[1] | 1 | MODULE poisfft_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
[697] | 6 | ! |
---|
[1] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: poisfft.f90 697 2011-03-18 07:10:52Z suehring $ |
---|
[77] | 11 | ! |
---|
[697] | 12 | ! 696 2011-03-18 07:03:49Z raasch |
---|
| 13 | ! work_fftx removed from PRIVATE clauses in fftx_tr_xy and tr_yx_fftx |
---|
| 14 | ! |
---|
[684] | 15 | ! 683 2011-02-09 14:25:15Z raasch |
---|
| 16 | ! openMP parallelization for 2d-domain-decomposition |
---|
| 17 | ! |
---|
[668] | 18 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 19 | ! ddzu replaced by ddzu_pres due to changes in zu(0) |
---|
| 20 | ! |
---|
[623] | 21 | ! 622 2010-12-10 08:08:13Z raasch |
---|
| 22 | ! optional barriers included in order to speed up collective operations |
---|
| 23 | ! |
---|
[392] | 24 | ! 377 2009-09-04 11:09:00Z raasch |
---|
| 25 | ! __lcmuk changed to __lc to avoid problems with Intel compiler on sgi-ice |
---|
| 26 | ! |
---|
[198] | 27 | ! 164 2008-05-15 08:46:15Z raasch |
---|
| 28 | ! Arguments removed from transpose routines |
---|
| 29 | ! |
---|
[139] | 30 | ! 128 2007-10-26 13:11:14Z raasch |
---|
| 31 | ! Bugfix: wavenumber calculation for even nx in routines maketri |
---|
| 32 | ! |
---|
[90] | 33 | ! 85 2007-05-11 09:35:14Z raasch |
---|
| 34 | ! Bugfix: work_fft*_vec removed from some PRIVATE-declarations |
---|
| 35 | ! |
---|
[77] | 36 | ! 76 2007-03-29 00:58:32Z raasch |
---|
| 37 | ! Tridiagonal coefficients adjusted for Neumann boundary conditions both at |
---|
| 38 | ! the bottom and the top. |
---|
| 39 | ! |
---|
[3] | 40 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 41 | ! |
---|
[1] | 42 | ! Revision 1.24 2006/08/04 15:00:24 raasch |
---|
| 43 | ! Default setting of the thread number tn in case of not using OpenMP |
---|
| 44 | ! |
---|
| 45 | ! Revision 1.23 2006/02/23 12:48:38 raasch |
---|
| 46 | ! Additional compiler directive in routine tridia_1dd for preventing loop |
---|
| 47 | ! exchange on NEC-SX6 |
---|
| 48 | ! |
---|
| 49 | ! Revision 1.20 2004/04/30 12:38:09 raasch |
---|
| 50 | ! Parts of former poisfft_hybrid moved to this subroutine, |
---|
| 51 | ! former subroutine changed to a module, renaming of FFT-subroutines and |
---|
| 52 | ! -module, FFTs completely substituted by calls of fft_x and fft_y, |
---|
| 53 | ! NAG fft used in the non-parallel case completely removed, l in maketri |
---|
| 54 | ! is now a 1d-array, variables passed by modules instead of using parameter |
---|
| 55 | ! lists, enlarged transposition arrays introduced |
---|
| 56 | ! |
---|
| 57 | ! Revision 1.1 1997/07/24 11:24:14 raasch |
---|
| 58 | ! Initial revision |
---|
| 59 | ! |
---|
| 60 | ! |
---|
| 61 | ! Description: |
---|
| 62 | ! ------------ |
---|
| 63 | ! See below. |
---|
| 64 | !------------------------------------------------------------------------------! |
---|
| 65 | |
---|
| 66 | !--------------------------------------------------------------------------! |
---|
| 67 | ! poisfft ! |
---|
| 68 | ! ! |
---|
| 69 | ! Original version: Stephan Siano (pois3d) ! |
---|
| 70 | ! ! |
---|
| 71 | ! Institute of Meteorology and Climatology, University of Hannover ! |
---|
| 72 | ! Germany ! |
---|
| 73 | ! ! |
---|
| 74 | ! Version as of July 23,1996 ! |
---|
| 75 | ! ! |
---|
| 76 | ! ! |
---|
| 77 | ! Version for parallel computers: Siegfried Raasch ! |
---|
| 78 | ! ! |
---|
| 79 | ! Version as of July 03,1997 ! |
---|
| 80 | ! ! |
---|
| 81 | ! Solves the Poisson equation with a 2D spectral method ! |
---|
| 82 | ! d^2 p / dx^2 + d^2 p / dy^2 + d^2 p / dz^2 = s ! |
---|
| 83 | ! ! |
---|
| 84 | ! Input: ! |
---|
| 85 | ! real ar contains in the (nnx,nny,nnz) elements, ! |
---|
| 86 | ! starting from the element (1,nys,nxl), the ! |
---|
| 87 | ! values for s ! |
---|
| 88 | ! real work Temporary array ! |
---|
| 89 | ! ! |
---|
| 90 | ! Output: ! |
---|
| 91 | ! real ar contains the solution for p ! |
---|
| 92 | !--------------------------------------------------------------------------! |
---|
| 93 | |
---|
| 94 | USE fft_xy |
---|
| 95 | USE indices |
---|
| 96 | USE transpose_indices |
---|
| 97 | |
---|
| 98 | IMPLICIT NONE |
---|
| 99 | |
---|
| 100 | PRIVATE |
---|
| 101 | PUBLIC poisfft, poisfft_init |
---|
| 102 | |
---|
| 103 | INTERFACE poisfft |
---|
| 104 | MODULE PROCEDURE poisfft |
---|
| 105 | END INTERFACE poisfft |
---|
| 106 | |
---|
| 107 | INTERFACE poisfft_init |
---|
| 108 | MODULE PROCEDURE poisfft_init |
---|
| 109 | END INTERFACE poisfft_init |
---|
| 110 | |
---|
| 111 | CONTAINS |
---|
| 112 | |
---|
| 113 | SUBROUTINE poisfft_init |
---|
| 114 | |
---|
| 115 | CALL fft_init |
---|
| 116 | |
---|
| 117 | END SUBROUTINE poisfft_init |
---|
| 118 | |
---|
| 119 | |
---|
| 120 | SUBROUTINE poisfft( ar, work ) |
---|
| 121 | |
---|
| 122 | USE cpulog |
---|
| 123 | USE interfaces |
---|
| 124 | USE pegrid |
---|
| 125 | |
---|
| 126 | IMPLICIT NONE |
---|
| 127 | |
---|
| 128 | REAL, DIMENSION(1:nza,nys:nyna,nxl:nxra) :: ar, work |
---|
| 129 | |
---|
| 130 | |
---|
| 131 | CALL cpu_log( log_point_s(3), 'poisfft', 'start' ) |
---|
| 132 | |
---|
| 133 | ! |
---|
| 134 | !-- Two-dimensional Fourier Transformation in x- and y-direction. |
---|
| 135 | #if defined( __parallel ) |
---|
| 136 | IF ( pdims(2) == 1 ) THEN |
---|
| 137 | |
---|
| 138 | ! |
---|
| 139 | !-- 1d-domain-decomposition along x: |
---|
| 140 | !-- FFT along y and transposition y --> x |
---|
| 141 | CALL ffty_tr_yx( ar, work, ar ) |
---|
| 142 | |
---|
| 143 | ! |
---|
| 144 | !-- FFT along x, solving the tridiagonal system and backward FFT |
---|
| 145 | CALL fftx_tri_fftx( ar ) |
---|
| 146 | |
---|
| 147 | ! |
---|
| 148 | !-- Transposition x --> y and backward FFT along y |
---|
| 149 | CALL tr_xy_ffty( ar, work, ar ) |
---|
| 150 | |
---|
| 151 | ELSEIF ( pdims(1) == 1 ) THEN |
---|
| 152 | |
---|
| 153 | ! |
---|
| 154 | !-- 1d-domain-decomposition along y: |
---|
| 155 | !-- FFT along x and transposition x --> y |
---|
| 156 | CALL fftx_tr_xy( ar, work, ar ) |
---|
| 157 | |
---|
| 158 | ! |
---|
| 159 | !-- FFT along y, solving the tridiagonal system and backward FFT |
---|
| 160 | CALL ffty_tri_ffty( ar ) |
---|
| 161 | |
---|
| 162 | ! |
---|
| 163 | !-- Transposition y --> x and backward FFT along x |
---|
| 164 | CALL tr_yx_fftx( ar, work, ar ) |
---|
| 165 | |
---|
| 166 | ELSE |
---|
| 167 | |
---|
| 168 | ! |
---|
| 169 | !-- 2d-domain-decomposition |
---|
| 170 | !-- Transposition z --> x |
---|
| 171 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start' ) |
---|
[164] | 172 | CALL transpose_zx( ar, work, ar ) |
---|
[1] | 173 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 174 | |
---|
| 175 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
| 176 | CALL fftxp( ar, 'forward' ) |
---|
| 177 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
| 178 | |
---|
| 179 | ! |
---|
| 180 | !-- Transposition x --> y |
---|
| 181 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[164] | 182 | CALL transpose_xy( ar, work, ar ) |
---|
[1] | 183 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 184 | |
---|
| 185 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
| 186 | CALL fftyp( ar, 'forward' ) |
---|
| 187 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 188 | |
