[1] | 1 | MODULE poisfft_hybrid_mod |
---|
| 2 | !------------------------------------------------------------------------------ |
---|
| 3 | ! |
---|
[257] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
[257] | 6 | ! Output of messages replaced by message handling routine. |
---|
[1] | 7 | ! |
---|
[257] | 8 | ! |
---|
[1] | 9 | ! Former revisions: |
---|
| 10 | ! ----------------- |
---|
[3] | 11 | ! $Id: poisfft_hybrid.f90 257 2009-03-11 15:17:42Z weinreis $ |
---|
| 12 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 13 | ! |
---|
[1] | 14 | ! Revision 1.11 2004/04/30 12:43:14 raasch |
---|
| 15 | ! Renaming of fft routines, additional argument in calls of fft_y_m |
---|
| 16 | ! |
---|
| 17 | ! Revision 1.2 2002/12/19 16:08:31 raasch |
---|
| 18 | ! Preprocessor directive KKMP introduced (OMP does NOT work), |
---|
| 19 | ! array tri will be a shared array in OpenMP loop, to get better cache |
---|
| 20 | ! utilization, the i index (x-direction) will be executed in stride |
---|
| 21 | ! "istride" as outer loop and in a shorter inner loop, |
---|
| 22 | ! overlapping of computation and communication realized by new routine |
---|
| 23 | ! poisfft_hybrid_nodes, name of old routine poisfft_hybrid changed to |
---|
| 24 | ! poisfft_hybrid_omp, STOP statement replaced by call of subroutine local_stop |
---|
| 25 | ! |
---|
| 26 | ! |
---|
| 27 | ! Description: |
---|
| 28 | ! ------------ |
---|
| 29 | ! Solution of the Poisson equation with a 2D spectral method. |
---|
| 30 | ! Hybrid version for parallel computers using a 1D domain decomposition, |
---|
| 31 | ! realized with MPI, along x and parallelization with OPEN-MP along y |
---|
| 32 | ! (routine poisfft_hybrid_omp). In a second version (poisfft_hybrid_nodes), |
---|
| 33 | ! optimization is realized by overlapping of computation and communication |
---|
| 34 | ! and by simultaneously executing as many communication calls as switches |
---|
| 35 | ! per logical partition (LPAR) are available. This version comes into |
---|
| 36 | ! effect if more than one node is used and if the environment variable |
---|
| 37 | ! tasks_per_node is set in a way that it can be devided by switch_per_lpar |
---|
| 38 | ! without any rest. |
---|
| 39 | ! |
---|
| 40 | ! WARNING: In case of OpenMP, there are problems with allocating large |
---|
| 41 | ! arrays in parallel regions. |
---|
| 42 | ! |
---|
| 43 | ! Copyright Klaus Ketelsen / Siegfried Raasch May 2002 |
---|
| 44 | !------------------------------------------------------------------------------! |
---|
| 45 | |
---|
| 46 | USE fft_xy |
---|
| 47 | USE indices |
---|
| 48 | USE pegrid |
---|
| 49 | |
---|
| 50 | IMPLICIT NONE |
---|
| 51 | |
---|
| 52 | PRIVATE |
---|
| 53 | PUBLIC poisfft_hybrid, poisfft_hybrid_ini |
---|
| 54 | |
---|
| 55 | INTEGER, PARAMETER :: switch_per_lpar = 2 |
---|
| 56 | |
---|
| 57 | INTEGER, SAVE :: nxl_a, nxr_a, & ! total x dimension |
---|
| 58 | nxl_p, nxr_p, & ! partial x dimension |
---|
| 59 | nys_a, nyn_a, & ! total y dimension |
---|
| 60 | nys_p, nyn_p, & ! partial y dimension |
---|
| 61 | |
---|
| 62 | npe_s, & ! total number of PEs for solver |
---|
| 63 | nwords, & ! number of points to be exchanged |
---|
| 64 | ! with MPI_ALLTOALL |
---|
| 65 | n_omp_threads ! number of OpenMP threads |
---|
| 66 | |
---|
| 67 | ! |
---|
| 68 | !-- Variables for multi node version (cluster version) using routine |
---|
| 69 | !-- poisfft_hybrid_nodes |
---|
| 70 | INTEGER, SAVE :: comm_nodes, & ! communicater nodes |
---|
| 71 | comm_node_all, & ! communicater all PEs node version |
---|
| 72 | comm_tasks, & ! communicater tasks |
---|
| 73 | me, me_node, me_task,& ! identity of this PE |
---|
| 74 | nodes, & ! number of nodes |
---|
| 75 | tasks_per_logical_node = -1 ! default no cluster |
---|
| 76 | |
---|
| 77 | |
---|
| 78 | ! |
---|
| 79 | !-- Public interfaces |
---|
| 80 | INTERFACE poisfft_hybrid_ini |
---|
| 81 | MODULE PROCEDURE poisfft_hybrid_ini |
---|
| 82 | END INTERFACE poisfft_hybrid_ini |
---|
| 83 | |
---|
| 84 | INTERFACE poisfft_hybrid |
---|
| 85 | MODULE PROCEDURE poisfft_hybrid |
---|
| 86 | END INTERFACE poisfft_hybrid |
---|
| 87 | |
---|
| 88 | ! |
---|
| 89 | !-- Private interfaces |
---|
| 90 | INTERFACE poisfft_hybrid_omp |
---|
| 91 | MODULE PROCEDURE poisfft_hybrid_omp |
---|
| 92 | END INTERFACE poisfft_hybrid_omp |
---|
| 93 | |
---|
| 94 | INTERFACE poisfft_hybrid_omp_vec |
---|
| 95 | MODULE PROCEDURE poisfft_hybrid_omp_vec |
---|
| 96 | END INTERFACE poisfft_hybrid_omp_vec |
---|
| 97 | |
---|
| 98 | INTERFACE poisfft_hybrid_nodes |
---|
| 99 | MODULE PROCEDURE poisfft_hybrid_nodes |
---|
| 100 | END INTERFACE poisfft_hybrid_nodes |
---|
| 101 | |
---|
| 102 | INTERFACE tridia_hybrid |
---|
