[1] | 1 | MODULE poisfft_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1217] | 22 | ! |
---|
[1307] | 23 | ! |
---|
[1217] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: poisfft.f90 1310 2014-03-14 08:01:56Z suehring $ |
---|
| 27 | ! |
---|
[1307] | 28 | ! 1306 2014-03-13 14:30:59Z raasch |
---|
| 29 | ! openmp sections removed from the overlap branch, |
---|
| 30 | ! second argument removed from parameter list |
---|
| 31 | ! |
---|
[1217] | 32 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
[1216] | 33 | ! resorting of arrays moved to separate routines resort_for_..., |
---|
| 34 | ! one argument, used as temporary work array, removed from all transpose |
---|
| 35 | ! routines |
---|
| 36 | ! overlapping fft / transposition implemented |
---|
[1112] | 37 | ! |
---|
[1213] | 38 | ! 1212 2013-08-15 08:46:27Z raasch |
---|
| 39 | ! tridia routines moved to seperate module tridia_solver |
---|
| 40 | ! |
---|
[1209] | 41 | ! 1208 2013-08-13 06:41:49Z raasch |
---|
| 42 | ! acc-update clauses added for "ar" so that ffts other than cufft can also be |
---|
| 43 | ! used (although they are not ported and will give a poor performance) |
---|
| 44 | ! |
---|
[1112] | 45 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
[1111] | 46 | ! further openACC porting of non-parallel (MPI) branch: |
---|
| 47 | ! tridiagonal routines split into extermal subroutines (instead using CONTAINS), |
---|
| 48 | ! no distinction between parallel/non-parallel in poisfft and tridia any more, |
---|
[1112] | 49 | ! tridia routines moved to end of file because of probable bug in PGI compiler 12.5 |
---|
[1111] | 50 | ! (otherwise "invalid device function" is indicated during runtime), |
---|
| 51 | ! optimization of tridia routines: constant elements and coefficients of tri are |
---|
| 52 | ! stored in seperate arrays ddzuw and tric, last dimension of tri reduced from 5 |
---|
| 53 | ! to 2, |
---|
| 54 | ! poisfft_init is now called internally from poisfft, maketri is called from |
---|
| 55 | ! poisfft_init, |
---|
| 56 | ! ibc_p_b = 2 removed |
---|
[1] | 57 | ! |
---|
[1107] | 58 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 59 | ! routines fftx, ffty, fftxp, fftyp removed, calls replaced by fft_x, fft_y, |
---|
| 60 | ! in the 1D-decomposition routines fft_x, ffty are replaced by fft_x_1d, |
---|
| 61 | ! fft_y_1d |
---|
| 62 | ! |
---|
[1104] | 63 | ! 1103 2013-02-20 02:15:53Z raasch |
---|
| 64 | ! tri, ar, and ar1 arguments in tridia-routines (2d) are removed because they |
---|
| 65 | ! sometimes cause segmentation faults with intel 12.1 compiler |
---|
| 66 | ! |
---|
[1093] | 67 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 68 | ! unused variables removed |
---|
| 69 | ! |
---|
[1037] | 70 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 71 | ! code put under GPL (PALM 3.9) |
---|
| 72 | ! |
---|
[1014] | 73 | ! 2012-09-21 07:03:55Z raasch |
---|
| 74 | ! FLOAT type conversion replaced by REAL |
---|
| 75 | ! |
---|
[1004] | 76 | ! 1003 2012-09-14 14:35:53Z raasch |
---|
| 77 | ! indices nxa, nya, etc. replaced by nx, ny, etc. |
---|
| 78 | ! |
---|
[941] | 79 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 80 | ! special handling of tri-array as an argument in tridia_1dd routines switched |
---|
| 81 | ! off because it caused segmentation faults with intel 12.1 compiler |
---|
| 82 | ! |
---|
[878] | 83 | ! 877 2012-04-03 11:21:44Z suehring |
---|
| 84 | ! Bugfix: Avoid divisions by zero in case of using a 'neumann' bc for the |
---|
| 85 | ! pressure at the top of the model domain. |
---|
| 86 | ! |
---|
[810] | 87 | ! 809 2012-01-30 13:32:58Z maronga |
---|
| 88 | ! Bugfix: replaced .AND. and .NOT. with && and ! in the preprocessor directives |
---|
| 89 | ! |
---|
[808] | 90 | ! 807 2012-01-25 11:53:51Z maronga |
---|
| 91 | ! New cpp directive "__check" implemented which is used by check_namelist_files |
---|
| 92 | ! (most of the code is unneeded by check_namelist_files). |
---|
| 93 | ! |
---|
[764] | 94 | ! 763 2011-10-06 09:32:09Z suehring |
---|
| 95 | ! Comment added concerning the last change. |
---|
| 96 | ! |
---|
[762] | 97 | ! 761 2011-10-05 17:58:52Z suehring |
---|
| 98 | ! Bugfix: Avoid divisions by zero in case of using a 'neumann' bc for the |
---|
| 99 | ! pressure at the top of the model domain. |
---|
| 100 | ! |
---|
[697] | 101 | ! 696 2011-03-18 07:03:49Z raasch |
---|
| 102 | ! work_fftx removed from PRIVATE clauses in fftx_tr_xy and tr_yx_fftx |
---|
| 103 | ! |
---|
[684] | 104 | ! 683 2011-02-09 14:25:15Z raasch |
---|
