[1] | 1 | MODULE poisfft_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1321] | 22 | ! |
---|
| 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: poisfft.f90 1321 2014-03-20 09:40:40Z witha $ |
---|
| 27 | ! |
---|
| 28 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 29 | ! ONLY-attribute added to USE-statements, |
---|
| 30 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 31 | ! kinds are defined in new module kinds, |
---|
| 32 | ! old module precision_kind is removed, |
---|
| 33 | ! revision history before 2012 removed, |
---|
| 34 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 35 | ! all variable declaration statements |
---|
[1217] | 36 | ! |
---|
[1319] | 37 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 38 | ! module interfaces removed |
---|
| 39 | ! |
---|
[1307] | 40 | ! 1306 2014-03-13 14:30:59Z raasch |
---|
| 41 | ! openmp sections removed from the overlap branch, |
---|
| 42 | ! second argument removed from parameter list |
---|
| 43 | ! |
---|
[1217] | 44 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
[1216] | 45 | ! resorting of arrays moved to separate routines resort_for_..., |
---|
| 46 | ! one argument, used as temporary work array, removed from all transpose |
---|
| 47 | ! routines |
---|
| 48 | ! overlapping fft / transposition implemented |
---|
[1112] | 49 | ! |
---|
[1213] | 50 | ! 1212 2013-08-15 08:46:27Z raasch |
---|
| 51 | ! tridia routines moved to seperate module tridia_solver |
---|
| 52 | ! |
---|
[1209] | 53 | ! 1208 2013-08-13 06:41:49Z raasch |
---|
| 54 | ! acc-update clauses added for "ar" so that ffts other than cufft can also be |
---|
| 55 | ! used (although they are not ported and will give a poor performance) |
---|
| 56 | ! |
---|
[1112] | 57 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
[1111] | 58 | ! further openACC porting of non-parallel (MPI) branch: |
---|
| 59 | ! tridiagonal routines split into extermal subroutines (instead using CONTAINS), |
---|
| 60 | ! no distinction between parallel/non-parallel in poisfft and tridia any more, |
---|
[1112] | 61 | ! tridia routines moved to end of file because of probable bug in PGI compiler 12.5 |
---|
[1111] | 62 | ! (otherwise "invalid device function" is indicated during runtime), |
---|
| 63 | ! optimization of tridia routines: constant elements and coefficients of tri are |
---|
| 64 | ! stored in seperate arrays ddzuw and tric, last dimension of tri reduced from 5 |
---|
| 65 | ! to 2, |
---|
| 66 | ! poisfft_init is now called internally from poisfft, maketri is called from |
---|
| 67 | ! poisfft_init, |
---|
| 68 | ! ibc_p_b = 2 removed |
---|
[1] | 69 | ! |
---|
[1107] | 70 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 71 | ! routines fftx, ffty, fftxp, fftyp removed, calls replaced by fft_x, fft_y, |
---|
| 72 | ! in the 1D-decomposition routines fft_x, ffty are replaced by fft_x_1d, |
---|
| 73 | ! fft_y_1d |
---|
| 74 | ! |
---|
[1104] | 75 | ! 1103 2013-02-20 02:15:53Z raasch |
---|
| 76 | ! tri, ar, and ar1 arguments in tridia-routines (2d) are removed because they |
---|
| 77 | ! sometimes cause segmentation faults with intel 12.1 compiler |
---|
| 78 | ! |
---|
[1093] | 79 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 80 | ! unused variables removed |
---|
| 81 | ! |
---|
[1037] | 82 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 83 | ! code put under GPL (PALM 3.9) |
---|
| 84 | ! |
---|
[1014] | 85 | ! 2012-09-21 07:03:55Z raasch |
---|
| 86 | ! FLOAT type conversion replaced by REAL |
---|
| 87 | ! |
---|
[1004] | 88 | ! 1003 2012-09-14 14:35:53Z raasch |
---|
| 89 | ! indices nxa, nya, etc. replaced by nx, ny, etc. |
---|
| 90 | ! |
---|
[941] | 91 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 92 | ! special handling of tri-array as an argument in tridia_1dd routines switched |
---|
| 93 | ! off because it caused segmentation faults with intel 12.1 compiler |
---|
| 94 | ! |
---|
[878] | 95 | ! 877 2012-04-03 11:21:44Z suehring |
---|
| 96 | ! Bugfix: Avoid divisions by zero in case of using a 'neumann' bc for the |
---|
| 97 | ! pressure at the top of the model domain. |
---|
| 98 | ! |
---|
[810] | 99 | ! 809 2012-01-30 13:32:58Z maronga |
---|
| 100 | ! Bugfix: replaced .AND. and .NOT. with && and ! in the preprocessor directives |
---|
| 101 | ! |
---|
[808] | 102 | ! 807 2012-01-25 11:53:51Z maronga |
---|
| 103 | ! New cpp directive "__check" implemented which is used by check_namelist_files |
---|
| 104 | ! (most of the code is unneeded by check_namelist_files). |
---|
| 105 | ! |
---|
[1] | 106 | ! Revision 1.1 1997/07/24 11:24:14 raasch |
---|
| 107 | ! Initial revision |
---|
| 108 | ! |
---|
| 109 | ! |
---|
| 110 | ! Description: |
---|
| 111 | ! ------------ |
---|
[1306] | 112 | ! Original version by Stephan Siano (pois3d), as of July 23, 1996 |
---|
| 113 | ! Adapted for 2D-domain-decomposition by Siegfried Raasch, July 3, 1997 |
---|
| 114 | ! |
---|
| 115 | ! Solves the Poisson equation with a 2D spectral method |
---|
| 116 | ! d^2 p / dx^2 + d^2 p / dy^2 + d^2 p / dz^2 = s |
---|
| 117 | ! |
---|
| 118 | ! Input: |
---|
| 119 | ! real ar contains (nnz,nny,nnx) elements of the velocity divergence, |
---|
| 120 | ! starting from (1,nys,nxl) |
---|
| 121 | ! |
---|
| 122 | ! Output: |
---|
| 123 | ! real ar contains the solution for perturbation pressure p |
---|
[1] | 124 | !------------------------------------------------------------------------------! |
---|
| 125 | |
---|
[1320] | 126 | USE fft_xy, & |
---|
| 127 | ONLY: fft_init, fft_y, fft_y_1d, fft_y_m, fft_x, fft_x_1d, fft_x_m |
---|
[1] | 128 | |
---|
[1320] | 129 | USE indices, & |
---|
| 130 | ONLY: nnx, nny, nx, nxl, nxr, ny, nys, nyn, nz |
---|
| 131 | |
---|
| 132 | USE transpose_indices, & |
---|
| 133 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nys_x, nys_z, nyn_x, nyn_z, nzb_x, & |
---|
| 134 | nzb_y, nzt_x, nzt_y |
---|
| 135 | |
---|
| 136 | USE tridia_solver, & |
---|
| 137 | ONLY: tridia_1dd, tridia_init, tridia_substi, tridia_substi_overlap |
---|
| 138 | |
---|
[1] | 139 | IMPLICIT NONE |
---|
| 140 | |
---|
[1111] | 141 | LOGICAL, SAVE :: poisfft_initialized = .FALSE. |
---|
| 142 | |
---|
[1] | 143 | PRIVATE |
---|
[807] | 144 | |
---|
[809] | 145 | #if ! defined ( __check ) |
---|
[1] | 146 | PUBLIC poisfft, poisfft_init |
---|
| 147 | |
---|
| 148 | INTERFACE poisfft |
---|
| 149 | MODULE PROCEDURE poisfft |
---|
| 150 | END INTERFACE poisfft |
---|
| 151 | |
---|
| 152 | INTERFACE poisfft_init |
---|
| 153 | MODULE PROCEDURE poisfft_init |
---|
| 154 | END INTERFACE poisfft_init |
---|
[807] | 155 | #else |
---|
| 156 | PUBLIC poisfft_init |
---|
[1] | 157 | |
---|
[807] | 158 | INTERFACE poisfft_init |
---|
| 159 | MODULE PROCEDURE poisfft_init |
---|
| 160 | END INTERFACE poisfft_init |
---|
| 161 | #endif |
---|
| 162 | |
---|
[1] | 163 | CONTAINS |
---|
| 164 | |
---|
| 165 | SUBROUTINE poisfft_init |
---|
| 166 | |
---|
[1320] | 167 | USE arrays_3d, & |
---|
| 168 | ONLY: ddzu_pres, ddzw |
---|