| 103 | MODULE PROCEDURE tridia_hybrid |
---|
| 104 | END INTERFACE tridia_hybrid |
---|
| 105 | |
---|
| 106 | INTERFACE cascade |
---|
| 107 | MODULE PROCEDURE cascade |
---|
| 108 | END INTERFACE cascade |
---|
| 109 | |
---|
| 110 | CONTAINS |
---|
| 111 | |
---|
| 112 | |
---|
| 113 | SUBROUTINE poisfft_hybrid_ini |
---|
| 114 | |
---|
| 115 | USE control_parameters |
---|
| 116 | USE pegrid |
---|
| 117 | |
---|
| 118 | IMPLICIT NONE |
---|
| 119 | |
---|
| 120 | CHARACTER(LEN=8) :: cdummy |
---|
| 121 | INTEGER :: idummy, istat |
---|
| 122 | INTEGER, DIMENSION(2) :: coords, dims |
---|
| 123 | |
---|
| 124 | LOGICAL, DIMENSION(2) :: period = .false., re_dims |
---|
| 125 | |
---|
| 126 | |
---|
| 127 | ! |
---|
| 128 | !-- Set the internal index values for the hybrid solver |
---|
| 129 | #if defined( __parallel ) |
---|
| 130 | npe_s = pdims(1) |
---|
| 131 | #else |
---|
| 132 | npe_s = 1 |
---|
| 133 | #endif |
---|
| 134 | nxl_a = 0 |
---|
| 135 | nxr_a = nx |
---|
| 136 | nxl_p = 0 |
---|
| 137 | nxr_p = ( ( nx+1 ) / npe_s ) - 1 |
---|
| 138 | nys_a = nys |
---|
| 139 | nyn_a = nyn |
---|
| 140 | nys_p = 0 |
---|
| 141 | nyn_p = ( ( ny+1 ) / npe_s ) - 1 |
---|
| 142 | |
---|
| 143 | nwords = ( nxr_p-nxl_p+1 ) * nz * ( nyn_p-nys_p+1 ) |
---|
| 144 | |
---|
| 145 | #if defined( __KKMP ) |
---|
| 146 | CALL LOCAL_GETENV( 'OMP_NUM_THREADS', 15, cdummy, idummy ) |
---|
| 147 | READ ( cdummy, '(I8)' ) n_omp_threads |
---|
[257] | 148 | IF ( n_omp_threads > 1 ) THEN |
---|
| 149 | WRITE( message_string, * ) 'Number of OpenMP threads = ', & |
---|
| 150 | n_omp_threads |
---|
| 151 | CALL message( 'poisfft_hybrid_ini', 'PA0280', 0, 0, 0, 6, 0 ) |
---|
[1] | 152 | ENDIF |
---|
| 153 | #else |
---|
| 154 | n_omp_threads = 1 |
---|
| 155 | #endif |
---|
| 156 | ! |
---|
| 157 | !-- Initialize the one-dimensional FFT routines |
---|
| 158 | CALL fft_init |
---|
| 159 | |
---|
| 160 | ! |
---|
| 161 | !-- Setup for multi node version (poisfft_hybrid_nodes) |
---|
| 162 | IF ( n_omp_threads == 1 .AND. & |
---|
| 163 | ( host(1:4) == 'ibmh' .OR. host(1:4) == 'ibmb' ) ) THEN |
---|
| 164 | |
---|
| 165 | IF ( tasks_per_node /= -9999 ) THEN |
---|
| 166 | ! |
---|
| 167 | !-- Multi node version requires that the available number of |
---|
| 168 | !-- switches per logical partition must be an integral divisor |
---|
| 169 | !-- of the chosen number of tasks per node |
---|
| 170 | IF ( MOD( tasks_per_node, switch_per_lpar ) == 0 ) THEN |
---|
| 171 | ! |
---|
| 172 | !-- Set the switch which decides about usage of the multi node |
---|
| 173 | !-- version |
---|
| 174 | IF ( tasks_per_node / switch_per_lpar > 1 .AND. & |
---|
| 175 | numprocs > tasks_per_node ) THEN |
---|
| 176 | tasks_per_logical_node = tasks_per_node / switch_per_lpar |
---|
| 177 | ENDIF |
---|
| 178 | |
---|
[257] | 179 | IF ( tasks_per_logical_node > -1 ) THEN |
---|
| 180 | |
---|
| 181 | WRITE( message_string, * ) 'running optimized ', & |
---|
| 182 | 'multinode version', & |
---|
| 183 | '&switch_per_lpar = ', & |
---|
| 184 | switch_per_lpar, & |
---|
| 185 | '&tasks_per_lpar = ', & |
---|
| 186 | tasks_per_node, & |
---|
| 187 | 'tasks_per_logical_node = ', & |
---|
| 188 | tasks_per_logical_node |
---|
| 189 | CALL message( 'poisfft_hybrid_ini', 'PA0281', 0, 0, 0, 6, 0 ) |
---|
| 190 | |
---|
[1] | 191 | ENDIF |
---|
| 192 | |
---|
| 193 | ENDIF |
---|
| 194 | ENDIF |
---|
| 195 | ENDIF |
---|
| 196 | |
---|
| 197 | ! |
---|
| 198 | !-- Determine sub-topologies for multi node version |
---|
| 199 | IF ( tasks_per_logical_node >= 2 ) THEN |
---|
| 200 | |
---|
| 201 | #if defined( __parallel ) |
---|
| 202 | nodes = ( numprocs + tasks_per_logical_node - 1 ) / & |
---|
| 203 | tasks_per_logical_node |
---|
| 204 | dims(1) = nodes |
---|
| 205 | dims(2) = tasks_per_logical_node |
---|
| 206 | |
---|
| 207 | CALL MPI_CART_CREATE( comm2d, 2, dims, period, .FALSE., & |
---|
| 208 | comm_node_all, istat ) |
---|
| 209 | CALL MPI_COMM_RANK( comm_node_all, me, istat ) |
---|
| 210 | |
---|
| 211 | re_dims(1) = .TRUE. |
---|
| 212 | re_dims(2) = .FALSE. |
---|
| 213 | CALL MPI_CART_SUB( comm_node_all, re_dims, comm_nodes, istat ) |
---|
| 214 | CALL MPI_COMM_RANK( comm_nodes, me_node, istat ) |
---|
| 215 | |
---|
| 216 | re_dims(1) = .FALSE. |
---|
| 217 | re_dims(2) = .TRUE. |
---|
| 218 | CALL MPI_CART_SUB( comm_node_all, re_dims, comm_tasks, istat ) |
---|
| 219 | CALL MPI_COMM_RANK( comm_tasks, me_task, istat ) |
---|
| 220 | |
---|
| 221 | ! write(0,*) 'who am i',myid,me,me_node,me_task,nodes,& |
---|
| 222 | ! tasks_per_logical_node |
---|
| 223 | #else |
---|
[257] | 224 | message_string = 'parallel environment (MPI) required' |
---|
| 225 | CALL message( 'poisfft_hybrid_ini', 'PA0282', 1, 2, 0, 6, 0 ) |