---|
| 189 | ! |
---|
| 190 | !-- Transposition y --> z |
---|
| 191 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[164] | 192 | CALL transpose_yz( ar, work, ar ) |
---|
[1] | 193 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
| 194 | |
---|
| 195 | ! |
---|
| 196 | !-- Solve the Poisson equation in z-direction in cartesian space. |
---|
| 197 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
| 198 | CALL tridia( ar ) |
---|
| 199 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
| 200 | |
---|
| 201 | ! |
---|
| 202 | !-- Inverse Fourier Transformation |
---|
| 203 | !-- Transposition z --> y |
---|
| 204 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start' ) |
---|
[164] | 205 | CALL transpose_zy( ar, work, ar ) |
---|
[1] | 206 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 207 | |
---|
| 208 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
| 209 | CALL fftyp( ar, 'backward' ) |
---|
| 210 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 211 | |
---|
| 212 | ! |
---|
| 213 | !-- Transposition y --> x |
---|
| 214 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[164] | 215 | CALL transpose_yx( ar, work, ar ) |
---|
[1] | 216 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 217 | |
---|
| 218 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
| 219 | CALL fftxp( ar, 'backward' ) |
---|
| 220 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 221 | |
---|
| 222 | ! |
---|
| 223 | !-- Transposition x --> z |
---|
| 224 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[164] | 225 | CALL transpose_xz( ar, work, ar ) |
---|
[1] | 226 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
| 227 | |
---|
| 228 | ENDIF |
---|
| 229 | |
---|
| 230 | #else |
---|
| 231 | |
---|
| 232 | ! |
---|
| 233 | !-- Two-dimensional Fourier Transformation along x- and y-direction. |
---|
| 234 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
| 235 | CALL fftx( ar, 'forward' ) |
---|
| 236 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
| 237 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
| 238 | CALL ffty( ar, 'forward' ) |
---|
| 239 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 240 | |
---|
| 241 | ! |
---|
| 242 | !-- Solve the Poisson equation in z-direction in cartesian space. |
---|
| 243 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
| 244 | CALL tridia( ar ) |
---|
| 245 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
| 246 | |
---|
| 247 | ! |
---|
| 248 | !-- Inverse Fourier Transformation. |
---|
| 249 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
| 250 | CALL ffty( ar, 'backward' ) |
---|
| 251 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 252 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
| 253 | CALL fftx( ar, 'backward' ) |
---|
| 254 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 255 | |
---|
| 256 | #endif |
---|
| 257 | |
---|
| 258 | CALL cpu_log( log_point_s(3), 'poisfft', 'stop' ) |
---|
| 259 | |
---|
| 260 | END SUBROUTINE poisfft |
---|
| 261 | |
---|
| 262 | |
---|
| 263 | |
---|
| 264 | SUBROUTINE tridia( ar ) |
---|
| 265 | |
---|
| 266 | !------------------------------------------------------------------------------! |
---|
| 267 | ! solves the linear system of equations: |
---|
| 268 | ! |
---|
| 269 | ! -(4 pi^2(i^2/(dx^2*nnx^2)+j^2/(dy^2*nny^2))+ |
---|
| 270 | ! 1/(dzu(k)*dzw(k))+1/(dzu(k-1)*dzw(k)))*p(i,j,k)+ |
---|
| 271 | ! 1/(dzu(k)*dzw(k))*p(i,j,k+1)+1/(dzu(k-1)*dzw(k))*p(i,j,k-1)=d(i,j,k) |
---|
| 272 | ! |
---|
| 273 | ! by using the Thomas algorithm |
---|
| 274 | !------------------------------------------------------------------------------! |
---|
| 275 | |
---|
| 276 | USE arrays_3d |
---|
| 277 | |
---|
| 278 | IMPLICIT NONE |
---|
| 279 | |
---|
| 280 | INTEGER :: i, j, k, nnyh |
---|
| 281 | |
---|
| 282 | REAL, DIMENSION(nxl_z:nxr_z,0:nz-1) :: ar1 |
---|
| 283 | REAL, DIMENSION(5,nxl_z:nxr_z,0:nz-1) :: tri |
---|
| 284 | |
---|
| 285 | #if defined( __parallel ) |
---|
| 286 | REAL :: ar(nxl_z:nxr_za,nys_z:nyn_za,1:nza) |
---|
| 287 | #else |
---|
| 288 | REAL :: ar(1:nz,nys_z:nyn_z,nxl_z:nxr_z) |
---|
| 289 | #endif |
---|
| 290 | |
---|
| 291 | |
---|
| 292 | nnyh = (ny+1) / 2 |
---|
| 293 | |
---|
| 294 | ! |
---|
| 295 | !-- Define constant elements of the tridiagonal matrix. |
---|
[683] | 296 | !$OMP PARALLEL PRIVATE ( k, i ) |
---|
| 297 | !$OMP DO |
---|
[1] | 298 | DO k = 0, nz-1 |
---|
| 299 | DO i = nxl_z, nxr_z |
---|
[667] | 300 | tri(2,i,k) = ddzu_pres(k+1) * ddzw(k+1) |
---|
| 301 | tri(3,i,k) = ddzu_pres(k+2) * ddzw(k+1) |
---|
[1] | 302 | ENDDO |
---|
| 303 | ENDDO |
---|
[683] | 304 | !$OMP END PARALLEL |
---|
[1] | 305 | |
---|
| 306 | #if defined( __parallel ) |
---|
| 307 | ! |
---|
| 308 | !-- Repeat for all y-levels. |
---|
[683] | 309 | !$OMP PARALLEL FIRSTPRIVATE( tri ) PRIVATE ( ar1, j ) |
---|
| 310 | !$OMP DO |
---|
[1] | 311 | DO j = nys_z, nyn_z |
---|
| 312 | IF ( j <= nnyh ) THEN |
---|
| 313 | CALL maketri( tri, j ) |
---|
| 314 | ELSE |
---|
| 315 | CALL maketri( tri, ny+1-j ) |
---|
| 316 | ENDIF |
---|
| 317 | CALL split( tri ) |
---|
| 318 | CALL substi( ar, ar1, tri, j ) |
---|
| 319 | ENDDO |
---|
[683] | 320 | !$OMP END PARALLEL |
---|
[1] | 321 | #else |
---|
| 322 | ! |
---|
| 323 | !-- First y-level. |
---|
| 324 | CALL maketri( tri, nys_z ) |
---|
| 325 | CALL split( tri ) |
---|
| 326 | CALL substi( ar, ar1, tri, 0 ) |
---|
| 327 | |
---|
| 328 | ! |
---|
| 329 | !-- Further y-levels. |
---|
| 330 | DO j = 1, nnyh - 1 |
---|
| 331 | CALL maketri( tri, j ) |
---|
| 332 | CALL split( tri ) |
---|
| 333 | CALL substi( ar, ar1, tri, j ) |
---|
| 334 | CALL substi( ar, ar1, tri, ny+1-j ) |
---|
| 335 | ENDDO |
---|
| 336 | CALL maketri( tri, nnyh ) |
---|
| 337 | CALL split( tri ) |
---|
| 338 | CALL substi( ar, ar1, tri, nnyh+nys ) |
---|
| 339 | #endif |
---|
| 340 | |
---|
| 341 | CONTAINS |
---|
| 342 | |
---|
| 343 | SUBROUTINE maketri( tri, j ) |
---|
| 344 | |
---|
| 345 | !------------------------------------------------------------------------------! |
---|
| 346 | ! Computes the i- and j-dependent component of the matrix |
---|
| 347 | !------------------------------------------------------------------------------! |
---|
| 348 | |
---|
| 349 | USE arrays_3d |
---|
| 350 | USE constants |
---|
| 351 | USE control_parameters |
---|
| 352 | USE grid_variables |
---|
| 353 | |
---|
| 354 | IMPLICIT NONE |
---|
| 355 | |
---|
| 356 | INTEGER :: i, j, k, nnxh |
---|
| 357 | REAL :: a, c |
---|
| 358 | REAL :: ll(nxl_z:nxr_z) |
---|
| 359 | REAL :: tri(5,nxl_z:nxr_z,0:nz-1) |
---|
| 360 | |
---|
| 361 | |
---|
| 362 | nnxh = ( nx + 1 ) / 2 |
---|
| 363 | |
---|
| 364 | ! |
---|
| 365 | !-- Provide the tridiagonal matrix for solution of the Poisson equation in |
---|
| 366 | !-- Fourier space. The coefficients are computed following the method of |
---|
| 367 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 368 | !-- Siano's original version by discretizing the Poisson equation, |
---|
| 369 | !-- before it is Fourier-transformed |
---|
| 370 | #if defined( __parallel ) |
---|
| 371 | DO i = nxl_z, nxr_z |
---|
[128] | 372 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1] | 373 | ll(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * i ) / & |
