[1850] | 1 | !> @file poisfft_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2101] | 17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1683] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: poisfft_mod.f90 2696 2017-12-14 17:12:51Z kanani $ |
---|
[2300] | 27 | ! settings depending on host variable removed or replaced by loop_optimization |
---|
| 28 | ! |
---|
| 29 | ! 2119 2017-01-17 16:51:50Z raasch |
---|
[1321] | 30 | ! |
---|
[2119] | 31 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 32 | ! OpenACC directives and related code removed |
---|
| 33 | ! |
---|
[2001] | 34 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 35 | ! Forced header and separation lines into 80 columns |
---|
| 36 | ! |
---|
[1851] | 37 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
| 38 | ! Module renamed |
---|
| 39 | ! |
---|
| 40 | ! |
---|
[1805] | 41 | ! 1804 2016-04-05 16:30:18Z maronga |
---|
| 42 | ! Removed code for parameter file check (__check) |
---|
| 43 | ! |
---|
[1683] | 44 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 45 | ! Code annotations made doxygen readable |
---|
| 46 | ! |
---|
[1483] | 47 | ! 1482 2014-10-18 12:34:45Z raasch |
---|
| 48 | ! use 2d-decomposition, if accelerator boards are used |
---|
| 49 | ! |
---|
[1407] | 50 | ! 1406 2014-05-16 13:47:01Z raasch |
---|
| 51 | ! bugfix for pgi 14.4: declare create moved after array declaration |
---|
| 52 | ! |
---|
[1321] | 53 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 54 | ! ONLY-attribute added to USE-statements, |
---|
| 55 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 56 | ! kinds are defined in new module kinds, |
---|
| 57 | ! old module precision_kind is removed, |
---|
| 58 | ! revision history before 2012 removed, |
---|
| 59 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 60 | ! all variable declaration statements |
---|
[1217] | 61 | ! |
---|
[1319] | 62 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 63 | ! module interfaces removed |
---|
| 64 | ! |
---|
[1307] | 65 | ! 1306 2014-03-13 14:30:59Z raasch |
---|
| 66 | ! openmp sections removed from the overlap branch, |
---|
| 67 | ! second argument removed from parameter list |
---|
| 68 | ! |
---|
[1217] | 69 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
[1216] | 70 | ! resorting of arrays moved to separate routines resort_for_..., |
---|
| 71 | ! one argument, used as temporary work array, removed from all transpose |
---|
| 72 | ! routines |
---|
| 73 | ! overlapping fft / transposition implemented |
---|
[1112] | 74 | ! |
---|
[1213] | 75 | ! 1212 2013-08-15 08:46:27Z raasch |
---|
| 76 | ! tridia routines moved to seperate module tridia_solver |
---|
| 77 | ! |
---|
[1209] | 78 | ! 1208 2013-08-13 06:41:49Z raasch |
---|
| 79 | ! acc-update clauses added for "ar" so that ffts other than cufft can also be |
---|
| 80 | ! used (although they are not ported and will give a poor performance) |
---|
| 81 | ! |
---|
[1112] | 82 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
[1111] | 83 | ! further openACC porting of non-parallel (MPI) branch: |
---|
| 84 | ! tridiagonal routines split into extermal subroutines (instead using CONTAINS), |
---|
| 85 | ! no distinction between parallel/non-parallel in poisfft and tridia any more, |
---|
[1112] | 86 | ! tridia routines moved to end of file because of probable bug in PGI compiler 12.5 |
---|
[1111] | 87 | ! (otherwise "invalid device function" is indicated during runtime), |
---|
| 88 | ! optimization of tridia routines: constant elements and coefficients of tri are |
---|
| 89 | ! stored in seperate arrays ddzuw and tric, last dimension of tri reduced from 5 |
---|
| 90 | ! to 2, |
---|
| 91 | ! poisfft_init is now called internally from poisfft, maketri is called from |
---|
| 92 | ! poisfft_init, |
---|
| 93 | ! ibc_p_b = 2 removed |
---|
[1] | 94 | ! |
---|
[1107] | 95 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 96 | ! routines fftx, ffty, fftxp, fftyp removed, calls replaced by fft_x, fft_y, |
---|
| 97 | ! in the 1D-decomposition routines fft_x, ffty are replaced by fft_x_1d, |
---|
| 98 | ! fft_y_1d |
---|
| 99 | ! |
---|
[1104] | 100 | ! 1103 2013-02-20 02:15:53Z raasch |
---|
| 101 | ! tri, ar, and ar1 arguments in tridia-routines (2d) are removed because they |
---|
| 102 | ! sometimes cause segmentation faults with intel 12.1 compiler |
---|
| 103 | ! |
---|
[1093] | 104 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 105 | ! unused variables removed |
---|
| 106 | ! |
---|
[1037] | 107 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 108 | ! code put under GPL (PALM 3.9) |
---|
| 109 | ! |
---|
[1014] | 110 | ! 2012-09-21 07:03:55Z raasch |
---|
| 111 | ! FLOAT type conversion replaced by REAL |
---|
| 112 | ! |
---|
[1004] | 113 | ! 1003 2012-09-14 14:35:53Z raasch |
---|
| 114 | ! indices nxa, nya, etc. replaced by nx, ny, etc. |
---|
| 115 | ! |
---|
[941] | 116 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 117 | ! special handling of tri-array as an argument in tridia_1dd routines switched |
---|
| 118 | ! off because it caused segmentation faults with intel 12.1 compiler |
---|
| 119 | ! |
---|
[878] | 120 | ! 877 2012-04-03 11:21:44Z suehring |
---|
| 121 | ! Bugfix: Avoid divisions by zero in case of using a 'neumann' bc for the |
---|
| 122 | ! pressure at the top of the model domain. |
---|
| 123 | ! |
---|
[810] | 124 | ! 809 2012-01-30 13:32:58Z maronga |
---|
| 125 | ! Bugfix: replaced .AND. and .NOT. with && and ! in the preprocessor directives |
---|
| 126 | ! |
---|
[808] | 127 | ! 807 2012-01-25 11:53:51Z maronga |
---|
| 128 | ! New cpp directive "__check" implemented which is used by check_namelist_files |
---|
| 129 | ! (most of the code is unneeded by check_namelist_files). |
---|
| 130 | ! |
---|
[1] | 131 | ! Revision 1.1 1997/07/24 11:24:14 raasch |
---|
| 132 | ! Initial revision |
---|
| 133 | ! |
---|
| 134 | ! |
---|
| 135 | ! Description: |
---|
| 136 | ! ------------ |
---|
[1682] | 137 | !> Solves the Poisson equation with a 2D spectral method |
---|
| 138 | !> d^2 p / dx^2 + d^2 p / dy^2 + d^2 p / dz^2 = s |
---|
| 139 | !> |
---|
| 140 | !> Input: |
---|
| 141 | !> real ar contains (nnz,nny,nnx) elements of the velocity divergence, |
---|
| 142 | !> starting from (1,nys,nxl) |
---|
| 143 | !> |
---|
| 144 | !> Output: |
---|
| 145 | !> real ar contains the solution for perturbation pressure p |
---|
[1] | 146 | !------------------------------------------------------------------------------! |
---|
[1682] | 147 | MODULE poisfft_mod |
---|
| 148 | |
---|
[1] | 149 | |
---|
[1320] | 150 | USE fft_xy, & |
---|
| 151 | ONLY: fft_init, fft_y, fft_y_1d, fft_y_m, fft_x, fft_x_1d, fft_x_m |
---|
[1] | 152 | |
---|
[1320] | 153 | USE indices, & |
---|
| 154 | ONLY: nnx, nny, nx, nxl, nxr, ny, nys, nyn, nz |
---|
| 155 | |
---|
| 156 | USE transpose_indices, & |
---|
| 157 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nys_x, nys_z, nyn_x, nyn_z, nzb_x, & |
---|
| 158 | nzb_y, nzt_x, nzt_y |
---|
| 159 | |
---|
| 160 | USE tridia_solver, & |
---|
| 161 | ONLY: tridia_1dd, tridia_init, tridia_substi, tridia_substi_overlap |
---|
| 162 | |
---|
[1] | 163 | IMPLICIT NONE |
