1 | MODULE poisfft_mod |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: poisfft.f90 1321 2014-03-20 09:40:40Z boeske $ |
---|
27 | ! |
---|
28 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
29 | ! ONLY-attribute added to USE-statements, |
---|
30 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
31 | ! kinds are defined in new module kinds, |
---|
32 | ! old module precision_kind is removed, |
---|
33 | ! revision history before 2012 removed, |
---|
34 | ! comment fields (!:) to be used for variable explanations added to |
---|
35 | ! all variable declaration statements |
---|
36 | ! |
---|
37 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
38 | ! module interfaces removed |
---|
39 | ! |
---|
40 | ! 1306 2014-03-13 14:30:59Z raasch |
---|
41 | ! openmp sections removed from the overlap branch, |
---|
42 | ! second argument removed from parameter list |
---|
43 | ! |
---|
44 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
45 | ! resorting of arrays moved to separate routines resort_for_..., |
---|
46 | ! one argument, used as temporary work array, removed from all transpose |
---|
47 | ! routines |
---|
48 | ! overlapping fft / transposition implemented |
---|
49 | ! |
---|
50 | ! 1212 2013-08-15 08:46:27Z raasch |
---|
51 | ! tridia routines moved to seperate module tridia_solver |
---|
52 | ! |
---|
53 | ! 1208 2013-08-13 06:41:49Z raasch |
---|
54 | ! acc-update clauses added for "ar" so that ffts other than cufft can also be |
---|
55 | ! used (although they are not ported and will give a poor performance) |
---|
56 | ! |
---|
57 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
58 | ! further openACC porting of non-parallel (MPI) branch: |
---|
59 | ! tridiagonal routines split into extermal subroutines (instead using CONTAINS), |
---|
60 | ! no distinction between parallel/non-parallel in poisfft and tridia any more, |
---|
61 | ! tridia routines moved to end of file because of probable bug in PGI compiler 12.5 |
---|
62 | ! (otherwise "invalid device function" is indicated during runtime), |
---|
63 | ! optimization of tridia routines: constant elements and coefficients of tri are |
---|
64 | ! stored in seperate arrays ddzuw and tric, last dimension of tri reduced from 5 |
---|
65 | ! to 2, |
---|
66 | ! poisfft_init is now called internally from poisfft, maketri is called from |
---|
67 | ! poisfft_init, |
---|
68 | ! ibc_p_b = 2 removed |
---|
69 | ! |
---|
70 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
71 | ! routines fftx, ffty, fftxp, fftyp removed, calls replaced by fft_x, fft_y, |
---|
72 | ! in the 1D-decomposition routines fft_x, ffty are replaced by fft_x_1d, |
---|
73 | ! fft_y_1d |
---|
74 | ! |
---|
75 | ! 1103 2013-02-20 02:15:53Z raasch |
---|
76 | ! tri, ar, and ar1 arguments in tridia-routines (2d) are removed because they |
---|
77 | ! sometimes cause segmentation faults with intel 12.1 compiler |
---|
78 | ! |
---|
79 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
80 | ! unused variables removed |
---|
81 | ! |
---|
82 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
83 | ! code put under GPL (PALM 3.9) |
---|
84 | ! |
---|
85 | ! 2012-09-21 07:03:55Z raasch |
---|
86 | ! FLOAT type conversion replaced by REAL |
---|
87 | ! |
---|
88 | ! 1003 2012-09-14 14:35:53Z raasch |
---|
89 | ! indices nxa, nya, etc. replaced by nx, ny, etc. |
---|
90 | ! |
---|
91 | ! 940 2012-07-09 14:31:00Z raasch |
---|
92 | ! special handling of tri-array as an argument in tridia_1dd routines switched |
---|
93 | ! off because it caused segmentation faults with intel 12.1 compiler |
---|
94 | ! |
---|
95 | ! 877 2012-04-03 11:21:44Z suehring |
---|
96 | ! Bugfix: Avoid divisions by zero in case of using a 'neumann' bc for the |
---|
97 | ! pressure at the top of the model domain. |
---|
98 | ! |
---|
99 | ! 809 2012-01-30 13:32:58Z maronga |
---|
100 | ! Bugfix: replaced .AND. and .NOT. with && and ! in the preprocessor directives |
---|
101 | ! |
---|
102 | ! 807 2012-01-25 11:53:51Z maronga |
---|
103 | ! New cpp directive "__check" implemented which is used by check_namelist_files |
---|
104 | ! (most of the code is unneeded by check_namelist_files). |
---|
105 | ! |
---|
106 | ! Revision 1.1 1997/07/24 11:24:14 raasch |
---|
107 | ! Initial revision |
---|
108 | ! |
---|
109 | ! |
---|
110 | ! Description: |
---|
111 | ! ------------ |
---|
112 | ! Original version by Stephan Siano (pois3d), as of July 23, 1996 |
---|
113 | ! Adapted for 2D-domain-decomposition by Siegfried Raasch, July 3, 1997 |
---|
114 | ! |
---|
115 | ! Solves the Poisson equation with a 2D spectral method |
---|
116 | ! d^2 p / dx^2 + d^2 p / dy^2 + d^2 p / dz^2 = s |
---|
117 | ! |
---|
118 | ! Input: |
---|
119 | ! real ar contains (nnz,nny,nnx) elements of the velocity divergence, |
---|
120 | ! starting from (1,nys,nxl) |
---|
121 | ! |
---|
122 | ! Output: |
---|
123 | ! real ar contains the solution for perturbation pressure p |
---|
124 | !------------------------------------------------------------------------------! |
---|
125 | |
---|
126 | USE fft_xy, & |
---|
127 | ONLY: fft_init, fft_y, fft_y_1d, fft_y_m, fft_x, fft_x_1d, fft_x_m |
---|
128 | |
---|
129 | USE indices, & |
---|
130 | ONLY: nnx, nny, nx, nxl, nxr, ny, nys, nyn, nz |
---|
131 | |
---|
132 | USE transpose_indices, & |
---|
133 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nys_x, nys_z, nyn_x, nyn_z, nzb_x, & |
---|
134 | nzb_y, nzt_x, nzt_y |
---|
135 | |
---|
136 | USE tridia_solver, & |
---|
137 | ONLY: tridia_1dd, tridia_init, tridia_substi, tridia_substi_overlap |
---|
138 | |
---|
139 | IMPLICIT NONE |
---|
140 | |
---|
141 | LOGICAL, SAVE :: poisfft_initialized = .FALSE. |
---|
142 | |
---|
143 | PRIVATE |
---|
144 | |
---|
145 | #if ! defined ( __check ) |
---|
146 | PUBLIC poisfft, poisfft_init |
---|
147 | |
---|
148 | INTERFACE poisfft |
---|
149 | MODULE PROCEDURE poisfft |
---|
150 | END INTERFACE poisfft |
---|
151 | |
---|
152 | INTERFACE poisfft_init |
---|
153 | MODULE PROCEDURE poisfft_init |
---|
154 | END INTERFACE poisfft_init |
---|
155 | #else |
---|
156 | PUBLIC poisfft_init |
---|
157 | |
---|
158 | INTERFACE poisfft_init |
---|
159 | MODULE PROCEDURE poisfft_init |
---|
160 | END INTERFACE poisfft_init |
---|
161 | #endif |
---|
162 | |
---|
163 | CONTAINS |
---|
164 | |
---|
165 | SUBROUTINE poisfft_init |
---|
166 | |
---|