| 105 | ! openMP parallelization for 2d-domain-decomposition |
---|
| 106 | ! |
---|
[668] | 107 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 108 | ! ddzu replaced by ddzu_pres due to changes in zu(0) |
---|
| 109 | ! |
---|
[623] | 110 | ! 622 2010-12-10 08:08:13Z raasch |
---|
| 111 | ! optional barriers included in order to speed up collective operations |
---|
| 112 | ! |
---|
[392] | 113 | ! 377 2009-09-04 11:09:00Z raasch |
---|
| 114 | ! __lcmuk changed to __lc to avoid problems with Intel compiler on sgi-ice |
---|
| 115 | ! |
---|
[198] | 116 | ! 164 2008-05-15 08:46:15Z raasch |
---|
| 117 | ! Arguments removed from transpose routines |
---|
| 118 | ! |
---|
[139] | 119 | ! 128 2007-10-26 13:11:14Z raasch |
---|
| 120 | ! Bugfix: wavenumber calculation for even nx in routines maketri |
---|
| 121 | ! |
---|
[90] | 122 | ! 85 2007-05-11 09:35:14Z raasch |
---|
| 123 | ! Bugfix: work_fft*_vec removed from some PRIVATE-declarations |
---|
| 124 | ! |
---|
[77] | 125 | ! 76 2007-03-29 00:58:32Z raasch |
---|
| 126 | ! Tridiagonal coefficients adjusted for Neumann boundary conditions both at |
---|
| 127 | ! the bottom and the top. |
---|
| 128 | ! |
---|
[3] | 129 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 130 | ! |
---|
[1] | 131 | ! Revision 1.24 2006/08/04 15:00:24 raasch |
---|
| 132 | ! Default setting of the thread number tn in case of not using OpenMP |
---|
| 133 | ! |
---|
| 134 | ! Revision 1.23 2006/02/23 12:48:38 raasch |
---|
| 135 | ! Additional compiler directive in routine tridia_1dd for preventing loop |
---|
| 136 | ! exchange on NEC-SX6 |
---|
| 137 | ! |
---|
| 138 | ! Revision 1.20 2004/04/30 12:38:09 raasch |
---|
| 139 | ! Parts of former poisfft_hybrid moved to this subroutine, |
---|
| 140 | ! former subroutine changed to a module, renaming of FFT-subroutines and |
---|
| 141 | ! -module, FFTs completely substituted by calls of fft_x and fft_y, |
---|
| 142 | ! NAG fft used in the non-parallel case completely removed, l in maketri |
---|
| 143 | ! is now a 1d-array, variables passed by modules instead of using parameter |
---|
| 144 | ! lists, enlarged transposition arrays introduced |
---|
| 145 | ! |
---|
| 146 | ! Revision 1.1 1997/07/24 11:24:14 raasch |
---|
| 147 | ! Initial revision |
---|
| 148 | ! |
---|
| 149 | ! |
---|
| 150 | ! Description: |
---|
| 151 | ! ------------ |
---|
[1306] | 152 | ! Original version by Stephan Siano (pois3d), as of July 23, 1996 |
---|
| 153 | ! Adapted for 2D-domain-decomposition by Siegfried Raasch, July 3, 1997 |
---|
| 154 | ! |
---|
| 155 | ! Solves the Poisson equation with a 2D spectral method |
---|
| 156 | ! d^2 p / dx^2 + d^2 p / dy^2 + d^2 p / dz^2 = s |
---|
| 157 | ! |
---|
| 158 | ! Input: |
---|
| 159 | ! real ar contains (nnz,nny,nnx) elements of the velocity divergence, |
---|
| 160 | ! starting from (1,nys,nxl) |
---|
| 161 | ! |
---|
| 162 | ! Output: |
---|
| 163 | ! real ar contains the solution for perturbation pressure p |
---|
[1] | 164 | !------------------------------------------------------------------------------! |
---|
| 165 | |
---|
| 166 | USE fft_xy |
---|
| 167 | USE indices |
---|
| 168 | USE transpose_indices |
---|
[1212] | 169 | USE tridia_solver |
---|
[1] | 170 | |
---|
| 171 | IMPLICIT NONE |
---|
| 172 | |
---|
[1111] | 173 | LOGICAL, SAVE :: poisfft_initialized = .FALSE. |
---|
| 174 | |
---|
[1] | 175 | PRIVATE |
---|
[807] | 176 | |
---|
[809] | 177 | #if ! defined ( __check ) |
---|
[1] | 178 | PUBLIC poisfft, poisfft_init |
---|
| 179 | |
---|
| 180 | INTERFACE poisfft |
---|
| 181 | MODULE PROCEDURE poisfft |
---|
| 182 | END INTERFACE poisfft |
---|
| 183 | |
---|
| 184 | INTERFACE poisfft_init |
---|
| 185 | MODULE PROCEDURE poisfft_init |
---|
| 186 | END INTERFACE poisfft_init |
---|
[807] | 187 | #else |
---|
| 188 | PUBLIC poisfft_init |
---|
[1] | 189 | |
---|
[807] | 190 | INTERFACE poisfft_init |
---|
| 191 | MODULE PROCEDURE poisfft_init |
---|
| 192 | END INTERFACE poisfft_init |
---|
| 193 | #endif |
---|
| 194 | |
---|
[1] | 195 | CONTAINS |
---|
| 196 | |
---|
| 197 | SUBROUTINE poisfft_init |
---|
| 198 | |
---|
[1111] | 199 | USE arrays_3d, ONLY: ddzu_pres, ddzw |
---|
| 200 | |
---|
| 201 | IMPLICIT NONE |
---|
| 202 | |
---|
| 203 | INTEGER :: k |
---|
| 204 | |
---|
| 205 | |
---|
[1] | 206 | CALL fft_init |
---|
| 207 | |
---|
[1212] | 208 | CALL tridia_init |
---|
[1111] | 209 | |
---|
| 210 | poisfft_initialized = .TRUE. |
---|
| 211 | |
---|
[1] | 212 | END SUBROUTINE poisfft_init |
---|
| 213 | |
---|
[1111] | 214 | |
---|
