[1] | 1 | MODULE poisfft_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
| 6 | ! |
---|
[941] | 7 | ! |
---|
[1] | 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: poisfft.f90 941 2012-07-09 14:50:21Z fricke $ |
---|
[77] | 11 | ! |
---|
[941] | 12 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 13 | ! special handling of tri-array as an argument in tridia_1dd routines switched |
---|
| 14 | ! off because it caused segmentation faults with intel 12.1 compiler |
---|
| 15 | ! |
---|
[878] | 16 | ! 877 2012-04-03 11:21:44Z suehring |
---|
| 17 | ! Bugfix: Avoid divisions by zero in case of using a 'neumann' bc for the |
---|
| 18 | ! pressure at the top of the model domain. |
---|
| 19 | ! |
---|
[810] | 20 | ! 809 2012-01-30 13:32:58Z maronga |
---|
| 21 | ! Bugfix: replaced .AND. and .NOT. with && and ! in the preprocessor directives |
---|
| 22 | ! |
---|
[808] | 23 | ! 807 2012-01-25 11:53:51Z maronga |
---|
| 24 | ! New cpp directive "__check" implemented which is used by check_namelist_files |
---|
| 25 | ! (most of the code is unneeded by check_namelist_files). |
---|
| 26 | ! |
---|
[764] | 27 | ! 763 2011-10-06 09:32:09Z suehring |
---|
| 28 | ! Comment added concerning the last change. |
---|
| 29 | ! |
---|
[762] | 30 | ! 761 2011-10-05 17:58:52Z suehring |
---|
| 31 | ! Bugfix: Avoid divisions by zero in case of using a 'neumann' bc for the |
---|
| 32 | ! pressure at the top of the model domain. |
---|
| 33 | ! |
---|
[697] | 34 | ! 696 2011-03-18 07:03:49Z raasch |
---|
| 35 | ! work_fftx removed from PRIVATE clauses in fftx_tr_xy and tr_yx_fftx |
---|
| 36 | ! |
---|
[684] | 37 | ! 683 2011-02-09 14:25:15Z raasch |
---|
| 38 | ! openMP parallelization for 2d-domain-decomposition |
---|
| 39 | ! |
---|
[668] | 40 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 41 | ! ddzu replaced by ddzu_pres due to changes in zu(0) |
---|
| 42 | ! |
---|
[623] | 43 | ! 622 2010-12-10 08:08:13Z raasch |
---|
| 44 | ! optional barriers included in order to speed up collective operations |
---|
| 45 | ! |
---|
[392] | 46 | ! 377 2009-09-04 11:09:00Z raasch |
---|
| 47 | ! __lcmuk changed to __lc to avoid problems with Intel compiler on sgi-ice |
---|
| 48 | ! |
---|
[198] | 49 | ! 164 2008-05-15 08:46:15Z raasch |
---|
| 50 | ! Arguments removed from transpose routines |
---|
| 51 | ! |
---|
[139] | 52 | ! 128 2007-10-26 13:11:14Z raasch |
---|
| 53 | ! Bugfix: wavenumber calculation for even nx in routines maketri |
---|
| 54 | ! |
---|
[90] | 55 | ! 85 2007-05-11 09:35:14Z raasch |
---|
| 56 | ! Bugfix: work_fft*_vec removed from some PRIVATE-declarations |
---|
| 57 | ! |
---|
[77] | 58 | ! 76 2007-03-29 00:58:32Z raasch |
---|
| 59 | ! Tridiagonal coefficients adjusted for Neumann boundary conditions both at |
---|
| 60 | ! the bottom and the top. |
---|
| 61 | ! |
---|
[3] | 62 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 63 | ! |
---|
[1] | 64 | ! Revision 1.24 2006/08/04 15:00:24 raasch |
---|
| 65 | ! Default setting of the thread number tn in case of not using OpenMP |
---|
| 66 | ! |
---|
| 67 | ! Revision 1.23 2006/02/23 12:48:38 raasch |
---|
| 68 | ! Additional compiler directive in routine tridia_1dd for preventing loop |
---|
| 69 | ! exchange on NEC-SX6 |
---|
| 70 | ! |
---|
| 71 | ! Revision 1.20 2004/04/30 12:38:09 raasch |
---|
| 72 | ! Parts of former poisfft_hybrid moved to this subroutine, |
---|
| 73 | ! former subroutine changed to a module, renaming of FFT-subroutines and |
---|
| 74 | ! -module, FFTs completely substituted by calls of fft_x and fft_y, |
---|
| 75 | ! NAG fft used in the non-parallel case completely removed, l in maketri |
---|
| 76 | ! is now a 1d-array, variables passed by modules instead of using parameter |
---|
| 77 | ! lists, enlarged transposition arrays introduced |
---|
| 78 | ! |
---|
| 79 | ! Revision 1.1 1997/07/24 11:24:14 raasch |
---|
| 80 | ! Initial revision |
---|
| 81 | ! |
---|
| 82 | ! |
---|
| 83 | ! Description: |
---|
| 84 | ! ------------ |
---|
| 85 | ! See below. |
---|
| 86 | !------------------------------------------------------------------------------! |
---|
| 87 | |
---|
| 88 | !--------------------------------------------------------------------------! |
---|
| 89 | ! poisfft ! |
---|
| 90 | ! ! |
---|
| 91 | ! Original version: Stephan Siano (pois3d) ! |
---|
| 92 | ! ! |
---|
| 93 | ! Institute of Meteorology and Climatology, University of Hannover ! |
---|
| 94 | ! Germany ! |
---|
| 95 | ! ! |
---|
| 96 | ! Version as of July 23,1996 ! |
---|
| 97 | ! ! |
---|
| 98 | ! ! |
---|
| 99 | ! Version for parallel computers: Siegfried Raasch ! |
---|
| 100 | ! ! |
---|
| 101 | ! Version as of July 03,1997 ! |
---|
| 102 | ! ! |
---|
| 103 | ! Solves the Poisson equation with a 2D spectral method ! |
---|
| 104 | ! d^2 p / dx^2 + d^2 p / dy^2 + d^2 p / dz^2 = s ! |
---|
| 105 | ! ! |
---|
| 106 | ! Input: ! |
---|
| 107 | ! real ar contains in the (nnx,nny,nnz) elements, ! |
---|
| 108 | ! starting from the element (1,nys,nxl), the ! |
---|
| 109 | ! values for s ! |
---|
| 110 | ! real work Temporary array ! |
---|
| 111 | ! ! |
---|
| 112 | ! Output: ! |
---|
| 113 | ! real ar contains the solution for p ! |
---|
| 114 | !--------------------------------------------------------------------------! |
---|
| 115 | |
---|
| 116 | USE fft_xy |
---|
| 117 | USE indices |
---|
| 118 | USE transpose_indices |
---|
| 119 | |
---|
| 120 | IMPLICIT NONE |
---|
| 121 | |
---|
| 122 | PRIVATE |
---|
[807] | 123 | |
---|
[809] | 124 | #if ! defined ( __check ) |
---|
[1] | 125 | PUBLIC poisfft, poisfft_init |
---|
| 126 | |
---|
| 127 | INTERFACE poisfft |
---|
| 128 | MODULE PROCEDURE poisfft |
---|
| 129 | END INTERFACE poisfft |
---|
| 130 | |
---|
| 131 | INTERFACE poisfft_init |
---|
| 132 | MODULE PROCEDURE poisfft_init |
---|
| 133 | END INTERFACE poisfft_init |
---|
[807] | 134 | #else |
---|
| 135 | PUBLIC poisfft_init |
---|
[1] | 136 | |
---|
[807] | 137 | INTERFACE poisfft_init |
---|
| 138 | MODULE PROCEDURE poisfft_init |
---|
| 139 | END INTERFACE poisfft_init |
---|
| 140 | #endif |
---|
| 141 | |
---|
[1] | 142 | CONTAINS |
---|
| 143 | |
---|
| 144 | SUBROUTINE poisfft_init |
---|
| 145 | |
---|
| 146 | CALL fft_init |
---|
| 147 | |
---|
| 148 | END SUBROUTINE poisfft_init |
---|
| 149 | |
---|
[809] | 150 | #if ! defined ( __check ) |
---|
[1] | 151 | SUBROUTINE poisfft( ar, work ) |
---|
| 152 | |
---|
| 153 | USE cpulog |
---|
| 154 | USE interfaces |
---|
| 155 | USE pegrid |
---|
| 156 | |
---|
| 157 | IMPLICIT NONE |
---|
| 158 | |
---|
| 159 | REAL, DIMENSION(1:nza,nys:nyna,nxl:nxra) :: ar, work |
---|
| 160 | |
---|
| 161 | |
---|
| 162 | CALL cpu_log( log_point_s(3), 'poisfft', 'start' ) |
---|
| 163 | |
---|
| 164 | ! |
---|
| 165 | !-- Two-dimensional Fourier Transformation in x- and y-direction. |
---|
| 166 | #if defined( __parallel ) |
---|
| 167 | IF ( pdims(2) == 1 ) THEN |
---|
| 168 | |
---|
| 169 | ! |
---|
| 170 | !-- 1d-domain-decomposition along x: |
---|
| 171 | !-- FFT along y and transposition y --> x |
---|
| 172 | CALL ffty_tr_yx( ar, work, ar ) |
---|
| 173 | |
---|
| 174 | ! |
---|
| 175 | !-- FFT along x, solving the tridiagonal system and backward FFT |
---|
| 176 | CALL fftx_tri_fftx( ar ) |
---|
| 177 | |
---|
| 178 | ! |
---|
| 179 | !-- Transposition x --> y and backward FFT along y |
---|
| 180 | CALL tr_xy_ffty( ar, work, ar ) |
---|
| 181 | |
---|
| 182 | ELSEIF ( pdims(1) == 1 ) THEN |
---|
| 183 | |
---|
| 184 | ! |
---|
| 185 | !-- 1d-domain-decomposition along y: |
---|