[1111] | 169 | |
---|
[1320] | 170 | USE kinds |
---|
| 171 | |
---|
[1111] | 172 | IMPLICIT NONE |
---|
| 173 | |
---|
[1320] | 174 | INTEGER(iwp) :: k !: |
---|
[1111] | 175 | |
---|
| 176 | |
---|
[1] | 177 | CALL fft_init |
---|
| 178 | |
---|
[1212] | 179 | CALL tridia_init |
---|
[1111] | 180 | |
---|
| 181 | poisfft_initialized = .TRUE. |
---|
| 182 | |
---|
[1] | 183 | END SUBROUTINE poisfft_init |
---|
| 184 | |
---|
[1111] | 185 | |
---|
[809] | 186 | #if ! defined ( __check ) |
---|
[1306] | 187 | SUBROUTINE poisfft( ar ) |
---|
[1] | 188 | |
---|
[1320] | 189 | USE control_parameters, & |
---|
| 190 | ONLY: fft_method, transpose_compute_overlap |
---|
| 191 | |
---|
| 192 | USE cpulog, & |
---|
| 193 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
| 194 | |
---|
| 195 | USE kinds |
---|
| 196 | |
---|
[1] | 197 | USE pegrid |
---|
| 198 | |
---|
| 199 | IMPLICIT NONE |
---|
| 200 | |
---|
[1320] | 201 | INTEGER(iwp) :: ii !: |
---|
| 202 | INTEGER(iwp) :: iind !: |
---|
| 203 | INTEGER(iwp) :: inew !: |
---|
| 204 | INTEGER(iwp) :: jj !: |
---|
| 205 | INTEGER(iwp) :: jind !: |
---|
| 206 | INTEGER(iwp) :: jnew !: |
---|
| 207 | INTEGER(iwp) :: ki !: |
---|
| 208 | INTEGER(iwp) :: kk !: |
---|
| 209 | INTEGER(iwp) :: knew !: |
---|
| 210 | INTEGER(iwp) :: n !: |
---|
| 211 | INTEGER(iwp) :: nblk !: |
---|
| 212 | INTEGER(iwp) :: nnx_y !: |
---|
| 213 | INTEGER(iwp) :: nny_z !: |
---|
| 214 | INTEGER(iwp) :: nnz_t !: |
---|
| 215 | INTEGER(iwp) :: nnz_x !: |
---|
| 216 | INTEGER(iwp) :: nxl_y_bound !: |
---|
| 217 | INTEGER(iwp) :: nxr_y_bound !: |
---|
[1] | 218 | |
---|
[1320] | 219 | INTEGER(iwp), DIMENSION(4) :: isave !: |
---|
| 220 | |
---|
| 221 | REAL(wp), DIMENSION(1:nz,nys:nyn,nxl:nxr) :: ar !: |
---|
[1216] | 222 | !$acc declare create( ar_inv ) |
---|
[1320] | 223 | REAL(wp), DIMENSION(nys:nyn,nxl:nxr,1:nz) :: ar_inv !: |
---|
[1] | 224 | |
---|
[1320] | 225 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ar1 !: |
---|
| 226 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_in !: |
---|
| 227 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_inv !: |
---|
| 228 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_y !: |
---|
| 229 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: f_out_z !: |
---|
[1216] | 230 | |
---|
| 231 | |
---|
[1] | 232 | CALL cpu_log( log_point_s(3), 'poisfft', 'start' ) |
---|
| 233 | |
---|
[1111] | 234 | IF ( .NOT. poisfft_initialized ) CALL poisfft_init |
---|
| 235 | |
---|
[1] | 236 | ! |
---|
| 237 | !-- Two-dimensional Fourier Transformation in x- and y-direction. |
---|
[1111] | 238 | IF ( pdims(2) == 1 .AND. pdims(1) > 1 ) THEN |
---|
[1] | 239 | |
---|
| 240 | ! |
---|
| 241 | !-- 1d-domain-decomposition along x: |
---|
| 242 | !-- FFT along y and transposition y --> x |
---|
[1216] | 243 | CALL ffty_tr_yx( ar, ar ) |
---|
[1] | 244 | |
---|
| 245 | ! |
---|
| 246 | !-- FFT along x, solving the tridiagonal system and backward FFT |
---|
| 247 | CALL fftx_tri_fftx( ar ) |
---|
| 248 | |
---|
| 249 | ! |
---|
| 250 | !-- Transposition x --> y and backward FFT along y |
---|
[1216] | 251 | CALL tr_xy_ffty( ar, ar ) |
---|
[1] | 252 | |
---|
[1111] | 253 | ELSEIF ( pdims(1) == 1 .AND. pdims(2) > 1 ) THEN |
---|
[1] | 254 | |
---|
| 255 | ! |
---|
| 256 | !-- 1d-domain-decomposition along y: |
---|
| 257 | !-- FFT along x and transposition x --> y |
---|
[1216] | 258 | CALL fftx_tr_xy( ar, ar ) |
---|
[1] | 259 | |
---|
| 260 | ! |
---|
| 261 | !-- FFT along y, solving the tridiagonal system and backward FFT |
---|
| 262 | CALL ffty_tri_ffty( ar ) |
---|
| 263 | |
---|
| 264 | ! |
---|
| 265 | !-- Transposition y --> x and backward FFT along x |
---|
[1216] | 266 | CALL tr_yx_fftx( ar, ar ) |
---|
[1] | 267 | |
---|
[1216] | 268 | ELSEIF ( .NOT. transpose_compute_overlap ) THEN |
---|
[1] | 269 | |
---|
| 270 | ! |
---|
[1111] | 271 | !-- 2d-domain-decomposition or no decomposition (1 PE run) |
---|
[1] | 272 | !-- Transposition z --> x |
---|
| 273 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start' ) |
---|
[1216] | 274 | CALL resort_for_zx( ar, ar_inv ) |
---|
| 275 | CALL transpose_zx( ar_inv, ar ) |
---|
[1] | 276 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 277 | |
---|
| 278 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
[1208] | 279 | IF ( fft_method /= 'system-specific' ) THEN |
---|
| 280 | !$acc update host( ar ) |
---|
| 281 | ENDIF |
---|
[1106] | 282 | CALL fft_x( ar, 'forward' ) |
---|
[1208] | 283 | IF ( fft_method /= 'system-specific' ) THEN |
---|
| 284 | !$acc update device( ar ) |
---|
| 285 | ENDIF |
---|
[1] | 286 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
| 287 | |
---|
| 288 | ! |
---|
| 289 | !-- Transposition x --> y |
---|
| 290 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[1216] | 291 | CALL resort_for_xy( ar, ar_inv ) |
---|
| 292 | CALL transpose_xy( ar_inv, ar ) |
---|
[1] | 293 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 294 | |
---|
| 295 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
[1208] | 296 | IF ( fft_method /= 'system-specific' ) THEN |
---|
| 297 | !$acc update host( ar ) |
---|
| 298 | ENDIF |
---|
[1216] | 299 | CALL fft_y( ar, 'forward', ar_tr = ar, & |
---|
| 300 | nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 301 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
[1208] | 302 | IF ( fft_method /= 'system-specific' ) THEN |
---|
| 303 | !$acc update device( ar ) |
---|
| 304 | ENDIF |
---|
[1] | 305 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 306 | |
---|
| 307 | ! |
---|
| 308 | !-- Transposition y --> z |
---|
| 309 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[1216] | 310 | CALL resort_for_yz( ar, ar_inv ) |
---|
| 311 | CALL transpose_yz( ar_inv, ar ) |
---|
[1] | 312 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
| 313 | |
---|
| 314 | ! |
---|
[1106] | 315 | !-- Solve the tridiagonal equation system along z |
---|
[1] | 316 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
[1212] | 317 | CALL tridia_substi( ar ) |
---|
[1] | 318 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
| 319 | |
---|
| 320 | ! |
---|
| 321 | !-- Inverse Fourier Transformation |
---|
| 322 | !-- Transposition z --> y |
---|
| 323 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start' ) |
---|
[1216] | 324 | CALL transpose_zy( ar, ar_inv ) |
---|
| 325 | CALL resort_for_zy( ar_inv, ar ) |
---|
[1] | 326 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 327 | |
---|
| 328 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
[1208] | 329 | IF ( fft_method /= 'system-specific' ) THEN |
---|
| 330 | !$acc update host( ar ) |
---|
| 331 | ENDIF |
---|
[1216] | 332 | CALL fft_y( ar, 'backward', ar_tr = ar, & |
---|
| 333 | nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 334 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
[1208] | 335 | IF ( fft_method /= 'system-specific' ) THEN |
---|
| 336 | !$acc update device( ar ) |
---|
| 337 | ENDIF |
---|