---|
| 164 | |
---|
[1111] | 165 | LOGICAL, SAVE :: poisfft_initialized = .FALSE. |
---|
| 166 | |
---|
[1] | 167 | PRIVATE |
---|
[807] | 168 | |
---|
[1] | 169 | PUBLIC poisfft, poisfft_init |
---|
| 170 | |
---|
| 171 | INTERFACE poisfft |
---|
| 172 | MODULE PROCEDURE poisfft |
---|
| 173 | END INTERFACE poisfft |
---|
| 174 | |
---|
| 175 | INTERFACE poisfft_init |
---|
| 176 | MODULE PROCEDURE poisfft_init |
---|
| 177 | END INTERFACE poisfft_init |
---|
| 178 | |
---|
[807] | 179 | |
---|
[1] | 180 | CONTAINS |
---|
| 181 | |
---|
[1682] | 182 | !------------------------------------------------------------------------------! |
---|
| 183 | ! Description: |
---|
| 184 | ! ------------ |
---|
| 185 | !> @todo Missing subroutine description. |
---|
| 186 | !------------------------------------------------------------------------------! |
---|
[1] | 187 | SUBROUTINE poisfft_init |
---|
| 188 | |
---|
[1320] | 189 | USE arrays_3d, & |
---|
| 190 | ONLY: ddzu_pres, ddzw |
---|
[1111] | 191 | |
---|
[1320] | 192 | USE kinds |
---|
| 193 | |
---|
[1111] | 194 | IMPLICIT NONE |
---|
| 195 | |
---|
[1682] | 196 | INTEGER(iwp) :: k !< |
---|
[1111] | 197 | |
---|
| 198 | |
---|
[1] | 199 | CALL fft_init |
---|
| 200 | |
---|
[1212] | 201 | CALL tridia_init |
---|
[1111] | 202 | |
---|
| 203 | poisfft_initialized = .TRUE. |
---|
| 204 | |
---|
[1] | 205 | END SUBROUTINE poisfft_init |
---|
| 206 | |
---|
[1111] | 207 | |
---|
[1804] | 208 | |
---|
[1682] | 209 | !------------------------------------------------------------------------------! |
---|
| 210 | ! Description: |
---|
| 211 | ! ------------ |
---|
| 212 | !> Two-dimensional Fourier Transformation in x- and y-direction. |
---|
| 213 | !------------------------------------------------------------------------------! |
---|
[1306] | 214 | SUBROUTINE poisfft( ar ) |
---|
[1] | 215 | |
---|
[1320] | 216 | USE control_parameters, & |
---|
| 217 | ONLY: fft_method, transpose_compute_overlap |
---|
| 218 | |
---|
| 219 | USE cpulog, & |
---|
| 220 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
| 221 | |
---|
| 222 | USE kinds |
---|
| 223 | |
---|
[1] | 224 | USE pegrid |
---|
| 225 | |
---|
| 226 | IMPLICIT NONE |
---|
| 227 | |
---|
[1682] | 228 | INTEGER(iwp) :: ii !< |
---|
| 229 | INTEGER(iwp) :: iind !< |
---|
| 230 | INTEGER(iwp) :: inew !< |
---|
| 231 | INTEGER(iwp) :: jj !< |
---|
| 232 | INTEGER(iwp) :: jind !< |
---|
| 233 | INTEGER(iwp) :: jnew !< |
---|
| 234 | INTEGER(iwp) :: ki !< |
---|
| 235 | INTEGER(iwp) :: kk !< |
---|
| 236 | INTEGER(iwp) :: knew !< |
---|
| 237 | INTEGER(iwp) :: n !< |
---|
| 238 | INTEGER(iwp) :: nblk !< |
---|
| 239 | INTEGER(iwp) :: nnx_y !< |
---|
| 240 | INTEGER(iwp) :: nny_z !< |
---|
| 241 | INTEGER(iwp) :: nnz_t !< |
---|
| 242 | INTEGER(iwp) :: nnz_x !< |
---|
| 243 | INTEGER(iwp) :: nxl_y_bound !< |
---|
| 244 | INTEGER(iwp) :: nxr_y_bound !< |
---|
[1] | 245 | |
---|
[1682] | 246 | INTEGER(iwp), DIMENSION(4) :: isave !< |
---|
[1320] | 247 | |
---|
[1682] | 248 | REAL(wp), DIMENSION(1:nz,nys:nyn,nxl:nxr) :: ar !< |
---|
| 249 | REAL(wp), DIMENSION(nys:nyn,nxl:nxr,1:nz) :: ar_inv !< |
---|
[1] | 250 | |
---|
[1682] | 251 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ar1 !< |
---|
| 252 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_in !< |
---|
| 253 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_inv !< |
---|
| 254 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_y !< |
---|
| 255 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_z !< |
---|
[1216] | 256 | |
---|
| 257 | |
---|
[1] | 258 | CALL cpu_log( log_point_s(3), 'poisfft', 'start' ) |
---|
| 259 | |
---|
[1111] | 260 | IF ( .NOT. poisfft_initialized ) CALL poisfft_init |
---|
| 261 | |
---|
[1] | 262 | ! |
---|
| 263 | !-- Two-dimensional Fourier Transformation in x- and y-direction. |
---|
[2118] | 264 | IF ( pdims(2) == 1 .AND. pdims(1) > 1 ) THEN |
---|
[1] | 265 | |
---|
| 266 | ! |
---|
| 267 | !-- 1d-domain-decomposition along x: |
---|
| 268 | !-- FFT along y and transposition y --> x |
---|
[1216] | 269 | CALL ffty_tr_yx( ar, ar ) |
---|
[1] | 270 | |
---|
| 271 | ! |
---|
| 272 | !-- FFT along x, solving the tridiagonal system and backward FFT |
---|
| 273 | CALL fftx_tri_fftx( ar ) |
---|
| 274 | |
---|
| 275 | ! |
---|
| 276 | !-- Transposition x --> y and backward FFT along y |
---|
[1216] | 277 | CALL tr_xy_ffty( ar, ar ) |
---|
[1] | 278 | |
---|
[2118] | 279 | ELSEIF ( pdims(1) == 1 .AND. pdims(2) > 1 ) THEN |
---|
[1] | 280 | |
---|
| 281 | ! |
---|
| 282 | !-- 1d-domain-decomposition along y: |
---|
| 283 | !-- FFT along x and transposition x --> y |
---|
[1216] | 284 | CALL fftx_tr_xy( ar, ar ) |
---|
[1] | 285 | |
---|
| 286 | ! |
---|
| 287 | !-- FFT along y, solving the tridiagonal system and backward FFT |
---|
| 288 | CALL ffty_tri_ffty( ar ) |
---|
| 289 | |
---|
| 290 | ! |
---|
| 291 | !-- Transposition y --> x and backward FFT along x |
---|
[1216] | 292 | CALL tr_yx_fftx( ar, ar ) |
---|
[1] | 293 | |
---|
[1216] | 294 | ELSEIF ( .NOT. transpose_compute_overlap ) THEN |
---|
[1] | 295 | |
---|
| 296 | ! |
---|
[1111] | 297 | !-- 2d-domain-decomposition or no decomposition (1 PE run) |
---|
[1] | 298 | !-- Transposition z --> x |
---|
| 299 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start' ) |
---|
[1216] | 300 | CALL resort_for_zx( ar, ar_inv ) |
---|
| 301 | CALL transpose_zx( ar_inv, ar ) |
---|
[1] | 302 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 303 | |
---|
| 304 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
[1106] | 305 | CALL fft_x( ar, 'forward' ) |
---|
[1] | 306 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
| 307 | |
---|
| 308 | ! |
---|
| 309 | !-- Transposition x --> y |
---|
| 310 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[1216] | 311 | CALL resort_for_xy( ar, ar_inv ) |
---|
| 312 | CALL transpose_xy( ar_inv, ar ) |
---|
[1] | 313 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 314 | |
---|
| 315 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
[1216] | 316 | CALL fft_y( ar, 'forward', ar_tr = ar, & |
---|
| 317 | nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 318 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
[1] | 319 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 320 | |
---|
| 321 | ! |
---|
| 322 | !-- Transposition y --> z |
---|
| 323 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[1216] | 324 | CALL resort_for_yz( ar, ar_inv ) |
---|
| 325 | CALL transpose_yz( ar_inv, ar ) |
---|
[1] | 326 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
| 327 | |
---|
| 328 | ! |
---|
[1106] | 329 | !-- Solve the tridiagonal equation system along z |
---|
[1] | 330 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
[1212] | 331 | CALL tridia_substi( ar ) |
---|
[1] | 332 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
| 333 | |
---|
| 334 | ! |
---|
| 335 | !-- Inverse Fourier Transformation |
---|
| 336 | !-- Transposition z --> y |
---|
| 337 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start' ) |
---|
[1216] | 338 | CALL transpose_zy( ar, ar_inv ) |
---|
| 339 | CALL resort_for_zy( ar_inv, ar ) |
---|