---|
| 374 | FLOAT( nx+1 ) ) ) / ( dx * dx ) + & |
---|
| 375 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
| 376 | FLOAT( ny+1 ) ) ) / ( dy * dy ) |
---|
| 377 | ELSE |
---|
| 378 | ll(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( nx+1-i ) ) / & |
---|
| 379 | FLOAT( nx+1 ) ) ) / ( dx * dx ) + & |
---|
| 380 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
| 381 | FLOAT( ny+1 ) ) ) / ( dy * dy ) |
---|
| 382 | ENDIF |
---|
| 383 | DO k = 0,nz-1 |
---|
[667] | 384 | a = -1.0 * ddzu_pres(k+2) * ddzw(k+1) |
---|
| 385 | c = -1.0 * ddzu_pres(k+1) * ddzw(k+1) |
---|
[1] | 386 | tri(1,i,k) = a + c - ll(i) |
---|
| 387 | ENDDO |
---|
| 388 | ENDDO |
---|
| 389 | #else |
---|
| 390 | DO i = 0, nnxh |
---|
| 391 | ll(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * i ) / FLOAT( nx+1 ) ) ) / & |
---|
| 392 | ( dx * dx ) + & |
---|
| 393 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / FLOAT( ny+1 ) ) ) / & |
---|
| 394 | ( dy * dy ) |
---|
| 395 | DO k = 0, nz-1 |
---|
[667] | 396 | a = -1.0 * ddzu_pres(k+2) * ddzw(k+1) |
---|
| 397 | c = -1.0 * ddzu_pres(k+1) * ddzw(k+1) |
---|
[1] | 398 | tri(1,i,k) = a + c - ll(i) |
---|
| 399 | IF ( i >= 1 .and. i < nnxh ) THEN |
---|
| 400 | tri(1,nx+1-i,k) = tri(1,i,k) |
---|
| 401 | ENDIF |
---|
| 402 | ENDDO |
---|
| 403 | ENDDO |
---|
| 404 | #endif |
---|
| 405 | IF ( ibc_p_b == 1 .OR. ibc_p_b == 2 ) THEN |
---|
| 406 | DO i = nxl_z, nxr_z |
---|
| 407 | tri(1,i,0) = tri(1,i,0) + tri(2,i,0) |
---|
| 408 | ENDDO |
---|
| 409 | ENDIF |
---|
| 410 | IF ( ibc_p_t == 1 ) THEN |
---|
| 411 | DO i = nxl_z, nxr_z |
---|
| 412 | tri(1,i,nz-1) = tri(1,i,nz-1) + tri(3,i,nz-1) |
---|
| 413 | ENDDO |
---|
| 414 | ENDIF |
---|
| 415 | |
---|
| 416 | END SUBROUTINE maketri |
---|
| 417 | |
---|
| 418 | |
---|
| 419 | SUBROUTINE substi( ar, ar1, tri, j ) |
---|
| 420 | |
---|
| 421 | !------------------------------------------------------------------------------! |
---|
| 422 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
| 423 | !------------------------------------------------------------------------------! |
---|
| 424 | |
---|
[76] | 425 | USE control_parameters |
---|
| 426 | |
---|
[1] | 427 | IMPLICIT NONE |
---|
| 428 | |
---|
| 429 | INTEGER :: i, j, k |
---|
| 430 | REAL :: ar1(nxl_z:nxr_z,0:nz-1) |
---|
| 431 | REAL :: tri(5,nxl_z:nxr_z,0:nz-1) |
---|
| 432 | #if defined( __parallel ) |
---|
| 433 | REAL :: ar(nxl_z:nxr_za,nys_z:nyn_za,1:nza) |
---|
| 434 | #else |
---|
| 435 | REAL :: ar(1:nz,nys_z:nyn_z,nxl_z:nxr_z) |
---|
| 436 | #endif |
---|
| 437 | |
---|
| 438 | ! |
---|
| 439 | !-- Forward substitution. |
---|
| 440 | DO i = nxl_z, nxr_z |
---|
| 441 | #if defined( __parallel ) |
---|
| 442 | ar1(i,0) = ar(i,j,1) |
---|
| 443 | #else |
---|
| 444 | ar1(i,0) = ar(1,j,i) |
---|
| 445 | #endif |
---|
| 446 | ENDDO |
---|
| 447 | DO k = 1, nz - 1 |
---|
| 448 | DO i = nxl_z, nxr_z |
---|
| 449 | #if defined( __parallel ) |
---|
| 450 | ar1(i,k) = ar(i,j,k+1) - tri(5,i,k) * ar1(i,k-1) |
---|
| 451 | #else |
---|
| 452 | ar1(i,k) = ar(k+1,j,i) - tri(5,i,k) * ar1(i,k-1) |
---|
| 453 | #endif |
---|
| 454 | ENDDO |
---|
| 455 | ENDDO |
---|
| 456 | |
---|
| 457 | ! |
---|
| 458 | !-- Backward substitution. |
---|
| 459 | DO i = nxl_z, nxr_z |
---|
| 460 | #if defined( __parallel ) |
---|
| 461 | ar(i,j,nz) = ar1(i,nz-1) / tri(4,i,nz-1) |
---|
| 462 | #else |
---|
| 463 | ar(nz,j,i) = ar1(i,nz-1) / tri(4,i,nz-1) |
---|
| 464 | #endif |
---|
| 465 | ENDDO |
---|
| 466 | DO k = nz-2, 0, -1 |
---|
| 467 | DO i = nxl_z, nxr_z |
---|
| 468 | #if defined( __parallel ) |
---|
| 469 | ar(i,j,k+1) = ( ar1(i,k) - tri(3,i,k) * ar(i,j,k+2) ) & |
---|
| 470 | / tri(4,i,k) |
---|
| 471 | #else |
---|
| 472 | ar(k+1,j,i) = ( ar1(i,k) - tri(3,i,k) * ar(k+2,j,i) ) & |
---|
| 473 | / tri(4,i,k) |
---|
| 474 | #endif |
---|
| 475 | ENDDO |
---|
| 476 | ENDDO |
---|
| 477 | |
---|
[76] | 478 | ! |
---|
| 479 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 480 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 481 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 482 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 483 | IF ( j == 0 .AND. nxl_z == 0 ) THEN |
---|
| 484 | #if defined( __parallel ) |
---|
| 485 | DO k = 1, nz |
---|
| 486 | ar(nxl_z,j,k) = 0.0 |
---|
| 487 | ENDDO |
---|
| 488 | #else |
---|
| 489 | DO k = 1, nz |
---|
| 490 | ar(k,j,nxl_z) = 0.0 |
---|
| 491 | ENDDO |
---|
| 492 | #endif |
---|
| 493 | ENDIF |
---|
| 494 | ENDIF |
---|
| 495 | |
---|
[1] | 496 | END SUBROUTINE substi |
---|
| 497 | |
---|
| 498 | |
---|
| 499 | SUBROUTINE split( tri ) |
---|
| 500 | |
---|
| 501 | !------------------------------------------------------------------------------! |
---|
| 502 | ! Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
| 503 | !------------------------------------------------------------------------------! |
---|
| 504 | |
---|
| 505 | IMPLICIT NONE |
---|
| 506 | |
---|
| 507 | INTEGER :: i, k |
---|
| 508 | REAL :: tri(5,nxl_z:nxr_z,0:nz-1) |
---|
| 509 | |
---|
| 510 | ! |
---|
| 511 | !-- Splitting. |
---|
| 512 | DO i = nxl_z, nxr_z |
---|
| 513 | tri(4,i,0) = tri(1,i,0) |
---|
| 514 | ENDDO |
---|
| 515 | DO k = 1, nz-1 |
---|
| 516 | DO i = nxl_z, nxr_z |
---|
| 517 | tri(5,i,k) = tri(2,i,k) / tri(4,i,k-1) |
---|
| 518 | tri(4,i,k) = tri(1,i,k) - tri(3,i,k-1) * tri(5,i,k) |
---|
| 519 | ENDDO |
---|
| 520 | ENDDO |
---|
| 521 | |
---|
| 522 | END SUBROUTINE split |
---|
| 523 | |
---|
| 524 | END SUBROUTINE tridia |
---|
| 525 | |
---|
| 526 | |
---|
| 527 | #if defined( __parallel ) |
---|
| 528 | SUBROUTINE fftxp( ar, direction ) |
---|
| 529 | |
---|
| 530 | !------------------------------------------------------------------------------! |
---|
| 531 | ! Fourier-transformation along x-direction Parallelized version |
---|
| 532 | !------------------------------------------------------------------------------! |
---|
| 533 | |
---|
| 534 | IMPLICIT NONE |
---|
| 535 | |
---|
| 536 | CHARACTER (LEN=*) :: direction |
---|
| 537 | INTEGER :: j, k |
---|
| 538 | REAL :: ar(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa) |
---|
| 539 | |
---|
| 540 | ! |
---|
| 541 | !-- Performing the fft with one of the methods implemented |
---|
[683] | 542 | !$OMP PARALLEL PRIVATE ( j, k ) |
---|
| 543 | !$OMP DO |
---|
[1] | 544 | DO k = nzb_x, nzt_x |
---|
| 545 | DO j = nys_x, nyn_x |
---|
| 546 | CALL fft_x( ar(0:nx,j,k), direction ) |
---|
| 547 | ENDDO |
---|
| 548 | ENDDO |
---|
[683] | 549 | !$OMP END PARALLEL |
---|
[1] | 550 | |
---|
| 551 | END SUBROUTINE fftxp |
---|
| 552 | |
---|
| 553 | #else |
---|
| 554 | SUBROUTINE fftx( ar, direction ) |
---|
| 555 | |
---|
| 556 | !------------------------------------------------------------------------------! |
---|
| 557 | ! Fourier-transformation along x-direction Non parallel version |
---|
| 558 | !------------------------------------------------------------------------------! |
---|
| 559 | |
---|
| 560 | IMPLICIT NONE |
---|
| 561 | |
---|
| 562 | CHARACTER (LEN=*) :: direction |
---|
| 563 | INTEGER :: i, j, k |
---|
| 564 | REAL :: ar(1:nz,0:ny,0:nx) |
---|
| 565 | |
---|
| 566 | ! |
---|
| 567 | !-- Performing the fft with one of the methods implemented |
---|
[683] | 568 | !$OMP PARALLEL PRIVATE ( j, k ) |