[1] | 338 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 339 | |
---|
| 340 | ! |
---|
| 341 | !-- Transposition y --> x |
---|
| 342 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[1216] | 343 | CALL transpose_yx( ar, ar_inv ) |
---|
| 344 | CALL resort_for_yx( ar_inv, ar ) |
---|
[1] | 345 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 346 | |
---|
| 347 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
[1208] | 348 | IF ( fft_method /= 'system-specific' ) THEN |
---|
| 349 | !$acc update host( ar ) |
---|
| 350 | ENDIF |
---|
[1106] | 351 | CALL fft_x( ar, 'backward' ) |
---|
[1208] | 352 | IF ( fft_method /= 'system-specific' ) THEN |
---|
| 353 | !$acc update device( ar ) |
---|
| 354 | ENDIF |
---|
[1] | 355 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 356 | |
---|
| 357 | ! |
---|
| 358 | !-- Transposition x --> z |
---|
| 359 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[1216] | 360 | CALL transpose_xz( ar, ar_inv ) |
---|
| 361 | CALL resort_for_xz( ar_inv, ar ) |
---|
[1] | 362 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
| 363 | |
---|
[1216] | 364 | ELSE |
---|
| 365 | |
---|
| 366 | ! |
---|
| 367 | !-- 2d-domain-decomposition or no decomposition (1 PE run) with |
---|
| 368 | !-- overlapping transposition / fft |
---|
[1318] | 369 | !-- cputime logging must not use barriers, which would prevent overlapping |
---|
[1216] | 370 | ALLOCATE( f_out_y(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), & |
---|
| 371 | f_out_z(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
| 372 | ! |
---|
| 373 | !-- Transposition z --> x + subsequent fft along x |
---|
| 374 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 375 | CALL resort_for_zx( ar, f_inv ) |
---|
| 376 | ! |
---|
| 377 | !-- Save original indices and gridpoint counter |
---|
| 378 | isave(1) = nz |
---|
| 379 | isave(2) = nzb_x |
---|
| 380 | isave(3) = nzt_x |
---|
| 381 | isave(4) = sendrecvcount_zx |
---|
| 382 | ! |
---|
| 383 | !-- Set new indices for transformation |
---|
| 384 | nblk = nz / pdims(1) |
---|
| 385 | nz = pdims(1) |
---|
| 386 | nnz_x = 1 |
---|
| 387 | nzb_x = 1 + myidx * nnz_x |
---|
| 388 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
| 389 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
| 390 | |
---|
[1306] | 391 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
[1216] | 392 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 393 | |
---|
[1306] | 394 | DO kk = 1, nblk |
---|
[1216] | 395 | |
---|
[1306] | 396 | IF ( kk == 1 ) THEN |
---|
[1318] | 397 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start', cpu_log_nowait ) |
---|
[1306] | 398 | ELSE |
---|
[1318] | 399 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1306] | 400 | ENDIF |
---|
[1216] | 401 | |
---|
[1306] | 402 | DO knew = 1, nz |
---|
| 403 | ki = kk + nblk * ( knew - 1 ) |
---|
| 404 | f_in(:,:,knew) = f_inv(:,:,ki) |
---|
| 405 | ENDDO |
---|
[1216] | 406 | |
---|
[1306] | 407 | CALL transpose_zx( f_in, ar1(:,:,:)) |
---|
| 408 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 409 | |
---|
[1306] | 410 | IF ( kk == 1 ) THEN |
---|
[1318] | 411 | CALL cpu_log( log_point_s(4), 'fft_x', 'start', cpu_log_nowait ) |
---|
[1306] | 412 | ELSE |
---|
[1318] | 413 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
[1216] | 414 | ENDIF |
---|
| 415 | |
---|
[1306] | 416 | n = isave(2) + kk - 1 |
---|
| 417 | CALL fft_x( ar1(:,:,:), 'forward', ar_2d = f_out_z(:,:,n)) |
---|
| 418 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
[1216] | 419 | |
---|
| 420 | ENDDO |
---|
| 421 | ! |
---|
| 422 | !-- Restore original indices/counters |
---|
| 423 | nz = isave(1) |
---|
| 424 | nzb_x = isave(2) |
---|
| 425 | nzt_x = isave(3) |
---|
| 426 | sendrecvcount_zx = isave(4) |
---|
| 427 | |
---|
| 428 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 429 | |
---|
| 430 | ! |
---|
| 431 | !-- Transposition x --> y + subsequent fft along y |
---|
| 432 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 433 | CALL resort_for_xy( f_out_z, f_inv ) |
---|
| 434 | ! |
---|
| 435 | !-- Save original indices and gridpoint counter |
---|
| 436 | isave(1) = nx |
---|
| 437 | isave(2) = nxl_y |
---|
| 438 | isave(3) = nxr_y |
---|
| 439 | isave(4) = sendrecvcount_xy |
---|
| 440 | ! |
---|
| 441 | !-- Set new indices for transformation |
---|
| 442 | nblk = ( ( nx+1 ) / pdims(2) ) - 1 |
---|
| 443 | nx = pdims(2) |
---|
| 444 | nnx_y = 1 |
---|
| 445 | nxl_y = myidy * nnx_y |
---|
| 446 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
| 447 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
| 448 | |
---|
[1306] | 449 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
[1216] | 450 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 451 | |
---|
[1306] | 452 | DO ii = 0, nblk |
---|
[1216] | 453 | |
---|
[1318] | 454 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1216] | 455 | |
---|
[1306] | 456 | DO inew = 0, nx-1 |
---|
| 457 | iind = ii + ( nblk + 1 ) * inew |
---|
| 458 | f_in(:,:,inew) = f_inv(:,:,iind) |
---|
| 459 | ENDDO |
---|
[1216] | 460 | |
---|
[1306] | 461 | CALL transpose_xy( f_in, ar1(:,:,:) ) |
---|
[1216] | 462 | |
---|
[1306] | 463 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 464 | |
---|
[1306] | 465 | IF ( ii == 1 ) THEN |
---|
[1318] | 466 | CALL cpu_log( log_point_s(7), 'fft_y', 'start', cpu_log_nowait ) |
---|
[1306] | 467 | ELSE |
---|
[1318] | 468 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
[1216] | 469 | ENDIF |
---|
| 470 | |
---|
[1306] | 471 | nxl_y_bound = isave(2) |
---|
| 472 | nxr_y_bound = isave(3) |
---|
| 473 | n = isave(2) + ii |
---|
| 474 | CALL fft_y( ar1(:,:,:), 'forward', ar_tr = f_out_y, & |
---|
| 475 | nxl_y_bound = nxl_y_bound, nxr_y_bound = nxr_y_bound, & |
---|
| 476 | nxl_y_l = n, nxr_y_l = n ) |
---|
[1216] | 477 | |
---|
[1306] | 478 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
[1216] | 479 | |
---|
| 480 | ENDDO |
---|
| 481 | ! |
---|
| 482 | !-- Restore original indices/counters |
---|
| 483 | nx = isave(1) |
---|
| 484 | nxl_y = isave(2) |
---|
| 485 | nxr_y = isave(3) |
---|
| 486 | sendrecvcount_xy = isave(4) |
---|
| 487 | |
---|
| 488 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 489 | |
---|
| 490 | ! |
---|
| 491 | !-- Transposition y --> z + subsequent tridia + resort for z --> y |
---|
| 492 | ALLOCATE( f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
| 493 | CALL resort_for_yz( f_out_y, f_inv ) |
---|
| 494 | ! |
---|
| 495 | !-- Save original indices and gridpoint counter |
---|
| 496 | isave(1) = ny |
---|
| 497 | isave(2) = nys_z |
---|
| 498 | isave(3) = nyn_z |
---|
| 499 | isave(4) = sendrecvcount_yz |
---|
| 500 | ! |
---|
| 501 | !-- Set new indices for transformation |
---|
| 502 | nblk = ( ( ny+1 ) / pdims(1) ) - 1 |
---|
| 503 | ny = pdims(1) |
---|
| 504 | nny_z = 1 |
---|
| 505 | nys_z = myidx * nny_z |
---|
| 506 | nyn_z = ( myidx + 1 ) * nny_z - 1 |
---|
| 507 | sendrecvcount_yz = ( nxr_y-nxl_y+1 ) * nny_z * ( nzt_y-nzb_y+1 ) |
---|
| 508 | |