167 | USE arrays_3d, & |
---|
168 | ONLY: ddzu_pres, ddzw |
---|
169 | |
---|
170 | USE kinds |
---|
171 | |
---|
172 | IMPLICIT NONE |
---|
173 | |
---|
174 | INTEGER(iwp) :: k !: |
---|
175 | |
---|
176 | |
---|
177 | CALL fft_init |
---|
178 | |
---|
179 | CALL tridia_init |
---|
180 | |
---|
181 | poisfft_initialized = .TRUE. |
---|
182 | |
---|
183 | END SUBROUTINE poisfft_init |
---|
184 | |
---|
185 | |
---|
186 | #if ! defined ( __check ) |
---|
187 | SUBROUTINE poisfft( ar ) |
---|
188 | |
---|
189 | USE control_parameters, & |
---|
190 | ONLY: fft_method, transpose_compute_overlap |
---|
191 | |
---|
192 | USE cpulog, & |
---|
193 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
194 | |
---|
195 | USE kinds |
---|
196 | |
---|
197 | USE pegrid |
---|
198 | |
---|
199 | IMPLICIT NONE |
---|
200 | |
---|
201 | INTEGER(iwp) :: ii !: |
---|
202 | INTEGER(iwp) :: iind !: |
---|
203 | INTEGER(iwp) :: inew !: |
---|
204 | INTEGER(iwp) :: jj !: |
---|
205 | INTEGER(iwp) :: jind !: |
---|
206 | INTEGER(iwp) :: jnew !: |
---|
207 | INTEGER(iwp) :: ki !: |
---|
208 | INTEGER(iwp) :: kk !: |
---|
209 | INTEGER(iwp) :: knew !: |
---|
210 | INTEGER(iwp) :: n !: |
---|
211 | INTEGER(iwp) :: nblk !: |
---|
212 | INTEGER(iwp) :: nnx_y !: |
---|
213 | INTEGER(iwp) :: nny_z !: |
---|
214 | INTEGER(iwp) :: nnz_t !: |
---|
215 | INTEGER(iwp) :: nnz_x !: |
---|
216 | INTEGER(iwp) :: nxl_y_bound !: |
---|
217 | INTEGER(iwp) :: nxr_y_bound !: |
---|
218 | |
---|
219 | INTEGER(iwp), DIMENSION(4) :: isave !: |
---|
220 | |
---|
221 | REAL(wp), DIMENSION(1:nz,nys:nyn,nxl:nxr) :: ar !: |
---|
222 | !$acc declare create( ar_inv ) |
---|
223 | REAL(wp), DIMENSION(nys:nyn,nxl:nxr,1:nz) :: ar_inv !: |
---|
224 | |
---|
225 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ar1 !: |
---|
226 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_in !: |
---|
227 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_inv !: |
---|
228 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_y !: |
---|
229 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_z !: |
---|
230 | |
---|
231 | |
---|
232 | CALL cpu_log( log_point_s(3), 'poisfft', 'start' ) |
---|
233 | |
---|
234 | IF ( .NOT. poisfft_initialized ) CALL poisfft_init |
---|
235 | |
---|
236 | ! |
---|
237 | !-- Two-dimensional Fourier Transformation in x- and y-direction. |
---|
238 | IF ( pdims(2) == 1 .AND. pdims(1) > 1 ) THEN |
---|
239 | |
---|
240 | ! |
---|
241 | !-- 1d-domain-decomposition along x: |
---|
242 | !-- FFT along y and transposition y --> x |
---|
243 | CALL ffty_tr_yx( ar, ar ) |
---|
244 | |
---|
245 | ! |
---|
246 | !-- FFT along x, solving the tridiagonal system and backward FFT |
---|
247 | CALL fftx_tri_fftx( ar ) |
---|
248 | |
---|
249 | ! |
---|
250 | !-- Transposition x --> y and backward FFT along y |
---|
251 | CALL tr_xy_ffty( ar, ar ) |
---|
252 | |
---|
253 | ELSEIF ( pdims(1) == 1 .AND. pdims(2) > 1 ) THEN |
---|
254 | |
---|
255 | ! |
---|
256 | !-- 1d-domain-decomposition along y: |
---|
257 | !-- FFT along x and transposition x --> y |
---|
258 | CALL fftx_tr_xy( ar, ar ) |
---|
259 | |
---|
260 | ! |
---|
261 | !-- FFT along y, solving the tridiagonal system and backward FFT |
---|
262 | CALL ffty_tri_ffty( ar ) |
---|
263 | |
---|
264 | ! |
---|
265 | !-- Transposition y --> x and backward FFT along x |
---|
266 | CALL tr_yx_fftx( ar, ar ) |
---|
267 | |
---|
268 | ELSEIF ( .NOT. transpose_compute_overlap ) THEN |
---|
269 | |
---|
270 | ! |
---|
271 | !-- 2d-domain-decomposition or no decomposition (1 PE run) |
---|
272 | !-- Transposition z --> x |
---|
273 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start' ) |
---|
274 | CALL resort_for_zx( ar, ar_inv ) |
---|
275 | CALL transpose_zx( ar_inv, ar ) |
---|
276 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
277 | |
---|
278 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
279 | IF ( fft_method /= 'system-specific' ) THEN |
---|
280 | !$acc update host( ar ) |
---|
281 | ENDIF |
---|
282 | CALL fft_x( ar, 'forward' ) |
---|
283 | IF ( fft_method /= 'system-specific' ) THEN |
---|
284 | !$acc update device( ar ) |
---|
285 | ENDIF |
---|
286 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
287 | |
---|
288 | ! |
---|
289 | !-- Transposition x --> y |
---|
290 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
291 | CALL resort_for_xy( ar, ar_inv ) |
---|
292 | CALL transpose_xy( ar_inv, ar ) |
---|
293 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
294 | |
---|
295 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
296 | IF ( fft_method /= 'system-specific' ) THEN |
---|
297 | !$acc update host( ar ) |
---|
298 | ENDIF |
---|
299 | CALL fft_y( ar, 'forward', ar_tr = ar, & |
---|
300 | nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
301 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
302 | IF ( fft_method /= 'system-specific' ) THEN |
---|
303 | !$acc update device( ar ) |
---|
304 | ENDIF |
---|
305 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
306 | |
---|
307 | ! |
---|
308 | !-- Transposition y --> z |
---|
309 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
310 | CALL resort_for_yz( ar, ar_inv ) |
---|
311 | CALL transpose_yz( ar_inv, ar ) |
---|
312 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
313 | |
---|
314 | ! |
---|
315 | !-- Solve the tridiagonal equation system along z |
---|
316 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
317 | CALL tridia_substi( ar ) |
---|
318 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
319 | |
---|
320 | ! |
---|
321 | !-- Inverse Fourier Transformation |
---|
322 | !-- Transposition z --> y |
---|
323 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start' ) |
---|
324 | CALL transpose_zy( ar, ar_inv ) |
---|
325 | CALL resort_for_zy( ar_inv, ar ) |
---|
326 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
327 | |
---|
328 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
329 | IF ( fft_method /= 'system-specific' ) THEN |
---|
330 | !$acc update host( ar ) |
---|
331 | ENDIF |
---|
332 | CALL fft_y( ar, 'backward', ar_tr = ar, & |
---|
333 | nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
334 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
335 | IF ( fft_method /= 'system-specific' ) THEN |
---|
336 | !$acc update device( ar ) |
---|
337 | ENDIF |
---|
338 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