[809] | 215 | #if ! defined ( __check ) |
---|
[1306] | 216 | SUBROUTINE poisfft( ar ) |
---|
[1] | 217 | |
---|
[1216] | 218 | USE control_parameters, ONLY : fft_method, transpose_compute_overlap |
---|
[1] | 219 | USE cpulog |
---|
| 220 | USE interfaces |
---|
| 221 | USE pegrid |
---|
| 222 | |
---|
| 223 | IMPLICIT NONE |
---|
| 224 | |
---|
[1306] | 225 | INTEGER :: ii, iind, inew, jj, jind, jnew, ki, kk, knew, n, nblk, & |
---|
| 226 | nnx_y, nny_z, nnz_t, nnz_x, nxl_y_bound, nxr_y_bound |
---|
[1216] | 227 | INTEGER, DIMENSION(4) :: isave |
---|
[1] | 228 | |
---|
[1216] | 229 | REAL, DIMENSION(1:nz,nys:nyn,nxl:nxr) :: ar |
---|
| 230 | !$acc declare create( ar_inv ) |
---|
| 231 | REAL, DIMENSION(nys:nyn,nxl:nxr,1:nz) :: ar_inv |
---|
[1] | 232 | |
---|
[1306] | 233 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: ar1, f_in, f_inv, f_out_y, & |
---|
| 234 | f_out_z |
---|
[1216] | 235 | |
---|
| 236 | |
---|
[1] | 237 | CALL cpu_log( log_point_s(3), 'poisfft', 'start' ) |
---|
| 238 | |
---|
[1111] | 239 | IF ( .NOT. poisfft_initialized ) CALL poisfft_init |
---|
| 240 | |
---|
[1] | 241 | ! |
---|
| 242 | !-- Two-dimensional Fourier Transformation in x- and y-direction. |
---|
[1111] | 243 | IF ( pdims(2) == 1 .AND. pdims(1) > 1 ) THEN |
---|
[1] | 244 | |
---|
| 245 | ! |
---|
| 246 | !-- 1d-domain-decomposition along x: |
---|
| 247 | !-- FFT along y and transposition y --> x |
---|
[1216] | 248 | CALL ffty_tr_yx( ar, ar ) |
---|
[1] | 249 | |
---|
| 250 | ! |
---|
| 251 | !-- FFT along x, solving the tridiagonal system and backward FFT |
---|
| 252 | CALL fftx_tri_fftx( ar ) |
---|
| 253 | |
---|
| 254 | ! |
---|
| 255 | !-- Transposition x --> y and backward FFT along y |
---|
[1216] | 256 | CALL tr_xy_ffty( ar, ar ) |
---|
[1] | 257 | |
---|
[1111] | 258 | ELSEIF ( pdims(1) == 1 .AND. pdims(2) > 1 ) THEN |
---|
[1] | 259 | |
---|
| 260 | ! |
---|
| 261 | !-- 1d-domain-decomposition along y: |
---|
| 262 | !-- FFT along x and transposition x --> y |
---|
[1216] | 263 | CALL fftx_tr_xy( ar, ar ) |
---|
[1] | 264 | |
---|
| 265 | ! |
---|
| 266 | !-- FFT along y, solving the tridiagonal system and backward FFT |
---|
| 267 | CALL ffty_tri_ffty( ar ) |
---|
| 268 | |
---|
| 269 | ! |
---|
| 270 | !-- Transposition y --> x and backward FFT along x |
---|
[1216] | 271 | CALL tr_yx_fftx( ar, ar ) |
---|
[1] | 272 | |
---|
[1216] | 273 | ELSEIF ( .NOT. transpose_compute_overlap ) THEN |
---|
[1] | 274 | |
---|
| 275 | ! |
---|
[1111] | 276 | !-- 2d-domain-decomposition or no decomposition (1 PE run) |
---|
[1] | 277 | !-- Transposition z --> x |
---|
| 278 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start' ) |
---|
[1216] | 279 | CALL resort_for_zx( ar, ar_inv ) |
---|
| 280 | CALL transpose_zx( ar_inv, ar ) |
---|
[1] | 281 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 282 | |
---|
| 283 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
[1208] | 284 | IF ( fft_method /= 'system-specific' ) THEN |
---|
| 285 | !$acc update host( ar ) |
---|
| 286 | ENDIF |
---|
[1106] | 287 | CALL fft_x( ar, 'forward' ) |
---|
[1208] | 288 | IF ( fft_method /= 'system-specific' ) THEN |
---|
| 289 | !$acc update device( ar ) |
---|
| 290 | ENDIF |
---|
[1] | 291 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
| 292 | |
---|
| 293 | ! |
---|
| 294 | !-- Transposition x --> y |
---|
| 295 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[1216] | 296 | CALL resort_for_xy( ar, ar_inv ) |
---|
| 297 | CALL transpose_xy( ar_inv, ar ) |
---|
[1] | 298 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 299 | |
---|
| 300 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
[1208] | 301 | IF ( fft_method /= 'system-specific' ) THEN |
---|
| 302 | !$acc update host( ar ) |
---|
| 303 | ENDIF |
---|
[1216] | 304 | CALL fft_y( ar, 'forward', ar_tr = ar, & |
---|
| 305 | nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 306 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
[1208] | 307 | IF ( fft_method /= 'system-specific' ) THEN |
---|
| 308 | !$acc update device( ar ) |
---|
| 309 | ENDIF |
---|
[1] | 310 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 311 | |
---|
| 312 | ! |
---|
| 313 | !-- Transposition y --> z |
---|
| 314 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[1216] | 315 | CALL resort_for_yz( ar, ar_inv ) |
---|
| 316 | CALL transpose_yz( ar_inv, ar ) |
---|
[1] | 317 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
| 318 | |
---|
| 319 | ! |
---|
[1106] | 320 | !-- Solve the tridiagonal equation system along z |
---|