[1] | 340 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 341 | |
---|
| 342 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
[1216] | 343 | CALL fft_y( ar, 'backward', ar_tr = ar, & |
---|
| 344 | nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 345 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
[1] | 346 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 347 | |
---|
| 348 | ! |
---|
| 349 | !-- Transposition y --> x |
---|
| 350 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[1216] | 351 | CALL transpose_yx( ar, ar_inv ) |
---|
| 352 | CALL resort_for_yx( ar_inv, ar ) |
---|
[1] | 353 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 354 | |
---|
| 355 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
[1106] | 356 | CALL fft_x( ar, 'backward' ) |
---|
[1] | 357 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 358 | |
---|
| 359 | ! |
---|
| 360 | !-- Transposition x --> z |
---|
| 361 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[1216] | 362 | CALL transpose_xz( ar, ar_inv ) |
---|
| 363 | CALL resort_for_xz( ar_inv, ar ) |
---|
[1] | 364 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
| 365 | |
---|
[1216] | 366 | ELSE |
---|
| 367 | |
---|
| 368 | ! |
---|
| 369 | !-- 2d-domain-decomposition or no decomposition (1 PE run) with |
---|
| 370 | !-- overlapping transposition / fft |
---|
[1318] | 371 | !-- cputime logging must not use barriers, which would prevent overlapping |
---|
[1216] | 372 | ALLOCATE( f_out_y(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), & |
---|
| 373 | f_out_z(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
| 374 | ! |
---|
| 375 | !-- Transposition z --> x + subsequent fft along x |
---|
| 376 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 377 | CALL resort_for_zx( ar, f_inv ) |
---|
| 378 | ! |
---|
| 379 | !-- Save original indices and gridpoint counter |
---|
| 380 | isave(1) = nz |
---|
| 381 | isave(2) = nzb_x |
---|
| 382 | isave(3) = nzt_x |
---|
| 383 | isave(4) = sendrecvcount_zx |
---|
| 384 | ! |
---|
| 385 | !-- Set new indices for transformation |
---|
| 386 | nblk = nz / pdims(1) |
---|
| 387 | nz = pdims(1) |
---|
| 388 | nnz_x = 1 |
---|
| 389 | nzb_x = 1 + myidx * nnz_x |
---|
| 390 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
| 391 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
| 392 | |
---|
[1306] | 393 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
[1216] | 394 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 395 | |
---|
[1306] | 396 | DO kk = 1, nblk |
---|
[1216] | 397 | |
---|
[1306] | 398 | IF ( kk == 1 ) THEN |
---|
[1318] | 399 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start', cpu_log_nowait ) |
---|
[1306] | 400 | ELSE |
---|
[1318] | 401 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1306] | 402 | ENDIF |
---|
[1216] | 403 | |
---|
[1306] | 404 | DO knew = 1, nz |
---|
| 405 | ki = kk + nblk * ( knew - 1 ) |
---|
| 406 | f_in(:,:,knew) = f_inv(:,:,ki) |
---|
| 407 | ENDDO |
---|
[1216] | 408 | |
---|
[1306] | 409 | CALL transpose_zx( f_in, ar1(:,:,:)) |
---|
| 410 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 411 | |
---|
[1306] | 412 | IF ( kk == 1 ) THEN |
---|
[1318] | 413 | CALL cpu_log( log_point_s(4), 'fft_x', 'start', cpu_log_nowait ) |
---|
[1306] | 414 | ELSE |
---|
[1318] | 415 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
[1216] | 416 | ENDIF |
---|
| 417 | |
---|
[1306] | 418 | n = isave(2) + kk - 1 |
---|
| 419 | CALL fft_x( ar1(:,:,:), 'forward', ar_2d = f_out_z(:,:,n)) |
---|
| 420 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
[1216] | 421 | |
---|
| 422 | ENDDO |
---|
| 423 | ! |
---|
| 424 | !-- Restore original indices/counters |
---|
| 425 | nz = isave(1) |
---|
| 426 | nzb_x = isave(2) |
---|
| 427 | nzt_x = isave(3) |
---|
| 428 | sendrecvcount_zx = isave(4) |
---|
| 429 | |
---|
| 430 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 431 | |
---|
| 432 | ! |
---|
| 433 | !-- Transposition x --> y + subsequent fft along y |
---|
| 434 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 435 | CALL resort_for_xy( f_out_z, f_inv ) |
---|
| 436 | ! |
---|
| 437 | !-- Save original indices and gridpoint counter |
---|
| 438 | isave(1) = nx |
---|
| 439 | isave(2) = nxl_y |
---|
| 440 | isave(3) = nxr_y |
---|
| 441 | isave(4) = sendrecvcount_xy |
---|
| 442 | ! |
---|
| 443 | !-- Set new indices for transformation |
---|
| 444 | nblk = ( ( nx+1 ) / pdims(2) ) - 1 |
---|
| 445 | nx = pdims(2) |
---|
| 446 | nnx_y = 1 |
---|
| 447 | nxl_y = myidy * nnx_y |
---|
| 448 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
| 449 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
| 450 | |
---|
[1306] | 451 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
[1216] | 452 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 453 | |
---|
[1306] | 454 | DO ii = 0, nblk |
---|
[1216] | 455 | |
---|
[1318] | 456 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1216] | 457 | |
---|
[1306] | 458 | DO inew = 0, nx-1 |
---|
| 459 | iind = ii + ( nblk + 1 ) * inew |
---|
| 460 | f_in(:,:,inew) = f_inv(:,:,iind) |
---|
| 461 | ENDDO |
---|
[1216] | 462 | |
---|
[1306] | 463 | CALL transpose_xy( f_in, ar1(:,:,:) ) |
---|
[1216] | 464 | |
---|
[1306] | 465 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 466 | |
---|
[1306] | 467 | IF ( ii == 1 ) THEN |
---|
[1318] | 468 | CALL cpu_log( log_point_s(7), 'fft_y', 'start', cpu_log_nowait ) |
---|
[1306] | 469 | ELSE |
---|
[1318] | 470 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
[1216] | 471 | ENDIF |
---|
| 472 | |
---|
[1306] | 473 | nxl_y_bound = isave(2) |
---|
| 474 | nxr_y_bound = isave(3) |
---|
| 475 | n = isave(2) + ii |
---|
| 476 | CALL fft_y( ar1(:,:,:), 'forward', ar_tr = f_out_y, & |
---|
| 477 | nxl_y_bound = nxl_y_bound, nxr_y_bound = nxr_y_bound, & |
---|
| 478 | nxl_y_l = n, nxr_y_l = n ) |
---|
[1216] | 479 | |
---|
[1306] | 480 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
[1216] | 481 | |
---|
| 482 | ENDDO |
---|
| 483 | ! |
---|
| 484 | !-- Restore original indices/counters |
---|
| 485 | nx = isave(1) |
---|
| 486 | nxl_y = isave(2) |
---|
| 487 | nxr_y = isave(3) |
---|
| 488 | sendrecvcount_xy = isave(4) |
---|
| 489 | |
---|
| 490 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 491 | |
---|
| 492 | ! |
---|
| 493 | !-- Transposition y --> z + subsequent tridia + resort for z --> y |
---|
| 494 | ALLOCATE( f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
| 495 | CALL resort_for_yz( f_out_y, f_inv ) |
---|
| 496 | ! |
---|
| 497 | !-- Save original indices and gridpoint counter |
---|
| 498 | isave(1) = ny |
---|
| 499 | isave(2) = nys_z |
---|
| 500 | isave(3) = nyn_z |
---|
| 501 | isave(4) = sendrecvcount_yz |
---|
| 502 | ! |
---|
| 503 | !-- Set new indices for transformation |
---|
| 504 | nblk = ( ( ny+1 ) / pdims(1) ) - 1 |
---|
| 505 | ny = pdims(1) |
---|
| 506 | nny_z = 1 |
---|
| 507 | nys_z = myidx * nny_z |
---|
| 508 | nyn_z = ( myidx + 1 ) * nny_z - 1 |
---|
| 509 | sendrecvcount_yz = ( nxr_y-nxl_y+1 ) * nny_z * ( nzt_y-nzb_y+1 ) |
---|
| 510 | |
---|
[1306] | 511 | ALLOCATE( ar1(nxl_z:nxr_z,nys_z:nyn_z,1:nz) ) |
---|