339 | |
---|
340 | ! |
---|
341 | !-- Transposition y --> x |
---|
342 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
343 | CALL transpose_yx( ar, ar_inv ) |
---|
344 | CALL resort_for_yx( ar_inv, ar ) |
---|
345 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
346 | |
---|
347 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
348 | IF ( fft_method /= 'system-specific' ) THEN |
---|
349 | !$acc update host( ar ) |
---|
350 | ENDIF |
---|
351 | CALL fft_x( ar, 'backward' ) |
---|
352 | IF ( fft_method /= 'system-specific' ) THEN |
---|
353 | !$acc update device( ar ) |
---|
354 | ENDIF |
---|
355 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
356 | |
---|
357 | ! |
---|
358 | !-- Transposition x --> z |
---|
359 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
360 | CALL transpose_xz( ar, ar_inv ) |
---|
361 | CALL resort_for_xz( ar_inv, ar ) |
---|
362 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
363 | |
---|
364 | ELSE |
---|
365 | |
---|
366 | ! |
---|
367 | !-- 2d-domain-decomposition or no decomposition (1 PE run) with |
---|
368 | !-- overlapping transposition / fft |
---|
369 | !-- cputime logging must not use barriers, which would prevent overlapping |
---|
370 | ALLOCATE( f_out_y(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), & |
---|
371 | f_out_z(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
372 | ! |
---|
373 | !-- Transposition z --> x + subsequent fft along x |
---|
374 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
375 | CALL resort_for_zx( ar, f_inv ) |
---|
376 | ! |
---|
377 | !-- Save original indices and gridpoint counter |
---|
378 | isave(1) = nz |
---|
379 | isave(2) = nzb_x |
---|
380 | isave(3) = nzt_x |
---|
381 | isave(4) = sendrecvcount_zx |
---|
382 | ! |
---|
383 | !-- Set new indices for transformation |
---|
384 | nblk = nz / pdims(1) |
---|
385 | nz = pdims(1) |
---|
386 | nnz_x = 1 |
---|
387 | nzb_x = 1 + myidx * nnz_x |
---|
388 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
389 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
390 | |
---|
391 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
392 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
393 | |
---|
394 | DO kk = 1, nblk |
---|
395 | |
---|
396 | IF ( kk == 1 ) THEN |
---|
397 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start', cpu_log_nowait ) |
---|
398 | ELSE |
---|
399 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
400 | ENDIF |
---|
401 | |
---|
402 | DO knew = 1, nz |
---|
403 | ki = kk + nblk * ( knew - 1 ) |
---|
404 | f_in(:,:,knew) = f_inv(:,:,ki) |
---|
405 | ENDDO |
---|
406 | |
---|
407 | CALL transpose_zx( f_in, ar1(:,:,:)) |
---|
408 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
409 | |
---|
410 | IF ( kk == 1 ) THEN |
---|
411 | CALL cpu_log( log_point_s(4), 'fft_x', 'start', cpu_log_nowait ) |
---|
412 | ELSE |
---|
413 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
414 | ENDIF |
---|
415 | |
---|
416 | n = isave(2) + kk - 1 |
---|
417 | CALL fft_x( ar1(:,:,:), 'forward', ar_2d = f_out_z(:,:,n)) |
---|
418 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
419 | |
---|
420 | ENDDO |
---|
421 | ! |
---|
422 | !-- Restore original indices/counters |
---|
423 | nz = isave(1) |
---|
424 | nzb_x = isave(2) |
---|
425 | nzt_x = isave(3) |
---|
426 | sendrecvcount_zx = isave(4) |
---|
427 | |
---|
428 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
429 | |
---|
430 | ! |
---|
431 | !-- Transposition x --> y + subsequent fft along y |
---|
432 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
433 | CALL resort_for_xy( f_out_z, f_inv ) |
---|
434 | ! |
---|
435 | !-- Save original indices and gridpoint counter |
---|
436 | isave(1) = nx |
---|
437 | isave(2) = nxl_y |
---|
438 | isave(3) = nxr_y |
---|
439 | isave(4) = sendrecvcount_xy |
---|
440 | ! |
---|
441 | !-- Set new indices for transformation |
---|
442 | nblk = ( ( nx+1 ) / pdims(2) ) - 1 |
---|
443 | nx = pdims(2) |
---|
444 | nnx_y = 1 |
---|
445 | nxl_y = myidy * nnx_y |
---|
446 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
447 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
448 | |
---|
449 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
450 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
451 | |
---|
452 | DO ii = 0, nblk |
---|
453 | |
---|
454 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
455 | |
---|
456 | DO inew = 0, nx-1 |
---|
457 | iind = ii + ( nblk + 1 ) * inew |
---|
458 | f_in(:,:,inew) = f_inv(:,:,iind) |
---|
459 | ENDDO |
---|
460 | |
---|
461 | CALL transpose_xy( f_in, ar1(:,:,:) ) |
---|
462 | |
---|
463 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
464 | |
---|
465 | IF ( ii == 1 ) THEN |
---|
466 | CALL cpu_log( log_point_s(7), 'fft_y', 'start', cpu_log_nowait ) |
---|
467 | ELSE |
---|
468 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
469 | ENDIF |
---|
470 | |
---|
471 | nxl_y_bound = isave(2) |
---|
472 | nxr_y_bound = isave(3) |
---|
473 | n = isave(2) + ii |
---|
474 | CALL fft_y( ar1(:,:,:), 'forward', ar_tr = f_out_y, & |
---|
475 | nxl_y_bound = nxl_y_bound, nxr_y_bound = nxr_y_bound, & |
---|
476 | nxl_y_l = n, nxr_y_l = n ) |
---|
477 | |
---|
478 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
479 | |
---|
480 | ENDDO |
---|
481 | ! |
---|
482 | !-- Restore original indices/counters |
---|
483 | nx = isave(1) |
---|
484 | nxl_y = isave(2) |
---|
485 | nxr_y = isave(3) |
---|
486 | sendrecvcount_xy = isave(4) |
---|
487 | |
---|
488 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
489 | |
---|
490 | ! |
---|
491 | !-- Transposition y --> z + subsequent tridia + resort for z --> y |
---|
492 | ALLOCATE( f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
493 | CALL resort_for_yz( f_out_y, f_inv ) |
---|
494 | ! |
---|
495 | !-- Save original indices and gridpoint counter |
---|
496 | isave(1) = ny |
---|
497 | isave(2) = nys_z |
---|
498 | isave(3) = nyn_z |
---|
499 | isave(4) = sendrecvcount_yz |
---|
500 | ! |
---|
501 | !-- Set new indices for transformation |
---|
502 | nblk = ( ( ny+1 ) / pdims(1) ) - 1 |
---|
503 | ny = pdims(1) |
---|
504 | nny_z = 1 |
---|
505 | nys_z = myidx * nny_z |
---|
506 | nyn_z = ( myidx + 1 ) * nny_z - 1 |
---|
507 | sendrecvcount_yz = ( nxr_y-nxl_y+1 ) * nny_z * ( nzt_y-nzb_y+1 ) |
---|
508 | |
---|