[1] | 321 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
[1212] | 322 | CALL tridia_substi( ar ) |
---|
[1] | 323 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
| 324 | |
---|
| 325 | ! |
---|
| 326 | !-- Inverse Fourier Transformation |
---|
| 327 | !-- Transposition z --> y |
---|
| 328 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start' ) |
---|
[1216] | 329 | CALL transpose_zy( ar, ar_inv ) |
---|
| 330 | CALL resort_for_zy( ar_inv, ar ) |
---|
[1] | 331 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 332 | |
---|
| 333 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
[1208] | 334 | IF ( fft_method /= 'system-specific' ) THEN |
---|
| 335 | !$acc update host( ar ) |
---|
| 336 | ENDIF |
---|
[1216] | 337 | CALL fft_y( ar, 'backward', ar_tr = ar, & |
---|
| 338 | nxl_y_bound = nxl_y, nxr_y_bound = nxr_y, & |
---|
| 339 | nxl_y_l = nxl_y, nxr_y_l = nxr_y ) |
---|
[1208] | 340 | IF ( fft_method /= 'system-specific' ) THEN |
---|
| 341 | !$acc update device( ar ) |
---|
| 342 | ENDIF |
---|
[1] | 343 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 344 | |
---|
| 345 | ! |
---|
| 346 | !-- Transposition y --> x |
---|
| 347 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[1216] | 348 | CALL transpose_yx( ar, ar_inv ) |
---|
| 349 | CALL resort_for_yx( ar_inv, ar ) |
---|
[1] | 350 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 351 | |
---|
| 352 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
[1208] | 353 | IF ( fft_method /= 'system-specific' ) THEN |
---|
| 354 | !$acc update host( ar ) |
---|
| 355 | ENDIF |
---|
[1106] | 356 | CALL fft_x( ar, 'backward' ) |
---|
[1208] | 357 | IF ( fft_method /= 'system-specific' ) THEN |
---|
| 358 | !$acc update device( ar ) |
---|
| 359 | ENDIF |
---|
[1] | 360 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 361 | |
---|
| 362 | ! |
---|
| 363 | !-- Transposition x --> z |
---|
| 364 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[1216] | 365 | CALL transpose_xz( ar, ar_inv ) |
---|
| 366 | CALL resort_for_xz( ar_inv, ar ) |
---|
[1] | 367 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
| 368 | |
---|
[1216] | 369 | ELSE |
---|
| 370 | |
---|
| 371 | ! |
---|
| 372 | !-- 2d-domain-decomposition or no decomposition (1 PE run) with |
---|
| 373 | !-- overlapping transposition / fft |
---|
| 374 | ALLOCATE( f_out_y(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), & |
---|
| 375 | f_out_z(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
| 376 | ! |
---|
| 377 | !-- Transposition z --> x + subsequent fft along x |
---|
| 378 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 379 | CALL resort_for_zx( ar, f_inv ) |
---|
| 380 | ! |
---|
| 381 | !-- Save original indices and gridpoint counter |
---|
| 382 | isave(1) = nz |
---|
| 383 | isave(2) = nzb_x |
---|
| 384 | isave(3) = nzt_x |
---|
| 385 | isave(4) = sendrecvcount_zx |
---|
| 386 | ! |
---|
| 387 | !-- Set new indices for transformation |
---|
| 388 | nblk = nz / pdims(1) |
---|
| 389 | nz = pdims(1) |
---|
| 390 | nnz_x = 1 |
---|
| 391 | nzb_x = 1 + myidx * nnz_x |
---|
| 392 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
| 393 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
| 394 | |
---|
[1306] | 395 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
[1216] | 396 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 397 | |
---|
[1306] | 398 | DO kk = 1, nblk |
---|
[1216] | 399 | |
---|
[1306] | 400 | IF ( kk == 1 ) THEN |
---|
| 401 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start' ) |
---|
| 402 | ELSE |
---|
| 403 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
| 404 | ENDIF |
---|
[1216] | 405 | |
---|
[1306] | 406 | DO knew = 1, nz |
---|
| 407 | ki = kk + nblk * ( knew - 1 ) |
---|
| 408 | f_in(:,:,knew) = f_inv(:,:,ki) |
---|
| 409 | ENDDO |
---|
[1216] | 410 | |
---|
[1306] | 411 | CALL transpose_zx( f_in, ar1(:,:,:)) |
---|
| 412 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 413 | |
---|
[1306] | 414 | IF ( kk == 1 ) THEN |
---|
| 415 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
| 416 | ELSE |
---|
| 417 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
[1216] | 418 | ENDIF |
---|
| 419 | |
---|
[1306] | 420 | n = isave(2) + kk - 1 |
---|
| 421 | CALL fft_x( ar1(:,:,:), 'forward', ar_2d = f_out_z(:,:,n)) |
---|
| 422 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
[1216] | 423 | |
---|
| 424 | ENDDO |
---|
| 425 | ! |
---|
| 426 | !-- Restore original indices/counters |
---|
| 427 | nz = isave(1) |
---|
| 428 | nzb_x = isave(2) |
---|