---|
| 569 | !$OMP DO |
---|
[1] | 570 | DO k = 1, nz |
---|
| 571 | DO j = 0, ny |
---|
| 572 | CALL fft_x( ar(k,j,0:nx), direction ) |
---|
| 573 | ENDDO |
---|
| 574 | ENDDO |
---|
[683] | 575 | !$OMP END PARALLEL |
---|
[1] | 576 | |
---|
| 577 | END SUBROUTINE fftx |
---|
| 578 | #endif |
---|
| 579 | |
---|
| 580 | |
---|
| 581 | #if defined( __parallel ) |
---|
| 582 | SUBROUTINE fftyp( ar, direction ) |
---|
| 583 | |
---|
| 584 | !------------------------------------------------------------------------------! |
---|
| 585 | ! Fourier-transformation along y-direction Parallelized version |
---|
| 586 | !------------------------------------------------------------------------------! |
---|
| 587 | |
---|
| 588 | IMPLICIT NONE |
---|
| 589 | |
---|
| 590 | CHARACTER (LEN=*) :: direction |
---|
| 591 | INTEGER :: i, k |
---|
| 592 | REAL :: ar(0:nya,nxl_y:nxr_ya,nzb_y:nzt_ya) |
---|
| 593 | |
---|
| 594 | ! |
---|
| 595 | !-- Performing the fft with one of the methods implemented |
---|
[683] | 596 | !$OMP PARALLEL PRIVATE ( i, k ) |
---|
| 597 | !$OMP DO |
---|
[1] | 598 | DO k = nzb_y, nzt_y |
---|
| 599 | DO i = nxl_y, nxr_y |
---|
| 600 | CALL fft_y( ar(0:ny,i,k), direction ) |
---|
| 601 | ENDDO |
---|
| 602 | ENDDO |
---|
[683] | 603 | !$OMP END PARALLEL |
---|
[1] | 604 | |
---|
| 605 | END SUBROUTINE fftyp |
---|
| 606 | |
---|
| 607 | #else |
---|
| 608 | SUBROUTINE ffty( ar, direction ) |
---|
| 609 | |
---|
| 610 | !------------------------------------------------------------------------------! |
---|
| 611 | ! Fourier-transformation along y-direction Non parallel version |
---|
| 612 | !------------------------------------------------------------------------------! |
---|
| 613 | |
---|
| 614 | IMPLICIT NONE |
---|
| 615 | |
---|
| 616 | CHARACTER (LEN=*) :: direction |
---|
| 617 | INTEGER :: i, k |
---|
| 618 | REAL :: ar(1:nz,0:ny,0:nx) |
---|
| 619 | |
---|
| 620 | ! |
---|
| 621 | !-- Performing the fft with one of the methods implemented |
---|
[683] | 622 | !$OMP PARALLEL PRIVATE ( i, k ) |
---|
| 623 | !$OMP DO |
---|
[1] | 624 | DO k = 1, nz |
---|
| 625 | DO i = 0, nx |
---|
| 626 | CALL fft_y( ar(k,0:ny,i), direction ) |
---|
| 627 | ENDDO |
---|
| 628 | ENDDO |
---|
[683] | 629 | !$OMP END PARALLEL |
---|
[1] | 630 | |
---|
| 631 | END SUBROUTINE ffty |
---|
| 632 | #endif |
---|
| 633 | |
---|
| 634 | #if defined( __parallel ) |
---|
| 635 | SUBROUTINE ffty_tr_yx( f_in, work, f_out ) |
---|
| 636 | |
---|
| 637 | !------------------------------------------------------------------------------! |
---|
| 638 | ! Fourier-transformation along y with subsequent transposition y --> x for |
---|
| 639 | ! a 1d-decomposition along x |
---|
| 640 | ! |
---|
| 641 | ! ATTENTION: The performance of this routine is much faster on the NEC-SX6, |
---|
| 642 | ! if the first index of work_ffty_vec is odd. Otherwise |
---|
| 643 | ! memory bank conflicts may occur (especially if the index is a |
---|
| 644 | ! multiple of 128). That's why work_ffty_vec is dimensioned as |
---|
| 645 | ! 0:ny+1. |
---|
| 646 | ! Of course, this will not work if users are using an odd number |
---|
| 647 | ! of gridpoints along y. |
---|
| 648 | !------------------------------------------------------------------------------! |
---|
| 649 | |
---|
| 650 | USE control_parameters |
---|
| 651 | USE cpulog |
---|
| 652 | USE indices |
---|
| 653 | USE interfaces |
---|
| 654 | USE pegrid |
---|
| 655 | USE transpose_indices |
---|
| 656 | |
---|
| 657 | IMPLICIT NONE |
---|
| 658 | |
---|
| 659 | INTEGER :: i, iend, iouter, ir, j, k |
---|
| 660 | INTEGER, PARAMETER :: stridex = 4 |
---|
| 661 | |
---|
| 662 | REAL, DIMENSION(0:ny,stridex) :: work_ffty |
---|
| 663 | #if defined( __nec ) |
---|
| 664 | REAL, DIMENSION(0:ny+1,1:nz,nxl:nxr) :: work_ffty_vec |
---|
| 665 | #endif |
---|
| 666 | REAL, DIMENSION(1:nza,0:nya,nxl:nxra) :: f_in |
---|
| 667 | REAL, DIMENSION(nnx,1:nza,nys_x:nyn_xa,pdims(1)) :: f_out |
---|
| 668 | REAL, DIMENSION(nxl:nxra,1:nza,0:nya) :: work |
---|
| 669 | |
---|
| 670 | ! |
---|
| 671 | !-- Carry out the FFT along y, where all data are present due to the |
---|
| 672 | !-- 1d-decomposition along x. Resort the data in a way that x becomes |
---|
| 673 | !-- the first index. |
---|
| 674 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
| 675 | |
---|
| 676 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 677 | #if defined( __nec ) |
---|
| 678 | ! |
---|
| 679 | !-- Code optimized for vector processors |
---|
[85] | 680 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 681 | !$OMP DO |
---|
| 682 | DO i = nxl, nxr |
---|
| 683 | |
---|
| 684 | DO j = 0, ny |
---|
| 685 | DO k = 1, nz |
---|
| 686 | work_ffty_vec(j,k,i) = f_in(k,j,i) |
---|
| 687 | ENDDO |
---|
| 688 | ENDDO |
---|
| 689 | |
---|
| 690 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'forward' ) |
---|
| 691 | |
---|
| 692 | ENDDO |
---|
| 693 | |
---|
| 694 | !$OMP DO |
---|
| 695 | DO k = 1, nz |
---|
| 696 | DO j = 0, ny |
---|
| 697 | DO i = nxl, nxr |
---|
| 698 | work(i,k,j) = work_ffty_vec(j,k,i) |
---|
| 699 | ENDDO |
---|
| 700 | ENDDO |
---|
| 701 | ENDDO |
---|
| 702 | !$OMP END PARALLEL |
---|
| 703 | #endif |
---|
| 704 | |
---|
| 705 | ELSE |
---|
| 706 | |
---|
| 707 | ! |
---|
| 708 | !-- Cache optimized code. |
---|
| 709 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 710 | !-- loop for better cache performance |
---|
| 711 | !$OMP PARALLEL PRIVATE (i,iend,iouter,ir,j,k,work_ffty) |
---|
| 712 | !$OMP DO |
---|
| 713 | DO iouter = nxl, nxr, stridex |
---|
| 714 | |
---|
| 715 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 716 | |
---|
| 717 | DO k = 1, nz |
---|
| 718 | |
---|
| 719 | DO i = iouter, iend |
---|
| 720 | |
---|
| 721 | ir = i-iouter+1 ! counter within a stride |
---|
| 722 | DO j = 0, ny |
---|
| 723 | work_ffty(j,ir) = f_in(k,j,i) |
---|
| 724 | ENDDO |
---|
| 725 | ! |
---|
| 726 | !-- FFT along y |
---|
| 727 | CALL fft_y( work_ffty(:,ir), 'forward' ) |
---|
| 728 | |
---|
| 729 | ENDDO |
---|
| 730 | |
---|
| 731 | ! |
---|
| 732 | !-- Resort |
---|
| 733 | DO j = 0, ny |
---|
| 734 | DO i = iouter, iend |
---|
| 735 | work(i,k,j) = work_ffty(j,i-iouter+1) |
---|
| 736 | ENDDO |
---|
| 737 | ENDDO |
---|
| 738 | |
---|
| 739 | ENDDO |
---|
| 740 | |
---|
| 741 | ENDDO |
---|
| 742 | !$OMP END PARALLEL |
---|
| 743 | |
---|
| 744 | ENDIF |
---|
| 745 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 746 | |
---|
| 747 | ! |
---|
| 748 | !-- Transpose array |
---|
| 749 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 750 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 751 | CALL MPI_ALLTOALL( work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 752 | f_out(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 753 | comm1dx, ierr ) |
---|
| 754 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 755 | |
---|
| 756 | END SUBROUTINE ffty_tr_yx |
---|
| 757 | |
---|
| 758 | |
---|
| 759 | SUBROUTINE tr_xy_ffty( f_in, work, f_out ) |
---|
| 760 | |
---|
| 761 | !------------------------------------------------------------------------------! |
---|
| 762 | ! Transposition x --> y with a subsequent backward Fourier transformation for |
---|
| 763 | ! a 1d-decomposition along x |
---|