509 | ALLOCATE( ar1(nxl_z:nxr_z,nys_z:nyn_z,1:nz) ) |
---|
510 | ALLOCATE( f_in(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
511 | |
---|
512 | DO jj = 0, nblk |
---|
513 | ! |
---|
514 | !-- Forward Fourier Transformation |
---|
515 | !-- Transposition y --> z |
---|
516 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
517 | |
---|
518 | DO jnew = 0, ny-1 |
---|
519 | jind = jj + ( nblk + 1 ) * jnew |
---|
520 | f_in(:,:,jnew) = f_inv(:,:,jind) |
---|
521 | ENDDO |
---|
522 | |
---|
523 | CALL transpose_yz( f_in, ar1(:,:,:) ) |
---|
524 | |
---|
525 | IF ( jj == nblk ) THEN |
---|
526 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
527 | ELSE |
---|
528 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
529 | ENDIF |
---|
530 | |
---|
531 | ! |
---|
532 | !-- Solve the tridiagonal equation system along z |
---|
533 | CALL cpu_log( log_point_s(6), 'tridia', 'start', cpu_log_nowait ) |
---|
534 | |
---|
535 | n = isave(2) + jj |
---|
536 | CALL tridia_substi_overlap( ar1(:,:,:), n ) |
---|
537 | |
---|
538 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
539 | |
---|
540 | ! |
---|
541 | !-- Inverse Fourier Transformation |
---|
542 | !-- Transposition z --> y |
---|
543 | !-- Only one thread should call MPI routines, therefore forward and |
---|
544 | !-- backward tranpose are in the same section |
---|
545 | IF ( jj == 0 ) THEN |
---|
546 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start', cpu_log_nowait ) |
---|
547 | ELSE |
---|
548 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
549 | ENDIF |
---|
550 | |
---|
551 | CALL transpose_zy( ar1(:,:,:), f_in ) |
---|
552 | |
---|
553 | DO jnew = 0, ny-1 |
---|
554 | jind = jj + ( nblk + 1 ) * jnew |
---|
555 | f_inv(:,:,jind) = f_in(:,:,jnew) |
---|
556 | ENDDO |
---|
557 | |
---|
558 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
559 | |
---|
560 | ENDDO |
---|
561 | ! |
---|
562 | !-- Restore original indices/counters |
---|
563 | ny = isave(1) |
---|
564 | nys_z = isave(2) |
---|
565 | nyn_z = isave(3) |
---|
566 | sendrecvcount_yz = isave(4) |
---|
567 | |
---|
568 | CALL resort_for_zy( f_inv, f_out_y ) |
---|
569 | |
---|
570 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
571 | |
---|
572 | ! |
---|
573 | !-- fft along y backward + subsequent transposition y --> x |
---|
574 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
575 | ! |
---|
576 | !-- Save original indices and gridpoint counter |
---|
577 | isave(1) = nx |
---|
578 | isave(2) = nxl_y |
---|
579 | isave(3) = nxr_y |
---|
580 | isave(4) = sendrecvcount_xy |
---|
581 | ! |
---|
582 | !-- Set new indices for transformation |
---|
583 | nblk = (( nx+1 ) / pdims(2) ) - 1 |
---|
584 | nx = pdims(2) |
---|
585 | nnx_y = 1 |
---|
586 | nxl_y = myidy * nnx_y |
---|
587 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
588 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
589 | |
---|
590 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
591 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
592 | |
---|
593 | DO ii = 0, nblk |
---|
594 | |
---|
595 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
596 | |
---|
597 | n = isave(2) + ii |
---|
598 | nxl_y_bound = isave(2) |
---|
599 | nxr_y_bound = isave(3) |
---|
600 | |
---|
601 | CALL fft_y( ar1(:,:,:), 'backward', ar_tr = f_out_y, & |
---|
602 | nxl_y_bound = nxl_y_bound, nxr_y_bound = nxr_y_bound, & |
---|
603 | nxl_y_l = n, nxr_y_l = n ) |
---|
604 | |
---|
605 | IF ( ii == nblk ) THEN |
---|
606 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
607 | ELSE |
---|
608 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
609 | ENDIF |
---|
610 | |
---|
611 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
612 | |
---|
613 | CALL transpose_yx( ar1(:,:,:), f_in ) |
---|
614 | |
---|
615 | DO inew = 0, nx-1 |
---|
616 | iind = ii + (nblk+1) * inew |
---|
617 | f_inv(:,:,iind) = f_in(:,:,inew) |
---|
618 | ENDDO |
---|
619 | |
---|
620 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
621 | |
---|
622 | ENDDO |
---|
623 | ! |
---|
624 | !-- Restore original indices/counters |
---|
625 | nx = isave(1) |
---|
626 | nxl_y = isave(2) |
---|
627 | nxr_y = isave(3) |
---|
628 | sendrecvcount_xy = isave(4) |
---|
629 | |
---|
630 | CALL resort_for_yx( f_inv, f_out_z ) |
---|
631 | |
---|
632 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
633 | |
---|
634 | ! |
---|
635 | !-- fft along x backward + subsequent final transposition x --> z |
---|
636 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
637 | ! |
---|
638 | !-- Save original indices and gridpoint counter |
---|
639 | isave(1) = nz |
---|
640 | isave(2) = nzb_x |
---|
641 | isave(3) = nzt_x |
---|
642 | isave(4) = sendrecvcount_zx |
---|
643 | ! |
---|
644 | !-- Set new indices for transformation |
---|
645 | nblk = nz / pdims(1) |
---|
646 | nz = pdims(1) |
---|
647 | nnz_x = 1 |
---|
648 | nzb_x = 1 + myidx * nnz_x |
---|
649 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
650 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
651 | |
---|
652 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
653 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
654 | |
---|
655 | DO kk = 1, nblk |
---|
656 | |
---|
657 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
658 | |
---|
659 | n = isave(2) + kk - 1 |
---|
660 | CALL fft_x( ar1(:,:,:), 'backward', f_out_z(:,:,n)) |
---|
661 | |
---|
662 | IF ( kk == nblk ) THEN |
---|
663 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
664 | ELSE |
---|
665 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
666 | ENDIF |
---|
667 | |
---|
668 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
669 | |
---|
670 | CALL transpose_xz( ar1(:,:,:), f_in ) |
---|
671 | |
---|
672 | DO knew = 1, nz |
---|
673 | ki = kk + nblk * (knew-1) |
---|
674 | f_inv(:,:,ki) = f_in(:,:,knew) |
---|
675 | ENDDO |
---|
676 | |
---|
677 | IF ( kk == nblk ) THEN |
---|
678 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
679 | ELSE |
---|
680 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
681 | ENDIF |
---|
682 | |
---|
683 | ENDDO |
---|
684 | ! |
---|
685 | !-- Restore original indices/counters |
---|
686 | nz = isave(1) |
---|
687 | nzb_x = isave(2) |
---|
688 | nzt_x = isave(3) |
---|
689 | sendrecvcount_zx = isave(4) |
---|
690 | |
---|
691 | CALL resort_for_xz( f_inv, ar ) |
---|
692 | |
---|
693 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