| 429 | nzt_x = isave(3) |
---|
| 430 | sendrecvcount_zx = isave(4) |
---|
| 431 | |
---|
| 432 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 433 | |
---|
| 434 | ! |
---|
| 435 | !-- Transposition x --> y + subsequent fft along y |
---|
| 436 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 437 | CALL resort_for_xy( f_out_z, f_inv ) |
---|
| 438 | ! |
---|
| 439 | !-- Save original indices and gridpoint counter |
---|
| 440 | isave(1) = nx |
---|
| 441 | isave(2) = nxl_y |
---|
| 442 | isave(3) = nxr_y |
---|
| 443 | isave(4) = sendrecvcount_xy |
---|
| 444 | ! |
---|
| 445 | !-- Set new indices for transformation |
---|
| 446 | nblk = ( ( nx+1 ) / pdims(2) ) - 1 |
---|
| 447 | nx = pdims(2) |
---|
| 448 | nnx_y = 1 |
---|
| 449 | nxl_y = myidy * nnx_y |
---|
| 450 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
| 451 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
| 452 | |
---|
[1306] | 453 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
[1216] | 454 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 455 | |
---|
[1306] | 456 | DO ii = 0, nblk |
---|
[1216] | 457 | |
---|
[1306] | 458 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[1216] | 459 | |
---|
[1306] | 460 | DO inew = 0, nx-1 |
---|
| 461 | iind = ii + ( nblk + 1 ) * inew |
---|
| 462 | f_in(:,:,inew) = f_inv(:,:,iind) |
---|
| 463 | ENDDO |
---|
[1216] | 464 | |
---|
[1306] | 465 | CALL transpose_xy( f_in, ar1(:,:,:) ) |
---|
[1216] | 466 | |
---|
[1306] | 467 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 468 | |
---|
[1306] | 469 | IF ( ii == 1 ) THEN |
---|
| 470 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
| 471 | ELSE |
---|
| 472 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
[1216] | 473 | ENDIF |
---|
| 474 | |
---|
[1306] | 475 | nxl_y_bound = isave(2) |
---|
| 476 | nxr_y_bound = isave(3) |
---|
| 477 | n = isave(2) + ii |
---|
| 478 | CALL fft_y( ar1(:,:,:), 'forward', ar_tr = f_out_y, & |
---|
| 479 | nxl_y_bound = nxl_y_bound, nxr_y_bound = nxr_y_bound, & |
---|
| 480 | nxl_y_l = n, nxr_y_l = n ) |
---|
[1216] | 481 | |
---|
[1306] | 482 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
[1216] | 483 | |
---|
| 484 | ENDDO |
---|
| 485 | ! |
---|
| 486 | !-- Restore original indices/counters |
---|
| 487 | nx = isave(1) |
---|
| 488 | nxl_y = isave(2) |
---|
| 489 | nxr_y = isave(3) |
---|
| 490 | sendrecvcount_xy = isave(4) |
---|
| 491 | |
---|
| 492 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 493 | |
---|
| 494 | ! |
---|
| 495 | !-- Transposition y --> z + subsequent tridia + resort for z --> y |
---|
| 496 | ALLOCATE( f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
| 497 | CALL resort_for_yz( f_out_y, f_inv ) |
---|
| 498 | ! |
---|
| 499 | !-- Save original indices and gridpoint counter |
---|
| 500 | isave(1) = ny |
---|
| 501 | isave(2) = nys_z |
---|
| 502 | isave(3) = nyn_z |
---|
| 503 | isave(4) = sendrecvcount_yz |
---|
| 504 | ! |
---|
| 505 | !-- Set new indices for transformation |
---|
| 506 | nblk = ( ( ny+1 ) / pdims(1) ) - 1 |
---|
| 507 | ny = pdims(1) |
---|
| 508 | nny_z = 1 |
---|
| 509 | nys_z = myidx * nny_z |
---|
| 510 | nyn_z = ( myidx + 1 ) * nny_z - 1 |
---|
| 511 | sendrecvcount_yz = ( nxr_y-nxl_y+1 ) * nny_z * ( nzt_y-nzb_y+1 ) |
---|
| 512 | |
---|
[1306] | 513 | ALLOCATE( ar1(nxl_z:nxr_z,nys_z:nyn_z,1:nz) ) |
---|
[1216] | 514 | ALLOCATE( f_in(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) ) |
---|
| 515 | |
---|
[1306] | 516 | DO jj = 0, nblk |
---|
[1216] | 517 | ! |
---|
[1306] | 518 | !-- Forward Fourier Transformation |
---|
| 519 | !-- Transposition y --> z |
---|
| 520 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[1216] | 521 | |
---|
[1306] | 522 | DO jnew = 0, ny-1 |
---|
| 523 | jind = jj + ( nblk + 1 ) * jnew |
---|
| 524 | f_in(:,:,jnew) = f_inv(:,:,jind) |
---|
| 525 | ENDDO |
---|
[1216] | 526 | |
---|
[1306] | 527 | CALL transpose_yz( f_in, ar1(:,:,:) ) |
---|
[1216] | 528 | |
---|
[1306] | 529 | IF ( jj == nblk ) THEN |
---|
| 530 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
| 531 | ELSE |
---|
| 532 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
[1216] | 533 | ENDIF |
---|
| 534 | |
---|
| 535 | ! |
---|
[1306] | 536 | !-- Solve the tridiagonal equation system along z |
---|
| 537 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
[1216] | 538 | |
---|
[1306] | 539 | n = isave(2) + jj |
---|
| 540 | CALL tridia_substi_overlap( ar1(:,:,:), n ) |
---|
[1216] | 541 | |
---|
[1306] | 542 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