---|
[1] | 226 | #endif |
---|
| 227 | ENDIF |
---|
| 228 | |
---|
| 229 | END SUBROUTINE poisfft_hybrid_ini |
---|
| 230 | |
---|
| 231 | |
---|
| 232 | SUBROUTINE poisfft_hybrid( ar ) |
---|
| 233 | |
---|
| 234 | USE control_parameters |
---|
| 235 | USE interfaces |
---|
| 236 | |
---|
| 237 | IMPLICIT NONE |
---|
| 238 | |
---|
| 239 | REAL, DIMENSION(1:nz,nys:nyn,nxl:nxr) :: ar |
---|
| 240 | |
---|
| 241 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 242 | CALL poisfft_hybrid_omp_vec( ar ) |
---|
| 243 | ELSE |
---|
| 244 | IF ( tasks_per_logical_node == -1 ) THEN |
---|
| 245 | CALL poisfft_hybrid_omp( ar ) |
---|
| 246 | ELSE |
---|
| 247 | CALL poisfft_hybrid_nodes( ar ) |
---|
| 248 | ENDIF |
---|
| 249 | ENDIF |
---|
| 250 | |
---|
| 251 | END SUBROUTINE poisfft_hybrid |
---|
| 252 | |
---|
| 253 | |
---|
| 254 | SUBROUTINE poisfft_hybrid_omp ( ar ) |
---|
| 255 | |
---|
| 256 | USE cpulog |
---|
| 257 | USE interfaces |
---|
| 258 | |
---|
| 259 | IMPLICIT NONE |
---|
| 260 | |
---|
| 261 | INTEGER, PARAMETER :: istride = 4 ! stride of i loop |
---|
| 262 | INTEGER :: i, ii, ir, iei, iouter, istat, j, jj, k, m, n, jthread |
---|
| 263 | |
---|
| 264 | REAL, DIMENSION(1:nz,nys:nyn,nxl:nxr) :: ar |
---|
| 265 | |
---|
| 266 | REAL, DIMENSION(0:nx) :: fftx_ar |
---|
| 267 | REAL, DIMENSION(0:ny,istride) :: ffty_ar |
---|
| 268 | |
---|
| 269 | REAL, DIMENSION(0:nx,nz) :: tri_ar |
---|
| 270 | |
---|
| 271 | REAL, DIMENSION(nxl_p:nxr_p,nz,nys_p:nyn_p,npe_s) :: work1, work2 |
---|
| 272 | #if defined( __KKMP ) |
---|
| 273 | INTEGER :: omp_get_thread_num |
---|
| 274 | REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: tri |
---|
| 275 | ALLOCATE( tri(5,0:nx,0:nz-1,n_omp_threads ) ) |
---|
| 276 | #else |
---|
| 277 | REAL, DIMENSION(5,0:nx,0:nz-1,1) :: tri |
---|
| 278 | #endif |
---|
| 279 | |
---|
| 280 | |
---|
| 281 | CALL cpu_log( log_point_s(30), 'poisfft_hybrid_omp', 'start' ) |
---|
| 282 | |
---|
| 283 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
| 284 | |
---|
| 285 | !$OMP PARALLEL PRIVATE (i,iouter,ii,ir,iei,j,k,m,n,ffty_ar) |
---|
| 286 | !$OMP DO |
---|
| 287 | ! |
---|
| 288 | !-- Store grid points to be transformed on a 1d-array, do the fft |
---|
| 289 | !-- and sample the results on a 4d-array |
---|
| 290 | DO iouter = nxl_p, nxr_p, istride ! stride loop, better cache |
---|
| 291 | iei = MIN( iouter+istride-1, nxr_p ) |
---|
| 292 | DO k = 1, nz |
---|
| 293 | |
---|
| 294 | DO i = iouter, iei |
---|
| 295 | ii = nxl + i |
---|
| 296 | ir = i - iouter + 1 |
---|
| 297 | |
---|
| 298 | DO j = nys_a, nyn_a |
---|
| 299 | ffty_ar(j,ir) = ar(k,j,ii) |
---|
| 300 | ENDDO |
---|
| 301 | |
---|
| 302 | CALL fft_y( ffty_ar(:,ir), 'forward' ) |
---|
| 303 | ENDDO |
---|
| 304 | |
---|
| 305 | m = nys_a |
---|
| 306 | DO n = 1, npe_s |
---|
| 307 | DO j = nys_p, nyn_p |
---|
| 308 | DO i = iouter, iei |
---|
| 309 | ir = i - iouter + 1 |
---|
| 310 | work1(i,k,j,n) = ffty_ar(m,ir) |
---|
| 311 | ENDDO |
---|
| 312 | m = m+1 |
---|
| 313 | ENDDO |
---|
| 314 | ENDDO |
---|
| 315 | |
---|
| 316 | ENDDO |
---|
| 317 | ENDDO |
---|
| 318 | !$OMP END PARALLEL |
---|
| 319 | |
---|
| 320 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 321 | |
---|
| 322 | #if defined( __parallel ) |
---|
| 323 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 324 | |
---|
| 325 | CALL MPI_ALLTOALL( work1(nxl_p,1,nys_p,1), nwords, MPI_REAL, & |
---|
| 326 | work2(nxl_p,1,nys_p,1), nwords, MPI_REAL, & |
---|
| 327 | comm2d, istat ) |
---|
| 328 | |
---|
| 329 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 330 | #else |
---|
| 331 | work2 = work1 |
---|
| 332 | #endif |
---|
| 333 | |
---|
| 334 | CALL cpu_log( log_point_s(33), 'fft_x + tridia', 'start' ) |
---|
| 335 | |
---|
| 336 | #if defined( __KKMP ) |
---|
| 337 | !$OMP PARALLEL PRIVATE (i,j,jj,k,m,n,fftx_ar,tri_ar,jthread) |
---|
| 338 | !$OMP DO |
---|
| 339 | DO j = nys_p, nyn_p |
---|
| 340 | jthread = omp_get_thread_num() + 1 |
---|
| 341 | #else |
---|
| 342 | DO j = nys_p, nyn_p |
---|
| 343 | jthread = 1 |
---|
| 344 | #endif |
---|
| 345 | DO k = 1, nz |
---|
| 346 | |
---|
| 347 | m = nxl_a |
---|
| 348 | DO n = 1, npe_s |
---|
| 349 | DO i = nxl_p, nxr_p |
---|
| 350 | fftx_ar(m) = work2(i,k,j,n) |
---|
| 351 | m = m+1 |
---|
| 352 | ENDDO |
---|
| 353 | ENDDO |
---|
| 354 | |
---|
| 355 | CALL fft_x( fftx_ar, 'forward' ) |
---|
| 356 | |
---|
| 357 | DO i = nxl_a, nxr_a |
---|
| 358 | tri_ar(i,k) = fftx_ar(i) |
---|
| 359 | ENDDO |
---|
| 360 | |
---|
| 361 | ENDDO |
---|
| 362 | |
---|
| 363 | jj = myid * (nyn_p-nys_p+1) + j |
---|
| 364 | CALL tridia_hybrid( jj, tri_ar, tri(:,:,:,jthread)) |
---|
| 365 | |
---|
| 366 | DO k = 1, nz |
---|
| 367 | DO i = nxl_a, nxr_a |