694 | |
---|
695 | ENDIF |
---|
696 | |
---|
697 | CALL cpu_log( log_point_s(3), 'poisfft', 'stop' ) |
---|
698 | |
---|
699 | END SUBROUTINE poisfft |
---|
700 | |
---|
701 | |
---|
702 | |
---|
703 | SUBROUTINE ffty_tr_yx( f_in, f_out ) |
---|
704 | |
---|
705 | !------------------------------------------------------------------------------! |
---|
706 | ! Fourier-transformation along y with subsequent transposition y --> x for |
---|
707 | ! a 1d-decomposition along x |
---|
708 | ! |
---|
709 | ! ATTENTION: The performance of this routine is much faster on the NEC-SX6, |
---|
710 | ! if the first index of work_ffty_vec is odd. Otherwise |
---|
711 | ! memory bank conflicts may occur (especially if the index is a |
---|
712 | ! multiple of 128). That's why work_ffty_vec is dimensioned as |
---|
713 | ! 0:ny+1. |
---|
714 | ! Of course, this will not work if users are using an odd number |
---|
715 | ! of gridpoints along y. |
---|
716 | !------------------------------------------------------------------------------! |
---|
717 | |
---|
718 | USE control_parameters, & |
---|
719 | ONLY: host |
---|
720 | |
---|
721 | USE cpulog, & |
---|
722 | ONLY: cpu_log, log_point_s |
---|
723 | |
---|
724 | USE kinds |
---|
725 | |
---|
726 | USE pegrid |
---|
727 | |
---|
728 | IMPLICIT NONE |
---|
729 | |
---|
730 | INTEGER(iwp) :: i !: |
---|
731 | INTEGER(iwp) :: iend !: |
---|
732 | INTEGER(iwp) :: iouter !: |
---|
733 | INTEGER(iwp) :: ir !: |
---|
734 | INTEGER(iwp) :: j !: |
---|
735 | INTEGER(iwp) :: k !: |
---|
736 | |
---|
737 | INTEGER(iwp), PARAMETER :: stridex = 4 !: |
---|
738 | |
---|
739 | REAL(wp), DIMENSION(0:ny,stridex) :: work_ffty !: |
---|
740 | #if defined( __nec ) |
---|
741 | REAL(wp), DIMENSION(0:ny+1,1:nz,nxl:nxr) :: work_ffty_vec !: |
---|
742 | #endif |
---|
743 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_in !: |
---|
744 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_out !: |
---|
745 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !: |
---|
746 | |
---|
747 | ! |
---|
748 | !-- Carry out the FFT along y, where all data are present due to the |
---|
749 | !-- 1d-decomposition along x. Resort the data in a way that x becomes |
---|
750 | !-- the first index. |
---|
751 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'start' ) |
---|
752 | |
---|
753 | IF ( host(1:3) == 'nec' ) THEN |
---|
754 | #if defined( __nec ) |
---|
755 | ! |
---|
756 | !-- Code optimized for vector processors |
---|
757 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
758 | !$OMP DO |
---|
759 | DO i = nxl, nxr |
---|
760 | |
---|
761 | DO j = 0, ny |
---|
762 | DO k = 1, nz |
---|
763 | work_ffty_vec(j,k,i) = f_in(k,j,i) |
---|
764 | ENDDO |
---|
765 | ENDDO |
---|
766 | |
---|
767 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'forward' ) |
---|
768 | |
---|
769 | ENDDO |
---|
770 | |
---|
771 | !$OMP DO |
---|
772 | DO k = 1, nz |
---|
773 | DO j = 0, ny |
---|
774 | DO i = nxl, nxr |
---|
775 | work(i,k,j) = work_ffty_vec(j,k,i) |
---|
776 | ENDDO |
---|
777 | ENDDO |
---|
778 | ENDDO |
---|
779 | !$OMP END PARALLEL |
---|
780 | #endif |
---|
781 | |
---|
782 | ELSE |
---|
783 | |
---|
784 | ! |
---|
785 | !-- Cache optimized code. |
---|
786 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
787 | !-- loop for better cache performance |
---|
788 | !$OMP PARALLEL PRIVATE (i,iend,iouter,ir,j,k,work_ffty) |
---|
789 | !$OMP DO |
---|
790 | DO iouter = nxl, nxr, stridex |
---|
791 | |
---|
792 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
793 | |
---|
794 | DO k = 1, nz |
---|
795 | |
---|
796 | DO i = iouter, iend |
---|
797 | |
---|
798 | ir = i-iouter+1 ! counter within a stride |
---|
799 | DO j = 0, ny |
---|
800 | work_ffty(j,ir) = f_in(k,j,i) |
---|
801 | ENDDO |
---|
802 | ! |
---|
803 | !-- FFT along y |
---|
804 | CALL fft_y_1d( work_ffty(:,ir), 'forward' ) |
---|
805 | |
---|
806 | ENDDO |
---|
807 | |
---|
808 | ! |
---|
809 | !-- Resort |
---|
810 | DO j = 0, ny |
---|
811 | DO i = iouter, iend |
---|
812 | work(i,k,j) = work_ffty(j,i-iouter+1) |
---|
813 | ENDDO |
---|
814 | ENDDO |
---|
815 | |
---|
816 | ENDDO |
---|
817 | |
---|
818 | ENDDO |
---|
819 | !$OMP END PARALLEL |
---|
820 | |
---|
821 | ENDIF |
---|
822 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'pause' ) |
---|
823 | |
---|
824 | ! |
---|
825 | !-- Transpose array |
---|
826 | #if defined( __parallel ) |
---|
827 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
828 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
829 | CALL MPI_ALLTOALL( work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
830 | f_out(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
831 | comm1dx, ierr ) |
---|
832 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
833 | #endif |
---|
834 | |
---|
835 | END SUBROUTINE ffty_tr_yx |
---|
836 | |
---|
837 | |
---|
838 | SUBROUTINE tr_xy_ffty( f_in, f_out ) |
---|
839 | |
---|
840 | !------------------------------------------------------------------------------! |
---|
841 | ! Transposition x --> y with a subsequent backward Fourier transformation for |
---|
842 | ! a 1d-decomposition along x |
---|
843 | !------------------------------------------------------------------------------! |
---|
844 | |
---|
845 | USE control_parameters, & |
---|
846 | ONLY: host |
---|
847 | |
---|
848 | USE cpulog, & |
---|
849 | ONLY: cpu_log, log_point_s |
---|
850 | |
---|
851 | USE kinds |
---|
852 | |
---|
853 | USE pegrid |
---|
854 | |
---|
855 | IMPLICIT NONE |
---|
856 | |
---|
857 | INTEGER(iwp) :: i !: |
---|
858 | INTEGER(iwp) :: iend !: |
---|
859 | INTEGER(iwp) :: iouter !: |
---|
860 | INTEGER(iwp) :: ir !: |
---|
861 | INTEGER(iwp) :: j !: |
---|
862 | INTEGER(iwp) :: k !: |
---|
863 | |
---|
864 | INTEGER(iwp), PARAMETER :: stridex = 4 !: |
---|
865 | |
---|
866 | REAL(wp), DIMENSION(0:ny,stridex) :: work_ffty !: |
---|
867 | #if defined( __nec ) |
---|
868 | REAL(wp), DIMENSION(0:ny+1,1:nz,nxl:nxr) :: work_ffty_vec !: |
---|
869 | #endif |
---|
870 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_in !: |
---|
871 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_out !: |
---|
872 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !: |
---|
873 | |
---|
874 | ! |
---|
875 | !-- Transpose array |
---|
876 | #if defined( __parallel ) |
---|
