1 | MODULE poisfft_mod |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: poisfft.f90 1483 2014-10-18 12:51:13Z heinze $ |
---|
27 | ! |
---|
28 | ! 1482 2014-10-18 12:34:45Z raasch |
---|
29 | ! use 2d-decomposition, if accelerator boards are used |
---|
30 | ! |
---|
31 | ! 1406 2014-05-16 13:47:01Z raasch |
---|
32 | ! bugfix for pgi 14.4: declare create moved after array declaration |
---|
33 | ! |
---|
34 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
35 | ! ONLY-attribute added to USE-statements, |
---|
36 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
37 | ! kinds are defined in new module kinds, |
---|
38 | ! old module precision_kind is removed, |
---|
39 | ! revision history before 2012 removed, |
---|
40 | ! comment fields (!:) to be used for variable explanations added to |
---|
41 | ! all variable declaration statements |
---|
42 | ! |
---|
43 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
44 | ! module interfaces removed |
---|
45 | ! |
---|
46 | ! 1306 2014-03-13 14:30:59Z raasch |
---|
47 | ! openmp sections removed from the overlap branch, |
---|
48 | ! second argument removed from parameter list |
---|
49 | ! |
---|
50 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
51 | ! resorting of arrays moved to separate routines resort_for_..., |
---|
52 | ! one argument, used as temporary work array, removed from all transpose |
---|
53 | ! routines |
---|
54 | ! overlapping fft / transposition implemented |
---|
55 | ! |
---|
56 | ! 1212 2013-08-15 08:46:27Z raasch |
---|
57 | ! tridia routines moved to seperate module tridia_solver |
---|
58 | ! |
---|
59 | ! 1208 2013-08-13 06:41:49Z raasch |
---|
60 | ! acc-update clauses added for "ar" so that ffts other than cufft can also be |
---|
61 | ! used (although they are not ported and will give a poor performance) |
---|
62 | ! |
---|
63 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
64 | ! further openACC porting of non-parallel (MPI) branch: |
---|
65 | ! tridiagonal routines split into extermal subroutines (instead using CONTAINS), |
---|
66 | ! no distinction between parallel/non-parallel in poisfft and tridia any more, |
---|
67 | ! tridia routines moved to end of file because of probable bug in PGI compiler 12.5 |
---|
68 | ! (otherwise "invalid device function" is indicated during runtime), |
---|
69 | ! optimization of tridia routines: constant elements and coefficients of tri are |
---|
70 | ! stored in seperate arrays ddzuw and tric, last dimension of tri reduced from 5 |
---|
71 | ! to 2, |
---|
72 | ! poisfft_init is now called internally from poisfft, maketri is called from |
---|
73 | ! poisfft_init, |
---|
74 | ! ibc_p_b = 2 removed |
---|
75 | ! |
---|
76 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
77 | ! routines fftx, ffty, fftxp, fftyp removed, calls replaced by fft_x, fft_y, |
---|
78 | ! in the 1D-decomposition routines fft_x, ffty are replaced by fft_x_1d, |
---|
79 | ! fft_y_1d |
---|
80 | ! |
---|
81 | ! 1103 2013-02-20 02:15:53Z raasch |
---|
82 | ! tri, ar, and ar1 arguments in tridia-routines (2d) are removed because they |
---|
83 | ! sometimes cause segmentation faults with intel 12.1 compiler |
---|
84 | ! |
---|
85 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
86 | ! unused variables removed |
---|
87 | ! |
---|
88 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
89 | ! code put under GPL (PALM 3.9) |
---|
90 | ! |
---|
91 | ! 2012-09-21 07:03:55Z raasch |
---|
92 | ! FLOAT type conversion replaced by REAL |
---|
93 | ! |
---|
94 | ! 1003 2012-09-14 14:35:53Z raasch |
---|
95 | ! indices nxa, nya, etc. replaced by nx, ny, etc. |
---|
96 | ! |
---|
97 | ! 940 2012-07-09 14:31:00Z raasch |
---|
98 | ! special handling of tri-array as an argument in tridia_1dd routines switched |
---|
99 | ! off because it caused segmentation faults with intel 12.1 compiler |
---|
100 | ! |
---|
101 | ! 877 2012-04-03 11:21:44Z suehring |
---|
102 | ! Bugfix: Avoid divisions by zero in case of using a 'neumann' bc for the |
---|
103 | ! pressure at the top of the model domain. |
---|
104 | ! |
---|
105 | ! 809 2012-01-30 13:32:58Z maronga |
---|
106 | ! Bugfix: replaced .AND. and .NOT. with && and ! in the preprocessor directives |
---|
107 | ! |
---|
108 | ! 807 2012-01-25 11:53:51Z maronga |
---|
109 | ! New cpp directive "__check" implemented which is used by check_namelist_files |
---|
110 | ! (most of the code is unneeded by check_namelist_files). |
---|
111 | ! |
---|
112 | ! Revision 1.1 1997/07/24 11:24:14 raasch |
---|
113 | ! Initial revision |
---|
114 | ! |
---|
115 | ! |
---|
116 | ! Description: |
---|
117 | ! ------------ |
---|
118 | ! Original version by Stephan Siano (pois3d), as of July 23, 1996 |
---|
119 | ! Adapted for 2D-domain-decomposition by Siegfried Raasch, July 3, 1997 |
---|
120 | ! |
---|
121 | ! Solves the Poisson equation with a 2D spectral method |
---|
122 | ! d^2 p / dx^2 + d^2 p / dy^2 + d^2 p / dz^2 = s |
---|
123 | ! |
---|
124 | ! Input: |
---|
125 | ! real ar contains (nnz,nny,nnx) elements of the velocity divergence, |
---|
126 | ! starting from (1,nys,nxl) |
---|
127 | ! |
---|
128 | ! Output: |
---|
129 | ! real ar contains the solution for perturbation pressure p |
---|
130 | !------------------------------------------------------------------------------! |
---|
131 | |
---|
132 | USE fft_xy, & |
---|
133 | ONLY: fft_init, fft_y, fft_y_1d, fft_y_m, fft_x, fft_x_1d, fft_x_m |
---|
134 | |
---|
135 | USE indices, & |
---|
136 | ONLY: nnx, nny, nx, nxl, nxr, ny, nys, nyn, nz |
---|
137 | |
---|
138 | USE transpose_indices, & |
---|
139 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nys_x, nys_z, nyn_x, nyn_z, nzb_x, & |
---|
140 | nzb_y, nzt_x, nzt_y |
---|
141 | |
---|
142 | USE tridia_solver, & |
---|
143 | ONLY: tridia_1dd, tridia_init, tridia_substi, tridia_substi_overlap |
---|
144 | |
---|
145 | IMPLICIT NONE |
---|
146 | |
---|
147 | LOGICAL, SAVE :: poisfft_initialized = .FALSE. |
---|
148 | |
---|
149 | PRIVATE |
---|
150 | |
---|
151 | #if ! defined ( __check ) |
---|
152 | PUBLIC poisfft, poisfft_init |
---|
153 | |
---|
154 | INTERFACE poisfft |
---|
155 | MODULE PROCEDURE poisfft |
---|
156 | END INTERFACE poisfft |
---|
157 | |
---|
158 | INTERFACE poisfft_init |
---|
159 | MODULE PROCEDURE poisfft_init |
---|
160 | END INTERFACE poisfft_init |
---|
161 | #else |
---|
162 | PUBLIC poisfft_init |
---|
163 | |
---|