[1216] | 543 | |
---|
[1306] | 544 | ! |
---|
| 545 | !-- Inverse Fourier Transformation |
---|
| 546 | !-- Transposition z --> y |
---|
| 547 | !-- Only one thread should call MPI routines, therefore forward and |
---|
| 548 | !-- backward tranpose are in the same section |
---|
| 549 | IF ( jj == 0 ) THEN |
---|
| 550 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start' ) |
---|
| 551 | ELSE |
---|
| 552 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[1216] | 553 | ENDIF |
---|
| 554 | |
---|
[1306] | 555 | CALL transpose_zy( ar1(:,:,:), f_in ) |
---|
[1216] | 556 | |
---|
[1306] | 557 | DO jnew = 0, ny-1 |
---|
| 558 | jind = jj + ( nblk + 1 ) * jnew |
---|
| 559 | f_inv(:,:,jind) = f_in(:,:,jnew) |
---|
| 560 | ENDDO |
---|
[1216] | 561 | |
---|
[1306] | 562 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 563 | |
---|
| 564 | ENDDO |
---|
| 565 | ! |
---|
| 566 | !-- Restore original indices/counters |
---|
| 567 | ny = isave(1) |
---|
| 568 | nys_z = isave(2) |
---|
| 569 | nyn_z = isave(3) |
---|
| 570 | sendrecvcount_yz = isave(4) |
---|
| 571 | |
---|
| 572 | CALL resort_for_zy( f_inv, f_out_y ) |
---|
| 573 | |
---|
| 574 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 575 | |
---|
| 576 | ! |
---|
| 577 | !-- fft along y backward + subsequent transposition y --> x |
---|
| 578 | ALLOCATE( f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 579 | ! |
---|
| 580 | !-- Save original indices and gridpoint counter |
---|
| 581 | isave(1) = nx |
---|
| 582 | isave(2) = nxl_y |
---|
| 583 | isave(3) = nxr_y |
---|
| 584 | isave(4) = sendrecvcount_xy |
---|
| 585 | ! |
---|
| 586 | !-- Set new indices for transformation |
---|
| 587 | nblk = (( nx+1 ) / pdims(2) ) - 1 |
---|
| 588 | nx = pdims(2) |
---|
| 589 | nnx_y = 1 |
---|
| 590 | nxl_y = myidy * nnx_y |
---|
| 591 | nxr_y = ( myidy + 1 ) * nnx_y - 1 |
---|
| 592 | sendrecvcount_xy = nnx_y * ( nyn_x-nys_x+1 ) * ( nzt_x-nzb_x+1 ) |
---|
| 593 | |
---|
[1306] | 594 | ALLOCATE( ar1(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) ) |
---|
[1216] | 595 | ALLOCATE( f_in(nys_x:nyn_x,nzb_x:nzt_x,0:nx) ) |
---|
| 596 | |
---|
[1306] | 597 | DO ii = 0, nblk |
---|
[1216] | 598 | |
---|
[1306] | 599 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
[1216] | 600 | |
---|
[1306] | 601 | n = isave(2) + ii |
---|
| 602 | nxl_y_bound = isave(2) |
---|
| 603 | nxr_y_bound = isave(3) |
---|
[1216] | 604 | |
---|
[1306] | 605 | CALL fft_y( ar1(:,:,:), 'backward', ar_tr = f_out_y, & |
---|
| 606 | nxl_y_bound = nxl_y_bound, nxr_y_bound = nxr_y_bound, & |
---|
| 607 | nxl_y_l = n, nxr_y_l = n ) |
---|
[1216] | 608 | |
---|
[1306] | 609 | IF ( ii == nblk ) THEN |
---|
| 610 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 611 | ELSE |
---|
| 612 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
[1216] | 613 | ENDIF |
---|
| 614 | |
---|
[1306] | 615 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[1216] | 616 | |
---|
[1306] | 617 | CALL transpose_yx( ar1(:,:,:), f_in ) |
---|
[1216] | 618 | |
---|
[1306] | 619 | DO inew = 0, nx-1 |
---|
| 620 | iind = ii + (nblk+1) * inew |
---|
| 621 | f_inv(:,:,iind) = f_in(:,:,inew) |
---|
| 622 | ENDDO |
---|
[1216] | 623 | |
---|
[1306] | 624 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 625 | |
---|
| 626 | ENDDO |
---|
| 627 | ! |
---|
| 628 | !-- Restore original indices/counters |
---|
| 629 | nx = isave(1) |
---|
| 630 | nxl_y = isave(2) |
---|
| 631 | nxr_y = isave(3) |
---|
| 632 | sendrecvcount_xy = isave(4) |
---|
| 633 | |
---|
| 634 | CALL resort_for_yx( f_inv, f_out_z ) |
---|
| 635 | |
---|
| 636 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 637 | |
---|
| 638 | ! |
---|
| 639 | !-- fft along x backward + subsequent final transposition x --> z |
---|
| 640 | ALLOCATE( f_inv(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 641 | ! |
---|
| 642 | !-- Save original indices and gridpoint counter |
---|
| 643 | isave(1) = nz |
---|
| 644 | isave(2) = nzb_x |
---|
| 645 | isave(3) = nzt_x |
---|
| 646 | isave(4) = sendrecvcount_zx |
---|
| 647 | ! |
---|
| 648 | !-- Set new indices for transformation |
---|
| 649 | nblk = nz / pdims(1) |
---|
| 650 | nz = pdims(1) |
---|
| 651 | nnz_x = 1 |
---|
| 652 | nzb_x = 1 + myidx * nnz_x |
---|
| 653 | nzt_x = ( myidx + 1 ) * nnz_x |
---|
| 654 | sendrecvcount_zx = nnx * nny * nnz_x |
---|
| 655 | |
---|
[1306] | 656 | ALLOCATE( ar1(0:nx,nys_x:nyn_x,nzb_x:nzt_x) ) |
---|
[1216] | 657 | ALLOCATE( f_in(nys:nyn,nxl:nxr,1:nz) ) |
---|
| 658 | |
---|
[1306] | 659 | DO kk = 1, nblk |
---|
[1216] | 660 | |