---|
[1306] | 509 | ALLOCATE( ar1(nxl_z:nxr_z,nys_z:nyn_z,1:nz) ) |
---|
[1216] | 510 | ALLOCATE( f_in(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
| 511 | |
---|
[1306] | 512 | DO jj = 0, nblk |
---|
[1216] | 513 | ! |
---|
[1306] | 514 | !-- Forward Fourier Transformation |
---|
| 515 | !-- Transposition y --> z |
---|
[1318] | 516 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue', cpu_log_nowait ) |
---|
[1216] | 517 | |
---|
[1306] | 518 | DO jnew = 0, ny-1 |
---|
| 519 | jind = jj + ( nblk + 1 ) * jnew |
---|
| 520 | f_in(:,:,jnew) = f_inv(:,:,jind) |
---|
| 521 | ENDDO |
---|
[1216] | 522 | |
---|
[1306] | 523 | CALL transpose_yz( f_in, ar1(:,:,:) ) |
---|
[1216] | 524 | |
---|
[1306] | 525 | IF ( jj == nblk ) THEN |
---|
| 526 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
| 527 | ELSE |
---|
| 528 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 529 | ENDIF |
---|
| 530 | |
---|
| 531 | ! |
---|
[1306] | 532 | !-- Solve the tridiagonal equation system along z |
---|
[1318] | 533 | CALL cpu_log( log_point_s(6), 'tridia', 'start', cpu_log_nowait ) |
---|
[1216] | 534 | |
---|
[1306] | 535 | n = isave(2) + jj |
---|
| 536 | CALL tridia_substi_overlap( ar1(:,:,:), n ) |
---|
[1216] | 537 | |
---|
[1306] | 538 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
[1216] | 539 | |
---|
[1306] | 540 | ! |
---|
| 541 | !-- Inverse Fourier Transformation |
---|
| 542 | !-- Transposition z --> y |
---|
| 543 | !-- Only one thread should call MPI routines, therefore forward and |
---|
| 544 | !-- backward tranpose are in the same section |
---|
| 545 | IF ( jj == 0 ) THEN |
---|
[1318] | 546 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start', cpu_log_nowait ) |
---|
[1306] | 547 | ELSE |
---|
[1318] | 548 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 549 | ENDIF |
---|
| 550 | |
---|
[1306] | 551 | CALL transpose_zy( ar1(:,:,:), f_in ) |
---|
[1216] | 552 | |
---|
[1306] | 553 | DO jnew = 0, ny-1 |
---|
| 554 | jind = jj + ( nblk + 1 ) * jnew |
---|
| 555 | f_inv(:,:,jind) = f_in(:,:,jnew) |
---|
| 556 | ENDDO |
---|
[1216] | 557 | |
---|
[1306] | 558 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 559 | |
---|
| 560 | ENDDO |
---|
| 561 | ! |
---|
| 562 | !-- Restore original indices/counters |
---|
| 563 | ny = isave(1) |
---|
| 564 | nys_z = isave(2) |
---|
| 565 | nyn_z = isave(3) |
---|
| 566 | sendrecvcount_yz = isave(4) |
---|
| 567 | |
---|
| 568 | CALL resort_for_zy( f_inv, f_out_y ) |
---|
| 569 | |
---|
| 570 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 571 | |
---|
| 572 | ! |
---|
| 573 | !-- fft along y backward + subsequent transposition y --> x |
---|
| 574 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 575 | ! |
---|
| 576 | !-- Save original indices and gridpoint counter |
---|
| 577 | isave(1) = nx |
---|
| 578 | isave(2) = nxl_y |
---|
| 579 | isave(3) = nxr_y |
---|
| 580 | isave(4) = sendrecvcount_xy |
---|
| 581 | ! |
---|
| 582 | !-- Set new indices for transformation |
---|
| 583 | nblk = (( nx+1 ) / pdims(2) ) - 1 |
---|
| 584 | nx = pdims(2) |
---|
| 585 | nnx_y = 1 |
---|
| 586 | nxl_y = myidy * nnx_y |
---|
| 587 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
| 588 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
| 589 | |
---|
[1306] | 590 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
[1216] | 591 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 592 | |
---|
[1306] | 593 | DO ii = 0, nblk |
---|
[1216] | 594 | |
---|
[1318] | 595 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue', cpu_log_nowait ) |
---|
[1216] | 596 | |
---|
[1306] | 597 | n = isave(2) + ii |
---|
| 598 | nxl_y_bound = isave(2) |
---|
| 599 | nxr_y_bound = isave(3) |
---|
[1216] | 600 | |
---|
[1306] | 601 | CALL fft_y( ar1(:,:,:), 'backward', ar_tr = f_out_y, & |
---|
| 602 | nxl_y_bound = nxl_y_bound, nxr_y_bound = nxr_y_bound, & |
---|
| 603 | nxl_y_l = n, nxr_y_l = n ) |
---|
[1216] | 604 | |
---|
[1306] | 605 | IF ( ii == nblk ) THEN |
---|
| 606 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 607 | ELSE |
---|
| 608 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
[1216] | 609 | ENDIF |
---|
| 610 | |
---|
[1318] | 611 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 612 | |
---|
[1306] | 613 | CALL transpose_yx( ar1(:,:,:), f_in ) |
---|
[1216] | 614 | |
---|
[1306] | 615 | DO inew = 0, nx-1 |
---|
| 616 | iind = ii + (nblk+1) * inew |
---|
| 617 | f_inv(:,:,iind) = f_in(:,:,inew) |
---|
| 618 | ENDDO |
---|
[1216] | 619 | |
---|
[1306] | 620 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 621 | |
---|
| 622 | ENDDO |
---|
| 623 | ! |
---|
| 624 | !-- Restore original indices/counters |
---|
| 625 | nx = isave(1) |
---|
| 626 | nxl_y = isave(2) |
---|
| 627 | nxr_y = isave(3) |
---|
| 628 | sendrecvcount_xy = isave(4) |
---|
| 629 | |
---|
| 630 | CALL resort_for_yx( f_inv, f_out_z ) |
---|
| 631 | |
---|
| 632 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 633 | |
---|
| 634 | ! |
---|
| 635 | !-- fft along x backward + subsequent final transposition x --> z |
---|
| 636 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 637 | ! |
---|
| 638 | !-- Save original indices and gridpoint counter |
---|
| 639 | isave(1) = nz |
---|
| 640 | isave(2) = nzb_x |
---|
| 641 | isave(3) = nzt_x |
---|
| 642 | isave(4) = sendrecvcount_zx |
---|
| 643 | ! |
---|
| 644 | !-- Set new indices for transformation |
---|
| 645 | nblk = nz / pdims(1) |
---|
| 646 | nz = pdims(1) |
---|
| 647 | nnz_x = 1 |
---|
| 648 | nzb_x = 1 + myidx * nnz_x |
---|
| 649 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
| 650 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
| 651 | |
---|
[1306] | 652 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
[1216] | 653 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 654 | |
---|
[1306] | 655 | DO kk = 1, nblk |
---|
[1216] | 656 | |
---|
[1318] | 657 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue', cpu_log_nowait ) |
---|
[1216] | 658 | |
---|
[1306] | 659 | n = isave(2) + kk - 1 |
---|
| 660 | CALL fft_x( ar1(:,:,:), 'backward', f_out_z(:,:,n)) |
---|
[1216] | 661 | |
---|
[1306] | 662 | IF ( kk == nblk ) THEN |
---|
| 663 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 664 | ELSE |
---|
| 665 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
[1216] | 666 | ENDIF |
---|
| 667 | |
---|
[1318] | 668 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue', cpu_log_nowait ) |
---|
[1216] | 669 | |
---|
[1306] | 670 | CALL transpose_xz( ar1(:,:,:), f_in ) |
---|
[1216] | 671 | |
---|
[1306] | 672 | DO knew = 1, nz |
---|
| 673 | ki = kk + nblk * (knew-1) |
---|
| 674 | f_inv(:,:,ki) = f_in(:,:,knew) |
---|
| 675 | ENDDO |
---|
[1216] | 676 | |
---|
[1306] | 677 | IF ( kk == nblk ) THEN |
---|
| 678 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
| 679 | ELSE |
---|
| 680 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 681 | ENDIF |
---|
| 682 | |
---|
| 683 | ENDDO |
---|
| 684 | ! |
---|