164 | INTERFACE poisfft_init |
---|
165 | MODULE PROCEDURE poisfft_init |
---|
166 | END INTERFACE poisfft_init |
---|
167 | #endif |
---|
168 | |
---|
169 | CONTAINS |
---|
170 | |
---|
171 | SUBROUTINE poisfft_init |
---|
172 | |
---|
173 | USE arrays_3d, & |
---|
174 | ONLY: ddzu_pres, ddzw |
---|
175 | |
---|
176 | USE kinds |
---|
177 | |
---|
178 | IMPLICIT NONE |
---|
179 | |
---|
180 | INTEGER(iwp) :: k !: |
---|
181 | |
---|
182 | |
---|
183 | CALL fft_init |
---|
184 | |
---|
185 | CALL tridia_init |
---|
186 | |
---|
187 | poisfft_initialized = .TRUE. |
---|
188 | |
---|
189 | END SUBROUTINE poisfft_init |
---|
190 | |
---|
191 | |
---|
192 | #if ! defined ( __check ) |
---|
193 | SUBROUTINE poisfft( ar ) |
---|
194 | |
---|
195 | USE control_parameters, & |
---|
196 | ONLY: fft_method, transpose_compute_overlap |
---|
197 | |
---|
198 | USE cpulog, & |
---|
199 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
200 | |
---|
201 | USE kinds |
---|
202 | |
---|
203 | USE pegrid |
---|
204 | |
---|
205 | IMPLICIT NONE |
---|
206 | |
---|
207 | INTEGER(iwp) :: ii !: |
---|
208 | INTEGER(iwp) :: iind !: |
---|
209 | INTEGER(iwp) :: inew !: |
---|
210 | INTEGER(iwp) :: jj !: |
---|
211 | INTEGER(iwp) :: jind !: |
---|
212 | INTEGER(iwp) :: jnew !: |
---|
213 | INTEGER(iwp) :: ki !: |
---|
214 | INTEGER(iwp) :: kk !: |
---|
215 | INTEGER(iwp) :: knew !: |
---|
216 | INTEGER(iwp) :: n !: |
---|
217 | INTEGER(iwp) :: nblk !: |
---|
218 | INTEGER(iwp) :: nnx_y !: |
---|
219 | INTEGER(iwp) :: nny_z !: |
---|
220 | INTEGER(iwp) :: nnz_t !: |
---|
221 | INTEGER(iwp) :: nnz_x !: |
---|
222 | INTEGER(iwp) :: nxl_y_bound !: |
---|
223 | INTEGER(iwp) :: nxr_y_bound !: |
---|
224 | |
---|
225 | INTEGER(iwp), DIMENSION(4) :: isave !: |
---|
226 | |
---|
227 | REAL(wp), DIMENSION(1:nz,nys:nyn,nxl:nxr) :: ar !: |
---|
228 | REAL(wp), DIMENSION(nys:nyn,nxl:nxr,1:nz) :: ar_inv !: |
---|
229 | !$acc declare create( ar_inv ) |
---|
230 | |
---|
231 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ar1 !: |
---|
232 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_in !: |
---|
233 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_inv !: |
---|
234 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_y !: |
---|
235 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_z !: |
---|
236 | |
---|
237 | |
---|
238 | CALL cpu_log( log_point_s(3), 'poisfft', 'start' ) |
---|
239 | |
---|
240 | IF ( .NOT. poisfft_initialized ) CALL poisfft_init |
---|
241 | |
---|
242 | ! |
---|
243 | !-- Two-dimensional Fourier Transformation in x- and y-direction. |
---|
244 | IF ( pdims(2) == 1 .AND. pdims(1) > 1 .AND. num_acc_per_node == 0 ) & |
---|
245 | THEN |
---|
246 | |
---|
247 | ! |
---|
248 | !-- 1d-domain-decomposition along x: |
---|
249 | !-- FFT along y and transposition y --> x |
---|
250 | CALL ffty_tr_yx( ar, ar ) |
---|
251 | |
---|
252 | ! |
---|
253 | !-- FFT along x, solving the tridiagonal system and backward FFT |
---|
254 | CALL fftx_tri_fftx( ar ) |
---|
255 | |
---|
256 | ! |
---|
257 | !-- Transposition x --> y and backward FFT along y |
---|
258 | CALL tr_xy_ffty( ar, ar ) |
---|
259 | |
---|
260 | ELSEIF ( pdims(1) == 1 .AND. pdims(2) > 1 .AND. num_acc_per_node == 0 ) & |
---|
261 | THEN |
---|
262 | |
---|
263 | ! |
---|
264 | !-- 1d-domain-decomposition along y: |
---|
265 | !-- FFT along x and transposition x --> y |
---|
266 | CALL fftx_tr_xy( ar, ar ) |
---|
267 | |
---|
268 | ! |
---|
269 | !-- FFT along y, solving the tridiagonal system and backward FFT |
---|
270 | CALL ffty_tri_ffty( ar ) |
---|
271 | |
---|
272 | ! |
---|
273 | !-- Transposition y --> x and backward FFT along x |
---|
274 | CALL tr_yx_fftx( ar, ar ) |
---|
275 | |
---|
276 | ELSEIF ( .NOT. transpose_compute_overlap ) THEN |
---|
277 | |
---|
278 | ! |
---|
279 | !-- 2d-domain-decomposition or no decomposition (1 PE run) |
---|
280 | !-- Transposition z --> x |
---|
281 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start' ) |
---|
282 | CALL resort_for_zx( ar, ar_inv ) |
---|
283 | CALL transpose_zx( ar_inv, ar ) |
---|
284 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
285 | |
---|
286 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
287 | IF ( fft_method /= 'system-specific' ) THEN |
---|
288 | !$acc update host( ar ) |
---|
289 | ENDIF |
---|
290 | CALL fft_x( ar, 'forward' ) |
---|
291 | IF ( fft_method /= 'system-specific' ) THEN |
---|
292 | !$acc update device( ar ) |
---|
293 | ENDIF |
---|
294 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
295 | |
---|
296 | ! |
---|
297 | !-- Transposition x --> y |
---|
298 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
299 | CALL resort_for_xy( ar, ar_inv ) |
---|
300 | CALL transpose_xy( ar_inv, ar ) |
---|
301 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
302 | |
---|
303 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
304 | IF ( fft_method /= 'system-specific' ) THEN |
---|
305 | !$acc update host( ar ) |
---|
306 | ENDIF |
---|
307 | CALL fft_y( ar, 'forward', ar_tr = ar, & |
---|
308 | nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
309 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
310 | IF ( fft_method /= 'system-specific' ) THEN |
---|
311 | !$acc update device( ar ) |
---|
312 | ENDIF |
---|
313 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
314 | |
---|
315 | ! |
---|
316 | !-- Transposition y --> z |
---|
317 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
318 | CALL resort_for_yz( ar, ar_inv ) |
---|
319 | CALL transpose_yz( ar_inv, ar ) |
---|
320 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
321 | |
---|
322 | ! |
---|
323 | !-- Solve the tridiagonal equation system along z |
---|
324 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
325 | CALL tridia_substi( ar ) |
---|
326 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
327 | |
---|
328 | ! |
---|
329 | !-- Inverse Fourier Transformation |
---|
330 | !-- Transposition z --> y |
---|
331 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start' ) |
---|
332 | CALL transpose_zy( ar, ar_inv ) |
---|
333 | CALL resort_for_zy( ar_inv, ar ) |
---|
334 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
335 | |
---|
336 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
337 | IF ( fft_method /= 'system-specific' ) THEN |
---|
338 | !$acc update host( ar ) |
---|
339 | ENDIF |
---|
340 | CALL fft_y( ar, 'backward', ar_tr = ar, & |