| 764 | !------------------------------------------------------------------------------! |
---|
| 765 | |
---|
| 766 | USE control_parameters |
---|
| 767 | USE cpulog |
---|
| 768 | USE indices |
---|
| 769 | USE interfaces |
---|
| 770 | USE pegrid |
---|
| 771 | USE transpose_indices |
---|
| 772 | |
---|
| 773 | IMPLICIT NONE |
---|
| 774 | |
---|
| 775 | INTEGER :: i, iend, iouter, ir, j, k |
---|
| 776 | INTEGER, PARAMETER :: stridex = 4 |
---|
| 777 | |
---|
| 778 | REAL, DIMENSION(0:ny,stridex) :: work_ffty |
---|
| 779 | #if defined( __nec ) |
---|
| 780 | REAL, DIMENSION(0:ny+1,1:nz,nxl:nxr) :: work_ffty_vec |
---|
| 781 | #endif |
---|
| 782 | REAL, DIMENSION(nnx,1:nza,nys_x:nyn_xa,pdims(1)) :: f_in |
---|
| 783 | REAL, DIMENSION(1:nza,0:nya,nxl:nxra) :: f_out |
---|
| 784 | REAL, DIMENSION(nxl:nxra,1:nza,0:nya) :: work |
---|
| 785 | |
---|
| 786 | ! |
---|
| 787 | !-- Transpose array |
---|
| 788 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 789 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 790 | CALL MPI_ALLTOALL( f_in(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 791 | work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 792 | comm1dx, ierr ) |
---|
| 793 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 794 | |
---|
| 795 | ! |
---|
| 796 | !-- Resort the data in a way that y becomes the first index and carry out the |
---|
| 797 | !-- backward fft along y. |
---|
| 798 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
| 799 | |
---|
| 800 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 801 | #if defined( __nec ) |
---|
| 802 | ! |
---|
| 803 | !-- Code optimized for vector processors |
---|
[85] | 804 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 805 | !$OMP DO |
---|
| 806 | DO k = 1, nz |
---|
| 807 | DO j = 0, ny |
---|
| 808 | DO i = nxl, nxr |
---|
| 809 | work_ffty_vec(j,k,i) = work(i,k,j) |
---|
| 810 | ENDDO |
---|
| 811 | ENDDO |
---|
| 812 | ENDDO |
---|
| 813 | |
---|
| 814 | !$OMP DO |
---|
| 815 | DO i = nxl, nxr |
---|
| 816 | |
---|
| 817 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'backward' ) |
---|
| 818 | |
---|
| 819 | DO j = 0, ny |
---|
| 820 | DO k = 1, nz |
---|
| 821 | f_out(k,j,i) = work_ffty_vec(j,k,i) |
---|
| 822 | ENDDO |
---|
| 823 | ENDDO |
---|
| 824 | |
---|
| 825 | ENDDO |
---|
| 826 | !$OMP END PARALLEL |
---|
| 827 | #endif |
---|
| 828 | |
---|
| 829 | ELSE |
---|
| 830 | |
---|
| 831 | ! |
---|
| 832 | !-- Cache optimized code. |
---|
| 833 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 834 | !-- loop for better cache performance |
---|
| 835 | !$OMP PARALLEL PRIVATE ( i, iend, iouter, ir, j, k, work_ffty ) |
---|
| 836 | !$OMP DO |
---|
| 837 | DO iouter = nxl, nxr, stridex |
---|
| 838 | |
---|
| 839 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 840 | |
---|
| 841 | DO k = 1, nz |
---|
| 842 | ! |
---|
| 843 | !-- Resort |
---|
| 844 | DO j = 0, ny |
---|
| 845 | DO i = iouter, iend |
---|
| 846 | work_ffty(j,i-iouter+1) = work(i,k,j) |
---|
| 847 | ENDDO |
---|
| 848 | ENDDO |
---|
| 849 | |
---|
| 850 | DO i = iouter, iend |
---|
| 851 | |
---|
| 852 | ! |
---|
| 853 | !-- FFT along y |
---|
| 854 | ir = i-iouter+1 ! counter within a stride |
---|
| 855 | CALL fft_y( work_ffty(:,ir), 'backward' ) |
---|
| 856 | |
---|
| 857 | DO j = 0, ny |
---|
| 858 | f_out(k,j,i) = work_ffty(j,ir) |
---|
| 859 | ENDDO |
---|
| 860 | ENDDO |
---|
| 861 | |
---|
| 862 | ENDDO |
---|
| 863 | |
---|
| 864 | ENDDO |
---|
| 865 | !$OMP END PARALLEL |
---|
| 866 | |
---|
| 867 | ENDIF |
---|
| 868 | |
---|
| 869 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 870 | |
---|
| 871 | END SUBROUTINE tr_xy_ffty |
---|
| 872 | |
---|
| 873 | |
---|
| 874 | SUBROUTINE fftx_tri_fftx( ar ) |
---|
| 875 | |
---|
| 876 | !------------------------------------------------------------------------------! |
---|
| 877 | ! FFT along x, solution of the tridiagonal system and backward FFT for |
---|
| 878 | ! a 1d-decomposition along x |
---|
| 879 | ! |
---|
| 880 | ! WARNING: this subroutine may still not work for hybrid parallelization |
---|
| 881 | ! with OpenMP (for possible necessary changes see the original |
---|
| 882 | ! routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
| 883 | !------------------------------------------------------------------------------! |
---|
| 884 | |
---|
| 885 | USE control_parameters |
---|
| 886 | USE cpulog |
---|
| 887 | USE grid_variables |
---|
| 888 | USE indices |
---|
| 889 | USE interfaces |
---|
| 890 | USE pegrid |
---|
| 891 | USE transpose_indices |
---|
| 892 | |
---|
| 893 | IMPLICIT NONE |
---|
| 894 | |
---|
| 895 | character(len=3) :: myth_char |
---|
| 896 | |
---|
| 897 | INTEGER :: i, j, k, m, n, omp_get_thread_num, tn |
---|
| 898 | |
---|
| 899 | REAL, DIMENSION(0:nx) :: work_fftx |
---|
| 900 | REAL, DIMENSION(0:nx,1:nz) :: work_trix |
---|
| 901 | REAL, DIMENSION(nnx,1:nza,nys_x:nyn_xa,pdims(1)) :: ar |
---|
| 902 | REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: tri |
---|
| 903 | |
---|
| 904 | |
---|
| 905 | CALL cpu_log( log_point_s(33), 'fft_x + tridia', 'start' ) |
---|
| 906 | |
---|
| 907 | ALLOCATE( tri(5,0:nx,0:nz-1,0:threads_per_task-1) ) |
---|
| 908 | |
---|
| 909 | tn = 0 ! Default thread number in case of one thread |
---|
| 910 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_fftx, work_trix ) |
---|
| 911 | DO j = nys_x, nyn_x |
---|
| 912 | |
---|
| 913 | !$ tn = omp_get_thread_num() |
---|
| 914 | |
---|
| 915 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 916 | ! |
---|
| 917 | !-- Code optimized for vector processors |
---|
| 918 | DO k = 1, nz |
---|
| 919 | |
---|
| 920 | m = 0 |
---|
| 921 | DO n = 1, pdims(1) |
---|
| 922 | DO i = 1, nnx_pe( n-1 ) ! WARN: pcoord(i) should be used!! |
---|
| 923 | work_trix(m,k) = ar(i,k,j,n) |
---|
| 924 | m = m + 1 |
---|
| 925 | ENDDO |
---|
| 926 | ENDDO |
---|
| 927 | |
---|
| 928 | ENDDO |
---|
| 929 | |
---|
| 930 | CALL fft_x_m( work_trix, 'forward' ) |
---|
| 931 | |
---|
| 932 | ELSE |
---|
| 933 | ! |
---|
| 934 | !-- Cache optimized code |
---|
| 935 | DO k = 1, nz |
---|
| 936 | |
---|
| 937 | m = 0 |
---|
| 938 | DO n = 1, pdims(1) |
---|
| 939 | DO i = 1, nnx_pe( n-1 ) ! WARN: pcoord(i) should be used!! |
---|
| 940 | work_fftx(m) = ar(i,k,j,n) |
---|
| 941 | m = m + 1 |
---|
| 942 | ENDDO |
---|
| 943 | ENDDO |
---|
| 944 | |
---|
| 945 | CALL fft_x( work_fftx, 'forward' ) |
---|
| 946 | |
---|
| 947 | DO i = 0, nx |
---|
| 948 | work_trix(i,k) = work_fftx(i) |
---|
| 949 | ENDDO |
---|
| 950 | |
---|
| 951 | ENDDO |
---|
| 952 | |
---|
| 953 | ENDIF |
---|
| 954 | |
---|
| 955 | ! |
---|
| 956 | !-- Solve the linear equation system |
---|
| 957 | CALL tridia_1dd( ddx2, ddy2, nx, ny, j, work_trix, tri(:,:,:,tn) ) |
---|
| 958 | |
---|
| 959 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 960 | ! |
---|
| 961 | !-- Code optimized for vector processors |
---|
| 962 | CALL fft_x_m( work_trix, 'backward' ) |
---|
| 963 | |
---|
| 964 | DO k = 1, nz |
---|
| 965 | |
---|
| 966 | m = 0 |
---|
| 967 | DO n = 1, pdims(1) |
---|
| 968 | DO i = 1, nnx_pe( n-1 ) ! WARN: pcoord(i) should be used!! |
---|
| 969 | ar(i,k,j,n) = work_trix(m,k) |
---|
| 970 | m = m + 1 |
---|
| 971 | ENDDO |
---|
| 972 | ENDDO |
---|
| 973 | |
---|