| 685 | !-- Restore original indices/counters |
---|
| 686 | nz = isave(1) |
---|
| 687 | nzb_x = isave(2) |
---|
| 688 | nzt_x = isave(3) |
---|
| 689 | sendrecvcount_zx = isave(4) |
---|
| 690 | |
---|
| 691 | CALL resort_for_xz( f_inv, ar ) |
---|
| 692 | |
---|
| 693 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 694 | |
---|
[1] | 695 | ENDIF |
---|
| 696 | |
---|
| 697 | CALL cpu_log( log_point_s(3), 'poisfft', 'stop' ) |
---|
| 698 | |
---|
| 699 | END SUBROUTINE poisfft |
---|
| 700 | |
---|
| 701 | |
---|
| 702 | |
---|
[1216] | 703 | SUBROUTINE ffty_tr_yx( f_in, f_out ) |
---|
[1] | 704 | |
---|
| 705 | !------------------------------------------------------------------------------! |
---|
| 706 | ! Fourier-transformation along y with subsequent transposition y --> x for |
---|
| 707 | ! a 1d-decomposition along x |
---|
| 708 | ! |
---|
| 709 | ! ATTENTION: The performance of this routine is much faster on the NEC-SX6, |
---|
| 710 | ! if the first index of work_ffty_vec is odd. Otherwise |
---|
| 711 | ! memory bank conflicts may occur (especially if the index is a |
---|
| 712 | ! multiple of 128). That's why work_ffty_vec is dimensioned as |
---|
| 713 | ! 0:ny+1. |
---|
| 714 | ! Of course, this will not work if users are using an odd number |
---|
| 715 | ! of gridpoints along y. |
---|
| 716 | !------------------------------------------------------------------------------! |
---|
| 717 | |
---|
[1320] | 718 | USE control_parameters, & |
---|
| 719 | ONLY: host |
---|
| 720 | |
---|
| 721 | USE cpulog, & |
---|
| 722 | ONLY: cpu_log, log_point_s |
---|
| 723 | |
---|
| 724 | USE kinds |
---|
| 725 | |
---|
[1] | 726 | USE pegrid |
---|
| 727 | |
---|
| 728 | IMPLICIT NONE |
---|
| 729 | |
---|
[1320] | 730 | INTEGER(iwp) :: i !: |
---|
| 731 | INTEGER(iwp) :: iend !: |
---|
| 732 | INTEGER(iwp) :: iouter !: |
---|
| 733 | INTEGER(iwp) :: ir !: |
---|
| 734 | INTEGER(iwp) :: j !: |
---|
| 735 | INTEGER(iwp) :: k !: |
---|
[1] | 736 | |
---|
[1320] | 737 | INTEGER(iwp), PARAMETER :: stridex = 4 !: |
---|
| 738 | |
---|
| 739 | REAL(wp), DIMENSION(0:ny,stridex) :: work_ffty !: |
---|
[1] | 740 | #if defined( __nec ) |
---|
[1320] | 741 | REAL(wp), DIMENSION(0:ny+1,1:nz,nxl:nxr) :: work_ffty_vec !: |
---|
[1] | 742 | #endif |
---|
[1320] | 743 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_in !: |
---|
| 744 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_out !: |
---|
| 745 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !: |
---|
[1] | 746 | |
---|
| 747 | ! |
---|
| 748 | !-- Carry out the FFT along y, where all data are present due to the |
---|
| 749 | !-- 1d-decomposition along x. Resort the data in a way that x becomes |
---|
| 750 | !-- the first index. |
---|
[1106] | 751 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'start' ) |
---|
[1] | 752 | |
---|
| 753 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 754 | #if defined( __nec ) |
---|
| 755 | ! |
---|
| 756 | !-- Code optimized for vector processors |
---|
[85] | 757 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 758 | !$OMP DO |
---|
| 759 | DO i = nxl, nxr |
---|
| 760 | |
---|
| 761 | DO j = 0, ny |
---|
| 762 | DO k = 1, nz |
---|
| 763 | work_ffty_vec(j,k,i) = f_in(k,j,i) |
---|
| 764 | ENDDO |
---|
| 765 | ENDDO |
---|
| 766 | |
---|
| 767 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'forward' ) |
---|
| 768 | |
---|
| 769 | ENDDO |
---|
| 770 | |
---|
| 771 | !$OMP DO |
---|
| 772 | DO k = 1, nz |
---|
| 773 | DO j = 0, ny |
---|
| 774 | DO i = nxl, nxr |
---|
| 775 | work(i,k,j) = work_ffty_vec(j,k,i) |
---|
| 776 | ENDDO |
---|
| 777 | ENDDO |
---|
| 778 | ENDDO |
---|
| 779 | !$OMP END PARALLEL |
---|
| 780 | #endif |
---|
| 781 | |
---|
| 782 | ELSE |
---|
| 783 | |
---|
| 784 | ! |
---|
| 785 | !-- Cache optimized code. |
---|
| 786 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 787 | !-- loop for better cache performance |
---|
| 788 | !$OMP PARALLEL PRIVATE (i,iend,iouter,ir,j,k,work_ffty) |
---|
| 789 | !$OMP DO |
---|
| 790 | DO iouter = nxl, nxr, stridex |
---|
| 791 | |
---|
| 792 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 793 | |
---|
| 794 | DO k = 1, nz |
---|
| 795 | |
---|
| 796 | DO i = iouter, iend |
---|
| 797 | |
---|
| 798 | ir = i-iouter+1 ! counter within a stride |
---|
| 799 | DO j = 0, ny |
---|
| 800 | work_ffty(j,ir) = f_in(k,j,i) |
---|
| 801 | ENDDO |
---|
| 802 | ! |
---|
| 803 | !-- FFT along y |
---|
[1106] | 804 | CALL fft_y_1d( work_ffty(:,ir), 'forward' ) |
---|
[1] | 805 | |
---|
| 806 | ENDDO |
---|
| 807 | |
---|
| 808 | ! |
---|
| 809 | !-- Resort |
---|
| 810 | DO j = 0, ny |
---|
| 811 | DO i = iouter, iend |
---|
| 812 | work(i,k,j) = work_ffty(j,i-iouter+1) |
---|
| 813 | ENDDO |
---|
| 814 | ENDDO |
---|
| 815 | |
---|
| 816 | ENDDO |
---|
| 817 | |
---|
| 818 | ENDDO |
---|
| 819 | !$OMP END PARALLEL |
---|
| 820 | |
---|
| 821 | ENDIF |
---|
[1106] | 822 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'pause' ) |
---|
[1] | 823 | |
---|
| 824 | ! |
---|
| 825 | !-- Transpose array |
---|
[1111] | 826 | #if defined( __parallel ) |
---|
[1] | 827 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 828 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 829 | CALL MPI_ALLTOALL( work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 830 | f_out(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 831 | comm1dx, ierr ) |
---|
| 832 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 833 | #endif |
---|
[1] | 834 | |
---|
| 835 | END SUBROUTINE ffty_tr_yx |
---|
| 836 | |
---|
| 837 | |
---|
[1216] | 838 | SUBROUTINE tr_xy_ffty( f_in, f_out ) |
---|
[1] | 839 | |
---|
| 840 | !------------------------------------------------------------------------------! |
---|
| 841 | ! Transposition x --> y with a subsequent backward Fourier transformation for |
---|
| 842 | ! a 1d-decomposition along x |
---|
| 843 | !------------------------------------------------------------------------------! |
---|
| 844 | |
---|
[1320] | 845 | USE control_parameters, & |
---|
| 846 | ONLY: host |
---|
| 847 | |
---|
| 848 | USE cpulog, & |
---|
| 849 | ONLY: cpu_log, log_point_s |
---|
| 850 | |
---|
| 851 | USE kinds |
---|
| 852 | |
---|
[1] | 853 | USE pegrid |
---|
| 854 | |
---|
| 855 | IMPLICIT NONE |
---|
| 856 | |
---|
[1320] | 857 | INTEGER(iwp) :: i !: |
---|
| 858 | INTEGER(iwp) :: iend !: |
---|
| 859 | INTEGER(iwp) :: iouter !: |
---|
| 860 | INTEGER(iwp) :: ir !: |
---|
| 861 | INTEGER(iwp) :: j !: |
---|
| 862 | INTEGER(iwp) :: k !: |
---|
[1] | 863 | |
---|
[1320] | 864 | INTEGER(iwp), PARAMETER :: stridex = 4 !: |
---|
| 865 | |
---|
| 866 | REAL(wp), DIMENSION(0:ny,stridex) :: work_ffty !: |
---|
[1] | 867 | #if defined( __nec ) |
---|
[1320] | 868 | REAL(wp), DIMENSION(0:ny+1,1:nz,nxl:nxr) :: work_ffty_vec !: |
---|
[1] | 869 | #endif |
---|
[1320] | 870 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_in !: |
---|
| 871 | REAL(wp), DIMENSION(1:nz,0:ny,nxl:nxr) :: f_out !: |
---|
| 872 | REAL(wp), DIMENSION(nxl:nxr,1:nz,0:ny) :: work !: |