| 186 | !-- FFT along x and transposition x --> y |
---|
| 187 | CALL fftx_tr_xy( ar, work, ar ) |
---|
| 188 | |
---|
| 189 | ! |
---|
| 190 | !-- FFT along y, solving the tridiagonal system and backward FFT |
---|
| 191 | CALL ffty_tri_ffty( ar ) |
---|
| 192 | |
---|
| 193 | ! |
---|
| 194 | !-- Transposition y --> x and backward FFT along x |
---|
| 195 | CALL tr_yx_fftx( ar, work, ar ) |
---|
| 196 | |
---|
| 197 | ELSE |
---|
| 198 | |
---|
| 199 | ! |
---|
| 200 | !-- 2d-domain-decomposition |
---|
| 201 | !-- Transposition z --> x |
---|
| 202 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start' ) |
---|
[164] | 203 | CALL transpose_zx( ar, work, ar ) |
---|
[1] | 204 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 205 | |
---|
| 206 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
| 207 | CALL fftxp( ar, 'forward' ) |
---|
| 208 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
| 209 | |
---|
| 210 | ! |
---|
| 211 | !-- Transposition x --> y |
---|
| 212 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[164] | 213 | CALL transpose_xy( ar, work, ar ) |
---|
[1] | 214 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 215 | |
---|
| 216 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
| 217 | CALL fftyp( ar, 'forward' ) |
---|
| 218 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 219 | |
---|
| 220 | ! |
---|
| 221 | !-- Transposition y --> z |
---|
| 222 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[164] | 223 | CALL transpose_yz( ar, work, ar ) |
---|
[1] | 224 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
| 225 | |
---|
| 226 | ! |
---|
| 227 | !-- Solve the Poisson equation in z-direction in cartesian space. |
---|
| 228 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
| 229 | CALL tridia( ar ) |
---|
| 230 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
| 231 | |
---|
| 232 | ! |
---|
| 233 | !-- Inverse Fourier Transformation |
---|
| 234 | !-- Transposition z --> y |
---|
| 235 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start' ) |
---|
[164] | 236 | CALL transpose_zy( ar, work, ar ) |
---|
[1] | 237 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 238 | |
---|
| 239 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
| 240 | CALL fftyp( ar, 'backward' ) |
---|
| 241 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 242 | |
---|
| 243 | ! |
---|
| 244 | !-- Transposition y --> x |
---|
| 245 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[164] | 246 | CALL transpose_yx( ar, work, ar ) |
---|
[1] | 247 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 248 | |
---|
| 249 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
| 250 | CALL fftxp( ar, 'backward' ) |
---|
| 251 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 252 | |
---|
| 253 | ! |
---|
| 254 | !-- Transposition x --> z |
---|
| 255 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[164] | 256 | CALL transpose_xz( ar, work, ar ) |
---|
[1] | 257 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
| 258 | |
---|
| 259 | ENDIF |
---|
| 260 | |
---|
| 261 | #else |
---|
| 262 | |
---|
| 263 | ! |
---|
| 264 | !-- Two-dimensional Fourier Transformation along x- and y-direction. |
---|
| 265 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
| 266 | CALL fftx( ar, 'forward' ) |
---|
| 267 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
| 268 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
| 269 | CALL ffty( ar, 'forward' ) |
---|
| 270 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 271 | |
---|
| 272 | ! |
---|
| 273 | !-- Solve the Poisson equation in z-direction in cartesian space. |
---|
| 274 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
| 275 | CALL tridia( ar ) |
---|
| 276 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
| 277 | |
---|
| 278 | ! |
---|
| 279 | !-- Inverse Fourier Transformation. |
---|
| 280 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
| 281 | CALL ffty( ar, 'backward' ) |
---|
| 282 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 283 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
| 284 | CALL fftx( ar, 'backward' ) |
---|
| 285 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 286 | |
---|
| 287 | #endif |
---|
| 288 | |
---|
| 289 | CALL cpu_log( log_point_s(3), 'poisfft', 'stop' ) |
---|
| 290 | |
---|
| 291 | END SUBROUTINE poisfft |
---|
| 292 | |
---|
| 293 | |
---|
| 294 | |
---|
| 295 | SUBROUTINE tridia( ar ) |
---|
| 296 | |
---|
| 297 | !------------------------------------------------------------------------------! |
---|
| 298 | ! solves the linear system of equations: |
---|
| 299 | ! |
---|
| 300 | ! -(4 pi^2(i^2/(dx^2*nnx^2)+j^2/(dy^2*nny^2))+ |
---|
| 301 | ! 1/(dzu(k)*dzw(k))+1/(dzu(k-1)*dzw(k)))*p(i,j,k)+ |
---|
| 302 | ! 1/(dzu(k)*dzw(k))*p(i,j,k+1)+1/(dzu(k-1)*dzw(k))*p(i,j,k-1)=d(i,j,k) |
---|
| 303 | ! |
---|
| 304 | ! by using the Thomas algorithm |
---|
| 305 | !------------------------------------------------------------------------------! |
---|
| 306 | |
---|
| 307 | USE arrays_3d |
---|
| 308 | |
---|
| 309 | IMPLICIT NONE |
---|
| 310 | |
---|
| 311 | INTEGER :: i, j, k, nnyh |
---|
| 312 | |
---|
| 313 | REAL, DIMENSION(nxl_z:nxr_z,0:nz-1) :: ar1 |
---|
| 314 | REAL, DIMENSION(5,nxl_z:nxr_z,0:nz-1) :: tri |
---|
| 315 | |
---|
| 316 | #if defined( __parallel ) |
---|
| 317 | REAL :: ar(nxl_z:nxr_za,nys_z:nyn_za,1:nza) |
---|
| 318 | #else |
---|
| 319 | REAL :: ar(1:nz,nys_z:nyn_z,nxl_z:nxr_z) |
---|
| 320 | #endif |
---|
| 321 | |
---|
| 322 | |
---|
| 323 | nnyh = (ny+1) / 2 |
---|
| 324 | |
---|
| 325 | ! |
---|
| 326 | !-- Define constant elements of the tridiagonal matrix. |
---|
[683] | 327 | !$OMP PARALLEL PRIVATE ( k, i ) |
---|
| 328 | !$OMP DO |
---|
[1] | 329 | DO k = 0, nz-1 |
---|
| 330 | DO i = nxl_z, nxr_z |
---|
[667] | 331 | tri(2,i,k) = ddzu_pres(k+1) * ddzw(k+1) |
---|
| 332 | tri(3,i,k) = ddzu_pres(k+2) * ddzw(k+1) |
---|
[1] | 333 | ENDDO |
---|
| 334 | ENDDO |
---|
[683] | 335 | !$OMP END PARALLEL |
---|
[1] | 336 | |
---|
| 337 | #if defined( __parallel ) |
---|
| 338 | ! |
---|
| 339 | !-- Repeat for all y-levels. |
---|
[683] | 340 | !$OMP PARALLEL FIRSTPRIVATE( tri ) PRIVATE ( ar1, j ) |
---|
| 341 | !$OMP DO |
---|
[1] | 342 | DO j = nys_z, nyn_z |
---|
| 343 | IF ( j <= nnyh ) THEN |
---|
| 344 | CALL maketri( tri, j ) |
---|
| 345 | ELSE |
---|
| 346 | CALL maketri( tri, ny+1-j ) |
---|
| 347 | ENDIF |
---|
| 348 | CALL split( tri ) |
---|
| 349 | CALL substi( ar, ar1, tri, j ) |
---|
| 350 | ENDDO |
---|
[683] | 351 | !$OMP END PARALLEL |
---|
[1] | 352 | #else |
---|
| 353 | ! |
---|
| 354 | !-- First y-level. |
---|
| 355 | CALL maketri( tri, nys_z ) |
---|
| 356 | CALL split( tri ) |
---|
| 357 | CALL substi( ar, ar1, tri, 0 ) |
---|
| 358 | |
---|
| 359 | ! |
---|
| 360 | !-- Further y-levels. |
---|
| 361 | DO j = 1, nnyh - 1 |
---|
| 362 | CALL maketri( tri, j ) |
---|
| 363 | CALL split( tri ) |
---|
| 364 | CALL substi( ar, ar1, tri, j ) |
---|
| 365 | CALL substi( ar, ar1, tri, ny+1-j ) |
---|
| 366 | ENDDO |
---|
| 367 | CALL maketri( tri, nnyh ) |
---|
| 368 | CALL split( tri ) |
---|
| 369 | CALL substi( ar, ar1, tri, nnyh+nys ) |
---|
| 370 | #endif |
---|
| 371 | |
---|
| 372 | CONTAINS |
---|
| 373 | |
---|
| 374 | SUBROUTINE maketri( tri, j ) |
---|
| 375 | |
---|
| 376 | !------------------------------------------------------------------------------! |
---|
| 377 | ! Computes the i- and j-dependent component of the matrix |
---|
| 378 | !------------------------------------------------------------------------------! |
---|