---|
341 | nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
342 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
343 | IF ( fft_method /= 'system-specific' ) THEN |
---|
344 | !$acc update device( ar ) |
---|
345 | ENDIF |
---|
346 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
347 | |
---|
348 | ! |
---|
349 | !-- Transposition y --> x |
---|
350 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
351 | CALL transpose_yx( ar, ar_inv ) |
---|
352 | CALL resort_for_yx( ar_inv, ar ) |
---|
353 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
354 | |
---|
355 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
356 | IF ( fft_method /= 'system-specific' ) THEN |
---|
357 | !$acc update host( ar ) |
---|
358 | ENDIF |
---|
359 | CALL fft_x( ar, 'backward' ) |
---|
360 | IF ( fft_method /= 'system-specific' ) THEN |
---|
361 | !$acc update device( ar ) |
---|
362 | ENDIF |
---|
363 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
364 | |
---|
365 | ! |
---|
366 | !-- Transposition x --> z |
---|
367 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
368 | CALL transpose_xz( ar, ar_inv ) |
---|
369 | CALL resort_for_xz( ar_inv, ar ) |
---|
370 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
371 | |
---|
372 | ELSE |
---|
373 | |
---|
374 | ! |
---|
375 | !-- 2d-domain-decomposition or no decomposition (1 PE run) with |
---|
376 | !-- overlapping transposition / fft |
---|
377 | !-- cputime logging must not use barriers, which would prevent overlapping |
---|
378 | ALLOCATE( f_out_y(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), & |
---|
379 | f_out_z(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
380 | ! |
---|
381 | !-- Transposition z --> x + subsequent fft along x |
---|
382 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
383 | CALL resort_for_zx( ar, f_inv ) |
---|
384 | ! |
---|
385 | !-- Save original indices and gridpoint counter |
---|
386 | isave(1) = nz |
---|
387 | isave(2) = nzb_x |
---|
388 | isave(3) = nzt_x |
---|
389 | isave(4) = sendrecvcount_zx |
---|
390 | ! |
---|
391 | !-- Set new indices for transformation |
---|
392 | nblk = nz / pdims(1) |
---|
393 | nz = pdims(1) |
---|
394 | nnz_x = 1 |
---|
395 | nzb_x = 1 + myidx * nnz_x |
---|
396 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
397 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
398 | |
---|
399 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
400 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
401 | |
---|
402 | DO kk = 1, nblk |
---|
403 | |
---|
404 | IF ( kk == 1 ) THEN |
---|
405 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start', cpu_log_nowait ) |
---|
406 | ELSE |
---|
407 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
408 | ENDIF |
---|
409 | |
---|
410 | DO knew = 1, nz |
---|
411 | ki = kk + nblk * ( knew - 1 ) |
---|
412 | f_in(:,:,knew) = f_inv(:,:,ki) |
---|
413 | ENDDO |
---|
414 | |
---|
415 | CALL transpose_zx( f_in, ar1(:,:,:)) |
---|
416 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
417 | |
---|
418 | IF ( kk == 1 ) THEN |
---|
419 | CALL cpu_log( log_point_s(4), 'fft_x', 'start', cpu_log_nowait ) |
---|
420 | ELSE |
---|
421 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
422 | ENDIF |
---|
423 | |
---|
424 | n = isave(2) + kk - 1 |
---|
425 | CALL fft_x( ar1(:,:,:), 'forward', ar_2d = f_out_z(:,:,n)) |
---|
426 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
427 | |
---|
428 | ENDDO |
---|
429 | ! |
---|
430 | !-- Restore original indices/counters |
---|
431 | nz = isave(1) |
---|
432 | nzb_x = isave(2) |
---|
433 | nzt_x = isave(3) |
---|
434 | sendrecvcount_zx = isave(4) |
---|
435 | |
---|
436 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
437 | |
---|
438 | ! |
---|
439 | !-- Transposition x --> y + subsequent fft along y |
---|
440 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
441 | CALL resort_for_xy( f_out_z, f_inv ) |
---|
442 | ! |
---|
443 | !-- Save original indices and gridpoint counter |
---|
444 | isave(1) = nx |
---|
445 | isave(2) = nxl_y |
---|
446 | isave(3) = nxr_y |
---|
447 | isave(4) = sendrecvcount_xy |
---|
448 | ! |
---|
449 | !-- Set new indices for transformation |
---|
450 | nblk = ( ( nx+1 ) / pdims(2) ) - 1 |
---|
451 | nx = pdims(2) |
---|
452 | nnx_y = 1 |
---|
453 | nxl_y = myidy * nnx_y |
---|
454 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
455 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
456 | |
---|
457 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
458 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
459 | |
---|
460 | DO ii = 0, nblk |
---|
461 | |
---|
462 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
463 | |
---|
464 | DO inew = 0, nx-1 |
---|
465 | iind = ii + ( nblk + 1 ) * inew |
---|
466 | f_in(:,:,inew) = f_inv(:,:,iind) |
---|
467 | ENDDO |
---|
468 | |
---|
469 | CALL transpose_xy( f_in, ar1(:,:,:) ) |
---|
470 | |
---|
471 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
472 | |
---|
473 | IF ( ii == 1 ) THEN |
---|
474 | CALL cpu_log( log_point_s(7), 'fft_y', 'start', cpu_log_nowait ) |
---|
475 | ELSE |
---|
476 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
477 | ENDIF |
---|
478 | |
---|
479 | nxl_y_bound = isave(2) |
---|
480 | nxr_y_bound = isave(3) |
---|
481 | n = isave(2) + ii |
---|
482 | CALL fft_y( ar1(:,:,:), 'forward', ar_tr = f_out_y, & |
---|
483 | nxl_y_bound = nxl_y_bound, nxr_y_bound = nxr_y_bound, & |
---|
484 | nxl_y_l = n, nxr_y_l = n ) |
---|
485 | |
---|
486 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
487 | |
---|
488 | ENDDO |
---|
489 | ! |
---|
490 | !-- Restore original indices/counters |
---|
491 | nx = isave(1) |
---|
492 | nxl_y = isave(2) |
---|
493 | nxr_y = isave(3) |
---|
494 | sendrecvcount_xy = isave(4) |
---|
495 | |
---|
496 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
497 | |
---|
498 | ! |
---|
499 | !-- Transposition y --> z + subsequent tridia + resort for z --> y |
---|
500 | ALLOCATE( f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
501 | CALL resort_for_yz( f_out_y, f_inv ) |
---|
502 | ! |
---|
503 | !-- Save original indices and gridpoint counter |
---|
504 | isave(1) = ny |
---|
505 | isave(2) = nys_z |
---|
506 | isave(3) = nyn_z |
---|
507 | isave(4) = sendrecvcount_yz |
---|
508 | ! |
---|
509 | !-- Set new indices for transformation |
---|
510 | nblk = ( ( ny+1 ) / pdims(1) ) - 1 |
---|
511 | ny = pdims(1) |