---|
[1] | 873 | |
---|
| 874 | ! |
---|
| 875 | !-- Transpose array |
---|
[1111] | 876 | #if defined( __parallel ) |
---|
[1] | 877 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 878 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 879 | CALL MPI_ALLTOALL( f_in(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 880 | work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 881 | comm1dx, ierr ) |
---|
| 882 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 883 | #endif |
---|
[1] | 884 | |
---|
| 885 | ! |
---|
| 886 | !-- Resort the data in a way that y becomes the first index and carry out the |
---|
| 887 | !-- backward fft along y. |
---|
[1106] | 888 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'continue' ) |
---|
[1] | 889 | |
---|
| 890 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 891 | #if defined( __nec ) |
---|
| 892 | ! |
---|
| 893 | !-- Code optimized for vector processors |
---|
[85] | 894 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 895 | !$OMP DO |
---|
| 896 | DO k = 1, nz |
---|
| 897 | DO j = 0, ny |
---|
| 898 | DO i = nxl, nxr |
---|
| 899 | work_ffty_vec(j,k,i) = work(i,k,j) |
---|
| 900 | ENDDO |
---|
| 901 | ENDDO |
---|
| 902 | ENDDO |
---|
| 903 | |
---|
| 904 | !$OMP DO |
---|
| 905 | DO i = nxl, nxr |
---|
| 906 | |
---|
| 907 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'backward' ) |
---|
| 908 | |
---|
| 909 | DO j = 0, ny |
---|
| 910 | DO k = 1, nz |
---|
| 911 | f_out(k,j,i) = work_ffty_vec(j,k,i) |
---|
| 912 | ENDDO |
---|
| 913 | ENDDO |
---|
| 914 | |
---|
| 915 | ENDDO |
---|
| 916 | !$OMP END PARALLEL |
---|
| 917 | #endif |
---|
| 918 | |
---|
| 919 | ELSE |
---|
| 920 | |
---|
| 921 | ! |
---|
| 922 | !-- Cache optimized code. |
---|
| 923 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 924 | !-- loop for better cache performance |
---|
| 925 | !$OMP PARALLEL PRIVATE ( i, iend, iouter, ir, j, k, work_ffty ) |
---|
| 926 | !$OMP DO |
---|
| 927 | DO iouter = nxl, nxr, stridex |
---|
| 928 | |
---|
| 929 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 930 | |
---|
| 931 | DO k = 1, nz |
---|
| 932 | ! |
---|
| 933 | !-- Resort |
---|
| 934 | DO j = 0, ny |
---|
| 935 | DO i = iouter, iend |
---|
| 936 | work_ffty(j,i-iouter+1) = work(i,k,j) |
---|
| 937 | ENDDO |
---|
| 938 | ENDDO |
---|
| 939 | |
---|
| 940 | DO i = iouter, iend |
---|
| 941 | |
---|
| 942 | ! |
---|
| 943 | !-- FFT along y |
---|
| 944 | ir = i-iouter+1 ! counter within a stride |
---|
[1106] | 945 | CALL fft_y_1d( work_ffty(:,ir), 'backward' ) |
---|
[1] | 946 | |
---|
| 947 | DO j = 0, ny |
---|
| 948 | f_out(k,j,i) = work_ffty(j,ir) |
---|
| 949 | ENDDO |
---|
| 950 | ENDDO |
---|
| 951 | |
---|
| 952 | ENDDO |
---|
| 953 | |
---|
| 954 | ENDDO |
---|
| 955 | !$OMP END PARALLEL |
---|
| 956 | |
---|
| 957 | ENDIF |
---|
| 958 | |
---|
[1106] | 959 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'stop' ) |
---|
[1] | 960 | |
---|
| 961 | END SUBROUTINE tr_xy_ffty |
---|
| 962 | |
---|
| 963 | |
---|
| 964 | SUBROUTINE fftx_tri_fftx( ar ) |
---|
| 965 | |
---|
| 966 | !------------------------------------------------------------------------------! |
---|
| 967 | ! FFT along x, solution of the tridiagonal system and backward FFT for |
---|
| 968 | ! a 1d-decomposition along x |
---|
| 969 | ! |
---|
| 970 | ! WARNING: this subroutine may still not work for hybrid parallelization |
---|
| 971 | ! with OpenMP (for possible necessary changes see the original |
---|
| 972 | ! routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
| 973 | !------------------------------------------------------------------------------! |
---|
| 974 | |
---|
[1320] | 975 | USE control_parameters, & |
---|
| 976 | ONLY: host |
---|
| 977 | |
---|
| 978 | USE cpulog, & |
---|
| 979 | ONLY: cpu_log, log_point_s |
---|
| 980 | |
---|
| 981 | USE grid_variables, & |
---|
| 982 | ONLY: ddx2, ddy2 |
---|
| 983 | |
---|
| 984 | USE kinds |
---|
| 985 | |
---|
[1] | 986 | USE pegrid |
---|
| 987 | |
---|
| 988 | IMPLICIT NONE |
---|
| 989 | |
---|
[1320] | 990 | INTEGER(iwp) :: i !: |
---|
| 991 | INTEGER(iwp) :: j !: |
---|
| 992 | INTEGER(iwp) :: k !: |
---|
| 993 | INTEGER(iwp) :: m !: |
---|
| 994 | INTEGER(iwp) :: n !: |
---|
| 995 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
| 996 | INTEGER(iwp) :: tn !: |
---|
[1] | 997 | |
---|
[1320] | 998 | REAL(wp), DIMENSION(0:nx) :: work_fftx !: |
---|
| 999 | REAL(wp), DIMENSION(0:nx,1:nz) :: work_trix !: |
---|
| 1000 | REAL(wp), DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: ar !: |
---|
| 1001 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !: |
---|
[1] | 1002 | |
---|
| 1003 | |
---|
[1106] | 1004 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'start' ) |
---|
[1] | 1005 | |
---|
| 1006 | ALLOCATE( tri(5,0:nx,0:nz-1,0:threads_per_task-1) ) |
---|
| 1007 | |
---|
| 1008 | tn = 0 ! Default thread number in case of one thread |
---|
| 1009 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_fftx, work_trix ) |
---|
| 1010 | DO j = nys_x, nyn_x |
---|
| 1011 | |
---|
| 1012 | !$ tn = omp_get_thread_num() |
---|
| 1013 | |
---|
| 1014 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1015 | ! |
---|
| 1016 | !-- Code optimized for vector processors |
---|
| 1017 | DO k = 1, nz |
---|
| 1018 | |
---|
| 1019 | m = 0 |
---|
| 1020 | DO n = 1, pdims(1) |
---|
[1003] | 1021 | DO i = 1, nnx |
---|
[1] | 1022 | work_trix(m,k) = ar(i,k,j,n) |
---|
| 1023 | m = m + 1 |
---|
| 1024 | ENDDO |
---|
| 1025 | ENDDO |
---|
| 1026 | |
---|
| 1027 | ENDDO |
---|
| 1028 | |
---|
| 1029 | CALL fft_x_m( work_trix, 'forward' ) |
---|
| 1030 | |
---|
| 1031 | ELSE |
---|
| 1032 | ! |
---|
| 1033 | !-- Cache optimized code |
---|
| 1034 | DO k = 1, nz |
---|
| 1035 | |
---|
| 1036 | m = 0 |
---|
| 1037 | DO n = 1, pdims(1) |
---|
[1003] | 1038 | DO i = 1, nnx |
---|
[1] | 1039 | work_fftx(m) = ar(i,k,j,n) |
---|
| 1040 | m = m + 1 |
---|
| 1041 | ENDDO |
---|
| 1042 | ENDDO |
---|
| 1043 | |
---|
[1106] | 1044 | CALL fft_x_1d( work_fftx, 'forward' ) |
---|
[1] | 1045 | |
---|
| 1046 | DO i = 0, nx |
---|
| 1047 | work_trix(i,k) = work_fftx(i) |
---|
| 1048 | ENDDO |
---|
| 1049 | |
---|
| 1050 | ENDDO |
---|
| 1051 | |
---|
| 1052 | ENDIF |
---|
| 1053 | |
---|
| 1054 | ! |
---|
| 1055 | !-- Solve the linear equation system |
---|
| 1056 | CALL tridia_1dd( ddx2, ddy2, nx, ny, j, work_trix, tri(:,:,:,tn) ) |
---|
| 1057 | |
---|
| 1058 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1059 | ! |
---|
| 1060 | !-- Code optimized for vector processors |
---|
| 1061 | CALL fft_x_m( work_trix, 'backward' ) |
---|
| 1062 | |
---|
| 1063 | DO k = 1, nz |
---|
| 1064 | |
---|
| 1065 | m = 0 |
---|
| 1066 | DO n = 1, pdims(1) |
---|
[1003] | 1067 | DO i = 1, nnx |
---|
[1] | 1068 | ar(i,k,j,n) = work_trix(m,k) |
---|
| 1069 | m = m + 1 |
---|
| 1070 | ENDDO |
---|
| 1071 | ENDDO |
---|
| 1072 | |
---|
| 1073 | ENDDO |
---|
| 1074 | |
---|
| 1075 | ELSE |
---|