[1216] | 512 | ALLOCATE( f_in(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
| 513 | |
---|
[1306] | 514 | DO jj = 0, nblk |
---|
[1216] | 515 | ! |
---|
[1306] | 516 | !-- Forward Fourier Transformation |
---|
| 517 | !-- Transposition y --> z |
---|
[1318] | 518 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1216] | 519 | |
---|
[1306] | 520 | DO jnew = 0, ny-1 |
---|
| 521 | jind = jj + ( nblk + 1 ) * jnew |
---|
| 522 | f_in(:,:,jnew) = f_inv(:,:,jind) |
---|
| 523 | ENDDO |
---|
[1216] | 524 | |
---|
[1306] | 525 | CALL transpose_yz( f_in, ar1(:,:,:) ) |
---|
[1216] | 526 | |
---|
[1306] | 527 | IF ( jj == nblk ) THEN |
---|
| 528 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
| 529 | ELSE |
---|
| 530 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 531 | ENDIF |
---|
| 532 | |
---|
| 533 | ! |
---|
[1306] | 534 | !-- Solve the tridiagonal equation system along z |
---|
[1318] | 535 | CALL cpu_log( log_point_s(6), 'tridia', 'start', cpu_log_nowait ) |
---|
[1216] | 536 | |
---|
[1306] | 537 | n = isave(2) + jj |
---|
| 538 | CALL tridia_substi_overlap( ar1(:,:,:), n ) |
---|
[1216] | 539 | |
---|
[1306] | 540 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
[1216] | 541 | |
---|
[1306] | 542 | ! |
---|
| 543 | !-- Inverse Fourier Transformation |
---|
| 544 | !-- Transposition z --> y |
---|
| 545 | !-- Only one thread should call MPI routines, therefore forward and |
---|
| 546 | !-- backward tranpose are in the same section |
---|
| 547 | IF ( jj == 0 ) THEN |
---|
[1318] | 548 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start', cpu_log_nowait ) |
---|
[1306] | 549 | ELSE |
---|
[1318] | 550 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 551 | ENDIF |
---|
| 552 | |
---|
[1306] | 553 | CALL transpose_zy( ar1(:,:,:), f_in ) |
---|
[1216] | 554 | |
---|
[1306] | 555 | DO jnew = 0, ny-1 |
---|
| 556 | jind = jj + ( nblk + 1 ) * jnew |
---|
| 557 | f_inv(:,:,jind) = f_in(:,:,jnew) |
---|
| 558 | ENDDO |
---|
[1216] | 559 | |
---|
[1306] | 560 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 561 | |
---|
| 562 | ENDDO |
---|
| 563 | ! |
---|
| 564 | !-- Restore original indices/counters |
---|
| 565 | ny = isave(1) |
---|
| 566 | nys_z = isave(2) |
---|
| 567 | nyn_z = isave(3) |
---|
| 568 | sendrecvcount_yz = isave(4) |
---|
| 569 | |
---|
| 570 | CALL resort_for_zy( f_inv, f_out_y ) |
---|
| 571 | |
---|
| 572 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 573 | |
---|
| 574 | ! |
---|
| 575 | !-- fft along y backward + subsequent transposition y --> x |
---|
| 576 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 577 | ! |
---|
| 578 | !-- Save original indices and gridpoint counter |
---|
| 579 | isave(1) = nx |
---|
| 580 | isave(2) = nxl_y |
---|
| 581 | isave(3) = nxr_y |
---|
| 582 | isave(4) = sendrecvcount_xy |
---|
| 583 | ! |
---|
| 584 | !-- Set new indices for transformation |
---|
| 585 | nblk = (( nx+1 ) / pdims(2) ) - 1 |
---|
| 586 | nx = pdims(2) |
---|
| 587 | nnx_y = 1 |
---|
| 588 | nxl_y = myidy * nnx_y |
---|
| 589 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
| 590 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
| 591 | |
---|
[1306] | 592 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
[1216] | 593 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 594 | |
---|
[1306] | 595 | DO ii = 0, nblk |
---|
[1216] | 596 | |
---|
[1318] | 597 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
[1216] | 598 | |
---|
[1306] | 599 | n = isave(2) + ii |
---|
| 600 | nxl_y_bound = isave(2) |
---|
| 601 | nxr_y_bound = isave(3) |
---|
[1216] | 602 | |
---|
[1306] | 603 | CALL fft_y( ar1(:,:,:), 'backward', ar_tr = f_out_y, & |
---|
| 604 | nxl_y_bound = nxl_y_bound, nxr_y_bound = nxr_y_bound, & |
---|
| 605 | nxl_y_l = n, nxr_y_l = n ) |
---|
[1216] | 606 | |
---|
[1306] | 607 | IF ( ii == nblk ) THEN |
---|
| 608 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 609 | ELSE |
---|
| 610 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
[1216] | 611 | ENDIF |
---|
| 612 | |
---|
[1318] | 613 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 614 | |
---|
[1306] | 615 | CALL transpose_yx( ar1(:,:,:), f_in ) |
---|
[1216] | 616 | |
---|
[1306] | 617 | DO inew = 0, nx-1 |
---|
| 618 | iind = ii + (nblk+1) * inew |
---|
| 619 | f_inv(:,:,iind) = f_in(:,:,inew) |
---|
| 620 | ENDDO |
---|
[1216] | 621 | |
---|
[1306] | 622 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 623 | |
---|
| 624 | ENDDO |
---|
| 625 | ! |
---|
| 626 | !-- Restore original indices/counters |
---|
| 627 | nx = isave(1) |
---|
| 628 | nxl_y = isave(2) |
---|
| 629 | nxr_y = isave(3) |
---|
| 630 | sendrecvcount_xy = isave(4) |
---|
| 631 | |
---|
| 632 | CALL resort_for_yx( f_inv, f_out_z ) |
---|
| 633 | |
---|
| 634 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 635 | |
---|
| 636 | ! |
---|
| 637 | !-- fft along x backward + subsequent final transposition x --> z |
---|
| 638 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 639 | ! |
---|
| 640 | !-- Save original indices and gridpoint counter |
---|
| 641 | isave(1) = nz |
---|
| 642 | isave(2) = nzb_x |
---|
| 643 | isave(3) = nzt_x |
---|
| 644 | isave(4) = sendrecvcount_zx |
---|
| 645 | ! |
---|
| 646 | !-- Set new indices for transformation |
---|
| 647 | nblk = nz / pdims(1) |
---|
| 648 | nz = pdims(1) |
---|
| 649 | nnz_x = 1 |
---|
| 650 | nzb_x = 1 + myidx * nnz_x |
---|
| 651 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
| 652 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
| 653 | |
---|
[1306] | 654 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
[1216] | 655 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 656 | |
---|
[1306] | 657 | DO kk = 1, nblk |
---|
[1216] | 658 | |
---|
[1318] | 659 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
[1216] | 660 | |
---|
[1306] | 661 | n = isave(2) + kk - 1 |
---|
| 662 | CALL fft_x( ar1(:,:,:), 'backward', f_out_z(:,:,n)) |
---|
[1216] | 663 | |
---|
[1306] | 664 | IF ( kk == nblk ) THEN |
---|
| 665 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 666 | ELSE |
---|
| 667 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
[1216] | 668 | ENDIF |
---|
| 669 | |
---|
[1318] | 670 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 671 | |
---|
[1306] | 672 | CALL transpose_xz( ar1(:,:,:), f_in ) |
---|
[1216] | 673 | |
---|
[1306] | 674 | DO knew = 1, nz |
---|
| 675 | ki = kk + nblk * (knew-1) |
---|
| 676 | f_inv(:,:,ki) = f_in(:,:,knew) |
---|
| 677 | ENDDO |
---|
[1216] | 678 | |
---|
[1306] | 679 | IF ( kk == nblk ) THEN |
---|
| 680 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
| 681 | ELSE |
---|
| 682 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 683 | ENDIF |
---|
| 684 | |
---|
| 685 | ENDDO |
---|
| 686 | ! |
---|
| 687 | !-- Restore original indices/counters |
---|
| 688 | nz = isave(1) |
---|
| 689 | nzb_x = isave(2) |
---|
| 690 | nzt_x = isave(3) |
---|
| 691 | sendrecvcount_zx = isave(4) |
---|
| 692 | |
---|
| 693 | CALL resort_for_xz( f_inv, ar ) |
---|
| 694 | |
---|
| 695 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 696 | |
---|
[1] | 697 | ENDIF |
---|
| 698 | |
---|
| 699 | CALL cpu_log( log_point_s(3), 'poisfft', 'stop' ) |