---|
| 368 | fftx_ar(i) = tri_ar (i,k) |
---|
| 369 | ENDDO |
---|
| 370 | |
---|
| 371 | CALL fft_x( fftx_ar, 'backward' ) |
---|
| 372 | |
---|
| 373 | m = nxl_a |
---|
| 374 | DO n = 1, npe_s |
---|
| 375 | DO i = nxl_p, nxr_p |
---|
| 376 | work2(i,k,j,n) = fftx_ar(m) |
---|
| 377 | m = m+1 |
---|
| 378 | ENDDO |
---|
| 379 | ENDDO |
---|
| 380 | |
---|
| 381 | ENDDO |
---|
| 382 | ENDDO |
---|
| 383 | #if defined( __KKMP ) |
---|
| 384 | !$OMP END PARALLEL |
---|
| 385 | #endif |
---|
| 386 | |
---|
| 387 | CALL cpu_log( log_point_s(33), 'fft_x + tridia', 'stop' ) |
---|
| 388 | |
---|
| 389 | #if defined( __parallel ) |
---|
| 390 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 391 | nwords = (nxr_p-nxl_p+1) * nz * (nyn_p-nys_p+1) |
---|
| 392 | |
---|
| 393 | CALL MPI_ALLTOALL( work2(nxl_p,1,nys_p,1), nwords, MPI_REAL, & |
---|
| 394 | work1(nxl_p,1,nys_p,1), nwords, MPI_REAL, & |
---|
| 395 | comm2d, istat ) |
---|
| 396 | |
---|
| 397 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 398 | #else |
---|
| 399 | work1 = work2 |
---|
| 400 | #endif |
---|
| 401 | |
---|
| 402 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
| 403 | |
---|
| 404 | !$OMP PARALLEL PRIVATE (i,iouter,ii,ir,iei,j,k,m,n,ffty_ar) |
---|
| 405 | !$OMP DO |
---|
| 406 | DO iouter = nxl_p, nxr_p, istride |
---|
| 407 | iei = MIN( iouter+istride-1, nxr_p ) |
---|
| 408 | DO k = 1, nz |
---|
| 409 | |
---|
| 410 | m = nys_a |
---|
| 411 | DO n = 1, npe_s |
---|
| 412 | DO j = nys_p, nyn_p |
---|
| 413 | DO i = iouter, iei |
---|
| 414 | ir = i - iouter + 1 |
---|
| 415 | ffty_ar(m,ir) = work1 (i,k,j,n) |
---|
| 416 | ENDDO |
---|
| 417 | m = m+1 |
---|
| 418 | ENDDO |
---|
| 419 | ENDDO |
---|
| 420 | |
---|
| 421 | DO i = iouter, iei |
---|
| 422 | ii = nxl + i |
---|
| 423 | ir = i - iouter + 1 |
---|
| 424 | CALL fft_y( ffty_ar(:,ir), 'backward' ) |
---|
| 425 | |
---|
| 426 | DO j = nys_a, nyn_a |
---|
| 427 | ar(k,j,ii) = ffty_ar(j,ir) |
---|
| 428 | ENDDO |
---|
| 429 | ENDDO |
---|
| 430 | |
---|
| 431 | ENDDO |
---|
| 432 | ENDDO |
---|
| 433 | !$OMP END PARALLEL |
---|
| 434 | |
---|
| 435 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 436 | |
---|
| 437 | CALL cpu_log( log_point_s(30), 'poisfft_hybrid_omp', 'stop' ) |
---|
| 438 | |
---|
| 439 | #if defined( __KKMP ) |
---|
| 440 | DEALLOCATE( tri ) |
---|
| 441 | #endif |
---|
| 442 | |
---|
| 443 | END SUBROUTINE poisfft_hybrid_omp |
---|
| 444 | |
---|
| 445 | |
---|
| 446 | SUBROUTINE poisfft_hybrid_omp_vec ( ar ) |
---|
| 447 | |
---|
| 448 | USE cpulog |
---|
| 449 | USE interfaces |
---|
| 450 | |
---|
| 451 | IMPLICIT NONE |
---|
| 452 | |
---|
| 453 | INTEGER, PARAMETER :: istride = 4 ! stride of i loop |
---|
| 454 | INTEGER :: i, ii, ir, iei, iouter, istat, j, jj, k, m, n, jthread |
---|
| 455 | |
---|
| 456 | REAL, DIMENSION(0:nx,nz) :: tri_ar |
---|
| 457 | |
---|
| 458 | REAL, DIMENSION(1:nz,nys:nyn,nxl:nxr) :: ar |
---|
| 459 | |
---|
| 460 | REAL, DIMENSION(0:ny+3,nz,nxl_p:nxr_p) :: ffty_ar3 |
---|
| 461 | REAL, DIMENSION(0:nx+3,nz,nys_p:nyn_p) :: fftx_ar3 |
---|
| 462 | |
---|
| 463 | REAL, DIMENSION(nxl_p:nxr_p,nz,nys_p:nyn_p,npe_s) :: work1, work2 |
---|
| 464 | #if defined( __KKMP ) |
---|
| 465 | INTEGER :: omp_get_thread_num |
---|
| 466 | REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: tri |
---|
| 467 | ALLOCATE( tri(5,0:nx,0:nz-1,n_omp_threads ) ) |
---|
| 468 | #else |
---|
| 469 | REAL, DIMENSION(5,0:nx,0:nz-1,1) :: tri |
---|
| 470 | #endif |
---|
| 471 | |
---|
| 472 | |
---|
| 473 | CALL cpu_log( log_point_s(30), 'poisfft_hybrid_vec', 'start' ) |
---|
| 474 | |
---|
| 475 | CALL cpu_log( log_point_s(7), 'fft_y_m', 'start' ) |
---|
| 476 | |
---|
| 477 | !$OMP PARALLEL PRIVATE (i,j,k,m,n) |
---|
| 478 | !$OMP DO |
---|
| 479 | ! |
---|
| 480 | !-- Store grid points to be transformed on a 1d-array, do the fft |
---|
| 481 | !-- and sample the results on a 4d-array |
---|
| 482 | DO i = nxl_p, nxr_p |
---|
| 483 | |
---|
| 484 | DO j = nys_a, nyn_a |
---|
| 485 | DO k = 1, nz |
---|
| 486 | ffty_ar3(j,k,i) = ar(k,j,i+nxl) |
---|
| 487 | ENDDO |
---|
| 488 | ENDDO |
---|
| 489 | |
---|
| 490 | CALL fft_y_m( ffty_ar3(:,:,i), ny+3, 'forward' ) |
---|
| 491 | ENDDO |
---|
| 492 | |
---|
| 493 | !$OMP DO |
---|
| 494 | DO k = 1, nz |
---|
| 495 | m = nys_a |
---|
| 496 | DO n = 1, npe_s |
---|
| 497 | DO j = nys_p, nyn_p |
---|
| 498 | DO i = nxl_p, nxr_p |
---|
| 499 | work1(i,k,j,n) = ffty_ar3(m,k,i) |
---|
| 500 | ENDDO |
---|
| 501 | m = m+1 |
---|
| 502 | ENDDO |
---|
| 503 | ENDDO |
---|
| 504 | ENDDO |
---|
| 505 | !$OMP END PARALLEL |
---|
| 506 | |
---|
| 507 | CALL cpu_log( log_point_s(7), 'fft_y_m', 'pause' ) |
---|
| 508 | |
---|
| 509 | #if defined( __parallel ) |