| 1076 | ! |
---|
| 1077 | !-- Cache optimized code |
---|
| 1078 | DO k = 1, nz |
---|
| 1079 | |
---|
| 1080 | DO i = 0, nx |
---|
| 1081 | work_fftx(i) = work_trix(i,k) |
---|
| 1082 | ENDDO |
---|
| 1083 | |
---|
[1106] | 1084 | CALL fft_x_1d( work_fftx, 'backward' ) |
---|
[1] | 1085 | |
---|
| 1086 | m = 0 |
---|
| 1087 | DO n = 1, pdims(1) |
---|
[1003] | 1088 | DO i = 1, nnx |
---|
[1] | 1089 | ar(i,k,j,n) = work_fftx(m) |
---|
| 1090 | m = m + 1 |
---|
| 1091 | ENDDO |
---|
| 1092 | ENDDO |
---|
| 1093 | |
---|
| 1094 | ENDDO |
---|
| 1095 | |
---|
| 1096 | ENDIF |
---|
| 1097 | |
---|
| 1098 | ENDDO |
---|
| 1099 | |
---|
| 1100 | DEALLOCATE( tri ) |
---|
| 1101 | |
---|
[1106] | 1102 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'stop' ) |
---|
[1] | 1103 | |
---|
| 1104 | END SUBROUTINE fftx_tri_fftx |
---|
| 1105 | |
---|
| 1106 | |
---|
[1216] | 1107 | SUBROUTINE fftx_tr_xy( f_in, f_out ) |
---|
[1] | 1108 | |
---|
| 1109 | !------------------------------------------------------------------------------! |
---|
| 1110 | ! Fourier-transformation along x with subsequent transposition x --> y for |
---|
| 1111 | ! a 1d-decomposition along y |
---|
| 1112 | ! |
---|
| 1113 | ! ATTENTION: The NEC-branch of this routine may significantly profit from |
---|
| 1114 | ! further optimizations. So far, performance is much worse than |
---|
| 1115 | ! for routine ffty_tr_yx (more than three times slower). |
---|
| 1116 | !------------------------------------------------------------------------------! |
---|
| 1117 | |
---|
[1320] | 1118 | USE control_parameters, & |
---|
| 1119 | ONLY: host |
---|
| 1120 | |
---|
| 1121 | USE cpulog, & |
---|
| 1122 | ONLY: cpu_log, log_point_s |
---|
| 1123 | |
---|
| 1124 | USE kinds |
---|
| 1125 | |
---|
[1] | 1126 | USE pegrid |
---|
| 1127 | |
---|
| 1128 | IMPLICIT NONE |
---|
| 1129 | |
---|
[1320] | 1130 | INTEGER(iwp) :: i !: |
---|
| 1131 | INTEGER(iwp) :: j !: |
---|
| 1132 | INTEGER(iwp) :: k !: |
---|
[1] | 1133 | |
---|
[1320] | 1134 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !: |
---|
| 1135 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_in !: |
---|
| 1136 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_out !: |
---|
| 1137 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !: |
---|
[1] | 1138 | |
---|
| 1139 | ! |
---|
| 1140 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 1141 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 1142 | !-- the first index. |
---|
[1106] | 1143 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'start' ) |
---|
[1] | 1144 | |
---|
| 1145 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1146 | ! |
---|
| 1147 | !-- Code for vector processors |
---|
[85] | 1148 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 1149 | !$OMP DO |
---|
| 1150 | DO i = 0, nx |
---|
| 1151 | |
---|
| 1152 | DO j = nys, nyn |
---|
| 1153 | DO k = 1, nz |
---|
| 1154 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 1155 | ENDDO |
---|
| 1156 | ENDDO |
---|
| 1157 | |
---|
| 1158 | ENDDO |
---|
| 1159 | |
---|
| 1160 | !$OMP DO |
---|
| 1161 | DO j = nys, nyn |
---|
| 1162 | |
---|
| 1163 | CALL fft_x_m( work_fftx(:,:,j), 'forward' ) |
---|
| 1164 | |
---|
| 1165 | DO k = 1, nz |
---|
| 1166 | DO i = 0, nx |
---|
| 1167 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 1168 | ENDDO |
---|
| 1169 | ENDDO |
---|
| 1170 | |
---|
| 1171 | ENDDO |
---|
| 1172 | !$OMP END PARALLEL |
---|
| 1173 | |
---|
| 1174 | ELSE |
---|
| 1175 | |
---|
| 1176 | ! |
---|
| 1177 | !-- Cache optimized code (there might be still a potential for better |
---|
| 1178 | !-- optimization). |
---|
[696] | 1179 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
[1] | 1180 | !$OMP DO |
---|
| 1181 | DO i = 0, nx |
---|
| 1182 | |
---|
| 1183 | DO j = nys, nyn |
---|
| 1184 | DO k = 1, nz |
---|
| 1185 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 1186 | ENDDO |
---|
| 1187 | ENDDO |
---|
| 1188 | |
---|
| 1189 | ENDDO |
---|
| 1190 | |
---|
| 1191 | !$OMP DO |
---|
| 1192 | DO j = nys, nyn |
---|
| 1193 | DO k = 1, nz |
---|
| 1194 | |
---|
[1106] | 1195 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'forward' ) |
---|
[1] | 1196 | |
---|
| 1197 | DO i = 0, nx |
---|
| 1198 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 1199 | ENDDO |
---|
| 1200 | ENDDO |
---|
| 1201 | |
---|
| 1202 | ENDDO |
---|
| 1203 | !$OMP END PARALLEL |
---|
| 1204 | |
---|
| 1205 | ENDIF |
---|
[1106] | 1206 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'pause' ) |
---|
[1] | 1207 | |
---|
| 1208 | ! |
---|
| 1209 | !-- Transpose array |
---|
[1111] | 1210 | #if defined( __parallel ) |
---|
[1] | 1211 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1212 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1213 | CALL MPI_ALLTOALL( work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 1214 | f_out(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 1215 | comm1dy, ierr ) |
---|
| 1216 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 1217 | #endif |
---|
[1] | 1218 | |
---|
| 1219 | END SUBROUTINE fftx_tr_xy |
---|
| 1220 | |
---|
| 1221 | |
---|
[1216] | 1222 | SUBROUTINE tr_yx_fftx( f_in, f_out ) |
---|
[1] | 1223 | |
---|
| 1224 | !------------------------------------------------------------------------------! |
---|
| 1225 | ! Transposition y --> x with a subsequent backward Fourier transformation for |
---|
| 1226 | ! a 1d-decomposition along x |
---|
| 1227 | !------------------------------------------------------------------------------! |
---|
| 1228 | |
---|
[1320] | 1229 | USE control_parameters, & |
---|
| 1230 | ONLY: host |
---|
| 1231 | |
---|
| 1232 | USE cpulog, & |
---|
| 1233 | ONLY: cpu_log, log_point_s |
---|
| 1234 | |
---|
| 1235 | USE kinds |
---|
| 1236 | |
---|
[1] | 1237 | USE pegrid |
---|
| 1238 | |
---|
| 1239 | IMPLICIT NONE |
---|
| 1240 | |
---|
[1320] | 1241 | INTEGER(iwp) :: i !: |
---|
| 1242 | INTEGER(iwp) :: j !: |
---|
| 1243 | INTEGER(iwp) :: k !: |
---|
[1] | 1244 | |
---|
[1320] | 1245 | REAL(wp), DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx !: |
---|
| 1246 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_in !: |
---|
| 1247 | REAL(wp), DIMENSION(1:nz,nys:nyn,0:nx) :: f_out !: |
---|
| 1248 | REAL(wp), DIMENSION(nys:nyn,1:nz,0:nx) :: work !: |
---|
[1] | 1249 | |
---|
| 1250 | ! |
---|
| 1251 | !-- Transpose array |
---|
[1111] | 1252 | #if defined( __parallel ) |
---|
[1] | 1253 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1254 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1255 | CALL MPI_ALLTOALL( f_in(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 1256 | work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 1257 | comm1dy, ierr ) |
---|
| 1258 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 1259 | #endif |
---|
[1] | 1260 | |
---|
| 1261 | ! |
---|
| 1262 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 1263 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 1264 | !-- the first index. |
---|
