solve the linear equation system |
---|
| 1350 | CALL tridia_1dd( ddy2, ddx2, ny, nx, i, work_triy, tri(:,:,:,tn) ) |
---|
| 1351 | |
---|
[2300] | 1352 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1353 | ! |
---|
| 1354 | !-- Code optimized for vector processors |
---|
| 1355 | CALL fft_y_m( work_triy, ny, 'backward' ) |
---|
| 1356 | |
---|
| 1357 | DO k = 1, nz |
---|
| 1358 | |
---|
| 1359 | m = 0 |
---|
| 1360 | DO n = 1, pdims(2) |
---|
[1003] | 1361 | DO j = 1, nny |
---|
[1] | 1362 | ar(j,k,i,n) = work_triy(m,k) |
---|
| 1363 | m = m + 1 |
---|
| 1364 | ENDDO |
---|
| 1365 | ENDDO |
---|
| 1366 | |
---|
| 1367 | ENDDO |
---|
| 1368 | |
---|
| 1369 | ELSE |
---|
| 1370 | ! |
---|
| 1371 | !-- Cache optimized code |
---|
| 1372 | DO k = 1, nz |
---|
| 1373 | |
---|
| 1374 | DO j = 0, ny |
---|
| 1375 | work_ffty(j) = work_triy(j,k) |
---|
| 1376 | ENDDO |
---|
| 1377 | |
---|
[1106] | 1378 | CALL fft_y_1d( work_ffty, 'backward' ) |
---|
[1] | 1379 | |
---|
| 1380 | m = 0 |
---|
| 1381 | DO n = 1, pdims(2) |
---|
[1003] | 1382 | DO j = 1, nny |
---|
[1] | 1383 | ar(j,k,i,n) = work_ffty(m) |
---|
| 1384 | m = m + 1 |
---|
| 1385 | ENDDO |
---|
| 1386 | ENDDO |
---|
| 1387 | |
---|
| 1388 | ENDDO |
---|
| 1389 | |
---|
| 1390 | ENDIF |
---|
| 1391 | |
---|
| 1392 | ENDDO |
---|
| 1393 | |
---|
| 1394 | DEALLOCATE( tri ) |
---|
| 1395 | |
---|
[1106] | 1396 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'stop' ) |
---|
[1] | 1397 | |
---|
| 1398 | END SUBROUTINE ffty_tri_ffty |
---|
| 1399 | |
---|
| 1400 | END MODULE poisfft_mod |
---|