---|
| 510 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 511 | CALL MPI_ALLTOALL( work1(nxl_p,1,nys_p,1), nwords, MPI_REAL, & |
---|
| 512 | work2(nxl_p,1,nys_p,1), nwords, MPI_REAL, & |
---|
| 513 | comm2d, istat ) |
---|
| 514 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 515 | #else |
---|
| 516 | work2 = work1 |
---|
| 517 | #endif |
---|
| 518 | |
---|
| 519 | CALL cpu_log( log_point_s(33), 'fft_x_m + tridia', 'start' ) |
---|
| 520 | |
---|
| 521 | #if defined( __KKMP ) |
---|
| 522 | !$OMP PARALLEL PRIVATE (i,j,jj,k,m,n,tri_ar,jthread) |
---|
| 523 | !$OMP DO |
---|
| 524 | DO j = nys_p, nyn_p |
---|
| 525 | jthread = omp_get_thread_num() + 1 |
---|
| 526 | #else |
---|
| 527 | DO j = nys_p, nyn_p |
---|
| 528 | jthread = 1 |
---|
| 529 | #endif |
---|
| 530 | DO k = 1, nz |
---|
| 531 | |
---|
| 532 | m = nxl_a |
---|
| 533 | DO n = 1, npe_s |
---|
| 534 | DO i = nxl_p, nxr_p |
---|
| 535 | fftx_ar3(m,k,j) = work2(i,k,j,n) |
---|
| 536 | m = m+1 |
---|
| 537 | ENDDO |
---|
| 538 | ENDDO |
---|
| 539 | ENDDO |
---|
| 540 | |
---|
| 541 | CALL fft_x_m( fftx_ar3(:,:,j), 'forward' ) |
---|
| 542 | |
---|
| 543 | DO k = 1, nz |
---|
| 544 | DO i = nxl_a, nxr_a |
---|
| 545 | tri_ar(i,k) = fftx_ar3(i,k,j) |
---|
| 546 | ENDDO |
---|
| 547 | ENDDO |
---|
| 548 | |
---|
| 549 | jj = myid * (nyn_p-nys_p+1) + j |
---|
| 550 | CALL tridia_hybrid( jj, tri_ar, tri(:,:,:,jthread)) |
---|
| 551 | |
---|
| 552 | DO k = 1, nz |
---|
| 553 | DO i = nxl_a, nxr_a |
---|
| 554 | fftx_ar3(i,k,j) = tri_ar (i,k) |
---|
| 555 | ENDDO |
---|
| 556 | ENDDO |
---|
| 557 | |
---|
| 558 | CALL fft_x_m( fftx_ar3(:,:,j), 'backward' ) |
---|
| 559 | |
---|
| 560 | DO k = 1, nz |
---|
| 561 | m = nxl_a |
---|
| 562 | DO n = 1, npe_s |
---|
| 563 | DO i = nxl_p, nxr_p |
---|
| 564 | work2(i,k,j,n) = fftx_ar3(m,k,j) |
---|
| 565 | m = m+1 |
---|
| 566 | ENDDO |
---|
| 567 | ENDDO |
---|
| 568 | ENDDO |
---|
| 569 | |
---|
| 570 | ENDDO |
---|
| 571 | #if defined( __KKMP ) |
---|
| 572 | !$OMP END PARALLEL |
---|
| 573 | #endif |
---|
| 574 | |
---|
| 575 | CALL cpu_log( log_point_s(33), 'fft_x_m + tridia', 'stop' ) |
---|
| 576 | |
---|
| 577 | #if defined( __parallel ) |
---|
| 578 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 579 | nwords = (nxr_p-nxl_p+1) * nz * (nyn_p-nys_p+1) |
---|
| 580 | CALL MPI_ALLTOALL( work2(nxl_p,1,nys_p,1), nwords, MPI_REAL, & |
---|
| 581 | work1(nxl_p,1,nys_p,1), nwords, MPI_REAL, & |
---|
| 582 | comm2d, istat ) |
---|
| 583 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 584 | #else |
---|
| 585 | work1 = work2 |
---|
| 586 | #endif |
---|
| 587 | |
---|
| 588 | CALL cpu_log( log_point_s(7), 'fft_y_m', 'continue' ) |
---|
| 589 | |
---|
| 590 | !$OMP PARALLEL PRIVATE (i,iouter,ii,ir,iei,j,k,m,n) |
---|
| 591 | !$OMP DO |
---|
| 592 | DO k = 1, nz |
---|
| 593 | m = nys_a |
---|
| 594 | DO n = 1, npe_s |
---|
| 595 | DO j = nys_p, nyn_p |
---|
| 596 | DO i = nxl_p, nxr_p |
---|
| 597 | ffty_ar3(m,k,i) = work1(i,k,j,n) |
---|
| 598 | ENDDO |
---|
| 599 | m = m+1 |
---|
| 600 | ENDDO |
---|
| 601 | ENDDO |
---|
| 602 | ENDDO |
---|
| 603 | |
---|
| 604 | !$OMP DO |
---|
| 605 | DO i = nxl_p, nxr_p |
---|
| 606 | CALL fft_y_m( ffty_ar3(:,:,i), ny+3, 'backward' ) |
---|
| 607 | DO j = nys_a, nyn_a |
---|
| 608 | DO k = 1, nz |
---|
| 609 | ar(k,j,i+nxl) = ffty_ar3(j,k,i) |
---|
| 610 | ENDDO |
---|
| 611 | ENDDO |
---|
| 612 | ENDDO |
---|
| 613 | !$OMP END PARALLEL |
---|
| 614 | |
---|
| 615 | CALL cpu_log( log_point_s(7), 'fft_y_m', 'stop' ) |
---|
| 616 | |
---|
| 617 | CALL cpu_log( log_point_s(30), 'poisfft_hybrid_vec', 'stop' ) |
---|
| 618 | |
---|
| 619 | #if defined( __KKMP ) |
---|
| 620 | DEALLOCATE( tri ) |
---|
| 621 | #endif |
---|
| 622 | |
---|
| 623 | END SUBROUTINE poisfft_hybrid_omp_vec |
---|
| 624 | |
---|
| 625 | |
---|
| 626 | SUBROUTINE poisfft_hybrid_nodes ( ar ) |
---|
| 627 | |
---|
| 628 | USE cpulog |
---|
| 629 | USE interfaces |
---|
| 630 | |
---|
| 631 | IMPLICIT NONE |
---|
| 632 | |
---|
| 633 | INTEGER, PARAMETER :: istride = 4 ! stride of i loop |
---|
| 634 | INTEGER :: i, iei, ii, iouter, ir, istat, j, jj, k, m, & |
---|
| 635 | n, nn, nt, nw1, nw2 |
---|
| 636 | |
---|
| 637 | REAL, DIMENSION(1:nz,nys:nyn,nxl:nxr) :: ar |
---|
| 638 | |
---|
| 639 | REAL, DIMENSION(0:nx) :: fftx_ar |
---|
| 640 | REAL, DIMENSION(0:ny,istride) :: ffty_ar |
---|
| 641 | |
---|
| 642 | REAL, DIMENSION(0:nx,nz) :: tri_ar |
---|
| 643 | |
---|
| 644 | REAL, DIMENSION(nxl_p:nxr_p,nz,tasks_per_logical_node, & |
---|
| 645 | nodes,nys_p:nyn_p) :: work1,work2 |
---|
| 646 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri |
---|
| 647 | |
---|
| 648 | |
---|
| 649 | CALL cpu_log( log_point_s(30), 'poisfft_hybrid_nodes', 'start' ) |