---|
| 700 | |
---|
| 701 | END SUBROUTINE poisfft |
---|
| 702 | |
---|
| 703 | |
---|
| 704 | !------------------------------------------------------------------------------! |
---|
[1682] | 705 | ! Description: |
---|
| 706 | ! ------------ |
---|
| 707 | !> Fourier-transformation along y with subsequent transposition y --> x for |
---|
| 708 | !> a 1d-decomposition along x. |
---|
| 709 | !> |
---|
| 710 | !> @attention The performance of this routine is much faster on the NEC-SX6, |
---|
| 711 | !> if the first index of work_ffty_vec is odd. Otherwise |
---|
| 712 | !> memory bank conflicts may occur (especially if the index is a |
---|
| 713 | !> multiple of 128). That's why work_ffty_vec is dimensioned as |
---|
| 714 | !> 0:ny+1. |
---|
| 715 | !> Of course, this will not work if users are using an odd number |
---|
| 716 | !> of gridpoints along y. |
---|
[1] | 717 | !------------------------------------------------------------------------------! |
---|
[1682] | 718 | SUBROUTINE ffty_tr_yx( f_in, f_out ) |
---|
[1] | 719 | |
---|
[1320] | 720 | USE control_parameters, & |
---|
[2300] | 721 | ONLY: loop_optimization |
---|
[1320] | 722 | |
---|
| 723 | USE cpulog, & |
---|
| 724 | ONLY: cpu_log, log_point_s |
---|
| 725 | |
---|
| 726 | USE kinds |
---|
| 727 | |
---|
[1] | 728 | USE pegrid |
---|
| 729 | |
---|
| 730 | IMPLICIT NONE |
---|
| 731 | |
---|
[1682] | 732 | INTEGER(iwp) :: i !< |
---|
| 733 | INTEGER(iwp) :: iend !< |
---|
| 734 | INTEGER(iwp) :: iouter !< |
---|
| 735 | INTEGER(iwp) :: ir !< |
---|
| 736 | INTEGER(iwp) :: j !< |
---|
| 737 | INTEGER(iwp) :: k !< |
---|
[1] | 738 | |
---|
[1682] | 739 | INTEGER(iwp), PARAMETER :: stridex = 4 !< |
---|
[1320] | 740 | |
---|
[1682] | 741 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_in !< |
---|
| 742 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_out !< |
---|
| 743 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !< |
---|
[1] | 744 | |
---|
[2300] | 745 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_ffty !< |
---|
| 746 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: work_ffty_vec !< |
---|
| 747 | |
---|
[1] | 748 | ! |
---|
| 749 | !-- Carry out the FFT along y, where all data are present due to the |
---|
| 750 | !-- 1d-decomposition along x. Resort the data in a way that x becomes |
---|
| 751 | !-- the first index. |
---|
[1106] | 752 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'start' ) |
---|
[1] | 753 | |
---|
[2300] | 754 | IF ( loop_optimization == 'vector' ) THEN |
---|
| 755 | |
---|
| 756 | ALLOCATE( work_ffty_vec(0:ny+1,1:nz,nxl:nxr) ) |
---|
[1] | 757 | ! |
---|
| 758 | !-- Code optimized for vector processors |
---|
[2300] | 759 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 760 | !$OMP DO |
---|
[1] | 761 | DO i = nxl, nxr |
---|
| 762 | |
---|
| 763 | DO j = 0, ny |
---|
| 764 | DO k = 1, nz |
---|
| 765 | work_ffty_vec(j,k,i) = f_in(k,j,i) |
---|
| 766 | ENDDO |
---|
| 767 | ENDDO |
---|
| 768 | |
---|
| 769 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'forward' ) |
---|
| 770 | |
---|
| 771 | ENDDO |
---|
| 772 | |
---|
[2300] | 773 | !$OMP DO |
---|
[1] | 774 | DO k = 1, nz |
---|
| 775 | DO j = 0, ny |
---|
| 776 | DO i = nxl, nxr |
---|
| 777 | work(i,k,j) = work_ffty_vec(j,k,i) |
---|
| 778 | ENDDO |
---|
| 779 | ENDDO |
---|
| 780 | ENDDO |
---|
[2300] | 781 | !$OMP END PARALLEL |
---|
[1] | 782 | |
---|
[2300] | 783 | DEALLOCATE( work_ffty_vec ) |
---|
| 784 | |
---|
[1] | 785 | ELSE |
---|
| 786 | ! |
---|
| 787 | !-- Cache optimized code. |
---|
[2300] | 788 | ALLOCATE( work_ffty(0:ny,stridex) ) |
---|
| 789 | ! |
---|
[1] | 790 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 791 | !-- loop for better cache performance |
---|
[2300] | 792 | !$OMP PARALLEL PRIVATE (i,iend,iouter,ir,j,k,work_ffty) |
---|
| 793 | !$OMP DO |
---|
[1] | 794 | DO iouter = nxl, nxr, stridex |
---|
| 795 | |
---|
| 796 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 797 | |
---|
| 798 | DO k = 1, nz |
---|
| 799 | |
---|
| 800 | DO i = iouter, iend |
---|
| 801 | |
---|
| 802 | ir = i-iouter+1 ! counter within a stride |
---|
| 803 | DO j = 0, ny |
---|
| 804 | work_ffty(j,ir) = f_in(k,j,i) |
---|
| 805 | ENDDO |
---|
| 806 | ! |
---|
| 807 | !-- FFT along y |
---|
[1106] | 808 | CALL fft_y_1d( work_ffty(:,ir), 'forward' ) |
---|
[1] | 809 | |
---|
| 810 | ENDDO |
---|
| 811 | |
---|
| 812 | ! |
---|
| 813 | !-- Resort |
---|
| 814 | DO j = 0, ny |
---|
| 815 | DO i = iouter, iend |
---|
| 816 | work(i,k,j) = work_ffty(j,i-iouter+1) |
---|
| 817 | ENDDO |
---|
| 818 | ENDDO |
---|
| 819 | |
---|
| 820 | ENDDO |
---|
| 821 | |
---|
| 822 | ENDDO |
---|
[2300] | 823 | !$OMP END PARALLEL |
---|
[1] | 824 | |
---|
[2300] | 825 | DEALLOCATE( work_ffty ) |
---|
| 826 | |
---|
[1] | 827 | ENDIF |
---|
[2300] | 828 | |
---|
[1106] | 829 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'pause' ) |
---|
[1] | 830 | |
---|
| 831 | ! |
---|
| 832 | !-- Transpose array |
---|
[1111] | 833 | #if defined( __parallel ) |
---|
[1] | 834 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 835 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 836 | CALL MPI_ALLTOALL( work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 837 | f_out(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 838 | comm1dx, ierr ) |
---|
| 839 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 840 | #endif |
---|
[1] | 841 | |
---|
| 842 | END SUBROUTINE ffty_tr_yx |
---|
| 843 | |
---|
| 844 | |
---|
| 845 | !------------------------------------------------------------------------------! |
---|
[1682] | 846 | ! Description: |
---|
| 847 | ! ------------ |
---|
| 848 | !> Transposition x --> y with a subsequent backward Fourier transformation for |
---|
| 849 | !> a 1d-decomposition along x |
---|
[1] | 850 | !------------------------------------------------------------------------------! |
---|
[1682] | 851 | SUBROUTINE tr_xy_ffty( f_in, f_out ) |
---|
[1] | 852 | |
---|
[1320] | 853 | USE control_parameters, & |
---|
[2300] | 854 | ONLY: loop_optimization |
---|
[1320] | 855 | |
---|
| 856 | USE cpulog, & |
---|
| 857 | ONLY: cpu_log, log_point_s |
---|
| 858 | |
---|
| 859 | USE kinds |
---|
| 860 | |
---|
[1] | 861 | USE pegrid |
---|
| 862 | |
---|
| 863 | IMPLICIT NONE |
---|
| 864 | |
---|
[1682] | 865 | INTEGER(iwp) :: i !< |
---|
| 866 | INTEGER(iwp) :: iend !< |
---|
| 867 | INTEGER(iwp) :: iouter !< |
---|
| 868 | INTEGER(iwp) :: ir !< |
---|
| 869 | INTEGER(iwp) :: j !< |
---|
| 870 | INTEGER(iwp) :: k !< |
---|
[1] | 871 | |
---|
[1682] | 872 | INTEGER(iwp), PARAMETER :: stridex = 4 !< |
---|
[1320] | 873 | |
---|
[1682] | 874 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_in !< |
---|
| 875 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_out !< |
---|
| 876 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !< |
---|
[1] | 877 | |
---|
[2300] | 878 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: work_ffty !< |
---|
| 879 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: work_ffty_vec !< |
---|
| 880 | |
---|
[1] | 881 | ! |
---|
| 882 | !-- Transpose array |
---|
[1111] | 883 | #if defined( __parallel ) |
---|