---|
512 | nny_z = 1 |
---|
513 | nys_z = myidx * nny_z |
---|
514 | nyn_z = ( myidx + 1 ) * nny_z - 1 |
---|
515 | sendrecvcount_yz = ( nxr_y-nxl_y+1 ) * nny_z * ( nzt_y-nzb_y+1 ) |
---|
516 | |
---|
517 | ALLOCATE( ar1(nxl_z:nxr_z,nys_z:nyn_z,1:nz) ) |
---|
518 | ALLOCATE( f_in(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
519 | |
---|
520 | DO jj = 0, nblk |
---|
521 | ! |
---|
522 | !-- Forward Fourier Transformation |
---|
523 | !-- Transposition y --> z |
---|
524 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
525 | |
---|
526 | DO jnew = 0, ny-1 |
---|
527 | jind = jj + ( nblk + 1 ) * jnew |
---|
528 | f_in(:,:,jnew) = f_inv(:,:,jind) |
---|
529 | ENDDO |
---|
530 | |
---|
531 | CALL transpose_yz( f_in, ar1(:,:,:) ) |
---|
532 | |
---|
533 | IF ( jj == nblk ) THEN |
---|
534 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
535 | ELSE |
---|
536 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
537 | ENDIF |
---|
538 | |
---|
539 | ! |
---|
540 | !-- Solve the tridiagonal equation system along z |
---|
541 | CALL cpu_log( log_point_s(6), 'tridia', 'start', cpu_log_nowait ) |
---|
542 | |
---|
543 | n = isave(2) + jj |
---|
544 | CALL tridia_substi_overlap( ar1(:,:,:), n ) |
---|
545 | |
---|
546 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
547 | |
---|
548 | ! |
---|
549 | !-- Inverse Fourier Transformation |
---|
550 | !-- Transposition z --> y |
---|
551 | !-- Only one thread should call MPI routines, therefore forward and |
---|
552 | !-- backward tranpose are in the same section |
---|
553 | IF ( jj == 0 ) THEN |
---|
554 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start', cpu_log_nowait ) |
---|
555 | ELSE |
---|
556 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
557 | ENDIF |
---|
558 | |
---|
559 | CALL transpose_zy( ar1(:,:,:), f_in ) |
---|
560 | |
---|
561 | DO jnew = 0, ny-1 |
---|
562 | jind = jj + ( nblk + 1 ) * jnew |
---|
563 | f_inv(:,:,jind) = f_in(:,:,jnew) |
---|
564 | ENDDO |
---|
565 | |
---|
566 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
567 | |
---|
568 | ENDDO |
---|
569 | ! |
---|
570 | !-- Restore original indices/counters |
---|
571 | ny = isave(1) |
---|
572 | nys_z = isave(2) |
---|
573 | nyn_z = isave(3) |
---|
574 | sendrecvcount_yz = isave(4) |
---|
575 | |
---|
576 | CALL resort_for_zy( f_inv, f_out_y ) |
---|
577 | |
---|
578 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
579 | |
---|
580 | ! |
---|
581 | !-- fft along y backward + subsequent transposition y --> x |
---|
582 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
583 | ! |
---|
584 | !-- Save original indices and gridpoint counter |
---|
585 | isave(1) = nx |
---|
586 | isave(2) = nxl_y |
---|
587 | isave(3) = nxr_y |
---|
588 | isave(4) = sendrecvcount_xy |
---|
589 | ! |
---|
590 | !-- Set new indices for transformation |
---|
591 | nblk = (( nx+1 ) / pdims(2) ) - 1 |
---|
592 | nx = pdims(2) |
---|
593 | nnx_y = 1 |
---|
594 | nxl_y = myidy * nnx_y |
---|
595 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
596 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
597 | |
---|
598 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
599 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
600 | |
---|
601 | DO ii = 0, nblk |
---|
602 | |
---|
603 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
604 | |
---|
605 | n = isave(2) + ii |
---|
606 | nxl_y_bound = isave(2) |
---|
607 | nxr_y_bound = isave(3) |
---|
608 | |
---|
609 | CALL fft_y( ar1(:,:,:), 'backward', ar_tr = f_out_y, & |
---|
610 | nxl_y_bound = nxl_y_bound, nxr_y_bound = nxr_y_bound, & |
---|
611 | nxl_y_l = n, nxr_y_l = n ) |
---|
612 | |
---|
613 | IF ( ii == nblk ) THEN |
---|
614 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
615 | ELSE |
---|
616 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
617 | ENDIF |
---|
618 | |
---|
619 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
620 | |
---|
621 | CALL transpose_yx( ar1(:,:,:), f_in ) |
---|
622 | |
---|
623 | DO inew = 0, nx-1 |
---|
624 | iind = ii + (nblk+1) * inew |
---|
625 | f_inv(:,:,iind) = f_in(:,:,inew) |
---|
626 | ENDDO |
---|
627 | |
---|
628 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
629 | |
---|
630 | ENDDO |
---|
631 | ! |
---|
632 | !-- Restore original indices/counters |
---|
633 | nx = isave(1) |
---|
634 | nxl_y = isave(2) |
---|
635 | nxr_y = isave(3) |
---|
636 | sendrecvcount_xy = isave(4) |
---|
637 | |
---|
638 | CALL resort_for_yx( f_inv, f_out_z ) |
---|
639 | |
---|
640 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
641 | |
---|
642 | ! |
---|
643 | !-- fft along x backward + subsequent final transposition x --> z |
---|
644 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
645 | ! |
---|
646 | !-- Save original indices and gridpoint counter |
---|
647 | isave(1) = nz |
---|
648 | isave(2) = nzb_x |
---|
649 | isave(3) = nzt_x |
---|
650 | isave(4) = sendrecvcount_zx |
---|
651 | ! |
---|
652 | !-- Set new indices for transformation |
---|
653 | nblk = nz / pdims(1) |
---|
654 | nz = pdims(1) |
---|
655 | nnz_x = 1 |
---|
656 | nzb_x = 1 + myidx * nnz_x |
---|
657 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
658 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
659 | |
---|
660 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
661 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
662 | |
---|
663 | DO kk = 1, nblk |
---|
664 | |
---|
665 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
666 | |
---|
667 | n = isave(2) + kk - 1 |
---|
668 | CALL fft_x( ar1(:,:,:), 'backward', f_out_z(:,:,n)) |
---|
669 | |
---|
670 | IF ( kk == nblk ) THEN |
---|
671 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
672 | ELSE |
---|
673 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
674 | ENDIF |
---|
675 | |
---|
676 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
677 | |
---|
678 | CALL transpose_xz( ar1(:,:,:), f_in ) |
---|
679 | |
---|
680 | DO knew = 1, nz |
---|
681 | ki = kk + nblk * (knew-1) |
---|
682 | f_inv(:,:,ki) = f_in(:,:,knew) |
---|
683 | ENDDO |
---|
684 | |
---|
685 | IF ( kk == nblk ) THEN |
---|
686 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
687 | ELSE |
---|
688 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
689 | ENDIF |
---|
690 | |
---|
691 | ENDDO |
---|
692 | ! |
---|
693 | !-- Restore original indices/counters |
---|
694 | nz = isave(1) |
---|
695 | nzb_x = isave(2) |
---|