877 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
878 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
879 | CALL MPI_ALLTOALL( f_in(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
880 | work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
881 | comm1dx, ierr ) |
---|
882 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
883 | #endif |
---|
884 | |
---|
885 | ! |
---|
886 | !-- Resort the data in a way that y becomes the first index and carry out the |
---|
887 | !-- backward fft along y. |
---|
888 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'continue' ) |
---|
889 | |
---|
890 | IF ( host(1:3) == 'nec' ) THEN |
---|
891 | #if defined( __nec ) |
---|
892 | ! |
---|
893 | !-- Code optimized for vector processors |
---|
894 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
895 | !$OMP DO |
---|
896 | DO k = 1, nz |
---|
897 | DO j = 0, ny |
---|
898 | DO i = nxl, nxr |
---|
899 | work_ffty_vec(j,k,i) = work(i,k,j) |
---|
900 | ENDDO |
---|
901 | ENDDO |
---|
902 | ENDDO |
---|
903 | |
---|
904 | !$OMP DO |
---|
905 | DO i = nxl, nxr |
---|
906 | |
---|
907 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'backward' ) |
---|
908 | |
---|
909 | DO j = 0, ny |
---|
910 | DO k = 1, nz |
---|
911 | f_out(k,j,i) = work_ffty_vec(j,k,i) |
---|
912 | ENDDO |
---|
913 | ENDDO |
---|
914 | |
---|
915 | ENDDO |
---|
916 | !$OMP END PARALLEL |
---|
917 | #endif |
---|
918 | |
---|
919 | ELSE |
---|
920 | |
---|
921 | ! |
---|
922 | !-- Cache optimized code. |
---|
923 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
924 | !-- loop for better cache performance |
---|
925 | !$OMP PARALLEL PRIVATE ( i, iend, iouter, ir, j, k, work_ffty ) |
---|
926 | !$OMP DO |
---|
927 | DO iouter = nxl, nxr, stridex |
---|
928 | |
---|
929 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
930 | |
---|
931 | DO k = 1, nz |
---|
932 | ! |
---|
933 | !-- Resort |
---|
934 | DO j = 0, ny |
---|
935 | DO i = iouter, iend |
---|
936 | work_ffty(j,i-iouter+1) = work(i,k,j) |
---|
937 | ENDDO |
---|
938 | ENDDO |
---|
939 | |
---|
940 | DO i = iouter, iend |
---|
941 | |
---|
942 | ! |
---|
943 | !-- FFT along y |
---|
944 | ir = i-iouter+1 ! counter within a stride |
---|
945 | CALL fft_y_1d( work_ffty(:,ir), 'backward' ) |
---|
946 | |
---|
947 | DO j = 0, ny |
---|
948 | f_out(k,j,i) = work_ffty(j,ir) |
---|
949 | ENDDO |
---|
950 | ENDDO |
---|
951 | |
---|
952 | ENDDO |
---|
953 | |
---|
954 | ENDDO |
---|
955 | !$OMP END PARALLEL |
---|
956 | |
---|
957 | ENDIF |
---|
958 | |
---|
959 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'stop' ) |
---|
960 | |
---|
961 | END SUBROUTINE tr_xy_ffty |
---|
962 | |
---|
963 | |
---|
964 | SUBROUTINE fftx_tri_fftx( ar ) |
---|
965 | |
---|
966 | !------------------------------------------------------------------------------! |
---|
967 | ! FFT along x, solution of the tridiagonal system and backward FFT for |
---|
968 | ! a 1d-decomposition along x |
---|
969 | ! |
---|
970 | ! WARNING: this subroutine may still not work for hybrid parallelization |
---|
971 | ! with OpenMP (for possible necessary changes see the original |
---|
972 | ! routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
973 | !------------------------------------------------------------------------------! |
---|
974 | |
---|
975 | USE control_parameters, & |
---|
976 | ONLY: host |
---|
977 | |
---|
978 | USE cpulog, & |
---|
979 | ONLY: cpu_log, log_point_s |
---|
980 | |
---|
981 | USE grid_variables, & |
---|
982 | ONLY: ddx2, ddy2 |
---|
983 | |
---|
984 | USE kinds |
---|
985 | |
---|
986 | USE pegrid |
---|
987 | |
---|
988 | IMPLICIT NONE |
---|
989 | |
---|
990 | INTEGER(iwp) :: i !: |
---|
991 | INTEGER(iwp) :: j !: |
---|
992 | INTEGER(iwp) :: k !: |
---|
993 | INTEGER(iwp) :: m !: |
---|
994 | INTEGER(iwp) :: n !: |
---|
995 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
996 | INTEGER(iwp) :: tn !: |
---|
997 | |
---|
998 | REAL(wp), DIMENSION(0:nx) :: work_fftx !: |
---|
999 | REAL(wp), DIMENSION(0:nx,1:nz) :: work_trix !: |
---|
1000 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: ar !: |
---|
1001 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !: |
---|
1002 | |
---|
1003 | |
---|
1004 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'start' ) |
---|
1005 | |
---|
1006 | ALLOCATE( tri(5,0:nx,0:nz-1,0:threads_per_task-1) ) |
---|
1007 | |
---|
1008 | tn = 0 ! Default thread number in case of one thread |
---|
1009 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_fftx, work_trix ) |
---|
1010 | DO j = nys_x, nyn_x |
---|
1011 | |
---|
1012 | !$ tn = omp_get_thread_num() |
---|
1013 | |
---|
1014 | IF ( host(1:3) == 'nec' ) THEN |
---|
1015 | ! |
---|
1016 | !-- Code optimized for vector processors |
---|
1017 | DO k = 1, nz |
---|
1018 | |
---|
1019 | m = 0 |
---|
1020 | DO n = 1, pdims(1) |
---|
1021 | DO i = 1, nnx |
---|
1022 | work_trix(m,k) = ar(i,k,j,n) |
---|
1023 | m = m + 1 |
---|
1024 | ENDDO |
---|
1025 | ENDDO |
---|
1026 | |
---|
1027 | ENDDO |
---|
1028 | |
---|
1029 | CALL fft_x_m( work_trix, 'forward' ) |
---|
1030 | |
---|
1031 | ELSE |
---|
1032 | ! |
---|
1033 | !-- Cache optimized code |
---|
1034 | DO k = 1, nz |
---|
1035 | |
---|
1036 | m = 0 |
---|
1037 | DO n = 1, pdims(1) |
---|
1038 | DO i = 1, nnx |
---|
1039 | work_fftx(m) = ar(i,k,j,n) |
---|
1040 | m = m + 1 |
---|
1041 | ENDDO |
---|
1042 | ENDDO |
---|
1043 | |
---|
1044 | CALL fft_x_1d( work_fftx, 'forward' ) |
---|
1045 | |
---|
1046 | DO i = 0, nx |
---|
1047 | work_trix(i,k) = work_fftx(i) |
---|
1048 | ENDDO |
---|
1049 | |
---|
1050 | ENDDO |
---|
1051 | |
---|
1052 | ENDIF |
---|
1053 | |
---|
1054 | ! |
---|
1055 | !-- Solve the linear equation system |
---|
1056 | CALL tridia_1dd( ddx2, ddy2, nx, ny, j, work_trix, tri(:,:,:,tn) ) |
---|
1057 | |
---|
1058 | IF ( host(1:3) == 'nec' ) THEN |
---|
1059 | ! |
---|
1060 | !-- Code optimized for vector processors |
---|
1061 | CALL fft_x_m( work_trix, 'backward' ) |
---|
1062 | |
---|
1063 | DO k = 1, nz |
---|
1064 | |
---|
1065 | m = 0 |
---|
1066 | DO n = 1, pdims(1) |
---|
1067 | DO i = 1, nnx |
---|
1068 | ar(i,k,j,n) = work_trix(m,k) |
---|
1069 | m = m + 1 |
---|
1070 | ENDDO |
---|
1071 | ENDDO |
---|
1072 | |
---|
1073 | ENDDO |
---|
1074 | |
---|
1075 | ELSE |
---|
1076 | ! |
---|
1077 | !-- Cache optimized code |
---|
1078 | DO k = 1, nz |
---|
1079 | |
---|