[1] | 884 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 885 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 886 | CALL MPI_ALLTOALL( f_in(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 887 | work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 888 | comm1dx, ierr ) |
---|
| 889 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 890 | #endif |
---|
[1] | 891 | |
---|
| 892 | ! |
---|
| 893 | !-- Resort the data in a way that y becomes the first index and carry out the |
---|
| 894 | !-- backward fft along y. |
---|
[1106] | 895 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'continue' ) |
---|
[1] | 896 | |
---|
[2300] | 897 | IF ( loop_optimization == 'vector' ) THEN |
---|
| 898 | |
---|
| 899 | ALLOCATE( work_ffty_vec(0:ny+1,1:nz,nxl:nxr) ) |
---|
[1] | 900 | ! |
---|
| 901 | !-- Code optimized for vector processors |
---|
[2300] | 902 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 903 | !$OMP DO |
---|
[1] | 904 | DO k = 1, nz |
---|
| 905 | DO j = 0, ny |
---|
| 906 | DO i = nxl, nxr |
---|
| 907 | work_ffty_vec(j,k,i) = work(i,k,j) |
---|
| 908 | ENDDO |
---|
| 909 | ENDDO |
---|
| 910 | ENDDO |
---|
| 911 | |
---|
[2300] | 912 | !$OMP DO |
---|
[1] | 913 | DO i = nxl, nxr |
---|
| 914 | |
---|
| 915 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'backward' ) |
---|
| 916 | |
---|
| 917 | DO j = 0, ny |
---|
| 918 | DO k = 1, nz |
---|
| 919 | f_out(k,j,i) = work_ffty_vec(j,k,i) |
---|
| 920 | ENDDO |
---|
| 921 | ENDDO |
---|
| 922 | |
---|
| 923 | ENDDO |
---|
[2300] | 924 | !$OMP END PARALLEL |
---|
[1] | 925 | |
---|
[2300] | 926 | DEALLOCATE( work_ffty_vec ) |
---|
| 927 | |
---|
[1] | 928 | ELSE |
---|
| 929 | ! |
---|
| 930 | !-- Cache optimized code. |
---|
[2300] | 931 | ALLOCATE( work_ffty(0:ny,stridex) ) |
---|
| 932 | ! |
---|
[1] | 933 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 934 | !-- loop for better cache performance |
---|
[2300] | 935 | !$OMP PARALLEL PRIVATE ( i, iend, iouter, ir, j, k, work_ffty ) |
---|
| 936 | !$OMP DO |
---|
[1] | 937 | DO iouter = nxl, nxr, stridex |
---|
| 938 | |
---|
| 939 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 940 | |
---|
| 941 | DO k = 1, nz |
---|
| 942 | ! |
---|
| 943 | !-- Resort |
---|
| 944 | DO j = 0, ny |
---|
| 945 | DO i = iouter, iend |
---|
| 946 | work_ffty(j,i-iouter+1) = work(i,k,j) |
---|
| 947 | ENDDO |
---|
| 948 | ENDDO |
---|
| 949 | |
---|
| 950 | DO i = iouter, iend |
---|
| 951 | |
---|
| 952 | ! |
---|
| 953 | !-- FFT along y |
---|
| 954 | ir = i-iouter+1 ! counter within a stride |
---|
[1106] | 955 | CALL fft_y_1d( work_ffty(:,ir), 'backward' ) |
---|
[1] | 956 | |
---|
| 957 | DO j = 0, ny |
---|
| 958 | f_out(k,j,i) = work_ffty(j,ir) |
---|
| 959 | ENDDO |
---|
| 960 | ENDDO |
---|
| 961 | |
---|
| 962 | ENDDO |
---|
| 963 | |
---|
| 964 | ENDDO |
---|
[2300] | 965 | !$OMP END PARALLEL |
---|
[1] | 966 | |
---|
[2300] | 967 | DEALLOCATE( work_ffty ) |
---|
| 968 | |
---|
[1] | 969 | ENDIF |
---|
| 970 | |
---|
[1106] | 971 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'stop' ) |
---|
[1] | 972 | |
---|
| 973 | END SUBROUTINE tr_xy_ffty |
---|
| 974 | |
---|
| 975 | |
---|
| 976 | !------------------------------------------------------------------------------! |
---|
[1682] | 977 | ! Description: |
---|
| 978 | ! ------------ |
---|
| 979 | !> FFT along x, solution of the tridiagonal system and backward FFT for |
---|
| 980 | !> a 1d-decomposition along x |
---|
| 981 | !> |
---|
| 982 | !> @warning this subroutine may still not work for hybrid parallelization |
---|
| 983 | !> with OpenMP (for possible necessary changes see the original |
---|
| 984 | !> routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
[1] | 985 | !------------------------------------------------------------------------------! |
---|
[1682] | 986 | SUBROUTINE fftx_tri_fftx( ar ) |
---|
[1] | 987 | |
---|
[1320] | 988 | USE control_parameters, & |
---|
[2300] | 989 | ONLY: loop_optimization |
---|
[1320] | 990 | |
---|
| 991 | USE cpulog, & |
---|
| 992 | ONLY: cpu_log, log_point_s |
---|
| 993 | |
---|
| 994 | USE grid_variables, & |
---|
| 995 | ONLY: ddx2, ddy2 |
---|
| 996 | |
---|
| 997 | USE kinds |
---|
| 998 | |
---|
[1] | 999 | USE pegrid |
---|
| 1000 | |
---|
| 1001 | IMPLICIT NONE |
---|
| 1002 | |
---|
[1682] | 1003 | INTEGER(iwp) :: i !< |
---|
| 1004 | INTEGER(iwp) :: j !< |
---|
| 1005 | INTEGER(iwp) :: k !< |
---|
| 1006 | INTEGER(iwp) :: m !< |
---|
| 1007 | INTEGER(iwp) :: n !< |
---|
| 1008 | INTEGER(iwp) :: omp_get_thread_num !< |
---|
| 1009 | INTEGER(iwp) :: tn !< |
---|
[1] | 1010 | |
---|
[1682] | 1011 | REAL(wp), DIMENSION(0:nx) :: work_fftx !< |
---|
| 1012 | REAL(wp), DIMENSION(0:nx,1:nz) :: work_trix !< |
---|
| 1013 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: ar !< |
---|
| 1014 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !< |
---|
[1] | 1015 | |
---|
| 1016 | |
---|
[1106] | 1017 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'start' ) |
---|
[1] | 1018 | |
---|
| 1019 | ALLOCATE( tri(5,0:nx,0:nz-1,0:threads_per_task-1) ) |
---|
| 1020 | |
---|
| 1021 | tn = 0 ! Default thread number in case of one thread |
---|
| 1022 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_fftx, work_trix ) |
---|
| 1023 | DO j = nys_x, nyn_x |
---|
| 1024 | |
---|
| 1025 | !$ tn = omp_get_thread_num() |
---|
| 1026 | |
---|
[2300] | 1027 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1028 | ! |
---|
| 1029 | !-- Code optimized for vector processors |
---|
| 1030 | DO k = 1, nz |
---|
| 1031 | |
---|
| 1032 | m = 0 |
---|
| 1033 | DO n = 1, pdims(1) |
---|
[1003] | 1034 | DO i = 1, nnx |
---|
[1] | 1035 | work_trix(m,k) = ar(i,k,j,n) |
---|
| 1036 | m = m + 1 |
---|
| 1037 | ENDDO |
---|
| 1038 | ENDDO |
---|
| 1039 | |
---|
| 1040 | ENDDO |
---|
| 1041 | |
---|
| 1042 | CALL fft_x_m( work_trix, 'forward' ) |
---|
| 1043 | |
---|
| 1044 | ELSE |
---|
| 1045 | ! |
---|
| 1046 | !-- Cache optimized code |
---|
| 1047 | DO k = 1, nz |
---|
| 1048 | |
---|
| 1049 | m = 0 |
---|
| 1050 | DO n = 1, pdims(1) |
---|
[1003] | 1051 | DO i = 1, nnx |
---|
[1] | 1052 | work_fftx(m) = ar(i,k,j,n) |
---|
| 1053 | m = m + 1 |
---|
| 1054 | ENDDO |
---|
| 1055 | ENDDO |
---|
| 1056 | |
---|
[1106] | 1057 | CALL fft_x_1d( work_fftx, 'forward' ) |
---|
[1] | 1058 | |
---|
| 1059 | DO i = 0, nx |
---|
| 1060 | work_trix(i,k) = work_fftx(i) |
---|
| 1061 | ENDDO |
---|
| 1062 | |
---|
| 1063 | ENDDO |
---|
| 1064 | |
---|
| 1065 | ENDIF |
---|
| 1066 | |
---|
| 1067 | ! |
---|
| 1068 | !-- Solve the linear equation system |
---|
| 1069 | CALL tridia_1dd( ddx2, ddy2, nx, ny, j, work_trix, tri(:,:,:,tn) ) |
---|
| 1070 | |
---|
[2300] | 1071 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1072 | ! |
---|
| 1073 | !-- Code optimized for vector processors |
---|
| 1074 | CALL fft_x_m( work_trix, 'backward' ) |
---|
| 1075 | |
---|
| 1076 | DO k = 1, nz |
---|
| 1077 | |
---|
| 1078 | m = 0 |
---|
| 1079 | DO n = 1, pdims(1) |
---|
[1003] | 1080 | DO i = 1, nnx |
---|
[1] | 1081 | ar(i,k,j,n) = work_trix(m,k) |
---|
| 1082 | m = m + 1 |
---|
| 1083 | ENDDO |
---|
| 1084 | ENDDO |
---|
| 1085 | |
---|
| 1086 | ENDDO |
---|