---|
[1306] | 661 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
[1216] | 662 | |
---|
[1306] | 663 | n = isave(2) + kk - 1 |
---|
| 664 | CALL fft_x( ar1(:,:,:), 'backward', f_out_z(:,:,n)) |
---|
[1216] | 665 | |
---|
[1306] | 666 | IF ( kk == nblk ) THEN |
---|
| 667 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 668 | ELSE |
---|
| 669 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
[1216] | 670 | ENDIF |
---|
| 671 | |
---|
[1306] | 672 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[1216] | 673 | |
---|
[1306] | 674 | CALL transpose_xz( ar1(:,:,:), f_in ) |
---|
[1216] | 675 | |
---|
[1306] | 676 | DO knew = 1, nz |
---|
| 677 | ki = kk + nblk * (knew-1) |
---|
| 678 | f_inv(:,:,ki) = f_in(:,:,knew) |
---|
| 679 | ENDDO |
---|
[1216] | 680 | |
---|
[1306] | 681 | IF ( kk == nblk ) THEN |
---|
| 682 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
| 683 | ELSE |
---|
| 684 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
[1216] | 685 | ENDIF |
---|
| 686 | |
---|
| 687 | ENDDO |
---|
| 688 | ! |
---|
| 689 | !-- Restore original indices/counters |
---|
| 690 | nz = isave(1) |
---|
| 691 | nzb_x = isave(2) |
---|
| 692 | nzt_x = isave(3) |
---|
| 693 | sendrecvcount_zx = isave(4) |
---|
| 694 | |
---|
| 695 | CALL resort_for_xz( f_inv, ar ) |
---|
| 696 | |
---|
| 697 | DEALLOCATE( ar1, f_in, f_inv ) |
---|
| 698 | |
---|
[1] | 699 | ENDIF |
---|
| 700 | |
---|
| 701 | CALL cpu_log( log_point_s(3), 'poisfft', 'stop' ) |
---|
| 702 | |
---|
| 703 | END SUBROUTINE poisfft |
---|
| 704 | |
---|
| 705 | |
---|
| 706 | |
---|
[1216] | 707 | SUBROUTINE ffty_tr_yx( f_in, f_out ) |
---|
[1] | 708 | |
---|
| 709 | !------------------------------------------------------------------------------! |
---|
| 710 | ! Fourier-transformation along y with subsequent transposition y --> x for |
---|
| 711 | ! a 1d-decomposition along x |
---|
| 712 | ! |
---|
| 713 | ! ATTENTION: The performance of this routine is much faster on the NEC-SX6, |
---|
| 714 | ! if the first index of work_ffty_vec is odd. Otherwise |
---|
| 715 | ! memory bank conflicts may occur (especially if the index is a |
---|
| 716 | ! multiple of 128). That's why work_ffty_vec is dimensioned as |
---|
| 717 | ! 0:ny+1. |
---|
| 718 | ! Of course, this will not work if users are using an odd number |
---|
| 719 | ! of gridpoints along y. |
---|
| 720 | !------------------------------------------------------------------------------! |
---|
| 721 | |
---|
| 722 | USE control_parameters |
---|
| 723 | USE cpulog |
---|
| 724 | USE indices |
---|
| 725 | USE interfaces |
---|
| 726 | USE pegrid |
---|
| 727 | USE transpose_indices |
---|
| 728 | |
---|
| 729 | IMPLICIT NONE |
---|
| 730 | |
---|
| 731 | INTEGER :: i, iend, iouter, ir, j, k |
---|
| 732 | INTEGER, PARAMETER :: stridex = 4 |
---|
| 733 | |
---|
| 734 | REAL, DIMENSION(0:ny,stridex) :: work_ffty |
---|
| 735 | #if defined( __nec ) |
---|
| 736 | REAL, DIMENSION(0:ny+1,1:nz,nxl:nxr) :: work_ffty_vec |
---|
| 737 | #endif |
---|
[1003] | 738 | REAL, DIMENSION(1:nz,0:ny,nxl:nxr) :: f_in |
---|
| 739 | REAL, DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_out |
---|
| 740 | REAL, DIMENSION(nxl:nxr,1:nz,0:ny) :: work |
---|
[1] | 741 | |
---|
| 742 | ! |
---|
| 743 | !-- Carry out the FFT along y, where all data are present due to the |
---|
| 744 | !-- 1d-decomposition along x. Resort the data in a way that x becomes |
---|
| 745 | !-- the first index. |
---|
[1106] | 746 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'start' ) |
---|
[1] | 747 | |
---|
| 748 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 749 | #if defined( __nec ) |
---|
| 750 | ! |
---|
| 751 | !-- Code optimized for vector processors |
---|
[85] | 752 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 753 | !$OMP DO |
---|
| 754 | DO i = nxl, nxr |
---|
| 755 | |
---|
| 756 | DO j = 0, ny |
---|
| 757 | DO k = 1, nz |
---|
| 758 | work_ffty_vec(j,k,i) = f_in(k,j,i) |
---|
| 759 | ENDDO |
---|
| 760 | ENDDO |
---|
| 761 | |
---|
| 762 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'forward' ) |
---|
| 763 | |
---|
| 764 | ENDDO |
---|
| 765 | |
---|
| 766 | !$OMP DO |
---|
| 767 | DO k = 1, nz |
---|
| 768 | DO j = 0, ny |
---|
| 769 | DO i = nxl, nxr |
---|
| 770 | work(i,k,j) = work_ffty_vec(j,k,i) |
---|
| 771 | ENDDO |
---|
| 772 | ENDDO |
---|
| 773 | ENDDO |
---|
| 774 | !$OMP END PARALLEL |
---|
| 775 | #endif |
---|
| 776 | |
---|
| 777 | ELSE |
---|
| 778 | |
---|
| 779 | ! |
---|
| 780 | !-- Cache optimized code. |
---|