1080 | DO i = 0, nx |
---|
1081 | work_fftx(i) = work_trix(i,k) |
---|
1082 | ENDDO |
---|
1083 | |
---|
1084 | CALL fft_x_1d( work_fftx, 'backward' ) |
---|
1085 | |
---|
1086 | m = 0 |
---|
1087 | DO n = 1, pdims(1) |
---|
1088 | DO i = 1, nnx |
---|
1089 | ar(i,k,j,n) = work_fftx(m) |
---|
1090 | m = m + 1 |
---|
1091 | ENDDO |
---|
1092 | ENDDO |
---|
1093 | |
---|
1094 | ENDDO |
---|
1095 | |
---|
1096 | ENDIF |
---|
1097 | |
---|
1098 | ENDDO |
---|
1099 | |
---|
1100 | DEALLOCATE( tri ) |
---|
1101 | |
---|
1102 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'stop' ) |
---|
1103 | |
---|
1104 | END SUBROUTINE fftx_tri_fftx |
---|
1105 | |
---|
1106 | |
---|
1107 | SUBROUTINE fftx_tr_xy( f_in, f_out ) |
---|
1108 | |
---|
1109 | !------------------------------------------------------------------------------! |
---|
1110 | ! Fourier-transformation along x with subsequent transposition x --> y for |
---|
1111 | ! a 1d-decomposition along y |
---|
1112 | ! |
---|
1113 | ! ATTENTION: The NEC-branch of this routine may significantly profit from |
---|
1114 | ! further optimizations. So far, performance is much worse than |
---|
1115 | ! for routine ffty_tr_yx (more than three times slower). |
---|
1116 | !------------------------------------------------------------------------------! |
---|
1117 | |
---|
1118 | USE control_parameters, & |
---|
1119 | ONLY: host |
---|
1120 | |
---|
1121 | USE cpulog, & |
---|
1122 | ONLY: cpu_log, log_point_s |
---|
1123 | |
---|
1124 | USE kinds |
---|
1125 | |
---|
1126 | USE pegrid |
---|
1127 | |
---|
1128 | IMPLICIT NONE |
---|
1129 | |
---|
1130 | INTEGER(iwp) :: i !: |
---|
1131 | INTEGER(iwp) :: j !: |
---|
1132 | INTEGER(iwp) :: k !: |
---|
1133 | |
---|
1134 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !: |
---|
1135 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_in !: |
---|
1136 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_out !: |
---|
1137 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !: |
---|
1138 | |
---|
1139 | ! |
---|
1140 | !-- Carry out the FFT along x, where all data are present due to the |
---|
1141 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
1142 | !-- the first index. |
---|
1143 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'start' ) |
---|
1144 | |
---|
1145 | IF ( host(1:3) == 'nec' ) THEN |
---|
1146 | ! |
---|
1147 | !-- Code for vector processors |
---|
1148 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
1149 | !$OMP DO |
---|
1150 | DO i = 0, nx |
---|
1151 | |
---|
1152 | DO j = nys, nyn |
---|
1153 | DO k = 1, nz |
---|
1154 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
1155 | ENDDO |
---|
1156 | ENDDO |
---|
1157 | |
---|
1158 | ENDDO |
---|
1159 | |
---|
1160 | !$OMP DO |
---|
1161 | DO j = nys, nyn |
---|
1162 | |
---|
1163 | CALL fft_x_m( work_fftx(:,:,j), 'forward' ) |
---|
1164 | |
---|
1165 | DO k = 1, nz |
---|
1166 | DO i = 0, nx |
---|
1167 | work(j,k,i) = work_fftx(i,k,j) |
---|
1168 | ENDDO |
---|
1169 | ENDDO |
---|
1170 | |
---|
1171 | ENDDO |
---|
1172 | !$OMP END PARALLEL |
---|
1173 | |
---|
1174 | ELSE |
---|
1175 | |
---|
1176 | ! |
---|
1177 | !-- Cache optimized code (there might be still a potential for better |
---|
1178 | !-- optimization). |
---|
1179 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
1180 | !$OMP DO |
---|
1181 | DO i = 0, nx |
---|
1182 | |
---|
1183 | DO j = nys, nyn |
---|
1184 | DO k = 1, nz |
---|
1185 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
1186 | ENDDO |
---|
1187 | ENDDO |
---|
1188 | |
---|
1189 | ENDDO |
---|
1190 | |
---|
1191 | !$OMP DO |
---|
1192 | DO j = nys, nyn |
---|
1193 | DO k = 1, nz |
---|
1194 | |
---|
1195 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'forward' ) |
---|
1196 | |
---|
1197 | DO i = 0, nx |
---|
1198 | work(j,k,i) = work_fftx(i,k,j) |
---|
1199 | ENDDO |
---|
1200 | ENDDO |
---|
1201 | |
---|
1202 | ENDDO |
---|
1203 | !$OMP END PARALLEL |
---|
1204 | |
---|
1205 | ENDIF |
---|
1206 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'pause' ) |
---|
1207 | |
---|
1208 | ! |
---|
1209 | !-- Transpose array |
---|
1210 | #if defined( __parallel ) |
---|
1211 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
1212 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1213 | CALL MPI_ALLTOALL( work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
1214 | f_out(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
1215 | comm1dy, ierr ) |
---|
1216 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
1217 | #endif |
---|
1218 | |
---|
1219 | END SUBROUTINE fftx_tr_xy |
---|
1220 | |
---|
1221 | |
---|
1222 | SUBROUTINE tr_yx_fftx( f_in, f_out ) |
---|
1223 | |
---|
1224 | !------------------------------------------------------------------------------! |
---|
1225 | ! Transposition y --> x with a subsequent backward Fourier transformation for |
---|
1226 | ! a 1d-decomposition along x |
---|
1227 | !------------------------------------------------------------------------------! |
---|
1228 | |
---|
1229 | USE control_parameters, & |
---|
1230 | ONLY: host |
---|
1231 | |
---|
1232 | USE cpulog, & |
---|
1233 | ONLY: cpu_log, log_point_s |
---|
1234 | |
---|
1235 | USE kinds |
---|
1236 | |
---|
1237 | USE pegrid |
---|
1238 | |
---|
1239 | IMPLICIT NONE |
---|
1240 | |
---|
1241 | INTEGER(iwp) :: i !: |
---|
1242 | INTEGER(iwp) :: j !: |
---|
1243 | INTEGER(iwp) :: k !: |
---|
1244 | |
---|
1245 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !: |
---|
1246 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_in !: |
---|
1247 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_out !: |
---|
1248 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !: |
---|
1249 | |
---|
1250 | ! |
---|
1251 | !-- Transpose array |
---|
1252 | #if defined( __parallel ) |
---|
1253 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
1254 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1255 | CALL MPI_ALLTOALL( f_in(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
1256 | work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
1257 | comm1dy, ierr ) |
---|
1258 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
1259 | #endif |
---|
1260 | |
---|
1261 | ! |
---|
1262 | !-- Carry out the FFT along x, where all data are present due to the |
---|
1263 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
1264 | !-- the first index. |