| 1087 | |
---|
| 1088 | ELSE |
---|
| 1089 | ! |
---|
| 1090 | !-- Cache optimized code |
---|
| 1091 | DO k = 1, nz |
---|
| 1092 | |
---|
| 1093 | DO i = 0, nx |
---|
| 1094 | work_fftx(i) = work_trix(i,k) |
---|
| 1095 | ENDDO |
---|
| 1096 | |
---|
[1106] | 1097 | CALL fft_x_1d( work_fftx, 'backward' ) |
---|
[1] | 1098 | |
---|
| 1099 | m = 0 |
---|
| 1100 | DO n = 1, pdims(1) |
---|
[1003] | 1101 | DO i = 1, nnx |
---|
[1] | 1102 | ar(i,k,j,n) = work_fftx(m) |
---|
| 1103 | m = m + 1 |
---|
| 1104 | ENDDO |
---|
| 1105 | ENDDO |
---|
| 1106 | |
---|
| 1107 | ENDDO |
---|
| 1108 | |
---|
| 1109 | ENDIF |
---|
| 1110 | |
---|
| 1111 | ENDDO |
---|
| 1112 | |
---|
| 1113 | DEALLOCATE( tri ) |
---|
| 1114 | |
---|
[1106] | 1115 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'stop' ) |
---|
[1] | 1116 | |
---|
| 1117 | END SUBROUTINE fftx_tri_fftx |
---|
| 1118 | |
---|
| 1119 | |
---|
| 1120 | !------------------------------------------------------------------------------! |
---|
[1682] | 1121 | ! Description: |
---|
| 1122 | ! ------------ |
---|
| 1123 | !> Fourier-transformation along x with subsequent transposition x --> y for |
---|
| 1124 | !> a 1d-decomposition along y. |
---|
| 1125 | !> |
---|
| 1126 | !> @attention NEC-branch of this routine may significantly profit from |
---|
| 1127 | !> further optimizations. So far, performance is much worse than |
---|
| 1128 | !> for routine ffty_tr_yx (more than three times slower). |
---|
[1] | 1129 | !------------------------------------------------------------------------------! |
---|
[1682] | 1130 | SUBROUTINE fftx_tr_xy( f_in, f_out ) |
---|
[1] | 1131 | |
---|
[1682] | 1132 | |
---|
[1320] | 1133 | USE control_parameters, & |
---|
[2300] | 1134 | ONLY: loop_optimization |
---|
[1320] | 1135 | |
---|
| 1136 | USE cpulog, & |
---|
| 1137 | ONLY: cpu_log, log_point_s |
---|
| 1138 | |
---|
| 1139 | USE kinds |
---|
| 1140 | |
---|
[1] | 1141 | USE pegrid |
---|
| 1142 | |
---|
| 1143 | IMPLICIT NONE |
---|
| 1144 | |
---|
[1682] | 1145 | INTEGER(iwp) :: i !< |
---|
| 1146 | INTEGER(iwp) :: j !< |
---|
| 1147 | INTEGER(iwp) :: k !< |
---|
[1] | 1148 | |
---|
[1682] | 1149 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !< |
---|
| 1150 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_in !< |
---|
| 1151 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_out !< |
---|
| 1152 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !< |
---|
[1] | 1153 | |
---|
| 1154 | ! |
---|
| 1155 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 1156 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 1157 | !-- the first index. |
---|
[1106] | 1158 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'start' ) |
---|
[1] | 1159 | |
---|
[2300] | 1160 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1161 | ! |
---|
| 1162 | !-- Code for vector processors |
---|
[85] | 1163 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 1164 | !$OMP DO |
---|
| 1165 | DO i = 0, nx |
---|
| 1166 | |
---|
| 1167 | DO j = nys, nyn |
---|
| 1168 | DO k = 1, nz |
---|
| 1169 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 1170 | ENDDO |
---|
| 1171 | ENDDO |
---|
| 1172 | |
---|
| 1173 | ENDDO |
---|
| 1174 | |
---|
| 1175 | !$OMP DO |
---|
| 1176 | DO j = nys, nyn |
---|
| 1177 | |
---|
| 1178 | CALL fft_x_m( work_fftx(:,:,j), 'forward' ) |
---|
| 1179 | |
---|
| 1180 | DO k = 1, nz |
---|
| 1181 | DO i = 0, nx |
---|
| 1182 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 1183 | ENDDO |
---|
| 1184 | ENDDO |
---|
| 1185 | |
---|
| 1186 | ENDDO |
---|
| 1187 | !$OMP END PARALLEL |
---|
| 1188 | |
---|
| 1189 | ELSE |
---|
| 1190 | |
---|
| 1191 | ! |
---|
| 1192 | !-- Cache optimized code (there might be still a potential for better |
---|
| 1193 | !-- optimization). |
---|
[696] | 1194 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
[1] | 1195 | !$OMP DO |
---|
| 1196 | DO i = 0, nx |
---|
| 1197 | |
---|
| 1198 | DO j = nys, nyn |
---|
| 1199 | DO k = 1, nz |
---|
| 1200 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 1201 | ENDDO |
---|
| 1202 | ENDDO |
---|
| 1203 | |
---|
| 1204 | ENDDO |
---|
| 1205 | |
---|
| 1206 | !$OMP DO |
---|
| 1207 | DO j = nys, nyn |
---|
| 1208 | DO k = 1, nz |
---|
| 1209 | |
---|
[1106] | 1210 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'forward' ) |
---|
[1] | 1211 | |
---|
| 1212 | DO i = 0, nx |
---|
| 1213 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 1214 | ENDDO |
---|
| 1215 | ENDDO |
---|
| 1216 | |
---|
| 1217 | ENDDO |
---|
| 1218 | !$OMP END PARALLEL |
---|
| 1219 | |
---|
| 1220 | ENDIF |
---|
[1106] | 1221 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'pause' ) |
---|
[1] | 1222 | |
---|
| 1223 | ! |
---|
| 1224 | !-- Transpose array |
---|
[1111] | 1225 | #if defined( __parallel ) |
---|
[1] | 1226 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1227 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1228 | CALL MPI_ALLTOALL( work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 1229 | f_out(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 1230 | comm1dy, ierr ) |
---|
| 1231 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 1232 | #endif |
---|
[1] | 1233 | |
---|
| 1234 | END SUBROUTINE fftx_tr_xy |
---|
| 1235 | |
---|
| 1236 | |
---|
| 1237 | !------------------------------------------------------------------------------! |
---|
[1682] | 1238 | ! Description: |
---|
| 1239 | ! ------------ |
---|
| 1240 | !> Transposition y --> x with a subsequent backward Fourier transformation for |
---|
| 1241 | !> a 1d-decomposition along x. |
---|
[1] | 1242 | !------------------------------------------------------------------------------! |
---|
[1682] | 1243 | SUBROUTINE tr_yx_fftx( f_in, f_out ) |
---|
[1] | 1244 | |
---|
[1682] | 1245 | |
---|
[1320] | 1246 | USE control_parameters, & |
---|
[2300] | 1247 | ONLY: loop_optimization |
---|
[1320] | 1248 | |
---|
| 1249 | USE cpulog, & |
---|
| 1250 | ONLY: cpu_log, log_point_s |
---|
| 1251 | |
---|
| 1252 | USE kinds |
---|
| 1253 | |
---|
[1] | 1254 | USE pegrid |
---|
| 1255 | |
---|
| 1256 | IMPLICIT NONE |
---|
| 1257 | |
---|
[1682] | 1258 | INTEGER(iwp) :: i !< |
---|
| 1259 | INTEGER(iwp) :: j !< |
---|
| 1260 | INTEGER(iwp) :: k !< |
---|
[1] | 1261 | |
---|
[1682] | 1262 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !< |
---|
| 1263 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_in !< |
---|
| 1264 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_out !< |
---|
| 1265 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !< |
---|
[1] | 1266 | |
---|
| 1267 | ! |
---|
| 1268 | !-- Transpose array |
---|
[1111] | 1269 | #if defined( __parallel ) |
---|
[1] | 1270 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1271 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1272 | CALL MPI_ALLTOALL( f_in(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 1273 | work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 1274 | comm1dy, ierr ) |
---|
| 1275 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 1276 | #endif |
---|
[1] | 1277 | |
---|
| 1278 | ! |
---|