| 379 | |
---|
| 380 | USE arrays_3d |
---|
| 381 | USE constants |
---|
| 382 | USE control_parameters |
---|
| 383 | USE grid_variables |
---|
| 384 | |
---|
| 385 | IMPLICIT NONE |
---|
| 386 | |
---|
| 387 | INTEGER :: i, j, k, nnxh |
---|
| 388 | REAL :: a, c |
---|
| 389 | REAL :: ll(nxl_z:nxr_z) |
---|
| 390 | REAL :: tri(5,nxl_z:nxr_z,0:nz-1) |
---|
| 391 | |
---|
| 392 | |
---|
| 393 | nnxh = ( nx + 1 ) / 2 |
---|
| 394 | |
---|
| 395 | ! |
---|
| 396 | !-- Provide the tridiagonal matrix for solution of the Poisson equation in |
---|
| 397 | !-- Fourier space. The coefficients are computed following the method of |
---|
| 398 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 399 | !-- Siano's original version by discretizing the Poisson equation, |
---|
| 400 | !-- before it is Fourier-transformed |
---|
| 401 | #if defined( __parallel ) |
---|
| 402 | DO i = nxl_z, nxr_z |
---|
[128] | 403 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1] | 404 | ll(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * i ) / & |
---|
| 405 | FLOAT( nx+1 ) ) ) / ( dx * dx ) + & |
---|
| 406 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
| 407 | FLOAT( ny+1 ) ) ) / ( dy * dy ) |
---|
| 408 | ELSE |
---|
| 409 | ll(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( nx+1-i ) ) / & |
---|
| 410 | FLOAT( nx+1 ) ) ) / ( dx * dx ) + & |
---|
| 411 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
| 412 | FLOAT( ny+1 ) ) ) / ( dy * dy ) |
---|
| 413 | ENDIF |
---|
| 414 | DO k = 0,nz-1 |
---|
[667] | 415 | a = -1.0 * ddzu_pres(k+2) * ddzw(k+1) |
---|
| 416 | c = -1.0 * ddzu_pres(k+1) * ddzw(k+1) |
---|
[1] | 417 | tri(1,i,k) = a + c - ll(i) |
---|
| 418 | ENDDO |
---|
| 419 | ENDDO |
---|
| 420 | #else |
---|
| 421 | DO i = 0, nnxh |
---|
| 422 | ll(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * i ) / FLOAT( nx+1 ) ) ) / & |
---|
| 423 | ( dx * dx ) + & |
---|
| 424 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / FLOAT( ny+1 ) ) ) / & |
---|
| 425 | ( dy * dy ) |
---|
| 426 | DO k = 0, nz-1 |
---|
[667] | 427 | a = -1.0 * ddzu_pres(k+2) * ddzw(k+1) |
---|
| 428 | c = -1.0 * ddzu_pres(k+1) * ddzw(k+1) |
---|
[1] | 429 | tri(1,i,k) = a + c - ll(i) |
---|
| 430 | IF ( i >= 1 .and. i < nnxh ) THEN |
---|
| 431 | tri(1,nx+1-i,k) = tri(1,i,k) |
---|
| 432 | ENDIF |
---|
| 433 | ENDDO |
---|
| 434 | ENDDO |
---|
| 435 | #endif |
---|
| 436 | IF ( ibc_p_b == 1 .OR. ibc_p_b == 2 ) THEN |
---|
| 437 | DO i = nxl_z, nxr_z |
---|
| 438 | tri(1,i,0) = tri(1,i,0) + tri(2,i,0) |
---|
| 439 | ENDDO |
---|
| 440 | ENDIF |
---|
| 441 | IF ( ibc_p_t == 1 ) THEN |
---|
| 442 | DO i = nxl_z, nxr_z |
---|
| 443 | tri(1,i,nz-1) = tri(1,i,nz-1) + tri(3,i,nz-1) |
---|
| 444 | ENDDO |
---|
| 445 | ENDIF |
---|
| 446 | |
---|
| 447 | END SUBROUTINE maketri |
---|
| 448 | |
---|
| 449 | |
---|
| 450 | SUBROUTINE substi( ar, ar1, tri, j ) |
---|
| 451 | |
---|
| 452 | !------------------------------------------------------------------------------! |
---|
| 453 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
| 454 | !------------------------------------------------------------------------------! |
---|
| 455 | |
---|
[76] | 456 | USE control_parameters |
---|
| 457 | |
---|
[1] | 458 | IMPLICIT NONE |
---|
| 459 | |
---|
| 460 | INTEGER :: i, j, k |
---|
| 461 | REAL :: ar1(nxl_z:nxr_z,0:nz-1) |
---|
| 462 | REAL :: tri(5,nxl_z:nxr_z,0:nz-1) |
---|
| 463 | #if defined( __parallel ) |
---|
| 464 | REAL :: ar(nxl_z:nxr_za,nys_z:nyn_za,1:nza) |
---|
| 465 | #else |
---|
| 466 | REAL :: ar(1:nz,nys_z:nyn_z,nxl_z:nxr_z) |
---|
| 467 | #endif |
---|
| 468 | |
---|
| 469 | ! |
---|
| 470 | !-- Forward substitution. |
---|
| 471 | DO i = nxl_z, nxr_z |
---|
| 472 | #if defined( __parallel ) |
---|
| 473 | ar1(i,0) = ar(i,j,1) |
---|
| 474 | #else |
---|
| 475 | ar1(i,0) = ar(1,j,i) |
---|
| 476 | #endif |
---|
| 477 | ENDDO |
---|
| 478 | DO k = 1, nz - 1 |
---|
| 479 | DO i = nxl_z, nxr_z |
---|
| 480 | #if defined( __parallel ) |
---|
| 481 | ar1(i,k) = ar(i,j,k+1) - tri(5,i,k) * ar1(i,k-1) |
---|
| 482 | #else |
---|
| 483 | ar1(i,k) = ar(k+1,j,i) - tri(5,i,k) * ar1(i,k-1) |
---|
| 484 | #endif |
---|
| 485 | ENDDO |
---|
| 486 | ENDDO |
---|
| 487 | |
---|
| 488 | ! |
---|
[877] | 489 | !-- Backward substitution |
---|
| 490 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions |
---|
| 491 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 492 | !-- the model domain. |
---|
[1] | 493 | DO i = nxl_z, nxr_z |
---|
| 494 | #if defined( __parallel ) |
---|
[877] | 495 | ar(i,j,nz) = ar1(i,nz-1) / ( tri(4,i,nz-1) + 1.0E-20 ) |
---|
[1] | 496 | #else |
---|
[877] | 497 | ar(nz,j,i) = ar1(i,nz-1) / ( tri(4,i,nz-1) + 1.0E-20 ) |
---|
[1] | 498 | #endif |
---|
| 499 | ENDDO |
---|
| 500 | DO k = nz-2, 0, -1 |
---|
| 501 | DO i = nxl_z, nxr_z |
---|
| 502 | #if defined( __parallel ) |
---|
| 503 | ar(i,j,k+1) = ( ar1(i,k) - tri(3,i,k) * ar(i,j,k+2) ) & |
---|
| 504 | / tri(4,i,k) |
---|
| 505 | #else |
---|
| 506 | ar(k+1,j,i) = ( ar1(i,k) - tri(3,i,k) * ar(k+2,j,i) ) & |
---|
| 507 | / tri(4,i,k) |
---|
| 508 | #endif |
---|
| 509 | ENDDO |
---|
| 510 | ENDDO |
---|
| 511 | |
---|
[76] | 512 | ! |
---|
| 513 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 514 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 515 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 516 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 517 | IF ( j == 0 .AND. nxl_z == 0 ) THEN |
---|
| 518 | #if defined( __parallel ) |
---|
| 519 | DO k = 1, nz |
---|
| 520 | ar(nxl_z,j,k) = 0.0 |
---|
| 521 | ENDDO |
---|
| 522 | #else |
---|
| 523 | DO k = 1, nz |
---|
| 524 | ar(k,j,nxl_z) = 0.0 |
---|
| 525 | ENDDO |
---|
| 526 | #endif |
---|
| 527 | ENDIF |
---|
| 528 | ENDIF |
---|
| 529 | |
---|
[1] | 530 | END SUBROUTINE substi |
---|
| 531 | |
---|
| 532 | |
---|
| 533 | SUBROUTINE split( tri ) |
---|
| 534 | |
---|
| 535 | !------------------------------------------------------------------------------! |
---|
| 536 | ! Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
| 537 | !------------------------------------------------------------------------------! |
---|
| 538 | |
---|
| 539 | IMPLICIT NONE |
---|
| 540 | |
---|
| 541 | INTEGER :: i, k |
---|
| 542 | REAL :: tri(5,nxl_z:nxr_z,0:nz-1) |
---|
| 543 | |
---|
| 544 | ! |
---|
| 545 | !-- Splitting. |
---|
| 546 | DO i = nxl_z, nxr_z |
---|
| 547 | tri(4,i,0) = tri(1,i,0) |
---|
| 548 | ENDDO |
---|
| 549 | DO k = 1, nz-1 |
---|
| 550 | DO i = nxl_z, nxr_z |
---|
| 551 | tri(5,i,k) = tri(2,i,k) / tri(4,i,k-1) |
---|
| 552 | tri(4,i,k) = tri(1,i,k) - tri(3,i,k-1) * tri(5,i,k) |
---|
| 553 | ENDDO |
---|
| 554 | ENDDO |
---|
| 555 | |
---|
| 556 | END SUBROUTINE split |
---|
| 557 | |
---|
| 558 | END SUBROUTINE tridia |
---|
| 559 | |
---|
| 560 | |
---|
| 561 | #if defined( __parallel ) |
---|
| 562 | SUBROUTINE fftxp( ar, direction ) |
---|
| 563 | |
---|
| 564 | !------------------------------------------------------------------------------! |
---|
| 565 | ! Fourier-transformation along x-direction Parallelized version |
---|
| 566 | !------------------------------------------------------------------------------! |
---|
| 567 | |
---|
| 568 | IMPLICIT NONE |
---|
| 569 | |
---|
| 570 | CHARACTER (LEN=*) :: direction |
---|
| 571 | INTEGER :: j, k |
---|
| 572 | REAL :: ar(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa) |
---|
| 573 | |
---|
| 574 | ! |
---|
| 575 | !-- Performing the fft with one of the methods implemented |
---|
[683] | 576 | !$OMP PARALLEL PRIVATE ( j, k ) |
---|