---|
1265 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'continue' ) |
---|
1266 | |
---|
1267 | IF ( host(1:3) == 'nec' ) THEN |
---|
1268 | ! |
---|
1269 | !-- Code optimized for vector processors |
---|
1270 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
1271 | !$OMP DO |
---|
1272 | DO j = nys, nyn |
---|
1273 | |
---|
1274 | DO k = 1, nz |
---|
1275 | DO i = 0, nx |
---|
1276 | work_fftx(i,k,j) = work(j,k,i) |
---|
1277 | ENDDO |
---|
1278 | ENDDO |
---|
1279 | |
---|
1280 | CALL fft_x_m( work_fftx(:,:,j), 'backward' ) |
---|
1281 | |
---|
1282 | ENDDO |
---|
1283 | |
---|
1284 | !$OMP DO |
---|
1285 | DO i = 0, nx |
---|
1286 | DO j = nys, nyn |
---|
1287 | DO k = 1, nz |
---|
1288 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
1289 | ENDDO |
---|
1290 | ENDDO |
---|
1291 | ENDDO |
---|
1292 | !$OMP END PARALLEL |
---|
1293 | |
---|
1294 | ELSE |
---|
1295 | |
---|
1296 | ! |
---|
1297 | !-- Cache optimized code (there might be still a potential for better |
---|
1298 | !-- optimization). |
---|
1299 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
1300 | !$OMP DO |
---|
1301 | DO j = nys, nyn |
---|
1302 | DO k = 1, nz |
---|
1303 | |
---|
1304 | DO i = 0, nx |
---|
1305 | work_fftx(i,k,j) = work(j,k,i) |
---|
1306 | ENDDO |
---|
1307 | |
---|
1308 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'backward' ) |
---|
1309 | |
---|
1310 | ENDDO |
---|
1311 | ENDDO |
---|
1312 | |
---|
1313 | !$OMP DO |
---|
1314 | DO i = 0, nx |
---|
1315 | DO j = nys, nyn |
---|
1316 | DO k = 1, nz |
---|
1317 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
1318 | ENDDO |
---|
1319 | ENDDO |
---|
1320 | ENDDO |
---|
1321 | !$OMP END PARALLEL |
---|
1322 | |
---|
1323 | ENDIF |
---|
1324 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'stop' ) |
---|
1325 | |
---|
1326 | END SUBROUTINE tr_yx_fftx |
---|
1327 | |
---|
1328 | |
---|
1329 | SUBROUTINE ffty_tri_ffty( ar ) |
---|
1330 | |
---|
1331 | !------------------------------------------------------------------------------! |
---|
1332 | ! FFT along y, solution of the tridiagonal system and backward FFT for |
---|
1333 | ! a 1d-decomposition along y |
---|
1334 | ! |
---|
1335 | ! WARNING: this subroutine may still not work for hybrid parallelization |
---|
1336 | ! with OpenMP (for possible necessary changes see the original |
---|
1337 | ! routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
1338 | !------------------------------------------------------------------------------! |
---|
1339 | |
---|
1340 | USE control_parameters, & |
---|
1341 | ONLY: host |
---|
1342 | |
---|
1343 | USE cpulog, & |
---|
1344 | ONLY: cpu_log, log_point_s |
---|
1345 | |
---|
1346 | USE grid_variables, & |
---|
1347 | ONLY: ddx2, ddy2 |
---|
1348 | |
---|
1349 | USE kinds |
---|
1350 | |
---|
1351 | USE pegrid |
---|
1352 | |
---|
1353 | IMPLICIT NONE |
---|
1354 | |
---|
1355 | INTEGER(iwp) :: i !: |
---|
1356 | INTEGER(iwp) :: j !: |
---|
1357 | INTEGER(iwp) :: k !: |
---|
1358 | INTEGER(iwp) :: m !: |
---|
1359 | INTEGER(iwp) :: n !: |
---|
1360 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
1361 | INTEGER(iwp) :: tn !: |
---|
1362 | |
---|
1363 | REAL(wp), DIMENSION(0:ny) :: work_ffty !: |
---|
1364 | REAL(wp), DIMENSION(0:ny,1:nz) :: work_triy !: |
---|
1365 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: ar !: |
---|
1366 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !: |
---|
1367 | |
---|
1368 | |
---|
1369 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'start' ) |
---|
1370 | |
---|
1371 | ALLOCATE( tri(5,0:ny,0:nz-1,0:threads_per_task-1) ) |
---|
1372 | |
---|
1373 | tn = 0 ! Default thread number in case of one thread |
---|
1374 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_ffty, work_triy ) |
---|
1375 | DO i = nxl_y, nxr_y |
---|
1376 | |
---|
1377 | !$ tn = omp_get_thread_num() |
---|
1378 | |
---|
1379 | IF ( host(1:3) == 'nec' ) THEN |
---|
1380 | ! |
---|
1381 | !-- Code optimized for vector processors |
---|
1382 | DO k = 1, nz |
---|
1383 | |
---|
1384 | m = 0 |
---|
1385 | DO n = 1, pdims(2) |
---|
1386 | DO j = 1, nny |
---|
1387 | work_triy(m,k) = ar(j,k,i,n) |
---|
1388 | m = m + 1 |
---|
1389 | ENDDO |
---|
1390 | ENDDO |
---|
1391 | |
---|
1392 | ENDDO |
---|
1393 | |
---|
1394 | CALL fft_y_m( work_triy, ny, 'forward' ) |
---|
1395 | |
---|
1396 | ELSE |
---|
1397 | ! |
---|
1398 | !-- Cache optimized code |
---|
1399 | DO k = 1, nz |
---|
1400 | |
---|
1401 | m = 0 |
---|
1402 | DO n = 1, pdims(2) |
---|
1403 | DO j = 1, nny |
---|
1404 | work_ffty(m) = ar(j,k,i,n) |
---|
1405 | m = m + 1 |
---|
1406 | ENDDO |
---|
1407 | ENDDO |
---|
1408 | |
---|
1409 | CALL fft_y_1d( work_ffty, 'forward' ) |
---|
1410 | |
---|
1411 | DO j = 0, ny |
---|
1412 | work_triy(j,k) = work_ffty(j) |
---|
1413 | ENDDO |
---|
1414 | |
---|
1415 | ENDDO |
---|
1416 | |
---|
1417 | ENDIF |
---|
1418 | |
---|
1419 | ! |
---|
1420 | !-- Solve the linear equation system |
---|
1421 | CALL tridia_1dd( ddy2, ddx2, ny, nx, i, work_triy, tri(:,:,:,tn) ) |
---|
1422 | |
---|
1423 | IF ( host(1:3) == 'nec' ) THEN |
---|
1424 | ! |
---|
1425 | !-- Code optimized for vector processors |
---|
1426 | CALL fft_y_m( work_triy, ny, 'backward' ) |
---|
1427 | |
---|
1428 | DO k = 1, nz |
---|
1429 | |
---|
1430 | m = 0 |
---|
1431 | DO n = 1, pdims(2) |
---|
1432 | DO j = 1, nny |
---|
1433 | ar(j,k,i,n) = work_triy(m,k) |
---|
1434 | m = m + 1 |
---|
1435 | ENDDO |
---|
1436 | ENDDO |
---|
1437 | |
---|
1438 | ENDDO |
---|
1439 | |
---|
1440 | ELSE |
---|
1441 | ! |
---|
1442 | !-- Cache optimized code |
---|
1443 | DO k = 1, nz |
---|
1444 | |
---|
1445 | DO j = 0, ny |
---|
1446 | work_ffty(j) = work_triy(j,k) |
---|
1447 | ENDDO |
---|
1448 | |
---|
1449 | CALL fft_y_1d( work_ffty, 'backward' ) |
---|
1450 | |
---|
1451 | m = 0 |
---|
1452 | DO n = 1, pdims(2) |
---|
1453 | DO j = 1, nny |
---|
1454 | ar(j,k,i,n) = work_ffty(m) |
---|
1455 | m = m + 1 |
---|
1456 | ENDDO |
---|
1457 | ENDDO |
---|
1458 | |
---|
1459 | ENDDO |
---|
1460 | |
---|
1461 | ENDIF |
---|
1462 | |
---|
1463 | ENDDO |
---|
1464 | |
---|
1465 | DEALLOCATE( tri ) |
---|
1466 | |
---|
1467 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'stop' ) |
---|
1468 | |
---|
1469 | END SUBROUTINE ffty_tri_ffty |
---|
1470 | |
---|
1471 | #endif |
---|
1472 | |
---|
1473 | END MODULE poisfft_mod |
---|