696 | nzt_x = isave(3) |
---|
697 | sendrecvcount_zx = isave(4) |
---|
698 | |
---|
699 | CALL resort_for_xz( f_inv, ar ) |
---|
700 | |
---|
701 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
702 | |
---|
703 | ENDIF |
---|
704 | |
---|
705 | CALL cpu_log( log_point_s(3), 'poisfft', 'stop' ) |
---|
706 | |
---|
707 | END SUBROUTINE poisfft |
---|
708 | |
---|
709 | |
---|
710 | |
---|
711 | SUBROUTINE ffty_tr_yx( f_in, f_out ) |
---|
712 | |
---|
713 | !------------------------------------------------------------------------------! |
---|
714 | ! Fourier-transformation along y with subsequent transposition y --> x for |
---|
715 | ! a 1d-decomposition along x |
---|
716 | ! |
---|
717 | ! ATTENTION: The performance of this routine is much faster on the NEC-SX6, |
---|
718 | ! if the first index of work_ffty_vec is odd. Otherwise |
---|
719 | ! memory bank conflicts may occur (especially if the index is a |
---|
720 | ! multiple of 128). That's why work_ffty_vec is dimensioned as |
---|
721 | ! 0:ny+1. |
---|
722 | ! Of course, this will not work if users are using an odd number |
---|
723 | ! of gridpoints along y. |
---|
724 | !------------------------------------------------------------------------------! |
---|
725 | |
---|
726 | USE control_parameters, & |
---|
727 | ONLY: host |
---|
728 | |
---|
729 | USE cpulog, & |
---|
730 | ONLY: cpu_log, log_point_s |
---|
731 | |
---|
732 | USE kinds |
---|
733 | |
---|
734 | USE pegrid |
---|
735 | |
---|
736 | IMPLICIT NONE |
---|
737 | |
---|
738 | INTEGER(iwp) :: i !: |
---|
739 | INTEGER(iwp) :: iend !: |
---|
740 | INTEGER(iwp) :: iouter !: |
---|
741 | INTEGER(iwp) :: ir !: |
---|
742 | INTEGER(iwp) :: j !: |
---|
743 | INTEGER(iwp) :: k !: |
---|
744 | |
---|
745 | INTEGER(iwp), PARAMETER :: stridex = 4 !: |
---|
746 | |
---|
747 | REAL(wp), DIMENSION(0:ny,stridex) :: work_ffty !: |
---|
748 | #if defined( __nec ) |
---|
749 | REAL(wp), DIMENSION(0:ny+1,1:nz,nxl:nxr) :: work_ffty_vec !: |
---|
750 | #endif |
---|
751 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_in !: |
---|
752 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_out !: |
---|
753 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !: |
---|
754 | |
---|
755 | ! |
---|
756 | !-- Carry out the FFT along y, where all data are present due to the |
---|
757 | !-- 1d-decomposition along x. Resort the data in a way that x becomes |
---|
758 | !-- the first index. |
---|
759 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'start' ) |
---|
760 | |
---|
761 | IF ( host(1:3) == 'nec' ) THEN |
---|
762 | #if defined( __nec ) |
---|
763 | ! |
---|
764 | !-- Code optimized for vector processors |
---|
765 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
766 | !$OMP DO |
---|
767 | DO i = nxl, nxr |
---|
768 | |
---|
769 | DO j = 0, ny |
---|
770 | DO k = 1, nz |
---|
771 | work_ffty_vec(j,k,i) = f_in(k,j,i) |
---|
772 | ENDDO |
---|
773 | ENDDO |
---|
774 | |
---|
775 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'forward' ) |
---|
776 | |
---|
777 | ENDDO |
---|
778 | |
---|
779 | !$OMP DO |
---|
780 | DO k = 1, nz |
---|
781 | DO j = 0, ny |
---|
782 | DO i = nxl, nxr |
---|
783 | work(i,k,j) = work_ffty_vec(j,k,i) |
---|
784 | ENDDO |
---|
785 | ENDDO |
---|
786 | ENDDO |
---|
787 | !$OMP END PARALLEL |
---|
788 | #endif |
---|
789 | |
---|
790 | ELSE |
---|
791 | |
---|
792 | ! |
---|
793 | !-- Cache optimized code. |
---|
794 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
795 | !-- loop for better cache performance |
---|
796 | !$OMP PARALLEL PRIVATE (i,iend,iouter,ir,j,k,work_ffty) |
---|
797 | !$OMP DO |
---|
798 | DO iouter = nxl, nxr, stridex |
---|
799 | |
---|
800 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
801 | |
---|
802 | DO k = 1, nz |
---|
803 | |
---|
804 | DO i = iouter, iend |
---|
805 | |
---|
806 | ir = i-iouter+1 ! counter within a stride |
---|
807 | DO j = 0, ny |
---|
808 | work_ffty(j,ir) = f_in(k,j,i) |
---|
809 | ENDDO |
---|
810 | ! |
---|
811 | !-- FFT along y |
---|
812 | CALL fft_y_1d( work_ffty(:,ir), 'forward' ) |
---|
813 | |
---|
814 | ENDDO |
---|
815 | |
---|
816 | ! |
---|
817 | !-- Resort |
---|
818 | DO j = 0, ny |
---|
819 | DO i = iouter, iend |
---|
820 | work(i,k,j) = work_ffty(j,i-iouter+1) |
---|
821 | ENDDO |
---|
822 | ENDDO |
---|
823 | |
---|
824 | ENDDO |
---|
825 | |
---|
826 | ENDDO |
---|
827 | !$OMP END PARALLEL |
---|
828 | |
---|
829 | ENDIF |
---|
830 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'pause' ) |
---|
831 | |
---|
832 | ! |
---|
833 | !-- Transpose array |
---|
834 | #if defined( __parallel ) |
---|
835 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
836 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
837 | CALL MPI_ALLTOALL( work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
838 | f_out(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
839 | comm1dx, ierr ) |
---|
840 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
841 | #endif |
---|
842 | |
---|
843 | END SUBROUTINE ffty_tr_yx |
---|
844 | |
---|
845 | |
---|
846 | SUBROUTINE tr_xy_ffty( f_in, f_out ) |
---|
847 | |
---|
848 | !------------------------------------------------------------------------------! |
---|
849 | ! Transposition x --> y with a subsequent backward Fourier transformation for |
---|
850 | ! a 1d-decomposition along x |
---|
851 | !------------------------------------------------------------------------------! |
---|
852 | |
---|
853 | USE control_parameters, & |
---|
854 | ONLY: host |
---|
855 | |
---|
856 | USE cpulog, & |
---|
857 | ONLY: cpu_log, log_point_s |
---|
858 | |
---|
859 | USE kinds |
---|
860 | |
---|
861 | USE pegrid |
---|
862 | |
---|
863 | IMPLICIT NONE |
---|
864 | |
---|
865 | INTEGER(iwp) :: i !: |
---|
866 | INTEGER(iwp) :: iend !: |
---|
867 | INTEGER(iwp) :: iouter !: |
---|
868 | INTEGER(iwp) :: ir !: |
---|
869 | INTEGER(iwp) :: j !: |
---|
870 | INTEGER(iwp) :: k !: |
---|
871 | |
---|
872 | INTEGER(iwp), PARAMETER :: stridex = 4 !: |
---|
873 | |
---|
874 | REAL(wp), DIMENSION(0:ny,stridex) :: work_ffty !: |
---|
875 | #if defined( __nec ) |
---|
876 | REAL(wp), DIMENSION(0:ny+1,1:nz,nxl:nxr) :: work_ffty_vec !: |
---|
877 | #endif |
---|
878 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_in !: |
---|
879 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_out !: |
---|
880 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !: |
---|