[1106] | 1265 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'continue' ) |
---|
[1] | 1266 | |
---|
| 1267 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1268 | ! |
---|
| 1269 | !-- Code optimized for vector processors |
---|
[85] | 1270 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 1271 | !$OMP DO |
---|
| 1272 | DO j = nys, nyn |
---|
| 1273 | |
---|
| 1274 | DO k = 1, nz |
---|
| 1275 | DO i = 0, nx |
---|
| 1276 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1277 | ENDDO |
---|
| 1278 | ENDDO |
---|
| 1279 | |
---|
| 1280 | CALL fft_x_m( work_fftx(:,:,j), 'backward' ) |
---|
| 1281 | |
---|
| 1282 | ENDDO |
---|
| 1283 | |
---|
| 1284 | !$OMP DO |
---|
| 1285 | DO i = 0, nx |
---|
| 1286 | DO j = nys, nyn |
---|
| 1287 | DO k = 1, nz |
---|
| 1288 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 1289 | ENDDO |
---|
| 1290 | ENDDO |
---|
| 1291 | ENDDO |
---|
| 1292 | !$OMP END PARALLEL |
---|
| 1293 | |
---|
| 1294 | ELSE |
---|
| 1295 | |
---|
| 1296 | ! |
---|
| 1297 | !-- Cache optimized code (there might be still a potential for better |
---|
| 1298 | !-- optimization). |
---|
[696] | 1299 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
[1] | 1300 | !$OMP DO |
---|
| 1301 | DO j = nys, nyn |
---|
| 1302 | DO k = 1, nz |
---|
| 1303 | |
---|
| 1304 | DO i = 0, nx |
---|
| 1305 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1306 | ENDDO |
---|
| 1307 | |
---|
[1106] | 1308 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'backward' ) |
---|
[1] | 1309 | |
---|
| 1310 | ENDDO |
---|
| 1311 | ENDDO |
---|
| 1312 | |
---|
| 1313 | !$OMP DO |
---|
| 1314 | DO i = 0, nx |
---|
| 1315 | DO j = nys, nyn |
---|
| 1316 | DO k = 1, nz |
---|
| 1317 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 1318 | ENDDO |
---|
| 1319 | ENDDO |
---|
| 1320 | ENDDO |
---|
| 1321 | !$OMP END PARALLEL |
---|
| 1322 | |
---|
| 1323 | ENDIF |
---|
[1106] | 1324 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'stop' ) |
---|
[1] | 1325 | |
---|
| 1326 | END SUBROUTINE tr_yx_fftx |
---|
| 1327 | |
---|
| 1328 | |
---|
| 1329 | SUBROUTINE ffty_tri_ffty( ar ) |
---|
| 1330 | |
---|
| 1331 | !------------------------------------------------------------------------------! |
---|
| 1332 | ! FFT along y, solution of the tridiagonal system and backward FFT for |
---|
| 1333 | ! a 1d-decomposition along y |
---|
| 1334 | ! |
---|
| 1335 | ! WARNING: this subroutine may still not work for hybrid parallelization |
---|
| 1336 | ! with OpenMP (for possible necessary changes see the original |
---|
| 1337 | ! routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
| 1338 | !------------------------------------------------------------------------------! |
---|
| 1339 | |
---|
[1320] | 1340 | USE control_parameters, & |
---|
| 1341 | ONLY: host |
---|
| 1342 | |
---|
| 1343 | USE cpulog, & |
---|
| 1344 | ONLY: cpu_log, log_point_s |
---|
| 1345 | |
---|
| 1346 | USE grid_variables, & |
---|
| 1347 | ONLY: ddx2, ddy2 |
---|
| 1348 | |
---|
| 1349 | USE kinds |
---|
| 1350 | |
---|
[1] | 1351 | USE pegrid |
---|
| 1352 | |
---|
| 1353 | IMPLICIT NONE |
---|
| 1354 | |
---|
[1320] | 1355 | INTEGER(iwp) :: i !: |
---|
| 1356 | INTEGER(iwp) :: j !: |
---|
| 1357 | INTEGER(iwp) :: k !: |
---|
| 1358 | INTEGER(iwp) :: m !: |
---|
| 1359 | INTEGER(iwp) :: n !: |
---|
| 1360 | INTEGER(iwp) :: omp_get_thread_num !: |
---|
| 1361 | INTEGER(iwp) :: tn !: |
---|
[1] | 1362 | |
---|
[1320] | 1363 | REAL(wp), DIMENSION(0:ny) :: work_ffty !: |
---|
| 1364 | REAL(wp), DIMENSION(0:ny,1:nz) :: work_triy !: |
---|
| 1365 | REAL(wp), DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: ar !: |
---|
| 1366 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !: |
---|
[1] | 1367 | |
---|
| 1368 | |
---|
[1106] | 1369 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'start' ) |
---|
[1] | 1370 | |
---|
| 1371 | ALLOCATE( tri(5,0:ny,0:nz-1,0:threads_per_task-1) ) |
---|
| 1372 | |
---|
| 1373 | tn = 0 ! Default thread number in case of one thread |
---|
[696] | 1374 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_ffty, work_triy ) |
---|
[1] | 1375 | DO i = nxl_y, nxr_y |
---|
| 1376 | |
---|
| 1377 | !$ tn = omp_get_thread_num() |
---|
| 1378 | |
---|
| 1379 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1380 | ! |
---|
| 1381 | !-- Code optimized for vector processors |
---|
| 1382 | DO k = 1, nz |
---|
| 1383 | |
---|
| 1384 | m = 0 |
---|
| 1385 | DO n = 1, pdims(2) |
---|
[1003] | 1386 | DO j = 1, nny |
---|
[1] | 1387 | work_triy(m,k) = ar(j,k,i,n) |
---|
| 1388 | m = m + 1 |
---|
| 1389 | ENDDO |
---|
| 1390 | ENDDO |
---|
| 1391 | |
---|
| 1392 | ENDDO |
---|
| 1393 | |
---|
| 1394 | CALL fft_y_m( work_triy, ny, 'forward' ) |
---|
| 1395 | |
---|
| 1396 | ELSE |
---|
| 1397 | ! |
---|
| 1398 | !-- Cache optimized code |
---|
| 1399 | DO k = 1, nz |
---|
| 1400 | |
---|
| 1401 | m = 0 |
---|
| 1402 | DO n = 1, pdims(2) |
---|
[1003] | 1403 | DO j = 1, nny |
---|
[1] | 1404 | work_ffty(m) = ar(j,k,i,n) |
---|
| 1405 | m = m + 1 |
---|
| 1406 | ENDDO |
---|
| 1407 | ENDDO |
---|
| 1408 | |
---|
[1106] | 1409 | CALL fft_y_1d( work_ffty, 'forward' ) |
---|
[1] | 1410 | |
---|
| 1411 | DO j = 0, ny |
---|
| 1412 | work_triy(j,k) = work_ffty(j) |
---|
| 1413 | ENDDO |
---|
| 1414 | |
---|
| 1415 | ENDDO |
---|
| 1416 | |
---|
| 1417 | ENDIF |
---|
| 1418 | |
---|
| 1419 | ! |
---|
| 1420 | !-- Solve the linear equation system |
---|
| 1421 | CALL tridia_1dd( ddy2, ddx2, ny, nx, i, work_triy, tri(:,:,:,tn) ) |
---|
| 1422 | |
---|
| 1423 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1424 | ! |
---|
| 1425 | !-- Code optimized for vector processors |
---|
| 1426 | CALL fft_y_m( work_triy, ny, 'backward' ) |
---|
| 1427 | |
---|
| 1428 | DO k = 1, nz |
---|
| 1429 | |
---|
| 1430 | m = 0 |
---|
| 1431 | DO n = 1, pdims(2) |
---|
[1003] | 1432 | DO j = 1, nny |
---|
[1] | 1433 | ar(j,k,i,n) = work_triy(m,k) |
---|
| 1434 | m = m + 1 |
---|
| 1435 | ENDDO |
---|
| 1436 | ENDDO |
---|
| 1437 | |
---|
| 1438 | ENDDO |
---|
| 1439 | |
---|
| 1440 | ELSE |
---|
| 1441 | ! |
---|
| 1442 | !-- Cache optimized code |
---|
| 1443 | DO k = 1, nz |
---|
| 1444 | |
---|
| 1445 | DO j = 0, ny |
---|
| 1446 | work_ffty(j) = work_triy(j,k) |
---|
| 1447 | ENDDO |
---|
| 1448 | |
---|
[1106] | 1449 | CALL fft_y_1d( work_ffty, 'backward' ) |
---|
[1] | 1450 | |
---|
| 1451 | m = 0 |
---|
| 1452 | DO n = 1, pdims(2) |
---|
[1003] | 1453 | DO j = 1, nny |
---|
[1] | 1454 | ar(j,k,i,n) = work_ffty(m) |
---|
| 1455 | m = m + 1 |
---|
| 1456 | ENDDO |
---|
| 1457 | ENDDO |
---|
| 1458 | |
---|
| 1459 | ENDDO |
---|
| 1460 | |
---|
| 1461 | ENDIF |
---|
| 1462 | |
---|
| 1463 | ENDDO |
---|
| 1464 | |
---|
| 1465 | DEALLOCATE( tri ) |
---|
| 1466 | |
---|
[1106] | 1467 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'stop' ) |
---|
[1] | 1468 | |
---|
| 1469 | END SUBROUTINE ffty_tri_ffty |
---|
| 1470 | |
---|
| 1471 | #endif |
---|
| 1472 | |
---|
| 1473 | END MODULE poisfft_mod |
---|