| 577 | !$OMP DO |
---|
[1] | 578 | DO k = nzb_x, nzt_x |
---|
| 579 | DO j = nys_x, nyn_x |
---|
| 580 | CALL fft_x( ar(0:nx,j,k), direction ) |
---|
| 581 | ENDDO |
---|
| 582 | ENDDO |
---|
[683] | 583 | !$OMP END PARALLEL |
---|
[1] | 584 | |
---|
| 585 | END SUBROUTINE fftxp |
---|
| 586 | |
---|
| 587 | #else |
---|
| 588 | SUBROUTINE fftx( ar, direction ) |
---|
| 589 | |
---|
| 590 | !------------------------------------------------------------------------------! |
---|
| 591 | ! Fourier-transformation along x-direction Non parallel version |
---|
| 592 | !------------------------------------------------------------------------------! |
---|
| 593 | |
---|
| 594 | IMPLICIT NONE |
---|
| 595 | |
---|
| 596 | CHARACTER (LEN=*) :: direction |
---|
| 597 | INTEGER :: i, j, k |
---|
| 598 | REAL :: ar(1:nz,0:ny,0:nx) |
---|
| 599 | |
---|
| 600 | ! |
---|
| 601 | !-- Performing the fft with one of the methods implemented |
---|
[683] | 602 | !$OMP PARALLEL PRIVATE ( j, k ) |
---|
| 603 | !$OMP DO |
---|
[1] | 604 | DO k = 1, nz |
---|
| 605 | DO j = 0, ny |
---|
| 606 | CALL fft_x( ar(k,j,0:nx), direction ) |
---|
| 607 | ENDDO |
---|
| 608 | ENDDO |
---|
[683] | 609 | !$OMP END PARALLEL |
---|
[1] | 610 | |
---|
| 611 | END SUBROUTINE fftx |
---|
| 612 | #endif |
---|
| 613 | |
---|
| 614 | |
---|
| 615 | #if defined( __parallel ) |
---|
| 616 | SUBROUTINE fftyp( ar, direction ) |
---|
| 617 | |
---|
| 618 | !------------------------------------------------------------------------------! |
---|
| 619 | ! Fourier-transformation along y-direction Parallelized version |
---|
| 620 | !------------------------------------------------------------------------------! |
---|
| 621 | |
---|
| 622 | IMPLICIT NONE |
---|
| 623 | |
---|
| 624 | CHARACTER (LEN=*) :: direction |
---|
| 625 | INTEGER :: i, k |
---|
| 626 | REAL :: ar(0:nya,nxl_y:nxr_ya,nzb_y:nzt_ya) |
---|
| 627 | |
---|
| 628 | ! |
---|
| 629 | !-- Performing the fft with one of the methods implemented |
---|
[683] | 630 | !$OMP PARALLEL PRIVATE ( i, k ) |
---|
| 631 | !$OMP DO |
---|
[1] | 632 | DO k = nzb_y, nzt_y |
---|
| 633 | DO i = nxl_y, nxr_y |
---|
| 634 | CALL fft_y( ar(0:ny,i,k), direction ) |
---|
| 635 | ENDDO |
---|
| 636 | ENDDO |
---|
[683] | 637 | !$OMP END PARALLEL |
---|
[1] | 638 | |
---|
| 639 | END SUBROUTINE fftyp |
---|
| 640 | |
---|
| 641 | #else |
---|
| 642 | SUBROUTINE ffty( ar, direction ) |
---|
| 643 | |
---|
| 644 | !------------------------------------------------------------------------------! |
---|
| 645 | ! Fourier-transformation along y-direction Non parallel version |
---|
| 646 | !------------------------------------------------------------------------------! |
---|
| 647 | |
---|
| 648 | IMPLICIT NONE |
---|
| 649 | |
---|
| 650 | CHARACTER (LEN=*) :: direction |
---|
| 651 | INTEGER :: i, k |
---|
| 652 | REAL :: ar(1:nz,0:ny,0:nx) |
---|
| 653 | |
---|
| 654 | ! |
---|
| 655 | !-- Performing the fft with one of the methods implemented |
---|
[683] | 656 | !$OMP PARALLEL PRIVATE ( i, k ) |
---|
| 657 | !$OMP DO |
---|
[1] | 658 | DO k = 1, nz |
---|
| 659 | DO i = 0, nx |
---|
| 660 | CALL fft_y( ar(k,0:ny,i), direction ) |
---|
| 661 | ENDDO |
---|
| 662 | ENDDO |
---|
[683] | 663 | !$OMP END PARALLEL |
---|
[1] | 664 | |
---|
| 665 | END SUBROUTINE ffty |
---|
| 666 | #endif |
---|
| 667 | |
---|
| 668 | #if defined( __parallel ) |
---|
| 669 | SUBROUTINE ffty_tr_yx( f_in, work, f_out ) |
---|
| 670 | |
---|
| 671 | !------------------------------------------------------------------------------! |
---|
| 672 | ! Fourier-transformation along y with subsequent transposition y --> x for |
---|
| 673 | ! a 1d-decomposition along x |
---|
| 674 | ! |
---|
| 675 | ! ATTENTION: The performance of this routine is much faster on the NEC-SX6, |
---|
| 676 | ! if the first index of work_ffty_vec is odd. Otherwise |
---|
| 677 | ! memory bank conflicts may occur (especially if the index is a |
---|
| 678 | ! multiple of 128). That's why work_ffty_vec is dimensioned as |
---|
| 679 | ! 0:ny+1. |
---|
| 680 | ! Of course, this will not work if users are using an odd number |
---|
| 681 | ! of gridpoints along y. |
---|
| 682 | !------------------------------------------------------------------------------! |
---|
| 683 | |
---|
| 684 | USE control_parameters |
---|
| 685 | USE cpulog |
---|
| 686 | USE indices |
---|
| 687 | USE interfaces |
---|
| 688 | USE pegrid |
---|
| 689 | USE transpose_indices |
---|
| 690 | |
---|
| 691 | IMPLICIT NONE |
---|
| 692 | |
---|
| 693 | INTEGER :: i, iend, iouter, ir, j, k |
---|
| 694 | INTEGER, PARAMETER :: stridex = 4 |
---|
| 695 | |
---|
| 696 | REAL, DIMENSION(0:ny,stridex) :: work_ffty |
---|
| 697 | #if defined( __nec ) |
---|
| 698 | REAL, DIMENSION(0:ny+1,1:nz,nxl:nxr) :: work_ffty_vec |
---|
| 699 | #endif |
---|
| 700 | REAL, DIMENSION(1:nza,0:nya,nxl:nxra) :: f_in |
---|
| 701 | REAL, DIMENSION(nnx,1:nza,nys_x:nyn_xa,pdims(1)) :: f_out |
---|
| 702 | REAL, DIMENSION(nxl:nxra,1:nza,0:nya) :: work |
---|
| 703 | |
---|
| 704 | ! |
---|
| 705 | !-- Carry out the FFT along y, where all data are present due to the |
---|
| 706 | !-- 1d-decomposition along x. Resort the data in a way that x becomes |
---|
| 707 | !-- the first index. |
---|
| 708 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
| 709 | |
---|
| 710 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 711 | #if defined( __nec ) |
---|
| 712 | ! |
---|
| 713 | !-- Code optimized for vector processors |
---|
[85] | 714 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 715 | !$OMP DO |
---|
| 716 | DO i = nxl, nxr |
---|
| 717 | |
---|
| 718 | DO j = 0, ny |
---|
| 719 | DO k = 1, nz |
---|
| 720 | work_ffty_vec(j,k,i) = f_in(k,j,i) |
---|
| 721 | ENDDO |
---|
| 722 | ENDDO |
---|
| 723 | |
---|
| 724 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'forward' ) |
---|
| 725 | |
---|
| 726 | ENDDO |
---|
| 727 | |
---|
| 728 | !$OMP DO |
---|
| 729 | DO k = 1, nz |
---|
| 730 | DO j = 0, ny |
---|
| 731 | DO i = nxl, nxr |
---|
| 732 | work(i,k,j) = work_ffty_vec(j,k,i) |
---|
| 733 | ENDDO |
---|
| 734 | ENDDO |
---|
| 735 | ENDDO |
---|
| 736 | !$OMP END PARALLEL |
---|
| 737 | #endif |
---|
| 738 | |
---|
| 739 | ELSE |
---|
| 740 | |
---|
| 741 | ! |
---|
| 742 | !-- Cache optimized code. |
---|
| 743 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 744 | !-- loop for better cache performance |
---|
| 745 | !$OMP PARALLEL PRIVATE (i,iend,iouter,ir,j,k,work_ffty) |
---|
| 746 | !$OMP DO |
---|
| 747 | DO iouter = nxl, nxr, stridex |
---|
| 748 | |
---|
| 749 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 750 | |
---|
| 751 | DO k = 1, nz |
---|
| 752 | |
---|
| 753 | DO i = iouter, iend |
---|
| 754 | |
---|
| 755 | ir = i-iouter+1 ! counter within a stride |
---|
| 756 | DO j = 0, ny |
---|
| 757 | work_ffty(j,ir) = f_in(k,j,i) |
---|
| 758 | ENDDO |
---|
| 759 | ! |
---|
| 760 | !-- FFT along y |
---|
| 761 | CALL fft_y( work_ffty(:,ir), 'forward' ) |
---|
| 762 | |
---|
| 763 | ENDDO |
---|
| 764 | |
---|
| 765 | ! |
---|
| 766 | !-- Resort |
---|
| 767 | DO j = 0, ny |
---|
| 768 | DO i = iouter, iend |
---|
| 769 | work(i,k,j) = work_ffty(j,i-iouter+1) |
---|
| 770 | ENDDO |
---|
| 771 | ENDDO |
---|
| 772 | |
---|
| 773 | ENDDO |
---|
| 774 | |
---|
| 775 | ENDDO |
---|
| 776 | !$OMP END PARALLEL |
---|
| 777 | |
---|
| 778 | ENDIF |
---|
| 779 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 780 | |
---|
| 781 | ! |
---|
| 782 | !-- Transpose array |
---|