---|
| 650 | |
---|
| 651 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
| 652 | |
---|
| 653 | ! |
---|
| 654 | !-- Store grid points to be transformed on a 1d-array, do the fft |
---|
| 655 | !-- and sample the results on a 4d-array |
---|
| 656 | DO iouter = nxl_p, nxr_p, istride ! stride loop, better cache |
---|
| 657 | iei = MIN( iouter+istride-1, nxr_p ) |
---|
| 658 | DO k = 1, nz |
---|
| 659 | |
---|
| 660 | DO i = iouter, iei |
---|
| 661 | ii = nxl + i |
---|
| 662 | ir = i - iouter + 1 |
---|
| 663 | |
---|
| 664 | DO j = nys_a, nyn_a |
---|
| 665 | ffty_ar(j,ir) = ar(k,j,ii) |
---|
| 666 | ENDDO |
---|
| 667 | |
---|
| 668 | CALL fft_y( ffty_ar(:,ir), 'forward' ) |
---|
| 669 | ENDDO |
---|
| 670 | |
---|
| 671 | m = nys_a |
---|
| 672 | DO nn = 1, nodes |
---|
| 673 | DO nt = 1, tasks_per_logical_node |
---|
| 674 | DO j = nys_p, nyn_p |
---|
| 675 | DO i = iouter, iei |
---|
| 676 | ir = i - iouter + 1 |
---|
| 677 | work1(i,k,nt,nn,j) = ffty_ar(m,ir) |
---|
| 678 | ENDDO |
---|
| 679 | m = m+1 |
---|
| 680 | ENDDO |
---|
| 681 | ENDDO |
---|
| 682 | ENDDO |
---|
| 683 | |
---|
| 684 | ENDDO |
---|
| 685 | ENDDO |
---|
| 686 | |
---|
| 687 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 688 | |
---|
| 689 | CALL cpu_log( log_point_s(32), 'alltoall_task', 'start' ) |
---|
| 690 | nw1 = SIZE( work1, 1 ) * SIZE( work1, 2 ) |
---|
| 691 | DO nn = 1, nodes |
---|
| 692 | DO j = nys_p, nyn_p |
---|
| 693 | #if defined( __parallel ) |
---|
| 694 | CALL MPI_ALLTOALL( work1(nxl_p,1,1,nn,j), nw1, MPI_REAL, & |
---|
| 695 | work2(nxl_p,1,1,nn,j), nw1, MPI_REAL, & |
---|
| 696 | comm_tasks, istat ) |
---|
| 697 | #endif |
---|
| 698 | ENDDO |
---|
| 699 | ENDDO |
---|
| 700 | CALL cpu_log( log_point_s(32), 'alltoall_task', 'stop' ) |
---|
| 701 | |
---|
| 702 | |
---|
| 703 | DO j = nys_p, nyn_p |
---|
| 704 | |
---|
| 705 | CALL cascade( 1, j, nys_p, nyn_p ) |
---|
| 706 | nw2 = nw1 * SIZE( work1, 3 ) |
---|
| 707 | CALL cpu_log( log_point_s(37), 'alltoall_node', 'start' ) |
---|
| 708 | #if defined( __parallel ) |
---|
| 709 | CALL MPI_ALLTOALL( work2(nxl_p,1,1,1,j), nw2, MPI_REAL, & |
---|
| 710 | work1(nxl_p,1,1,1,j), nw2, MPI_REAL, & |
---|
| 711 | comm_nodes, istat ) |
---|
| 712 | #endif |
---|
| 713 | CALL cpu_log( log_point_s(37), 'alltoall_node', 'pause' ) |
---|
| 714 | CALL cascade( 2, j, nys_p, nyn_p ) |
---|
| 715 | |
---|
| 716 | CALL cpu_log( log_point_s(33), 'fft_x + tridia', 'start' ) |
---|
| 717 | DO k = 1, nz |
---|
| 718 | |
---|
| 719 | m = nxl_a |
---|
| 720 | DO nn = 1, nodes |
---|
| 721 | DO nt = 1, tasks_per_logical_node |
---|
| 722 | DO i = nxl_p, nxr_p |
---|
| 723 | fftx_ar(m) = work1(i,k,nt,nn,j) |
---|
| 724 | m = m+1 |
---|
| 725 | ENDDO |
---|
| 726 | ENDDO |
---|
| 727 | ENDDO |
---|
| 728 | |
---|
| 729 | CALL fft_x( fftx_ar, 'forward' ) |
---|
| 730 | |
---|
| 731 | DO i = nxl_a, nxr_a |
---|
| 732 | tri_ar(i,k) = fftx_ar(i) |
---|
| 733 | ENDDO |
---|
| 734 | |
---|
| 735 | ENDDO |
---|
| 736 | |
---|
| 737 | jj = myid * (nyn_p-nys_p+1) + j |
---|
| 738 | CALL tridia_hybrid( jj, tri_ar, tri(:,:,:) ) |
---|
| 739 | |
---|
| 740 | DO k = 1, nz |
---|
| 741 | DO i = nxl_a, nxr_a |
---|
| 742 | fftx_ar(i) = tri_ar(i,k) |
---|
| 743 | ENDDO |
---|
| 744 | |
---|
| 745 | CALL fft_x( fftx_ar, 'backward' ) |
---|
| 746 | |
---|
| 747 | m = nxl_a |
---|
| 748 | DO nn = 1, nodes |
---|
| 749 | DO nt = 1, tasks_per_logical_node |
---|
| 750 | DO i = nxl_p, nxr_p |
---|
| 751 | work1(i,k,nt,nn,j) = fftx_ar(m) |
---|
| 752 | m = m+1 |
---|
| 753 | ENDDO |
---|
| 754 | ENDDO |
---|
| 755 | ENDDO |
---|
| 756 | ENDDO |
---|
| 757 | |
---|
| 758 | CALL cpu_log( log_point_s(33), 'fft_x + tridia', 'stop' ) |
---|
| 759 | nw2 = nw1 * SIZE( work1, 3 ) |
---|
| 760 | CALL cpu_log( log_point_s(37), 'alltoall_node', 'continue' ) |
---|
| 761 | #if defined( __parallel ) |
---|
| 762 | CALL MPI_ALLTOALL( work1(nxl_p,1,1,1,j), nw2, MPI_REAL, & |
---|
| 763 | work2(nxl_p,1,1,1,j), nw2, MPI_REAL, & |
---|
| 764 | comm_nodes, istat ) |
---|
| 765 | #endif |
---|
| 766 | CALL cpu_log( log_point_s(37), 'alltoall_node', 'stop' ) |
---|
| 767 | |
---|
| 768 | ENDDO |
---|
| 769 | |
---|
| 770 | CALL cpu_log( log_point_s(32), 'alltoall_task', 'start' ) |
---|
| 771 | DO nn = 1, nodes |
---|
| 772 | DO j = nys_p, nyn_p |
---|
| 773 | #if defined( __parallel ) |
---|
| 774 | CALL MPI_ALLTOALL( work2(nxl_p,1,1,nn,j), nw1, MPI_REAL, & |
---|
| 775 | work1(nxl_p,1,1,nn,j), nw1, MPI_REAL, & |
---|
| 776 | comm_tasks, istat ) |
---|
| 777 | #endif |
---|
| 778 | ENDDO |
---|
| 779 | ENDDO |
---|
| 780 | CALL cpu_log( log_point_s(32), 'alltoall_task', 'stop' ) |
---|
| 781 | |
---|
| 782 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