| 974 | ENDDO |
---|
| 975 | |
---|
| 976 | ELSE |
---|
| 977 | ! |
---|
| 978 | !-- Cache optimized code |
---|
| 979 | DO k = 1, nz |
---|
| 980 | |
---|
| 981 | DO i = 0, nx |
---|
| 982 | work_fftx(i) = work_trix(i,k) |
---|
| 983 | ENDDO |
---|
| 984 | |
---|
| 985 | CALL fft_x( work_fftx, 'backward' ) |
---|
| 986 | |
---|
| 987 | m = 0 |
---|
| 988 | DO n = 1, pdims(1) |
---|
| 989 | DO i = 1, nnx_pe( n-1 ) ! WARN: pcoord(i) should be used!! |
---|
| 990 | ar(i,k,j,n) = work_fftx(m) |
---|
| 991 | m = m + 1 |
---|
| 992 | ENDDO |
---|
| 993 | ENDDO |
---|
| 994 | |
---|
| 995 | ENDDO |
---|
| 996 | |
---|
| 997 | ENDIF |
---|
| 998 | |
---|
| 999 | ENDDO |
---|
| 1000 | |
---|
| 1001 | DEALLOCATE( tri ) |
---|
| 1002 | |
---|
| 1003 | CALL cpu_log( log_point_s(33), 'fft_x + tridia', 'stop' ) |
---|
| 1004 | |
---|
| 1005 | END SUBROUTINE fftx_tri_fftx |
---|
| 1006 | |
---|
| 1007 | |
---|
| 1008 | SUBROUTINE fftx_tr_xy( f_in, work, f_out ) |
---|
| 1009 | |
---|
| 1010 | !------------------------------------------------------------------------------! |
---|
| 1011 | ! Fourier-transformation along x with subsequent transposition x --> y for |
---|
| 1012 | ! a 1d-decomposition along y |
---|
| 1013 | ! |
---|
| 1014 | ! ATTENTION: The NEC-branch of this routine may significantly profit from |
---|
| 1015 | ! further optimizations. So far, performance is much worse than |
---|
| 1016 | ! for routine ffty_tr_yx (more than three times slower). |
---|
| 1017 | !------------------------------------------------------------------------------! |
---|
| 1018 | |
---|
| 1019 | USE control_parameters |
---|
| 1020 | USE cpulog |
---|
| 1021 | USE indices |
---|
| 1022 | USE interfaces |
---|
| 1023 | USE pegrid |
---|
| 1024 | USE transpose_indices |
---|
| 1025 | |
---|
| 1026 | IMPLICIT NONE |
---|
| 1027 | |
---|
| 1028 | INTEGER :: i, j, k |
---|
| 1029 | |
---|
| 1030 | REAL, DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx |
---|
| 1031 | REAL, DIMENSION(1:nza,nys:nyna,0:nxa) :: f_in |
---|
| 1032 | REAL, DIMENSION(nny,1:nza,nxl_y:nxr_ya,pdims(2)) :: f_out |
---|
| 1033 | REAL, DIMENSION(nys:nyna,1:nza,0:nxa) :: work |
---|
| 1034 | |
---|
| 1035 | ! |
---|
| 1036 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 1037 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 1038 | !-- the first index. |
---|
| 1039 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
| 1040 | |
---|
| 1041 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1042 | ! |
---|
| 1043 | !-- Code for vector processors |
---|
[85] | 1044 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 1045 | !$OMP DO |
---|
| 1046 | DO i = 0, nx |
---|
| 1047 | |
---|
| 1048 | DO j = nys, nyn |
---|
| 1049 | DO k = 1, nz |
---|
| 1050 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 1051 | ENDDO |
---|
| 1052 | ENDDO |
---|
| 1053 | |
---|
| 1054 | ENDDO |
---|
| 1055 | |
---|
| 1056 | !$OMP DO |
---|
| 1057 | DO j = nys, nyn |
---|
| 1058 | |
---|
| 1059 | CALL fft_x_m( work_fftx(:,:,j), 'forward' ) |
---|
| 1060 | |
---|
| 1061 | DO k = 1, nz |
---|
| 1062 | DO i = 0, nx |
---|
| 1063 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 1064 | ENDDO |
---|
| 1065 | ENDDO |
---|
| 1066 | |
---|
| 1067 | ENDDO |
---|
| 1068 | !$OMP END PARALLEL |
---|
| 1069 | |
---|
| 1070 | ELSE |
---|
| 1071 | |
---|
| 1072 | ! |
---|
| 1073 | !-- Cache optimized code (there might be still a potential for better |
---|
| 1074 | !-- optimization). |
---|
[696] | 1075 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
[1] | 1076 | !$OMP DO |
---|
| 1077 | DO i = 0, nx |
---|
| 1078 | |
---|
| 1079 | DO j = nys, nyn |
---|
| 1080 | DO k = 1, nz |
---|
| 1081 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 1082 | ENDDO |
---|
| 1083 | ENDDO |
---|
| 1084 | |
---|
| 1085 | ENDDO |
---|
| 1086 | |
---|
| 1087 | !$OMP DO |
---|
| 1088 | DO j = nys, nyn |
---|
| 1089 | DO k = 1, nz |
---|
| 1090 | |
---|
| 1091 | CALL fft_x( work_fftx(0:nx,k,j), 'forward' ) |
---|
| 1092 | |
---|
| 1093 | DO i = 0, nx |
---|
| 1094 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 1095 | ENDDO |
---|
| 1096 | ENDDO |
---|
| 1097 | |
---|
| 1098 | ENDDO |
---|
| 1099 | !$OMP END PARALLEL |
---|
| 1100 | |
---|
| 1101 | ENDIF |
---|
| 1102 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
| 1103 | |
---|
| 1104 | ! |
---|
| 1105 | !-- Transpose array |
---|
| 1106 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1107 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1108 | CALL MPI_ALLTOALL( work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 1109 | f_out(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 1110 | comm1dy, ierr ) |
---|
| 1111 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 1112 | |
---|
| 1113 | END SUBROUTINE fftx_tr_xy |
---|
| 1114 | |
---|
| 1115 | |
---|
| 1116 | SUBROUTINE tr_yx_fftx( f_in, work, f_out ) |
---|
| 1117 | |
---|
| 1118 | !------------------------------------------------------------------------------! |
---|
| 1119 | ! Transposition y --> x with a subsequent backward Fourier transformation for |
---|
| 1120 | ! a 1d-decomposition along x |
---|
| 1121 | !------------------------------------------------------------------------------! |
---|
| 1122 | |
---|
| 1123 | USE control_parameters |
---|
| 1124 | USE cpulog |
---|
| 1125 | USE indices |
---|
| 1126 | USE interfaces |
---|
| 1127 | USE pegrid |
---|
| 1128 | USE transpose_indices |
---|
| 1129 | |
---|
| 1130 | IMPLICIT NONE |
---|
| 1131 | |
---|
| 1132 | INTEGER :: i, j, k |
---|
| 1133 | |
---|
| 1134 | REAL, DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx |
---|
| 1135 | REAL, DIMENSION(nny,1:nza,nxl_y:nxr_ya,pdims(2)) :: f_in |
---|
| 1136 | REAL, DIMENSION(1:nza,nys:nyna,0:nxa) :: f_out |
---|
| 1137 | REAL, DIMENSION(nys:nyna,1:nza,0:nxa) :: work |
---|
| 1138 | |
---|
| 1139 | ! |
---|
| 1140 | !-- Transpose array |
---|
| 1141 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1142 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1143 | CALL MPI_ALLTOALL( f_in(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 1144 | work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 1145 | comm1dy, ierr ) |
---|
| 1146 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 1147 | |
---|
| 1148 | ! |
---|
| 1149 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 1150 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 1151 | !-- the first index. |
---|
| 1152 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
| 1153 | |
---|
| 1154 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1155 | ! |
---|
| 1156 | !-- Code optimized for vector processors |
---|
[85] | 1157 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 1158 | !$OMP DO |
---|
| 1159 | DO j = nys, nyn |
---|
| 1160 | |
---|
| 1161 | DO k = 1, nz |
---|
| 1162 | DO i = 0, nx |
---|
| 1163 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1164 | ENDDO |
---|
| 1165 | ENDDO |
---|
| 1166 | |
---|
| 1167 | CALL fft_x_m( work_fftx(:,:,j), 'backward' ) |
---|
| 1168 | |
---|
| 1169 | ENDDO |
---|
| 1170 | |
---|
| 1171 | !$OMP DO |
---|
| 1172 | DO i = 0, nx |
---|
| 1173 | DO j = nys, nyn |
---|
| 1174 | DO k = 1, nz |
---|
| 1175 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 1176 | ENDDO |
---|