| 783 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 784 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 785 | CALL MPI_ALLTOALL( work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 786 | f_out(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 787 | comm1dx, ierr ) |
---|
| 788 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 789 | |
---|
| 790 | END SUBROUTINE ffty_tr_yx |
---|
| 791 | |
---|
| 792 | |
---|
| 793 | SUBROUTINE tr_xy_ffty( f_in, work, f_out ) |
---|
| 794 | |
---|
| 795 | !------------------------------------------------------------------------------! |
---|
| 796 | ! Transposition x --> y with a subsequent backward Fourier transformation for |
---|
| 797 | ! a 1d-decomposition along x |
---|
| 798 | !------------------------------------------------------------------------------! |
---|
| 799 | |
---|
| 800 | USE control_parameters |
---|
| 801 | USE cpulog |
---|
| 802 | USE indices |
---|
| 803 | USE interfaces |
---|
| 804 | USE pegrid |
---|
| 805 | USE transpose_indices |
---|
| 806 | |
---|
| 807 | IMPLICIT NONE |
---|
| 808 | |
---|
| 809 | INTEGER :: i, iend, iouter, ir, j, k |
---|
| 810 | INTEGER, PARAMETER :: stridex = 4 |
---|
| 811 | |
---|
| 812 | REAL, DIMENSION(0:ny,stridex) :: work_ffty |
---|
| 813 | #if defined( __nec ) |
---|
| 814 | REAL, DIMENSION(0:ny+1,1:nz,nxl:nxr) :: work_ffty_vec |
---|
| 815 | #endif |
---|
| 816 | REAL, DIMENSION(nnx,1:nza,nys_x:nyn_xa,pdims(1)) :: f_in |
---|
| 817 | REAL, DIMENSION(1:nza,0:nya,nxl:nxra) :: f_out |
---|
| 818 | REAL, DIMENSION(nxl:nxra,1:nza,0:nya) :: work |
---|
| 819 | |
---|
| 820 | ! |
---|
| 821 | !-- Transpose array |
---|
| 822 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 823 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 824 | CALL MPI_ALLTOALL( f_in(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 825 | work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 826 | comm1dx, ierr ) |
---|
| 827 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 828 | |
---|
| 829 | ! |
---|
| 830 | !-- Resort the data in a way that y becomes the first index and carry out the |
---|
| 831 | !-- backward fft along y. |
---|
| 832 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
| 833 | |
---|
| 834 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 835 | #if defined( __nec ) |
---|
| 836 | ! |
---|
| 837 | !-- Code optimized for vector processors |
---|
[85] | 838 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 839 | !$OMP DO |
---|
| 840 | DO k = 1, nz |
---|
| 841 | DO j = 0, ny |
---|
| 842 | DO i = nxl, nxr |
---|
| 843 | work_ffty_vec(j,k,i) = work(i,k,j) |
---|
| 844 | ENDDO |
---|
| 845 | ENDDO |
---|
| 846 | ENDDO |
---|
| 847 | |
---|
| 848 | !$OMP DO |
---|
| 849 | DO i = nxl, nxr |
---|
| 850 | |
---|
| 851 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'backward' ) |
---|
| 852 | |
---|
| 853 | DO j = 0, ny |
---|
| 854 | DO k = 1, nz |
---|
| 855 | f_out(k,j,i) = work_ffty_vec(j,k,i) |
---|
| 856 | ENDDO |
---|
| 857 | ENDDO |
---|
| 858 | |
---|
| 859 | ENDDO |
---|
| 860 | !$OMP END PARALLEL |
---|
| 861 | #endif |
---|
| 862 | |
---|
| 863 | ELSE |
---|
| 864 | |
---|
| 865 | ! |
---|
| 866 | !-- Cache optimized code. |
---|
| 867 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 868 | !-- loop for better cache performance |
---|
| 869 | !$OMP PARALLEL PRIVATE ( i, iend, iouter, ir, j, k, work_ffty ) |
---|
| 870 | !$OMP DO |
---|
| 871 | DO iouter = nxl, nxr, stridex |
---|
| 872 | |
---|
| 873 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 874 | |
---|
| 875 | DO k = 1, nz |
---|
| 876 | ! |
---|
| 877 | !-- Resort |
---|
| 878 | DO j = 0, ny |
---|
| 879 | DO i = iouter, iend |
---|
| 880 | work_ffty(j,i-iouter+1) = work(i,k,j) |
---|
| 881 | ENDDO |
---|
| 882 | ENDDO |
---|
| 883 | |
---|
| 884 | DO i = iouter, iend |
---|
| 885 | |
---|
| 886 | ! |
---|
| 887 | !-- FFT along y |
---|
| 888 | ir = i-iouter+1 ! counter within a stride |
---|
| 889 | CALL fft_y( work_ffty(:,ir), 'backward' ) |
---|
| 890 | |
---|
| 891 | DO j = 0, ny |
---|
| 892 | f_out(k,j,i) = work_ffty(j,ir) |
---|
| 893 | ENDDO |
---|
| 894 | ENDDO |
---|
| 895 | |
---|
| 896 | ENDDO |
---|
| 897 | |
---|
| 898 | ENDDO |
---|
| 899 | !$OMP END PARALLEL |
---|
| 900 | |
---|
| 901 | ENDIF |
---|
| 902 | |
---|
| 903 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 904 | |
---|
| 905 | END SUBROUTINE tr_xy_ffty |
---|
| 906 | |
---|
| 907 | |
---|
| 908 | SUBROUTINE fftx_tri_fftx( ar ) |
---|
| 909 | |
---|
| 910 | !------------------------------------------------------------------------------! |
---|
| 911 | ! FFT along x, solution of the tridiagonal system and backward FFT for |
---|
| 912 | ! a 1d-decomposition along x |
---|
| 913 | ! |
---|
| 914 | ! WARNING: this subroutine may still not work for hybrid parallelization |
---|
| 915 | ! with OpenMP (for possible necessary changes see the original |
---|
| 916 | ! routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
| 917 | !------------------------------------------------------------------------------! |
---|
| 918 | |
---|
| 919 | USE control_parameters |
---|
| 920 | USE cpulog |
---|
| 921 | USE grid_variables |
---|
| 922 | USE indices |
---|
| 923 | USE interfaces |
---|
| 924 | USE pegrid |
---|
| 925 | USE transpose_indices |
---|
| 926 | |
---|
| 927 | IMPLICIT NONE |
---|
| 928 | |
---|
| 929 | character(len=3) :: myth_char |
---|
| 930 | |
---|
| 931 | INTEGER :: i, j, k, m, n, omp_get_thread_num, tn |
---|
| 932 | |
---|
| 933 | REAL, DIMENSION(0:nx) :: work_fftx |
---|
| 934 | REAL, DIMENSION(0:nx,1:nz) :: work_trix |
---|
| 935 | REAL, DIMENSION(nnx,1:nza,nys_x:nyn_xa,pdims(1)) :: ar |
---|
| 936 | REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: tri |
---|
| 937 | |
---|
| 938 | |
---|
| 939 | CALL cpu_log( log_point_s(33), 'fft_x + tridia', 'start' ) |
---|
| 940 | |
---|
| 941 | ALLOCATE( tri(5,0:nx,0:nz-1,0:threads_per_task-1) ) |
---|
| 942 | |
---|
| 943 | tn = 0 ! Default thread number in case of one thread |
---|
| 944 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_fftx, work_trix ) |
---|
| 945 | DO j = nys_x, nyn_x |
---|
| 946 | |
---|
| 947 | !$ tn = omp_get_thread_num() |
---|
| 948 | |
---|
| 949 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 950 | ! |
---|
| 951 | !-- Code optimized for vector processors |
---|
| 952 | DO k = 1, nz |
---|
| 953 | |
---|
| 954 | m = 0 |
---|
| 955 | DO n = 1, pdims(1) |
---|
| 956 | DO i = 1, nnx_pe( n-1 ) ! WARN: pcoord(i) should be used!! |
---|
| 957 | work_trix(m,k) = ar(i,k,j,n) |
---|
| 958 | m = m + 1 |
---|
| 959 | ENDDO |
---|
| 960 | ENDDO |
---|
| 961 | |
---|
| 962 | ENDDO |
---|
| 963 | |
---|
| 964 | CALL fft_x_m( work_trix, 'forward' ) |
---|
| 965 | |
---|
| 966 | ELSE |
---|
| 967 | ! |
---|
| 968 | !-- Cache optimized code |
---|
| 969 | DO k = 1, nz |
---|
| 970 | |
---|
| 971 | m = 0 |
---|
| 972 | DO n = 1, pdims(1) |
---|
| 973 | DO i = 1, nnx_pe( n-1 ) ! WARN: pcoord(i) should be used!! |
---|
| 974 | work_fftx(m) = ar(i,k,j,n) |
---|
| 975 | m = m + 1 |
---|
| 976 | ENDDO |
---|
| 977 | ENDDO |
---|
| 978 | |
---|
| 979 | CALL fft_x( work_fftx, 'forward' ) |
---|
| 980 | |
---|
| 981 | DO i = 0, nx |
---|
| 982 | work_trix(i,k) = work_fftx(i) |
---|
| 983 | ENDDO |
---|
| 984 | |
---|
| 985 | ENDDO |
---|
| 986 | |
---|
| 987 | ENDIF |
---|
| 988 | |
---|
| 989 | ! |
---|
| 990 | !-- Solve the linear equation system |
---|
| 991 | CALL tridia_1dd( ddx2, ddy2, nx, ny, j, work_trix, tri(:,:,:,tn) ) |
---|
| 992 | |
---|
| 993 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 994 | ! |