881 | |
---|
882 | ! |
---|
883 | !-- Transpose array |
---|
884 | #if defined( __parallel ) |
---|
885 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
886 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
887 | CALL MPI_ALLTOALL( f_in(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
888 | work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
889 | comm1dx, ierr ) |
---|
890 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
891 | #endif |
---|
892 | |
---|
893 | ! |
---|
894 | !-- Resort the data in a way that y becomes the first index and carry out the |
---|
895 | !-- backward fft along y. |
---|
896 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'continue' ) |
---|
897 | |
---|
898 | IF ( host(1:3) == 'nec' ) THEN |
---|
899 | #if defined( __nec ) |
---|
900 | ! |
---|
901 | !-- Code optimized for vector processors |
---|
902 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
903 | !$OMP DO |
---|
904 | DO k = 1, nz |
---|
905 | DO j = 0, ny |
---|
906 | DO i = nxl, nxr |
---|
907 | work_ffty_vec(j,k,i) = work(i,k,j) |
---|
908 | ENDDO |
---|
909 | ENDDO |
---|
910 | ENDDO |
---|
911 | |
---|
912 | !$OMP DO |
---|
913 | DO i = nxl, nxr |
---|
914 | |
---|
915 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'backward' ) |
---|
916 | |
---|
917 | DO j = 0, ny |
---|
918 | DO k = 1, nz |
---|
919 | f_out(k,j,i) = work_ffty_vec(j,k,i) |
---|
920 | ENDDO |
---|
921 | ENDDO |
---|
922 | |
---|
923 | ENDDO |
---|
924 | !$OMP END PARALLEL |
---|
925 | #endif |
---|
926 | |
---|
927 | ELSE |
---|
928 | |
---|
929 | ! |
---|
930 | !-- Cache optimized code. |
---|
931 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
932 | !-- loop for better cache performance |
---|
933 | !$OMP PARALLEL PRIVATE ( i, iend, iouter, ir, j, k, work_ffty ) |
---|
934 | !$OMP DO |
---|
935 | DO iouter = nxl, nxr, stridex |
---|
936 | |
---|
937 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
938 | |
---|
939 | DO k = 1, nz |
---|
940 | ! |
---|
941 | !-- Resort |
---|
942 | DO j = 0, ny |
---|
943 | DO i = iouter, iend |
---|
944 | work_ffty(j,i-iouter+1) = work(i,k,j) |
---|
945 | ENDDO |
---|
946 | ENDDO |
---|
947 | |
---|
948 | DO i = iouter, iend |
---|
949 | |
---|
950 | ! |
---|
951 | !-- FFT along y |
---|
952 | ir = i-iouter+1 ! counter within a stride |
---|
953 | CALL fft_y_1d( work_ffty(:,ir), 'backward' ) |
---|
954 | |
---|
955 | DO j = 0, ny |
---|
956 | f_out(k,j,i) = work_ffty(j,ir) |
---|
957 | ENDDO |
---|
958 | ENDDO |
---|
959 | |
---|
960 | ENDDO |
---|
961 | |
---|
962 | ENDDO |
---|
963 | !$OMP END PARALLEL |
---|
964 | |
---|
965 | ENDIF |
---|
966 | |
---|
967 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'stop' ) |
---|
968 | |
---|
969 | END SUBROUTINE tr_xy_ffty |
---|
970 | |
---|
971 | |
---|
972 | SUBROUTINE fftx_tri_fftx( ar ) |
---|
973 | |
---|
974 | !------------------------------------------------------------------------------! |
---|
975 | ! FFT along x, solution of the tridiagonal system and backward FFT for |
---|
976 | ! a 1d-decomposition along x |
---|
977 | ! |
---|
978 | ! WARNING: this subroutine may still not work for hybrid parallelization |
---|
979 | ! with OpenMP (for possible necessary changes see the original |
---|
980 | ! routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
981 | !------------------------------------------------------------------------------! |
---|
982 | |
---|
983 | USE control_parameters, & |
---|
984 | ONLY: host |
---|
985 | |
---|
986 | USE cpulog, & |
---|
987 | ONLY: cpu_log, log_point_s |
---|
988 | |
---|
989 | USE grid_variables, & |
---|
990 | ONLY: ddx2, ddy2 |
---|
991 | |
---|
992 | USE kinds |
---|
993 | |
---|
994 | USE pegrid |
---|
995 | |
---|
996 | IMPLICIT NONE |
---|
997 | |
---|
998 | INTEGER(iwp) :: i !: |
---|
999 | INTEGER(iwp) :: j !: |
---|
1000 | INTEGER(iwp) :: k !: |
---|
1001 | INTEGER(iwp) :: m !: |
---|
1002 | INTEGER(iwp) :: n !: |
---|
1003 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
1004 | INTEGER(iwp) :: tn !: |
---|
1005 | |
---|
1006 | REAL(wp), DIMENSION(0:nx) :: work_fftx !: |
---|
1007 | REAL(wp), DIMENSION(0:nx,1:nz) :: work_trix !: |
---|
1008 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: ar !: |
---|
1009 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !: |
---|
1010 | |
---|
1011 | |
---|
1012 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'start' ) |
---|
1013 | |
---|
1014 | ALLOCATE( tri(5,0:nx,0:nz-1,0:threads_per_task-1) ) |
---|
1015 | |
---|
1016 | tn = 0 ! Default thread number in case of one thread |
---|
1017 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_fftx, work_trix ) |
---|
1018 | DO j = nys_x, nyn_x |
---|
1019 | |
---|
1020 | !$ tn = omp_get_thread_num() |
---|
1021 | |
---|
1022 | IF ( host(1:3) == 'nec' ) THEN |
---|
1023 | ! |
---|
1024 | !-- Code optimized for vector processors |
---|
1025 | DO k = 1, nz |
---|
1026 | |
---|
1027 | m = 0 |
---|
1028 | DO n = 1, pdims(1) |
---|
1029 | DO i = 1, nnx |
---|
1030 | work_trix(m,k) = ar(i,k,j,n) |
---|
1031 | m = m + 1 |
---|
1032 | ENDDO |
---|
1033 | ENDDO |
---|
1034 | |
---|
1035 | ENDDO |
---|
1036 | |
---|
1037 | CALL fft_x_m( work_trix, 'forward' ) |
---|
1038 | |
---|
1039 | ELSE |
---|
1040 | ! |
---|
1041 | !-- Cache optimized code |
---|
1042 | DO k = 1, nz |
---|
1043 | |
---|
1044 | m = 0 |
---|
1045 | DO n = 1, pdims(1) |
---|
1046 | DO i = 1, nnx |
---|
1047 | work_fftx(m) = ar(i,k,j,n) |
---|
1048 | m = m + 1 |
---|
1049 | ENDDO |
---|
1050 | ENDDO |
---|
1051 | |
---|
1052 | CALL fft_x_1d( work_fftx, 'forward' ) |
---|
1053 | |
---|
1054 | DO i = 0, nx |
---|
1055 | work_trix(i,k) = work_fftx(i) |
---|
1056 | ENDDO |
---|
1057 | |
---|
1058 | ENDDO |
---|
1059 | |
---|
1060 | ENDIF |
---|
1061 | |
---|
1062 | ! |
---|
1063 | !-- Solve the linear equation system |
---|
1064 | CALL tridia_1dd( ddx2, ddy2, nx, ny, j, work_trix, tri(:,:,:,tn) ) |
---|
1065 | |
---|
1066 | IF ( host(1:3) == 'nec' ) THEN |
---|
1067 | ! |
---|
1068 | !-- Code optimized for vector processors |
---|
1069 | CALL fft_x_m( work_trix, 'backward' ) |
---|
1070 | |
---|
1071 | DO k = 1, nz |
---|
1072 | |
---|
1073 | m = 0 |
---|
1074 | DO n = 1, pdims(1) |
---|
1075 | DO i = 1, nnx |
---|
1076 | ar(i,k,j,n) = work_trix(m,k) |
---|
1077 | m = m + 1 |
---|
1078 | ENDDO |
---|
1079 | ENDDO |
---|
1080 | |
---|
1081 | ENDDO |
---|
1082 | |
---|
1083 | ELSE |
---|
1084 | ! |