| 1177 | ENDDO |
---|
| 1178 | ENDDO |
---|
| 1179 | !$OMP END PARALLEL |
---|
| 1180 | |
---|
| 1181 | ELSE |
---|
| 1182 | |
---|
| 1183 | ! |
---|
| 1184 | !-- Cache optimized code (there might be still a potential for better |
---|
| 1185 | !-- optimization). |
---|
[696] | 1186 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
[1] | 1187 | !$OMP DO |
---|
| 1188 | DO j = nys, nyn |
---|
| 1189 | DO k = 1, nz |
---|
| 1190 | |
---|
| 1191 | DO i = 0, nx |
---|
| 1192 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1193 | ENDDO |
---|
| 1194 | |
---|
| 1195 | CALL fft_x( work_fftx(0:nx,k,j), 'backward' ) |
---|
| 1196 | |
---|
| 1197 | ENDDO |
---|
| 1198 | ENDDO |
---|
| 1199 | |
---|
| 1200 | !$OMP DO |
---|
| 1201 | DO i = 0, nx |
---|
| 1202 | DO j = nys, nyn |
---|
| 1203 | DO k = 1, nz |
---|
| 1204 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 1205 | ENDDO |
---|
| 1206 | ENDDO |
---|
| 1207 | ENDDO |
---|
| 1208 | !$OMP END PARALLEL |
---|
| 1209 | |
---|
| 1210 | ENDIF |
---|
| 1211 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 1212 | |
---|
| 1213 | END SUBROUTINE tr_yx_fftx |
---|
| 1214 | |
---|
| 1215 | |
---|
| 1216 | SUBROUTINE ffty_tri_ffty( ar ) |
---|
| 1217 | |
---|
| 1218 | !------------------------------------------------------------------------------! |
---|
| 1219 | ! FFT along y, solution of the tridiagonal system and backward FFT for |
---|
| 1220 | ! a 1d-decomposition along y |
---|
| 1221 | ! |
---|
| 1222 | ! WARNING: this subroutine may still not work for hybrid parallelization |
---|
| 1223 | ! with OpenMP (for possible necessary changes see the original |
---|
| 1224 | ! routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
| 1225 | !------------------------------------------------------------------------------! |
---|
| 1226 | |
---|
| 1227 | USE control_parameters |
---|
| 1228 | USE cpulog |
---|
| 1229 | USE grid_variables |
---|
| 1230 | USE indices |
---|
| 1231 | USE interfaces |
---|
| 1232 | USE pegrid |
---|
| 1233 | USE transpose_indices |
---|
| 1234 | |
---|
| 1235 | IMPLICIT NONE |
---|
| 1236 | |
---|
| 1237 | INTEGER :: i, j, k, m, n, omp_get_thread_num, tn |
---|
| 1238 | |
---|
| 1239 | REAL, DIMENSION(0:ny) :: work_ffty |
---|
| 1240 | REAL, DIMENSION(0:ny,1:nz) :: work_triy |
---|
| 1241 | REAL, DIMENSION(nny,1:nza,nxl_y:nxr_ya,pdims(2)) :: ar |
---|
| 1242 | REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: tri |
---|
| 1243 | |
---|
| 1244 | |
---|
| 1245 | CALL cpu_log( log_point_s(39), 'fft_y + tridia', 'start' ) |
---|
| 1246 | |
---|
| 1247 | ALLOCATE( tri(5,0:ny,0:nz-1,0:threads_per_task-1) ) |
---|
| 1248 | |
---|
| 1249 | tn = 0 ! Default thread number in case of one thread |
---|
[696] | 1250 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_ffty, work_triy ) |
---|
[1] | 1251 | DO i = nxl_y, nxr_y |
---|
| 1252 | |
---|
| 1253 | !$ tn = omp_get_thread_num() |
---|
| 1254 | |
---|
| 1255 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1256 | ! |
---|
| 1257 | !-- Code optimized for vector processors |
---|
| 1258 | DO k = 1, nz |
---|
| 1259 | |
---|
| 1260 | m = 0 |
---|
| 1261 | DO n = 1, pdims(2) |
---|
| 1262 | DO j = 1, nny_pe( n-1 ) ! WARN: pcoord(j) should be used!! |
---|
| 1263 | work_triy(m,k) = ar(j,k,i,n) |
---|
| 1264 | m = m + 1 |
---|
| 1265 | ENDDO |
---|
| 1266 | ENDDO |
---|
| 1267 | |
---|
| 1268 | ENDDO |
---|
| 1269 | |
---|
| 1270 | CALL fft_y_m( work_triy, ny, 'forward' ) |
---|
| 1271 | |
---|
| 1272 | ELSE |
---|
| 1273 | ! |
---|
| 1274 | !-- Cache optimized code |
---|
| 1275 | DO k = 1, nz |
---|
| 1276 | |
---|
| 1277 | m = 0 |
---|
| 1278 | DO n = 1, pdims(2) |
---|
| 1279 | DO j = 1, nny_pe( n-1 ) ! WARN: pcoord(j) should be used!! |
---|
| 1280 | work_ffty(m) = ar(j,k,i,n) |
---|
| 1281 | m = m + 1 |
---|
| 1282 | ENDDO |
---|
| 1283 | ENDDO |
---|
| 1284 | |
---|
| 1285 | CALL fft_y( work_ffty, 'forward' ) |
---|
| 1286 | |
---|
| 1287 | DO j = 0, ny |
---|
| 1288 | work_triy(j,k) = work_ffty(j) |
---|
| 1289 | ENDDO |
---|
| 1290 | |
---|
| 1291 | ENDDO |
---|
| 1292 | |
---|
| 1293 | ENDIF |
---|
| 1294 | |
---|
| 1295 | ! |
---|
| 1296 | !-- Solve the linear equation system |
---|
| 1297 | CALL tridia_1dd( ddy2, ddx2, ny, nx, i, work_triy, tri(:,:,:,tn) ) |
---|
| 1298 | |
---|
| 1299 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1300 | ! |
---|
| 1301 | !-- Code optimized for vector processors |
---|
| 1302 | CALL fft_y_m( work_triy, ny, 'backward' ) |
---|
| 1303 | |
---|
| 1304 | DO k = 1, nz |
---|
| 1305 | |
---|
| 1306 | m = 0 |
---|
| 1307 | DO n = 1, pdims(2) |
---|
| 1308 | DO j = 1, nny_pe( n-1 ) ! WARN: pcoord(j) should be used!! |
---|
| 1309 | ar(j,k,i,n) = work_triy(m,k) |
---|
| 1310 | m = m + 1 |
---|
| 1311 | ENDDO |
---|
| 1312 | ENDDO |
---|
| 1313 | |
---|
| 1314 | ENDDO |
---|
| 1315 | |
---|
| 1316 | ELSE |
---|
| 1317 | ! |
---|
| 1318 | !-- Cache optimized code |
---|
| 1319 | DO k = 1, nz |
---|
| 1320 | |
---|
| 1321 | DO j = 0, ny |
---|
| 1322 | work_ffty(j) = work_triy(j,k) |
---|
| 1323 | ENDDO |
---|
| 1324 | |
---|
| 1325 | CALL fft_y( work_ffty, 'backward' ) |
---|
| 1326 | |
---|
| 1327 | m = 0 |
---|
| 1328 | DO n = 1, pdims(2) |
---|
| 1329 | DO j = 1, nny_pe( n-1 ) ! WARN: pcoord(j) should be used!! |
---|
| 1330 | ar(j,k,i,n) = work_ffty(m) |
---|
| 1331 | m = m + 1 |
---|
| 1332 | ENDDO |
---|
| 1333 | ENDDO |
---|
| 1334 | |
---|
| 1335 | ENDDO |
---|
| 1336 | |
---|
| 1337 | ENDIF |
---|
| 1338 | |
---|
| 1339 | ENDDO |
---|
| 1340 | |
---|
| 1341 | DEALLOCATE( tri ) |
---|
| 1342 | |
---|
| 1343 | CALL cpu_log( log_point_s(39), 'fft_y + tridia', 'stop' ) |
---|
| 1344 | |
---|
| 1345 | END SUBROUTINE ffty_tri_ffty |
---|
| 1346 | |
---|
| 1347 | |
---|
| 1348 | SUBROUTINE tridia_1dd( ddx2, ddy2, nx, ny, j, ar, tri ) |
---|
| 1349 | |
---|
| 1350 | !------------------------------------------------------------------------------! |
---|
| 1351 | ! Solves the linear system of equations for a 1d-decomposition along x (see |
---|
| 1352 | ! tridia) |
---|
| 1353 | ! |
---|
| 1354 | ! Attention: when using the intel compiler, array tri must be passed as an |
---|
| 1355 | ! argument to the contained subroutines. Otherwise addres faults |
---|
| 1356 | ! will occur. |
---|
| 1357 | ! On NEC, tri should not be passed (except for routine substi_1dd) |
---|
| 1358 | ! because this causes very bad performance. |
---|
| 1359 | !------------------------------------------------------------------------------! |
---|
| 1360 | |
---|
| 1361 | USE arrays_3d |
---|
| 1362 | USE control_parameters |
---|
| 1363 | |
---|
| 1364 | USE pegrid |
---|
| 1365 | |
---|
| 1366 | IMPLICIT NONE |
---|
| 1367 | |
---|
| 1368 | INTEGER :: i, j, k, nnyh, nx, ny, omp_get_thread_num, tn |
---|
| 1369 | |
---|
| 1370 | REAL :: ddx2, ddy2 |
---|
| 1371 | |
---|
| 1372 | REAL, DIMENSION(0:nx,1:nz) :: ar |
---|
| 1373 | REAL, DIMENSION(0:nx,0:nz-1) :: ar1 |
---|
| 1374 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri |
---|
| 1375 | |
---|
| 1376 | |
---|
| 1377 | nnyh = ( ny + 1 ) / 2 |
---|
| 1378 | |
---|
| 1379 | ! |
---|
| 1380 | !-- Define constant elements of the tridiagonal matrix. |
---|
| 1381 | !-- The compiler on SX6 does loop exchange. If 0:nx is a high power of 2, |
---|