| 783 | |
---|
| 784 | DO iouter = nxl_p, nxr_p, istride |
---|
| 785 | iei = MIN( iouter+istride-1, nxr_p ) |
---|
| 786 | DO k = 1, nz |
---|
| 787 | |
---|
| 788 | m = nys_a |
---|
| 789 | DO nn = 1, nodes |
---|
| 790 | DO nt = 1, tasks_per_logical_node |
---|
| 791 | DO j = nys_p, nyn_p |
---|
| 792 | DO i = iouter, iei |
---|
| 793 | ir = i - iouter + 1 |
---|
| 794 | ffty_ar(m,ir) = work1(i,k,nt,nn,j) |
---|
| 795 | ENDDO |
---|
| 796 | m = m+1 |
---|
| 797 | ENDDO |
---|
| 798 | ENDDO |
---|
| 799 | ENDDO |
---|
| 800 | |
---|
| 801 | DO i = iouter, iei |
---|
| 802 | ii = nxl + i |
---|
| 803 | ir = i - iouter + 1 |
---|
| 804 | CALL fft_y( ffty_ar(:,ir), 'backward' ) |
---|
| 805 | |
---|
| 806 | DO j = nys_a, nyn_a |
---|
| 807 | ar(k,j,ii) = ffty_ar(j,ir) |
---|
| 808 | ENDDO |
---|
| 809 | ENDDO |
---|
| 810 | |
---|
| 811 | ENDDO |
---|
| 812 | ENDDO |
---|
| 813 | |
---|
| 814 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 815 | |
---|
| 816 | CALL cpu_log( log_point_s(30), 'poisfft_hybrid_nodes', 'stop' ) |
---|
| 817 | |
---|
| 818 | END SUBROUTINE poisfft_hybrid_nodes |
---|
| 819 | |
---|
| 820 | |
---|
| 821 | |
---|
| 822 | SUBROUTINE tridia_hybrid( j, ar, tri ) |
---|
| 823 | |
---|
| 824 | USE arrays_3d |
---|
| 825 | USE control_parameters |
---|
| 826 | USE grid_variables |
---|
| 827 | |
---|
| 828 | IMPLICIT NONE |
---|
| 829 | |
---|
| 830 | INTEGER :: i, j, k, nnyh |
---|
| 831 | REAL, DIMENSION(0:nx,nz) :: ar |
---|
| 832 | REAL, DIMENSION(0:nx,0:nz-1) :: ar1 |
---|
| 833 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri |
---|
| 834 | |
---|
| 835 | nnyh = (ny+1) / 2 |
---|
| 836 | |
---|
| 837 | tri = 0.0 |
---|
| 838 | ! |
---|
| 839 | !-- Define constant elements of the tridiagonal matrix. |
---|
| 840 | DO k = 0, nz-1 |
---|
| 841 | DO i = 0,nx |
---|
| 842 | tri(2,i,k) = ddzu(k+1) * ddzw(k+1) |
---|
| 843 | tri(3,i,k) = ddzu(k+2) * ddzw(k+1) |
---|
| 844 | ENDDO |
---|
| 845 | ENDDO |
---|
| 846 | |
---|
| 847 | IF ( j <= nnyh ) THEN |
---|
| 848 | CALL maketri_hybrid( j ) |
---|
| 849 | ELSE |
---|
| 850 | CALL maketri_hybrid( ny+1-j) |
---|
| 851 | ENDIF |
---|
| 852 | CALL zerleg_hybrid |
---|
| 853 | CALL substi_hybrid( ar, tri ) |
---|
| 854 | |
---|
| 855 | CONTAINS |
---|
| 856 | |
---|
| 857 | SUBROUTINE maketri_hybrid( j ) |
---|
| 858 | |
---|
| 859 | !----------------------------------------------------------------------! |
---|
| 860 | ! maketri ! |
---|
| 861 | ! ! |
---|
| 862 | ! computes the i- and j-dependent component of the matrix ! |
---|
| 863 | !----------------------------------------------------------------------! |
---|
| 864 | |
---|
| 865 | USE constants |
---|
| 866 | |
---|
| 867 | IMPLICIT NONE |
---|
| 868 | |
---|
| 869 | INTEGER :: i, j, k, nnxh |
---|
| 870 | REAL :: a, c |
---|
| 871 | |
---|
| 872 | REAL, DIMENSION(0:nx) :: l |
---|
| 873 | |
---|
| 874 | |
---|
| 875 | nnxh = (nx+1) / 2 |
---|
| 876 | ! |
---|
| 877 | !-- Provide the tridiagonal matrix for solution of the Poisson equation |
---|
| 878 | !-- in Fourier space. The coefficients are computed following the method |
---|
| 879 | !-- of Schmidt et al. (DFVLR-Mitteilung 84-15) --> departs from Stephan |
---|
| 880 | !-- Siano's original version. |
---|
| 881 | DO i = 0,nx |
---|
| 882 | IF ( i >= 0 .AND. i < nnxh ) THEN |
---|
| 883 | l(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * i ) / & |
---|
| 884 | FLOAT( nx+1 ) ) ) / ( dx * dx ) + & |
---|
| 885 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
| 886 | FLOAT( ny+1 ) ) ) / ( dy * dy ) |
---|
| 887 | ELSEIF ( i == nnxh ) THEN |
---|
| 888 | l(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( nx+1-i ) ) / & |
---|
| 889 | FLOAT( nx+1 ) ) ) / ( dx * dx ) + & |
---|
| 890 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
| 891 | FLOAT(ny+1) ) ) / ( dy * dy ) |
---|
| 892 | ELSE |
---|
| 893 | l(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( nx+1-i ) ) / & |
---|
| 894 | FLOAT( nx+1 ) ) ) / ( dx * dx ) + & |
---|
| 895 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
| 896 | FLOAT( ny+1 ) ) ) / ( dy * dy ) |
---|
| 897 | ENDIF |
---|
| 898 | ENDDO |
---|
| 899 | |
---|
| 900 | DO k = 0,nz-1 |
---|
| 901 | DO i = 0, nx |
---|
| 902 | a = -1.0 * ddzu(k+2) * ddzw(k+1) |
---|
| 903 | c = -1.0 * ddzu(k+1) * ddzw(k+1) |
---|
| 904 | tri(1,i,k) = a + c - l(i) |
---|
| 905 | ENDDO |
---|
| 906 | ENDDO |
---|
| 907 | IF ( ibc_p_b == 1 .OR. ibc_p_b == 2 ) THEN |
---|
| 908 | DO i = 0,nx |
---|
| 909 | tri(1,i,0) = tri(1,i,0) + tri(2,i,0) |
---|
| 910 | ENDDO |
---|
| 911 | ENDIF |
---|
| 912 | IF ( ibc_p_t == 1 ) THEN |
---|
| 913 | DO i = 0,nx |
---|
| 914 | tri(1,i,nz-1) = tri(1,i,nz-1) + tri(3,i,nz-1) |
---|
| 915 | ENDDO |
---|
| 916 | ENDIF |