---|
1085 | !-- Cache optimized code |
---|
1086 | DO k = 1, nz |
---|
1087 | |
---|
1088 | DO i = 0, nx |
---|
1089 | work_fftx(i) = work_trix(i,k) |
---|
1090 | ENDDO |
---|
1091 | |
---|
1092 | CALL fft_x_1d( work_fftx, 'backward' ) |
---|
1093 | |
---|
1094 | m = 0 |
---|
1095 | DO n = 1, pdims(1) |
---|
1096 | DO i = 1, nnx |
---|
1097 | ar(i,k,j,n) = work_fftx(m) |
---|
1098 | m = m + 1 |
---|
1099 | ENDDO |
---|
1100 | ENDDO |
---|
1101 | |
---|
1102 | ENDDO |
---|
1103 | |
---|
1104 | ENDIF |
---|
1105 | |
---|
1106 | ENDDO |
---|
1107 | |
---|
1108 | DEALLOCATE( tri ) |
---|
1109 | |
---|
1110 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'stop' ) |
---|
1111 | |
---|
1112 | END SUBROUTINE fftx_tri_fftx |
---|
1113 | |
---|
1114 | |
---|
1115 | SUBROUTINE fftx_tr_xy( f_in, f_out ) |
---|
1116 | |
---|
1117 | !------------------------------------------------------------------------------! |
---|
1118 | ! Fourier-transformation along x with subsequent transposition x --> y for |
---|
1119 | ! a 1d-decomposition along y |
---|
1120 | ! |
---|
1121 | ! ATTENTION: The NEC-branch of this routine may significantly profit from |
---|
1122 | ! further optimizations. So far, performance is much worse than |
---|
1123 | ! for routine ffty_tr_yx (more than three times slower). |
---|
1124 | !------------------------------------------------------------------------------! |
---|
1125 | |
---|
1126 | USE control_parameters, & |
---|
1127 | ONLY: host |
---|
1128 | |
---|
1129 | USE cpulog, & |
---|
1130 | ONLY: cpu_log, log_point_s |
---|
1131 | |
---|
1132 | USE kinds |
---|
1133 | |
---|
1134 | USE pegrid |
---|
1135 | |
---|
1136 | IMPLICIT NONE |
---|
1137 | |
---|
1138 | INTEGER(iwp) :: i !: |
---|
1139 | INTEGER(iwp) :: j !: |
---|
1140 | INTEGER(iwp) :: k !: |
---|
1141 | |
---|
1142 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !: |
---|
1143 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_in !: |
---|
1144 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_out !: |
---|
1145 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !: |
---|
1146 | |
---|
1147 | ! |
---|
1148 | !-- Carry out the FFT along x, where all data are present due to the |
---|
1149 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
1150 | !-- the first index. |
---|
1151 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'start' ) |
---|
1152 | |
---|
1153 | IF ( host(1:3) == 'nec' ) THEN |
---|
1154 | ! |
---|
1155 | !-- Code for vector processors |
---|
1156 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
1157 | !$OMP DO |
---|
1158 | DO i = 0, nx |
---|
1159 | |
---|
1160 | DO j = nys, nyn |
---|
1161 | DO k = 1, nz |
---|
1162 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
1163 | ENDDO |
---|
1164 | ENDDO |
---|
1165 | |
---|
1166 | ENDDO |
---|
1167 | |
---|
1168 | !$OMP DO |
---|
1169 | DO j = nys, nyn |
---|
1170 | |
---|
1171 | CALL fft_x_m( work_fftx(:,:,j), 'forward' ) |
---|
1172 | |
---|
1173 | DO k = 1, nz |
---|
1174 | DO i = 0, nx |
---|
1175 | work(j,k,i) = work_fftx(i,k,j) |
---|
1176 | ENDDO |
---|
1177 | ENDDO |
---|
1178 | |
---|
1179 | ENDDO |
---|
1180 | !$OMP END PARALLEL |
---|
1181 | |
---|
1182 | ELSE |
---|
1183 | |
---|
1184 | ! |
---|
1185 | !-- Cache optimized code (there might be still a potential for better |
---|
1186 | !-- optimization). |
---|
1187 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
1188 | !$OMP DO |
---|
1189 | DO i = 0, nx |
---|
1190 | |
---|
1191 | DO j = nys, nyn |
---|
1192 | DO k = 1, nz |
---|
1193 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
1194 | ENDDO |
---|
1195 | ENDDO |
---|
1196 | |
---|
1197 | ENDDO |
---|
1198 | |
---|
1199 | !$OMP DO |
---|
1200 | DO j = nys, nyn |
---|
1201 | DO k = 1, nz |
---|
1202 | |
---|
1203 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'forward' ) |
---|
1204 | |
---|
1205 | DO i = 0, nx |
---|
1206 | work(j,k,i) = work_fftx(i,k,j) |
---|
1207 | ENDDO |
---|
1208 | ENDDO |
---|
1209 | |
---|
1210 | ENDDO |
---|
1211 | !$OMP END PARALLEL |
---|
1212 | |
---|
1213 | ENDIF |
---|
1214 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'pause' ) |
---|
1215 | |
---|
1216 | ! |
---|
1217 | !-- Transpose array |
---|
1218 | #if defined( __parallel ) |
---|
1219 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
1220 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1221 | CALL MPI_ALLTOALL( work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
1222 | f_out(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
1223 | comm1dy, ierr ) |
---|
1224 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
1225 | #endif |
---|
1226 | |
---|
1227 | END SUBROUTINE fftx_tr_xy |
---|
1228 | |
---|
1229 | |
---|
1230 | SUBROUTINE tr_yx_fftx( f_in, f_out ) |
---|
1231 | |
---|
1232 | !------------------------------------------------------------------------------! |
---|
1233 | ! Transposition y --> x with a subsequent backward Fourier transformation for |
---|
1234 | ! a 1d-decomposition along x |
---|
1235 | !------------------------------------------------------------------------------! |
---|
1236 | |
---|
1237 | USE control_parameters, & |
---|
1238 | ONLY: host |
---|
1239 | |
---|
1240 | USE cpulog, & |
---|
1241 | ONLY: cpu_log, log_point_s |
---|
1242 | |
---|
1243 | USE kinds |
---|
1244 | |
---|
1245 | USE pegrid |
---|
1246 | |
---|
1247 | IMPLICIT NONE |
---|
1248 | |
---|
1249 | INTEGER(iwp) :: i !: |
---|
1250 | INTEGER(iwp) :: j !: |
---|
1251 | INTEGER(iwp) :: k !: |
---|
1252 | |
---|
1253 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !: |
---|
1254 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_in !: |
---|
1255 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_out !: |
---|
1256 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !: |
---|
1257 | |
---|
1258 | ! |
---|
1259 | !-- Transpose array |
---|
1260 | #if defined( __parallel ) |
---|
1261 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
1262 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1263 | CALL MPI_ALLTOALL( f_in(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
1264 | work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
1265 | comm1dy, ierr ) |
---|
1266 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
1267 | #endif |
---|
1268 | |
---|
1269 | ! |
---|
1270 | !-- Carry out the FFT along x, where all data are present due to the |
---|
1271 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