| 1279 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 1280 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 1281 | !-- the first index. |
---|
[1106] | 1282 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'continue' ) |
---|
[1] | 1283 | |
---|
[2300] | 1284 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1285 | ! |
---|
| 1286 | !-- Code optimized for vector processors |
---|
[85] | 1287 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 1288 | !$OMP DO |
---|
| 1289 | DO j = nys, nyn |
---|
| 1290 | |
---|
| 1291 | DO k = 1, nz |
---|
| 1292 | DO i = 0, nx |
---|
| 1293 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1294 | ENDDO |
---|
| 1295 | ENDDO |
---|
| 1296 | |
---|
| 1297 | CALL fft_x_m( work_fftx(:,:,j), 'backward' ) |
---|
| 1298 | |
---|
| 1299 | ENDDO |
---|
| 1300 | |
---|
| 1301 | !$OMP DO |
---|
| 1302 | DO i = 0, nx |
---|
| 1303 | DO j = nys, nyn |
---|
| 1304 | DO k = 1, nz |
---|
| 1305 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 1306 | ENDDO |
---|
| 1307 | ENDDO |
---|
| 1308 | ENDDO |
---|
| 1309 | !$OMP END PARALLEL |
---|
| 1310 | |
---|
| 1311 | ELSE |
---|
| 1312 | |
---|
| 1313 | ! |
---|
| 1314 | !-- Cache optimized code (there might be still a potential for better |
---|
| 1315 | !-- optimization). |
---|
[696] | 1316 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
[1] | 1317 | !$OMP DO |
---|
| 1318 | DO j = nys, nyn |
---|
| 1319 | DO k = 1, nz |
---|
| 1320 | |
---|
| 1321 | DO i = 0, nx |
---|
| 1322 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1323 | ENDDO |
---|
| 1324 | |
---|
[1106] | 1325 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'backward' ) |
---|
[1] | 1326 | |
---|
| 1327 | ENDDO |
---|
| 1328 | ENDDO |
---|
| 1329 | |
---|
| 1330 | !$OMP DO |
---|
| 1331 | DO i = 0, nx |
---|
| 1332 | DO j = nys, nyn |
---|
| 1333 | DO k = 1, nz |
---|
| 1334 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 1335 | ENDDO |
---|
| 1336 | ENDDO |
---|
| 1337 | ENDDO |
---|
| 1338 | !$OMP END PARALLEL |
---|
| 1339 | |
---|
| 1340 | ENDIF |
---|
[1106] | 1341 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'stop' ) |
---|
[1] | 1342 | |
---|
| 1343 | END SUBROUTINE tr_yx_fftx |
---|
| 1344 | |
---|
| 1345 | |
---|
| 1346 | !------------------------------------------------------------------------------! |
---|
[1682] | 1347 | ! Description: |
---|
| 1348 | ! ------------ |
---|
| 1349 | !> FFT along y, solution of the tridiagonal system and backward FFT for |
---|
| 1350 | !> a 1d-decomposition along y. |
---|
| 1351 | !> |
---|
| 1352 | !> @warning this subroutine may still not work for hybrid parallelization |
---|
| 1353 | !> with OpenMP (for possible necessary changes see the original |
---|
| 1354 | !> routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
[1] | 1355 | !------------------------------------------------------------------------------! |
---|
[1682] | 1356 | SUBROUTINE ffty_tri_ffty( ar ) |
---|
[1] | 1357 | |
---|
[1682] | 1358 | |
---|
[1320] | 1359 | USE control_parameters, & |
---|
[2300] | 1360 | ONLY: loop_optimization |
---|
[1320] | 1361 | |
---|
| 1362 | USE cpulog, & |
---|
| 1363 | ONLY: cpu_log, log_point_s |
---|
| 1364 | |
---|
| 1365 | USE grid_variables, & |
---|
| 1366 | ONLY: ddx2, ddy2 |
---|
| 1367 | |
---|
| 1368 | USE kinds |
---|
| 1369 | |
---|
[1] | 1370 | USE pegrid |
---|
| 1371 | |
---|
| 1372 | IMPLICIT NONE |
---|
| 1373 | |
---|
[1682] | 1374 | INTEGER(iwp) :: i !< |
---|
| 1375 | INTEGER(iwp) :: j !< |
---|
| 1376 | INTEGER(iwp) :: k !< |
---|
| 1377 | INTEGER(iwp) :: m !< |
---|
| 1378 | INTEGER(iwp) :: n !< |
---|
| 1379 | INTEGER(iwp) :: omp_get_thread_num !< |
---|
| 1380 | INTEGER(iwp) :: tn !< |
---|
[1] | 1381 | |
---|
[1682] | 1382 | REAL(wp), DIMENSION(0:ny) :: work_ffty !< |
---|
| 1383 | REAL(wp), DIMENSION(0:ny,1:nz) :: work_triy !< |
---|
| 1384 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: ar !< |
---|
| 1385 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !< |
---|
[1] | 1386 | |
---|
| 1387 | |
---|
[1106] | 1388 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'start' ) |
---|
[1] | 1389 | |
---|
| 1390 | ALLOCATE( tri(5,0:ny,0:nz-1,0:threads_per_task-1) ) |
---|
| 1391 | |
---|
| 1392 | tn = 0 ! Default thread number in case of one thread |
---|
[696] | 1393 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_ffty, work_triy ) |
---|
[1] | 1394 | DO i = nxl_y, nxr_y |
---|
| 1395 | |
---|
| 1396 | !$ tn = omp_get_thread_num() |
---|
| 1397 | |
---|
[2300] | 1398 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1399 | ! |
---|
| 1400 | !-- Code optimized for vector processors |
---|
| 1401 | DO k = 1, nz |
---|
| 1402 | |
---|
| 1403 | m = 0 |
---|
| 1404 | DO n = 1, pdims(2) |
---|
[1003] | 1405 | DO j = 1, nny |
---|
[1] | 1406 | work_triy(m,k) = ar(j,k,i,n) |
---|
| 1407 | m = m + 1 |
---|
| 1408 | ENDDO |
---|
| 1409 | ENDDO |
---|
| 1410 | |
---|
| 1411 | ENDDO |
---|
| 1412 | |
---|
| 1413 | CALL fft_y_m( work_triy, ny, 'forward' ) |
---|
| 1414 | |
---|
| 1415 | ELSE |
---|
| 1416 | ! |
---|
| 1417 | !-- Cache optimized code |
---|
| 1418 | DO k = 1, nz |
---|
| 1419 | |
---|
| 1420 | m = 0 |
---|
| 1421 | DO n = 1, pdims(2) |
---|
[1003] | 1422 | DO j = 1, nny |
---|
[1] | 1423 | work_ffty(m) = ar(j,k,i,n) |
---|
| 1424 | m = m + 1 |
---|
| 1425 | ENDDO |
---|
| 1426 | ENDDO |
---|
| 1427 | |
---|
[1106] | 1428 | CALL fft_y_1d( work_ffty, 'forward' ) |
---|
[1] | 1429 | |
---|
| 1430 | DO j = 0, ny |
---|
| 1431 | work_triy(j,k) = work_ffty(j) |
---|
| 1432 | ENDDO |
---|
| 1433 | |
---|
| 1434 | ENDDO |
---|
| 1435 | |
---|
| 1436 | ENDIF |
---|
| 1437 | |
---|
| 1438 | ! |
---|
| 1439 | !-- Solve the linear equation system |
---|
| 1440 | CALL tridia_1dd( ddy2, ddx2, ny, nx, i, work_triy, tri(:,:,:,tn) ) |
---|
| 1441 | |
---|
[2300] | 1442 | IF ( loop_optimization == 'vector' ) THEN |
---|
[1] | 1443 | ! |
---|
| 1444 | !-- Code optimized for vector processors |
---|
| 1445 | CALL fft_y_m( work_triy, ny, 'backward' ) |
---|
| 1446 | |
---|
| 1447 | DO k = 1, nz |
---|
| 1448 | |
---|
| 1449 | m = 0 |
---|
| 1450 | DO n = 1, pdims(2) |
---|
[1003] | 1451 | DO j = 1, nny |
---|
[1] | 1452 | ar(j,k,i,n) = work_triy(m,k) |
---|
| 1453 | m = m + 1 |
---|
| 1454 | ENDDO |
---|
| 1455 | ENDDO |
---|
| 1456 | |
---|
| 1457 | ENDDO |
---|
| 1458 | |
---|
| 1459 | ELSE |
---|
| 1460 | ! |
---|
| 1461 | !-- Cache optimized code |
---|
| 1462 | DO k = 1, nz |
---|
| 1463 | |
---|
| 1464 | DO j = 0, ny |
---|
| 1465 | work_ffty(j) = work_triy(j,k) |
---|
| 1466 | ENDDO |
---|
| 1467 | |
---|
[1106] | 1468 | CALL fft_y_1d( work_ffty, 'backward' ) |
---|
[1] | 1469 | |
---|
| 1470 | m = 0 |
---|
| 1471 | DO n = 1, pdims(2) |
---|
[1003] | 1472 | DO j = 1, nny |
---|
[1] | 1473 | ar(j,k,i,n) = work_ffty(m) |
---|
| 1474 | m = m + 1 |
---|
| 1475 | ENDDO |
---|
| 1476 | ENDDO |
---|
| 1477 | |
---|
| 1478 | ENDDO |
---|
| 1479 | |
---|
| 1480 | ENDIF |
---|
| 1481 | |
---|
| 1482 | ENDDO |
---|
| 1483 | |
---|
| 1484 | DEALLOCATE( tri ) |
---|
| 1485 | |
---|
[1106] | 1486 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'stop' ) |
---|
[1] | 1487 | |
---|
| 1488 | END SUBROUTINE ffty_tri_ffty |
---|
| 1489 | |
---|
| 1490 | END MODULE poisfft_mod |
---|