---|
| 995 | !-- Code optimized for vector processors |
---|
| 996 | CALL fft_x_m( work_trix, 'backward' ) |
---|
| 997 | |
---|
| 998 | DO k = 1, nz |
---|
| 999 | |
---|
| 1000 | m = 0 |
---|
| 1001 | DO n = 1, pdims(1) |
---|
| 1002 | DO i = 1, nnx_pe( n-1 ) ! WARN: pcoord(i) should be used!! |
---|
| 1003 | ar(i,k,j,n) = work_trix(m,k) |
---|
| 1004 | m = m + 1 |
---|
| 1005 | ENDDO |
---|
| 1006 | ENDDO |
---|
| 1007 | |
---|
| 1008 | ENDDO |
---|
| 1009 | |
---|
| 1010 | ELSE |
---|
| 1011 | ! |
---|
| 1012 | !-- Cache optimized code |
---|
| 1013 | DO k = 1, nz |
---|
| 1014 | |
---|
| 1015 | DO i = 0, nx |
---|
| 1016 | work_fftx(i) = work_trix(i,k) |
---|
| 1017 | ENDDO |
---|
| 1018 | |
---|
| 1019 | CALL fft_x( work_fftx, 'backward' ) |
---|
| 1020 | |
---|
| 1021 | m = 0 |
---|
| 1022 | DO n = 1, pdims(1) |
---|
| 1023 | DO i = 1, nnx_pe( n-1 ) ! WARN: pcoord(i) should be used!! |
---|
| 1024 | ar(i,k,j,n) = work_fftx(m) |
---|
| 1025 | m = m + 1 |
---|
| 1026 | ENDDO |
---|
| 1027 | ENDDO |
---|
| 1028 | |
---|
| 1029 | ENDDO |
---|
| 1030 | |
---|
| 1031 | ENDIF |
---|
| 1032 | |
---|
| 1033 | ENDDO |
---|
| 1034 | |
---|
| 1035 | DEALLOCATE( tri ) |
---|
| 1036 | |
---|
| 1037 | CALL cpu_log( log_point_s(33), 'fft_x + tridia', 'stop' ) |
---|
| 1038 | |
---|
| 1039 | END SUBROUTINE fftx_tri_fftx |
---|
| 1040 | |
---|
| 1041 | |
---|
| 1042 | SUBROUTINE fftx_tr_xy( f_in, work, f_out ) |
---|
| 1043 | |
---|
| 1044 | !------------------------------------------------------------------------------! |
---|
| 1045 | ! Fourier-transformation along x with subsequent transposition x --> y for |
---|
| 1046 | ! a 1d-decomposition along y |
---|
| 1047 | ! |
---|
| 1048 | ! ATTENTION: The NEC-branch of this routine may significantly profit from |
---|
| 1049 | ! further optimizations. So far, performance is much worse than |
---|
| 1050 | ! for routine ffty_tr_yx (more than three times slower). |
---|
| 1051 | !------------------------------------------------------------------------------! |
---|
| 1052 | |
---|
| 1053 | USE control_parameters |
---|
| 1054 | USE cpulog |
---|
| 1055 | USE indices |
---|
| 1056 | USE interfaces |
---|
| 1057 | USE pegrid |
---|
| 1058 | USE transpose_indices |
---|
| 1059 | |
---|
| 1060 | IMPLICIT NONE |
---|
| 1061 | |
---|
| 1062 | INTEGER :: i, j, k |
---|
| 1063 | |
---|
| 1064 | REAL, DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx |
---|
| 1065 | REAL, DIMENSION(1:nza,nys:nyna,0:nxa) :: f_in |
---|
| 1066 | REAL, DIMENSION(nny,1:nza,nxl_y:nxr_ya,pdims(2)) :: f_out |
---|
| 1067 | REAL, DIMENSION(nys:nyna,1:nza,0:nxa) :: work |
---|
| 1068 | |
---|
| 1069 | ! |
---|
| 1070 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 1071 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 1072 | !-- the first index. |
---|
| 1073 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
| 1074 | |
---|
| 1075 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1076 | ! |
---|
| 1077 | !-- Code for vector processors |
---|
[85] | 1078 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 1079 | !$OMP DO |
---|
| 1080 | DO i = 0, nx |
---|
| 1081 | |
---|
| 1082 | DO j = nys, nyn |
---|
| 1083 | DO k = 1, nz |
---|
| 1084 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 1085 | ENDDO |
---|
| 1086 | ENDDO |
---|
| 1087 | |
---|
| 1088 | ENDDO |
---|
| 1089 | |
---|
| 1090 | !$OMP DO |
---|
| 1091 | DO j = nys, nyn |
---|
| 1092 | |
---|
| 1093 | CALL fft_x_m( work_fftx(:,:,j), 'forward' ) |
---|
| 1094 | |
---|
| 1095 | DO k = 1, nz |
---|
| 1096 | DO i = 0, nx |
---|
| 1097 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 1098 | ENDDO |
---|
| 1099 | ENDDO |
---|
| 1100 | |
---|
| 1101 | ENDDO |
---|
| 1102 | !$OMP END PARALLEL |
---|
| 1103 | |
---|
| 1104 | ELSE |
---|
| 1105 | |
---|
| 1106 | ! |
---|
| 1107 | !-- Cache optimized code (there might be still a potential for better |
---|
| 1108 | !-- optimization). |
---|
[696] | 1109 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
[1] | 1110 | !$OMP DO |
---|
| 1111 | DO i = 0, nx |
---|
| 1112 | |
---|
| 1113 | DO j = nys, nyn |
---|
| 1114 | DO k = 1, nz |
---|
| 1115 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 1116 | ENDDO |
---|
| 1117 | ENDDO |
---|
| 1118 | |
---|
| 1119 | ENDDO |
---|
| 1120 | |
---|
| 1121 | !$OMP DO |
---|
| 1122 | DO j = nys, nyn |
---|
| 1123 | DO k = 1, nz |
---|
| 1124 | |
---|
| 1125 | CALL fft_x( work_fftx(0:nx,k,j), 'forward' ) |
---|
| 1126 | |
---|
| 1127 | DO i = 0, nx |
---|
| 1128 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 1129 | ENDDO |
---|
| 1130 | ENDDO |
---|
| 1131 | |
---|
| 1132 | ENDDO |
---|
| 1133 | !$OMP END PARALLEL |
---|
| 1134 | |
---|
| 1135 | ENDIF |
---|
| 1136 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
| 1137 | |
---|
| 1138 | ! |
---|
| 1139 | !-- Transpose array |
---|
| 1140 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1141 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1142 | CALL MPI_ALLTOALL( work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 1143 | f_out(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 1144 | comm1dy, ierr ) |
---|
| 1145 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 1146 | |
---|
| 1147 | END SUBROUTINE fftx_tr_xy |
---|
| 1148 | |
---|
| 1149 | |
---|
| 1150 | SUBROUTINE tr_yx_fftx( f_in, work, f_out ) |
---|
| 1151 | |
---|
| 1152 | !------------------------------------------------------------------------------! |
---|
| 1153 | ! Transposition y --> x with a subsequent backward Fourier transformation for |
---|
| 1154 | ! a 1d-decomposition along x |
---|
| 1155 | !------------------------------------------------------------------------------! |
---|
| 1156 | |
---|
| 1157 | USE control_parameters |
---|
| 1158 | USE cpulog |
---|
| 1159 | USE indices |
---|
| 1160 | USE interfaces |
---|
| 1161 | USE pegrid |
---|
| 1162 | USE transpose_indices |
---|
| 1163 | |
---|
| 1164 | IMPLICIT NONE |
---|
| 1165 | |
---|
| 1166 | INTEGER :: i, j, k |
---|
| 1167 | |
---|
| 1168 | REAL, DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx |
---|
| 1169 | REAL, DIMENSION(nny,1:nza,nxl_y:nxr_ya,pdims(2)) :: f_in |
---|
| 1170 | REAL, DIMENSION(1:nza,nys:nyna,0:nxa) :: f_out |
---|
| 1171 | REAL, DIMENSION(nys:nyna,1:nza,0:nxa) :: work |
---|
| 1172 | |
---|
| 1173 | ! |
---|
| 1174 | !-- Transpose array |
---|
| 1175 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1176 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1177 | CALL MPI_ALLTOALL( f_in(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 1178 | work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 1179 | comm1dy, ierr ) |
---|
| 1180 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 1181 | |
---|
| 1182 | ! |
---|
| 1183 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 1184 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 1185 | !-- the first index. |
---|
| 1186 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
| 1187 | |
---|
| 1188 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1189 | ! |
---|
| 1190 | !-- Code optimized for vector processors |
---|
[85] | 1191 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 1192 | !$OMP DO |
---|
| 1193 | DO j = nys, nyn |
---|
| 1194 | |
---|
| 1195 | DO k = 1, nz |
---|
| 1196 | DO i = 0, nx |
---|
| 1197 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1198 | ENDDO |
---|
| 1199 | ENDDO |
---|
| 1200 | |
---|
| 1201 | CALL fft_x_m( work_fftx(:,:,j), 'backward' ) |
---|
| 1202 | |
---|
| 1203 | ENDDO |
---|
| 1204 | |
---|
| 1205 | !$OMP DO |