1272 | !-- the first index. |
---|
1273 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'continue' ) |
---|
1274 | |
---|
1275 | IF ( host(1:3) == 'nec' ) THEN |
---|
1276 | ! |
---|
1277 | !-- Code optimized for vector processors |
---|
1278 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
1279 | !$OMP DO |
---|
1280 | DO j = nys, nyn |
---|
1281 | |
---|
1282 | DO k = 1, nz |
---|
1283 | DO i = 0, nx |
---|
1284 | work_fftx(i,k,j) = work(j,k,i) |
---|
1285 | ENDDO |
---|
1286 | ENDDO |
---|
1287 | |
---|
1288 | CALL fft_x_m( work_fftx(:,:,j), 'backward' ) |
---|
1289 | |
---|
1290 | ENDDO |
---|
1291 | |
---|
1292 | !$OMP DO |
---|
1293 | DO i = 0, nx |
---|
1294 | DO j = nys, nyn |
---|
1295 | DO k = 1, nz |
---|
1296 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
1297 | ENDDO |
---|
1298 | ENDDO |
---|
1299 | ENDDO |
---|
1300 | !$OMP END PARALLEL |
---|
1301 | |
---|
1302 | ELSE |
---|
1303 | |
---|
1304 | ! |
---|
1305 | !-- Cache optimized code (there might be still a potential for better |
---|
1306 | !-- optimization). |
---|
1307 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
1308 | !$OMP DO |
---|
1309 | DO j = nys, nyn |
---|
1310 | DO k = 1, nz |
---|
1311 | |
---|
1312 | DO i = 0, nx |
---|
1313 | work_fftx(i,k,j) = work(j,k,i) |
---|
1314 | ENDDO |
---|
1315 | |
---|
1316 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'backward' ) |
---|
1317 | |
---|
1318 | ENDDO |
---|
1319 | ENDDO |
---|
1320 | |
---|
1321 | !$OMP DO |
---|
1322 | DO i = 0, nx |
---|
1323 | DO j = nys, nyn |
---|
1324 | DO k = 1, nz |
---|
1325 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
1326 | ENDDO |
---|
1327 | ENDDO |
---|
1328 | ENDDO |
---|
1329 | !$OMP END PARALLEL |
---|
1330 | |
---|
1331 | ENDIF |
---|
1332 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'stop' ) |
---|
1333 | |
---|
1334 | END SUBROUTINE tr_yx_fftx |
---|
1335 | |
---|
1336 | |
---|
1337 | SUBROUTINE ffty_tri_ffty( ar ) |
---|
1338 | |
---|
1339 | !------------------------------------------------------------------------------! |
---|
1340 | ! FFT along y, solution of the tridiagonal system and backward FFT for |
---|
1341 | ! a 1d-decomposition along y |
---|
1342 | ! |
---|
1343 | ! WARNING: this subroutine may still not work for hybrid parallelization |
---|
1344 | ! with OpenMP (for possible necessary changes see the original |
---|
1345 | ! routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
1346 | !------------------------------------------------------------------------------! |
---|
1347 | |
---|
1348 | USE control_parameters, & |
---|
1349 | ONLY: host |
---|
1350 | |
---|
1351 | USE cpulog, & |
---|
1352 | ONLY: cpu_log, log_point_s |
---|
1353 | |
---|
1354 | USE grid_variables, & |
---|
1355 | ONLY: ddx2, ddy2 |
---|
1356 | |
---|
1357 | USE kinds |
---|
1358 | |
---|
1359 | USE pegrid |
---|
1360 | |
---|
1361 | IMPLICIT NONE |
---|
1362 | |
---|
1363 | INTEGER(iwp) :: i !: |
---|
1364 | INTEGER(iwp) :: j !: |
---|
1365 | INTEGER(iwp) :: k !: |
---|
1366 | INTEGER(iwp) :: m !: |
---|
1367 | INTEGER(iwp) :: n !: |
---|
1368 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
1369 | INTEGER(iwp) :: tn !: |
---|
1370 | |
---|
1371 | REAL(wp), DIMENSION(0:ny) :: work_ffty !: |
---|
1372 | REAL(wp), DIMENSION(0:ny,1:nz) :: work_triy !: |
---|
1373 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: ar !: |
---|
1374 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !: |
---|
1375 | |
---|
1376 | |
---|
1377 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'start' ) |
---|
1378 | |
---|
1379 | ALLOCATE( tri(5,0:ny,0:nz-1,0:threads_per_task-1) ) |
---|
1380 | |
---|
1381 | tn = 0 ! Default thread number in case of one thread |
---|
1382 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_ffty, work_triy ) |
---|
1383 | DO i = nxl_y, nxr_y |
---|
1384 | |
---|
1385 | !$ tn = omp_get_thread_num() |
---|
1386 | |
---|
1387 | IF ( host(1:3) == 'nec' ) THEN |
---|
1388 | ! |
---|
1389 | !-- Code optimized for vector processors |
---|
1390 | DO k = 1, nz |
---|
1391 | |
---|
1392 | m = 0 |
---|
1393 | DO n = 1, pdims(2) |
---|
1394 | DO j = 1, nny |
---|
1395 | work_triy(m,k) = ar(j,k,i,n) |
---|
1396 | m = m + 1 |
---|
1397 | ENDDO |
---|
1398 | ENDDO |
---|
1399 | |
---|
1400 | ENDDO |
---|
1401 | |
---|
1402 | CALL fft_y_m( work_triy, ny, 'forward' ) |
---|
1403 | |
---|
1404 | ELSE |
---|
1405 | ! |
---|
1406 | !-- Cache optimized code |
---|
1407 | DO k = 1, nz |
---|
1408 | |
---|
1409 | m = 0 |
---|
1410 | DO n = 1, pdims(2) |
---|
1411 | DO j = 1, nny |
---|
1412 | work_ffty(m) = ar(j,k,i,n) |
---|
1413 | m = m + 1 |
---|
1414 | ENDDO |
---|
1415 | ENDDO |
---|
1416 | |
---|
1417 | CALL fft_y_1d( work_ffty, 'forward' ) |
---|
1418 | |
---|
1419 | DO j = 0, ny |
---|
1420 | work_triy(j,k) = work_ffty(j) |
---|
1421 | ENDDO |
---|
1422 | |
---|
1423 | ENDDO |
---|
1424 | |
---|
1425 | ENDIF |
---|
1426 | |
---|
1427 | ! |
---|
1428 | !-- Solve the linear equation system |
---|
1429 | CALL tridia_1dd( ddy2, ddx2, ny, nx, i, work_triy, tri(:,:,:,tn) ) |
---|
1430 | |
---|
1431 | IF ( host(1:3) == 'nec' ) THEN |
---|
1432 | ! |
---|
1433 | !-- Code optimized for vector processors |
---|
1434 | CALL fft_y_m( work_triy, ny, 'backward' ) |
---|
1435 | |
---|
1436 | DO k = 1, nz |
---|
1437 | |
---|
1438 | m = 0 |
---|
1439 | DO n = 1, pdims(2) |
---|
1440 | DO j = 1, nny |
---|
1441 | ar(j,k,i,n) = work_triy(m,k) |
---|
1442 | m = m + 1 |
---|
1443 | ENDDO |
---|
1444 | ENDDO |
---|
1445 | |
---|
1446 | ENDDO |
---|
1447 | |
---|
1448 | ELSE |
---|
1449 | ! |
---|
1450 | !-- Cache optimized code |
---|
1451 | DO k = 1, nz |
---|
1452 | |
---|
1453 | DO j = 0, ny |
---|
1454 | work_ffty(j) = work_triy(j,k) |
---|
1455 | ENDDO |
---|
1456 | |
---|
1457 | CALL fft_y_1d( work_ffty, 'backward' ) |
---|
1458 | |
---|
1459 | m = 0 |
---|
1460 | DO n = 1, pdims(2) |
---|
1461 | DO j = 1, nny |
---|
1462 | ar(j,k,i,n) = work_ffty(m) |
---|
1463 | m = m + 1 |
---|
1464 | ENDDO |
---|
1465 | ENDDO |
---|
1466 | |
---|
1467 | ENDDO |
---|
1468 | |
---|
1469 | ENDIF |
---|
1470 | |
---|
1471 | ENDDO |
---|
1472 | |
---|
1473 | DEALLOCATE( tri ) |
---|
1474 | |
---|
1475 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'stop' ) |
---|
1476 | |
---|
1477 | END SUBROUTINE ffty_tri_ffty |
---|
1478 | |
---|
1479 | #endif |
---|
1480 | |
---|
1481 | END MODULE poisfft_mod |
---|