| 1382 | !-- the exchanged loops create bank conflicts. The following directive |
---|
| 1383 | !-- prohibits loop exchange and the loops perform much better. |
---|
| 1384 | ! tn = omp_get_thread_num() |
---|
| 1385 | ! WRITE( 120+tn, * ) '+++ id=',myid,' nx=',nx,' thread=', omp_get_thread_num() |
---|
[82] | 1386 | ! CALL local_flush( 120+tn ) |
---|
[1] | 1387 | !CDIR NOLOOPCHG |
---|
| 1388 | DO k = 0, nz-1 |
---|
| 1389 | DO i = 0,nx |
---|
[667] | 1390 | tri(2,i,k) = ddzu_pres(k+1) * ddzw(k+1) |
---|
| 1391 | tri(3,i,k) = ddzu_pres(k+2) * ddzw(k+1) |
---|
[1] | 1392 | ENDDO |
---|
| 1393 | ENDDO |
---|
| 1394 | ! WRITE( 120+tn, * ) '+++ id=',myid,' end of first tridia loop thread=', omp_get_thread_num() |
---|
[82] | 1395 | ! CALL local_flush( 120+tn ) |
---|
[1] | 1396 | |
---|
| 1397 | IF ( j <= nnyh ) THEN |
---|
[377] | 1398 | #if defined( __lc ) |
---|
[1] | 1399 | CALL maketri_1dd( j, tri ) |
---|
| 1400 | #else |
---|
| 1401 | CALL maketri_1dd( j ) |
---|
| 1402 | #endif |
---|
| 1403 | ELSE |
---|
[377] | 1404 | #if defined( __lc ) |
---|
[1] | 1405 | CALL maketri_1dd( ny+1-j, tri ) |
---|
| 1406 | #else |
---|
| 1407 | CALL maketri_1dd( ny+1-j ) |
---|
| 1408 | #endif |
---|
| 1409 | ENDIF |
---|
[377] | 1410 | #if defined( __lc ) |
---|
[1] | 1411 | CALL split_1dd( tri ) |
---|
| 1412 | #else |
---|
| 1413 | CALL split_1dd |
---|
| 1414 | #endif |
---|
| 1415 | CALL substi_1dd( ar, tri ) |
---|
| 1416 | |
---|
| 1417 | CONTAINS |
---|
| 1418 | |
---|
[377] | 1419 | #if defined( __lc ) |
---|
[1] | 1420 | SUBROUTINE maketri_1dd( j, tri ) |
---|
| 1421 | #else |
---|
| 1422 | SUBROUTINE maketri_1dd( j ) |
---|
| 1423 | #endif |
---|
| 1424 | |
---|
| 1425 | !------------------------------------------------------------------------------! |
---|
| 1426 | ! computes the i- and j-dependent component of the matrix |
---|
| 1427 | !------------------------------------------------------------------------------! |
---|
| 1428 | |
---|
| 1429 | USE constants |
---|
| 1430 | |
---|
| 1431 | IMPLICIT NONE |
---|
| 1432 | |
---|
| 1433 | INTEGER :: i, j, k, nnxh |
---|
| 1434 | REAL :: a, c |
---|
| 1435 | |
---|
| 1436 | REAL, DIMENSION(0:nx) :: l |
---|
| 1437 | |
---|
[377] | 1438 | #if defined( __lc ) |
---|
[1] | 1439 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri |
---|
| 1440 | #endif |
---|
| 1441 | |
---|
| 1442 | |
---|
| 1443 | nnxh = ( nx + 1 ) / 2 |
---|
| 1444 | ! |
---|
| 1445 | !-- Provide the tridiagonal matrix for solution of the Poisson equation in |
---|
| 1446 | !-- Fourier space. The coefficients are computed following the method of |
---|
| 1447 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 1448 | !-- Siano's original version by discretizing the Poisson equation, |
---|
| 1449 | !-- before it is Fourier-transformed |
---|
| 1450 | DO i = 0, nx |
---|
[128] | 1451 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1] | 1452 | l(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * i ) / & |
---|
| 1453 | FLOAT( nx+1 ) ) ) * ddx2 + & |
---|
| 1454 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
| 1455 | FLOAT( ny+1 ) ) ) * ddy2 |
---|
| 1456 | ELSE |
---|
| 1457 | l(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( nx+1-i ) ) / & |
---|
| 1458 | FLOAT( nx+1 ) ) ) * ddx2 + & |
---|
| 1459 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
| 1460 | FLOAT( ny+1 ) ) ) * ddy2 |
---|
| 1461 | ENDIF |
---|
| 1462 | ENDDO |
---|
| 1463 | |
---|
| 1464 | DO k = 0, nz-1 |
---|
| 1465 | DO i = 0, nx |
---|
[667] | 1466 | a = -1.0 * ddzu_pres(k+2) * ddzw(k+1) |
---|
| 1467 | c = -1.0 * ddzu_pres(k+1) * ddzw(k+1) |
---|
[1] | 1468 | tri(1,i,k) = a + c - l(i) |
---|
| 1469 | ENDDO |
---|
| 1470 | ENDDO |
---|
| 1471 | IF ( ibc_p_b == 1 .OR. ibc_p_b == 2 ) THEN |
---|
| 1472 | DO i = 0, nx |
---|
| 1473 | tri(1,i,0) = tri(1,i,0) + tri(2,i,0) |
---|
| 1474 | ENDDO |
---|
| 1475 | ENDIF |
---|
| 1476 | IF ( ibc_p_t == 1 ) THEN |
---|
| 1477 | DO i = 0, nx |
---|
| 1478 | tri(1,i,nz-1) = tri(1,i,nz-1) + tri(3,i,nz-1) |
---|
| 1479 | ENDDO |
---|
| 1480 | ENDIF |
---|
| 1481 | |
---|
| 1482 | END SUBROUTINE maketri_1dd |
---|
| 1483 | |
---|
| 1484 | |
---|
[377] | 1485 | #if defined( __lc ) |
---|
[1] | 1486 | SUBROUTINE split_1dd( tri ) |
---|
| 1487 | #else |
---|
| 1488 | SUBROUTINE split_1dd |
---|
| 1489 | #endif |
---|
| 1490 | |
---|
| 1491 | !------------------------------------------------------------------------------! |
---|
| 1492 | ! Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
| 1493 | !------------------------------------------------------------------------------! |
---|
| 1494 | |
---|
| 1495 | IMPLICIT NONE |
---|
| 1496 | |
---|
| 1497 | INTEGER :: i, k |
---|
| 1498 | |
---|
[377] | 1499 | #if defined( __lc ) |
---|
[1] | 1500 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri |
---|
| 1501 | #endif |
---|
| 1502 | |
---|
| 1503 | |
---|
| 1504 | ! |
---|
| 1505 | !-- Splitting |
---|
| 1506 | DO i = 0, nx |
---|
| 1507 | tri(4,i,0) = tri(1,i,0) |
---|
| 1508 | ENDDO |
---|
| 1509 | DO k = 1, nz-1 |
---|
| 1510 | DO i = 0, nx |
---|
| 1511 | tri(5,i,k) = tri(2,i,k) / tri(4,i,k-1) |
---|
| 1512 | tri(4,i,k) = tri(1,i,k) - tri(3,i,k-1) * tri(5,i,k) |
---|
| 1513 | ENDDO |
---|
| 1514 | ENDDO |
---|
| 1515 | |
---|
| 1516 | END SUBROUTINE split_1dd |
---|
| 1517 | |
---|
| 1518 | |
---|
| 1519 | SUBROUTINE substi_1dd( ar, tri ) |
---|
| 1520 | |
---|
| 1521 | !------------------------------------------------------------------------------! |
---|
| 1522 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
| 1523 | !------------------------------------------------------------------------------! |
---|
| 1524 | |
---|
| 1525 | IMPLICIT NONE |
---|
| 1526 | |
---|
[76] | 1527 | INTEGER :: i, k |
---|
[1] | 1528 | |
---|
| 1529 | REAL, DIMENSION(0:nx,nz) :: ar |
---|
| 1530 | REAL, DIMENSION(0:nx,0:nz-1) :: ar1 |
---|
| 1531 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri |
---|
| 1532 | |
---|
| 1533 | ! |
---|
| 1534 | !-- Forward substitution |
---|
| 1535 | DO i = 0, nx |
---|
| 1536 | ar1(i,0) = ar(i,1) |
---|
| 1537 | ENDDO |
---|
| 1538 | DO k = 1, nz-1 |
---|
| 1539 | DO i = 0, nx |
---|
| 1540 | ar1(i,k) = ar(i,k+1) - tri(5,i,k) * ar1(i,k-1) |
---|
| 1541 | ENDDO |
---|
| 1542 | ENDDO |
---|
| 1543 | |
---|
| 1544 | ! |
---|
| 1545 | !-- Backward substitution |
---|
| 1546 | DO i = 0, nx |
---|
| 1547 | ar(i,nz) = ar1(i,nz-1) / tri(4,i,nz-1) |
---|
| 1548 | ENDDO |
---|
| 1549 | DO k = nz-2, 0, -1 |
---|
| 1550 | DO i = 0, nx |
---|
| 1551 | ar(i,k+1) = ( ar1(i,k) - tri(3,i,k) * ar(i,k+2) ) & |
---|
| 1552 | / tri(4,i,k) |
---|
| 1553 | ENDDO |
---|
| 1554 | ENDDO |
---|
| 1555 | |
---|
[76] | 1556 | ! |
---|
| 1557 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 1558 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 1559 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 1560 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 1561 | IF ( j == 0 ) THEN |
---|
| 1562 | DO k = 1, nz |
---|
| 1563 | ar(0,k) = 0.0 |
---|
| 1564 | ENDDO |
---|
| 1565 | ENDIF |
---|
| 1566 | ENDIF |
---|
| 1567 | |
---|
[1] | 1568 | END SUBROUTINE substi_1dd |
---|
| 1569 | |
---|
| 1570 | END SUBROUTINE tridia_1dd |
---|
| 1571 | |
---|
| 1572 | #endif |
---|
| 1573 | |
---|
| 1574 | END MODULE poisfft_mod |
---|