---|
| 917 | |
---|
| 918 | END SUBROUTINE maketri_hybrid |
---|
| 919 | |
---|
| 920 | |
---|
| 921 | SUBROUTINE zerleg_hybrid |
---|
| 922 | |
---|
| 923 | !----------------------------------------------------------------------! |
---|
| 924 | ! zerleg ! |
---|
| 925 | ! ! |
---|
| 926 | ! Splitting of the tridiagonal matrix (Thomas algorithm) ! |
---|
| 927 | !----------------------------------------------------------------------! |
---|
| 928 | |
---|
| 929 | USE indices |
---|
| 930 | |
---|
| 931 | IMPLICIT NONE |
---|
| 932 | |
---|
| 933 | INTEGER :: i, k |
---|
| 934 | |
---|
| 935 | ! |
---|
| 936 | !-- Splitting |
---|
| 937 | DO i = 0, nx |
---|
| 938 | tri(4,i,0) = tri(1,i,0) |
---|
| 939 | ENDDO |
---|
| 940 | DO k = 1, nz-1 |
---|
| 941 | DO i = 0,nx |
---|
| 942 | tri(5,i,k) = tri(2,i,k) / tri(4,i,k-1) |
---|
| 943 | tri(4,i,k) = tri(1,i,k) - tri(3,i,k-1) * tri(5,i,k) |
---|
| 944 | ENDDO |
---|
| 945 | ENDDO |
---|
| 946 | |
---|
| 947 | END SUBROUTINE zerleg_hybrid |
---|
| 948 | |
---|
| 949 | SUBROUTINE substi_hybrid( ar, tri ) |
---|
| 950 | |
---|
| 951 | !----------------------------------------------------------------------! |
---|
| 952 | ! substi ! |
---|
| 953 | ! ! |
---|
| 954 | ! Substitution (Forward and Backward) (Thomas algorithm) ! |
---|
| 955 | !----------------------------------------------------------------------! |
---|
| 956 | |
---|
| 957 | IMPLICIT NONE |
---|
| 958 | |
---|
| 959 | INTEGER :: i, j, k |
---|
| 960 | REAL, DIMENSION(0:nx,nz) :: ar |
---|
| 961 | REAL, DIMENSION(0:nx,0:nz-1) :: ar1 |
---|
| 962 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri |
---|
| 963 | |
---|
| 964 | ! |
---|
| 965 | !-- Forward substitution |
---|
| 966 | DO i = 0, nx |
---|
| 967 | ar1(i,0) = ar(i,1) |
---|
| 968 | ENDDO |
---|
| 969 | DO k = 1, nz - 1 |
---|
| 970 | DO i = 0,nx |
---|
| 971 | ar1(i,k) = ar(i,k+1) - tri(5,i,k) * ar1(i,k-1) |
---|
| 972 | ENDDO |
---|
| 973 | ENDDO |
---|
| 974 | |
---|
| 975 | ! |
---|
| 976 | !-- Backward substitution |
---|
| 977 | DO i = 0,nx |
---|
| 978 | ar(i,nz) = ar1(i,nz-1) / tri(4,i,nz-1) |
---|
| 979 | ENDDO |
---|
| 980 | DO k = nz-2, 0, -1 |
---|
| 981 | DO i = 0,nx |
---|
| 982 | ar(i,k+1) = ( ar1(i,k) - tri(3,i,k) * ar(i,k+2) ) & |
---|
| 983 | / tri(4,i,k) |
---|
| 984 | ENDDO |
---|
| 985 | ENDDO |
---|
| 986 | |
---|
| 987 | END SUBROUTINE substi_hybrid |
---|
| 988 | |
---|
| 989 | END SUBROUTINE tridia_hybrid |
---|
| 990 | |
---|
| 991 | |
---|
| 992 | SUBROUTINE cascade( loca, j, nys_p, nyn_p ) |
---|
| 993 | |
---|
| 994 | USE cpulog |
---|
| 995 | |
---|
| 996 | IMPLICIT NONE |
---|
| 997 | |
---|
| 998 | INTEGER :: ier, j, loca, nyn_p, nys_p, req, reqa(1) |
---|
| 999 | INTEGER, SAVE :: tag = 10 |
---|
| 1000 | #if defined( __parallel ) |
---|
| 1001 | INTEGER, DIMENSION(MPI_STATUS_SIZE) :: stat |
---|
| 1002 | #endif |
---|
| 1003 | |
---|
| 1004 | REAL :: buf, buf1 |
---|
| 1005 | |
---|
| 1006 | |
---|
| 1007 | buf = 1.0 |
---|
| 1008 | buf1 = 1.1 |
---|
| 1009 | IF ( me_node == 0 ) THEN ! first node only |
---|
| 1010 | |
---|
| 1011 | SELECT CASE ( loca ) |
---|
| 1012 | |
---|
| 1013 | CASE ( 1 ) ! before alltoall |
---|
| 1014 | |
---|
| 1015 | IF( me_task > 0 ) THEN ! first task does not wait |
---|
| 1016 | #if defined( __parallel ) |
---|
| 1017 | CALL MPI_SENDRECV( buf, 1, MPI_REAL, me_task-1, 0, & |
---|
| 1018 | buf1, 1, MPI_REAL, me_task-1, 0, & |
---|
| 1019 | comm_tasks, stat,ierr ) |
---|
| 1020 | #endif |
---|
| 1021 | ELSEIF ( j > nys_p ) THEN |
---|
| 1022 | req = 0 |
---|
| 1023 | tag = MOD( tag-10, 10 ) + 10 |
---|
| 1024 | #if defined( __parallel ) |
---|
| 1025 | CALL MPI_IRECV( buf, 1, MPI_REAL, tasks_per_logical_node-1,& |
---|
| 1026 | tag, comm_tasks, req, ierr ) |
---|
| 1027 | reqa = req |
---|
| 1028 | CALL MPI_WAITALL( 1, reqa, stat, ierr ) |
---|
| 1029 | #endif |
---|
| 1030 | ENDIF |
---|
| 1031 | |
---|
| 1032 | CASE ( 2 ) ! after alltoall |
---|
| 1033 | |
---|
| 1034 | IF ( me_task < tasks_per_logical_node-1 ) THEN ! last task |
---|
| 1035 | #if defined( __parallel ) |
---|
| 1036 | CALL MPI_SENDRECV( buf, 1, MPI_REAL, me_task+1, 0, & |
---|
| 1037 | buf1, 1, MPI_REAL, me_task+1, 0, & |
---|
| 1038 | comm_tasks, stat, ierr) |
---|
| 1039 | #endif |
---|
| 1040 | ELSEIF ( j < nyn_p ) THEN |
---|
| 1041 | req = 0 |
---|
| 1042 | tag = MOD( tag-10, 10 ) + 10 |
---|
| 1043 | #if defined( __parallel ) |
---|
| 1044 | CALL MPI_ISEND( buf, 1, MPI_REAL, 0, tag, comm_tasks, req, & |
---|
| 1045 | ierr ) |
---|
| 1046 | #endif |
---|
| 1047 | ENDIF |
---|
| 1048 | |
---|
| 1049 | END SELECT |
---|
| 1050 | |
---|
| 1051 | ENDIF |
---|
| 1052 | |
---|
| 1053 | END SUBROUTINE cascade |
---|
| 1054 | |
---|
| 1055 | END MODULE poisfft_hybrid_mod |
---|