---|
| 1206 | DO i = 0, nx |
---|
| 1207 | DO j = nys, nyn |
---|
| 1208 | DO k = 1, nz |
---|
| 1209 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 1210 | ENDDO |
---|
| 1211 | ENDDO |
---|
| 1212 | ENDDO |
---|
| 1213 | !$OMP END PARALLEL |
---|
| 1214 | |
---|
| 1215 | ELSE |
---|
| 1216 | |
---|
| 1217 | ! |
---|
| 1218 | !-- Cache optimized code (there might be still a potential for better |
---|
| 1219 | !-- optimization). |
---|
[696] | 1220 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
[1] | 1221 | !$OMP DO |
---|
| 1222 | DO j = nys, nyn |
---|
| 1223 | DO k = 1, nz |
---|
| 1224 | |
---|
| 1225 | DO i = 0, nx |
---|
| 1226 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1227 | ENDDO |
---|
| 1228 | |
---|
| 1229 | CALL fft_x( work_fftx(0:nx,k,j), 'backward' ) |
---|
| 1230 | |
---|
| 1231 | ENDDO |
---|
| 1232 | ENDDO |
---|
| 1233 | |
---|
| 1234 | !$OMP DO |
---|
| 1235 | DO i = 0, nx |
---|
| 1236 | DO j = nys, nyn |
---|
| 1237 | DO k = 1, nz |
---|
| 1238 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 1239 | ENDDO |
---|
| 1240 | ENDDO |
---|
| 1241 | ENDDO |
---|
| 1242 | !$OMP END PARALLEL |
---|
| 1243 | |
---|
| 1244 | ENDIF |
---|
| 1245 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 1246 | |
---|
| 1247 | END SUBROUTINE tr_yx_fftx |
---|
| 1248 | |
---|
| 1249 | |
---|
| 1250 | SUBROUTINE ffty_tri_ffty( ar ) |
---|
| 1251 | |
---|
| 1252 | !------------------------------------------------------------------------------! |
---|
| 1253 | ! FFT along y, solution of the tridiagonal system and backward FFT for |
---|
| 1254 | ! a 1d-decomposition along y |
---|
| 1255 | ! |
---|
| 1256 | ! WARNING: this subroutine may still not work for hybrid parallelization |
---|
| 1257 | ! with OpenMP (for possible necessary changes see the original |
---|
| 1258 | ! routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
| 1259 | !------------------------------------------------------------------------------! |
---|
| 1260 | |
---|
| 1261 | USE control_parameters |
---|
| 1262 | USE cpulog |
---|
| 1263 | USE grid_variables |
---|
| 1264 | USE indices |
---|
| 1265 | USE interfaces |
---|
| 1266 | USE pegrid |
---|
| 1267 | USE transpose_indices |
---|
| 1268 | |
---|
| 1269 | IMPLICIT NONE |
---|
| 1270 | |
---|
| 1271 | INTEGER :: i, j, k, m, n, omp_get_thread_num, tn |
---|
| 1272 | |
---|
| 1273 | REAL, DIMENSION(0:ny) :: work_ffty |
---|
| 1274 | REAL, DIMENSION(0:ny,1:nz) :: work_triy |
---|
| 1275 | REAL, DIMENSION(nny,1:nza,nxl_y:nxr_ya,pdims(2)) :: ar |
---|
| 1276 | REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: tri |
---|
| 1277 | |
---|
| 1278 | |
---|
| 1279 | CALL cpu_log( log_point_s(39), 'fft_y + tridia', 'start' ) |
---|
| 1280 | |
---|
| 1281 | ALLOCATE( tri(5,0:ny,0:nz-1,0:threads_per_task-1) ) |
---|
| 1282 | |
---|
| 1283 | tn = 0 ! Default thread number in case of one thread |
---|
[696] | 1284 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_ffty, work_triy ) |
---|
[1] | 1285 | DO i = nxl_y, nxr_y |
---|
| 1286 | |
---|
| 1287 | !$ tn = omp_get_thread_num() |
---|
| 1288 | |
---|
| 1289 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1290 | ! |
---|
| 1291 | !-- Code optimized for vector processors |
---|
| 1292 | DO k = 1, nz |
---|
| 1293 | |
---|
| 1294 | m = 0 |
---|
| 1295 | DO n = 1, pdims(2) |
---|
| 1296 | DO j = 1, nny_pe( n-1 ) ! WARN: pcoord(j) should be used!! |
---|
| 1297 | work_triy(m,k) = ar(j,k,i,n) |
---|
| 1298 | m = m + 1 |
---|
| 1299 | ENDDO |
---|
| 1300 | ENDDO |
---|
| 1301 | |
---|
| 1302 | ENDDO |
---|
| 1303 | |
---|
| 1304 | CALL fft_y_m( work_triy, ny, 'forward' ) |
---|
| 1305 | |
---|
| 1306 | ELSE |
---|
| 1307 | ! |
---|
| 1308 | !-- Cache optimized code |
---|
| 1309 | DO k = 1, nz |
---|
| 1310 | |
---|
| 1311 | m = 0 |
---|
| 1312 | DO n = 1, pdims(2) |
---|
| 1313 | DO j = 1, nny_pe( n-1 ) ! WARN: pcoord(j) should be used!! |
---|
| 1314 | work_ffty(m) = ar(j,k,i,n) |
---|
| 1315 | m = m + 1 |
---|
| 1316 | ENDDO |
---|
| 1317 | ENDDO |
---|
| 1318 | |
---|
| 1319 | CALL fft_y( work_ffty, 'forward' ) |
---|
| 1320 | |
---|
| 1321 | DO j = 0, ny |
---|
| 1322 | work_triy(j,k) = work_ffty(j) |
---|
| 1323 | ENDDO |
---|
| 1324 | |
---|
| 1325 | ENDDO |
---|
| 1326 | |
---|
| 1327 | ENDIF |
---|
| 1328 | |
---|
| 1329 | ! |
---|
| 1330 | !-- Solve the linear equation system |
---|
| 1331 | CALL tridia_1dd( ddy2, ddx2, ny, nx, i, work_triy, tri(:,:,:,tn) ) |
---|
| 1332 | |
---|
| 1333 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1334 | ! |
---|
| 1335 | !-- Code optimized for vector processors |
---|
| 1336 | CALL fft_y_m( work_triy, ny, 'backward' ) |
---|
| 1337 | |
---|
| 1338 | DO k = 1, nz |
---|
| 1339 | |
---|
| 1340 | m = 0 |
---|
| 1341 | DO n = 1, pdims(2) |
---|
| 1342 | DO j = 1, nny_pe( n-1 ) ! WARN: pcoord(j) should be used!! |
---|
| 1343 | ar(j,k,i,n) = work_triy(m,k) |
---|
| 1344 | m = m + 1 |
---|
| 1345 | ENDDO |
---|
| 1346 | ENDDO |
---|
| 1347 | |
---|
| 1348 | ENDDO |
---|
| 1349 | |
---|
| 1350 | ELSE |
---|
| 1351 | ! |
---|
| 1352 | !-- Cache optimized code |
---|
| 1353 | DO k = 1, nz |
---|
| 1354 | |
---|
| 1355 | DO j = 0, ny |
---|
| 1356 | work_ffty(j) = work_triy(j,k) |
---|
| 1357 | ENDDO |
---|
| 1358 | |
---|
| 1359 | CALL fft_y( work_ffty, 'backward' ) |
---|
| 1360 | |
---|
| 1361 | m = 0 |
---|
| 1362 | DO n = 1, pdims(2) |
---|
| 1363 | DO j = 1, nny_pe( n-1 ) ! WARN: pcoord(j) should be used!! |
---|
| 1364 | ar(j,k,i,n) = work_ffty(m) |
---|
| 1365 | m = m + 1 |
---|
| 1366 | ENDDO |
---|
| 1367 | ENDDO |
---|
| 1368 | |
---|
| 1369 | ENDDO |
---|
| 1370 | |
---|
| 1371 | ENDIF |
---|
| 1372 | |
---|
| 1373 | ENDDO |
---|
| 1374 | |
---|
| 1375 | DEALLOCATE( tri ) |
---|
| 1376 | |
---|
| 1377 | CALL cpu_log( log_point_s(39), 'fft_y + tridia', 'stop' ) |
---|
| 1378 | |
---|
| 1379 | END SUBROUTINE ffty_tri_ffty |
---|
| 1380 | |
---|
| 1381 | |
---|
| 1382 | SUBROUTINE tridia_1dd( ddx2, ddy2, nx, ny, j, ar, tri ) |
---|
| 1383 | |
---|
| 1384 | !------------------------------------------------------------------------------! |
---|
| 1385 | ! Solves the linear system of equations for a 1d-decomposition along x (see |
---|
| 1386 | ! tridia) |
---|
| 1387 | ! |
---|
[940] | 1388 | ! Attention: when using the intel compilers older than 12.0, array tri must |
---|
| 1389 | ! be passed as an argument to the contained subroutines. Otherwise |
---|
| 1390 | ! addres faults will occur. This feature can be activated with |
---|
| 1391 | ! cpp-switch __intel11 |
---|
[1] | 1392 | ! On NEC, tri should not be passed (except for routine substi_1dd) |
---|
| 1393 | ! because this causes very bad performance. |
---|
| 1394 | !------------------------------------------------------------------------------! |
---|
| 1395 | |
---|
| 1396 | USE arrays_3d |
---|
| 1397 | USE control_parameters |
---|
| 1398 | |
---|
| 1399 | USE pegrid |
---|
| 1400 | |
---|
| 1401 | IMPLICIT NONE |
---|
| 1402 | |
---|
| 1403 | INTEGER :: i, j, k, nnyh, nx, ny, omp_get_thread_num, tn |
---|
| 1404 | |
---|
| 1405 | REAL :: ddx2, ddy2 |
---|
| 1406 | |
---|
| 1407 | REAL, DIMENSION(0:nx,1:nz) :: ar |
---|
| 1408 | REAL, DIMENSION(0:nx,0:nz-1) :: ar1 |
---|
| 1409 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri |
---|
| 1410 | |
---|
| 1411 | |
---|
| 1412 | nnyh = ( ny + 1 ) / 2 |
---|
| 1413 | |
---|
| 1414 | ! |
---|
| 1415 | !-- Define constant elements of the tridiagonal matrix. |
---|
| 1416 | !-- The compiler on SX6 does loop exchange. If 0:nx is a high power of 2, |
---|
| 1417 | !-- the exchanged loops create bank conflicts. The following directive |
---|
| 1418 | !-- prohibits loop exchange and the loops perform much better. |
---|
| 1419 | ! tn = omp_get_thread_num() |
---|
| 1420 | ! WRITE( 120+tn, * ) '+++ id=',myid,' nx=',nx,' thread=', omp_get_thread_num() |
---|
[82] | 1421 | ! CALL local_flush( 120+tn ) |
---|
[1] | 1422 | !CDIR NOLOOPCHG |
---|
| 1423 | DO k = 0, nz-1 |
---|
| 1424 | DO i = 0,nx |
---|
[667] | 1425 | tri(2,i,k) = ddzu_pres(k+1) * ddzw(k+1) |
---|
| 1426 | tri(3,i,k) = ddzu_pres(k+2) * ddzw(k+1) |
---|
[1] | 1427 | ENDDO |
---|
| 1428 | ENDDO |
---|
| 1429 | ! WRITE( 120+tn, * ) '+++ id=',myid,' end of first tridia loop thread=', omp_get_thread_num() |
---|
[82] | 1430 | ! CALL local_flush( 120+tn ) |
---|
[1] | 1431 | |
---|
| 1432 | IF ( j <= nnyh ) THEN |
---|
[940] | 1433 | #if defined( __intel11 ) |
---|
[1] | 1434 | CALL maketri_1dd( j, tri ) |
---|
| 1435 | #else |
---|
| 1436 | CALL maketri_1dd( j ) |
---|
| 1437 | #endif |
---|
| 1438 | ELSE |
---|
[940] | 1439 | #if defined( __intel11 ) |
---|
[1] | 1440 | CALL maketri_1dd( ny+1-j, tri ) |
---|
| 1441 | #else |
---|
| 1442 | CALL maketri_1dd( ny+1-j ) |
---|
| 1443 | #endif |
---|
| 1444 | ENDIF |
---|
[940] | 1445 | #if defined( __intel11 ) |
---|
[1] | 1446 | CALL split_1dd( tri ) |
---|
| 1447 | #else |
---|
| 1448 | CALL split_1dd |
---|
| 1449 | #endif |
---|
| 1450 | CALL substi_1dd( ar, tri ) |
---|
| 1451 | |
---|
| 1452 | CONTAINS |
---|
| 1453 | |
---|
[940] | 1454 | #if defined( __intel11 ) |
---|
[1] | 1455 | SUBROUTINE maketri_1dd( j, tri ) |
---|
| 1456 | #else |
---|
| 1457 | SUBROUTINE maketri_1dd( j ) |
---|
| 1458 | #endif |
---|
| 1459 | |
---|
| 1460 | !------------------------------------------------------------------------------! |
---|
| 1461 | ! computes the i- and j-dependent component of the matrix |
---|
| 1462 | !------------------------------------------------------------------------------! |
---|
| 1463 | |
---|
| 1464 | USE constants |
---|
| 1465 | |
---|
| 1466 | IMPLICIT NONE |
---|
| 1467 | |
---|
| 1468 | INTEGER :: i, j, k, nnxh |
---|
| 1469 | REAL :: a, c |
---|
| 1470 | |
---|
| 1471 | REAL, DIMENSION(0:nx) :: l |
---|
| 1472 | |
---|
[940] | 1473 | #if defined( __intel11 ) |
---|
[1] | 1474 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri |
---|
| 1475 | #endif |
---|
| 1476 | |
---|
| 1477 | |
---|
| 1478 | nnxh = ( nx + 1 ) / 2 |
---|
| 1479 | ! |
---|
| 1480 | !-- Provide the tridiagonal matrix for solution of the Poisson equation in |
---|
| 1481 | !-- Fourier space. The coefficients are computed following the method of |
---|
| 1482 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 1483 | !-- Siano's original version by discretizing the Poisson equation, |
---|
| 1484 | !-- before it is Fourier-transformed |
---|
| 1485 | DO i = 0, nx |
---|
[128] | 1486 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1] | 1487 | l(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * i ) / & |
---|
| 1488 | FLOAT( nx+1 ) ) ) * ddx2 + & |
---|
| 1489 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
| 1490 | FLOAT( ny+1 ) ) ) * ddy2 |
---|
| 1491 | ELSE |
---|
| 1492 | l(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( nx+1-i ) ) / & |
---|
| 1493 | FLOAT( nx+1 ) ) ) * ddx2 + & |
---|
| 1494 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
| 1495 | FLOAT( ny+1 ) ) ) * ddy2 |
---|
| 1496 | ENDIF |
---|
| 1497 | ENDDO |
---|
| 1498 | |
---|
| 1499 | DO k = 0, nz-1 |
---|
| 1500 | DO i = 0, nx |
---|
[667] | 1501 | a = -1.0 * ddzu_pres(k+2) * ddzw(k+1) |
---|
| 1502 | c = -1.0 * ddzu_pres(k+1) * ddzw(k+1) |
---|
[1] | 1503 | tri(1,i,k) = a + c - l(i) |
---|
| 1504 | ENDDO |
---|
| 1505 | ENDDO |
---|
| 1506 | IF ( ibc_p_b == 1 .OR. ibc_p_b == 2 ) THEN |
---|
| 1507 | DO i = 0, nx |
---|
| 1508 | tri(1,i,0) = tri(1,i,0) + tri(2,i,0) |
---|
| 1509 | ENDDO |
---|
| 1510 | ENDIF |
---|
| 1511 | IF ( ibc_p_t == 1 ) THEN |
---|
| 1512 | DO i = 0, nx |
---|
| 1513 | tri(1,i,nz-1) = tri(1,i,nz-1) + tri(3,i,nz-1) |
---|
| 1514 | ENDDO |
---|
| 1515 | ENDIF |
---|
| 1516 | |
---|
| 1517 | END SUBROUTINE maketri_1dd |
---|
| 1518 | |
---|
| 1519 | |
---|
[940] | 1520 | #if defined( __intel11 ) |
---|
[1] | 1521 | SUBROUTINE split_1dd( tri ) |
---|
| 1522 | #else |
---|
| 1523 | SUBROUTINE split_1dd |
---|
| 1524 | #endif |
---|
| 1525 | |
---|
| 1526 | !------------------------------------------------------------------------------! |
---|
| 1527 | ! Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
| 1528 | !------------------------------------------------------------------------------! |
---|
| 1529 | |
---|
| 1530 | IMPLICIT NONE |
---|
| 1531 | |
---|
| 1532 | INTEGER :: i, k |
---|
| 1533 | |
---|
[940] | 1534 | #if defined( __intel11 ) |
---|
[1] | 1535 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri |
---|
| 1536 | #endif |
---|
| 1537 | |
---|
| 1538 | |
---|
| 1539 | ! |
---|
| 1540 | !-- Splitting |
---|
| 1541 | DO i = 0, nx |
---|
| 1542 | tri(4,i,0) = tri(1,i,0) |
---|
| 1543 | ENDDO |
---|
| 1544 | DO k = 1, nz-1 |
---|
| 1545 | DO i = 0, nx |
---|
| 1546 | tri(5,i,k) = tri(2,i,k) / tri(4,i,k-1) |
---|
| 1547 | tri(4,i,k) = tri(1,i,k) - tri(3,i,k-1) * tri(5,i,k) |
---|
| 1548 | ENDDO |
---|
| 1549 | ENDDO |
---|
| 1550 | |
---|
| 1551 | END SUBROUTINE split_1dd |
---|
| 1552 | |
---|
| 1553 | |
---|
| 1554 | SUBROUTINE substi_1dd( ar, tri ) |
---|
| 1555 | |
---|
| 1556 | !------------------------------------------------------------------------------! |
---|
| 1557 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
| 1558 | !------------------------------------------------------------------------------! |
---|
| 1559 | |
---|
| 1560 | IMPLICIT NONE |
---|
| 1561 | |
---|
[76] | 1562 | INTEGER :: i, k |
---|
[1] | 1563 | |
---|
| 1564 | REAL, DIMENSION(0:nx,nz) :: ar |
---|
| 1565 | REAL, DIMENSION(0:nx,0:nz-1) :: ar1 |
---|
| 1566 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri |
---|
| 1567 | |
---|
| 1568 | ! |
---|
| 1569 | !-- Forward substitution |
---|
| 1570 | DO i = 0, nx |
---|
| 1571 | ar1(i,0) = ar(i,1) |
---|
| 1572 | ENDDO |
---|
| 1573 | DO k = 1, nz-1 |
---|
| 1574 | DO i = 0, nx |
---|
| 1575 | ar1(i,k) = ar(i,k+1) - tri(5,i,k) * ar1(i,k-1) |
---|
| 1576 | ENDDO |
---|
| 1577 | ENDDO |
---|
| 1578 | |
---|
| 1579 | ! |
---|
| 1580 | !-- Backward substitution |
---|
[763] | 1581 | !-- Note, the add of 1.0E-20 in the denominator is due to avoid divisions |
---|
| 1582 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 1583 | !-- the model domain. |
---|
[1] | 1584 | DO i = 0, nx |
---|
[761] | 1585 | ar(i,nz) = ar1(i,nz-1) / ( tri(4,i,nz-1) + 1.0E-20 ) |
---|
[1] | 1586 | ENDDO |
---|
| 1587 | DO k = nz-2, 0, -1 |
---|
| 1588 | DO i = 0, nx |
---|
| 1589 | ar(i,k+1) = ( ar1(i,k) - tri(3,i,k) * ar(i,k+2) ) & |
---|
| 1590 | / tri(4,i,k) |
---|
| 1591 | ENDDO |
---|
| 1592 | ENDDO |
---|
| 1593 | |
---|
[76] | 1594 | ! |
---|
| 1595 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 1596 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 1597 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 1598 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 1599 | IF ( j == 0 ) THEN |
---|
| 1600 | DO k = 1, nz |
---|
| 1601 | ar(0,k) = 0.0 |
---|
| 1602 | ENDDO |
---|
| 1603 | ENDIF |
---|
| 1604 | ENDIF |
---|
| 1605 | |
---|
[1] | 1606 | END SUBROUTINE substi_1dd |
---|
| 1607 | |
---|
| 1608 | END SUBROUTINE tridia_1dd |
---|
| 1609 | |
---|
| 1610 | #endif |
---|
[807] | 1611 | #endif |
---|
[1] | 1612 | END MODULE poisfft_mod |
---|