| 781 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 782 | !-- loop for better cache performance |
---|
| 783 | !$OMP PARALLEL PRIVATE (i,iend,iouter,ir,j,k,work_ffty) |
---|
| 784 | !$OMP DO |
---|
| 785 | DO iouter = nxl, nxr, stridex |
---|
| 786 | |
---|
| 787 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 788 | |
---|
| 789 | DO k = 1, nz |
---|
| 790 | |
---|
| 791 | DO i = iouter, iend |
---|
| 792 | |
---|
| 793 | ir = i-iouter+1 ! counter within a stride |
---|
| 794 | DO j = 0, ny |
---|
| 795 | work_ffty(j,ir) = f_in(k,j,i) |
---|
| 796 | ENDDO |
---|
| 797 | ! |
---|
| 798 | !-- FFT along y |
---|
[1106] | 799 | CALL fft_y_1d( work_ffty(:,ir), 'forward' ) |
---|
[1] | 800 | |
---|
| 801 | ENDDO |
---|
| 802 | |
---|
| 803 | ! |
---|
| 804 | !-- Resort |
---|
| 805 | DO j = 0, ny |
---|
| 806 | DO i = iouter, iend |
---|
| 807 | work(i,k,j) = work_ffty(j,i-iouter+1) |
---|
| 808 | ENDDO |
---|
| 809 | ENDDO |
---|
| 810 | |
---|
| 811 | ENDDO |
---|
| 812 | |
---|
| 813 | ENDDO |
---|
| 814 | !$OMP END PARALLEL |
---|
| 815 | |
---|
| 816 | ENDIF |
---|
[1106] | 817 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'pause' ) |
---|
[1] | 818 | |
---|
| 819 | ! |
---|
| 820 | !-- Transpose array |
---|
[1111] | 821 | #if defined( __parallel ) |
---|
[1] | 822 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 823 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 824 | CALL MPI_ALLTOALL( work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 825 | f_out(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 826 | comm1dx, ierr ) |
---|
| 827 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 828 | #endif |
---|
[1] | 829 | |
---|
| 830 | END SUBROUTINE ffty_tr_yx |
---|
| 831 | |
---|
| 832 | |
---|
[1216] | 833 | SUBROUTINE tr_xy_ffty( f_in, f_out ) |
---|
[1] | 834 | |
---|
| 835 | !------------------------------------------------------------------------------! |
---|
| 836 | ! Transposition x --> y with a subsequent backward Fourier transformation for |
---|
| 837 | ! a 1d-decomposition along x |
---|
| 838 | !------------------------------------------------------------------------------! |
---|
| 839 | |
---|
| 840 | USE control_parameters |
---|
| 841 | USE cpulog |
---|
| 842 | USE indices |
---|
| 843 | USE interfaces |
---|
| 844 | USE pegrid |
---|
| 845 | USE transpose_indices |
---|
| 846 | |
---|
| 847 | IMPLICIT NONE |
---|
| 848 | |
---|
| 849 | INTEGER :: i, iend, iouter, ir, j, k |
---|
| 850 | INTEGER, PARAMETER :: stridex = 4 |
---|
| 851 | |
---|
| 852 | REAL, DIMENSION(0:ny,stridex) :: work_ffty |
---|
| 853 | #if defined( __nec ) |
---|
| 854 | REAL, DIMENSION(0:ny+1,1:nz,nxl:nxr) :: work_ffty_vec |
---|
| 855 | #endif |
---|
[1003] | 856 | REAL, DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_in |
---|
| 857 | REAL, DIMENSION(1:nz,0:ny,nxl:nxr) :: f_out |
---|
| 858 | REAL, DIMENSION(nxl:nxr,1:nz,0:ny) :: work |
---|
[1] | 859 | |
---|
| 860 | ! |
---|
| 861 | !-- Transpose array |
---|
[1111] | 862 | #if defined( __parallel ) |
---|
[1] | 863 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 864 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 865 | CALL MPI_ALLTOALL( f_in(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 866 | work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 867 | comm1dx, ierr ) |
---|
| 868 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 869 | #endif |
---|
[1] | 870 | |
---|
| 871 | ! |
---|
| 872 | !-- Resort the data in a way that y becomes the first index and carry out the |
---|
| 873 | !-- backward fft along y. |
---|
[1106] | 874 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'continue' ) |
---|
[1] | 875 | |
---|
| 876 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 877 | #if defined( __nec ) |
---|
| 878 | ! |
---|
| 879 | !-- Code optimized for vector processors |
---|
[85] | 880 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 881 | !$OMP DO |
---|
| 882 | DO k = 1, nz |
---|
| 883 | DO j = 0, ny |
---|
| 884 | DO i = nxl, nxr |
---|
| 885 | work_ffty_vec(j,k,i) = work(i,k,j) |
---|
| 886 | ENDDO |
---|
| 887 | ENDDO |
---|
| 888 | ENDDO |
---|
| 889 | |
---|
| 890 | !$OMP DO |
---|
| 891 | DO i = nxl, nxr |
---|
| 892 | |
---|
| 893 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'backward' ) |
---|
| 894 | |
---|
| 895 | DO j = 0, ny |
---|
| 896 | DO k = 1, nz |
---|
| 897 | f_out(k,j,i) = work_ffty_vec(j,k,i) |
---|
| 898 | ENDDO |
---|
| 899 | ENDDO |
---|
| 900 | |
---|
| 901 | ENDDO |
---|
| 902 | !$OMP END PARALLEL |
---|
| 903 | #endif |
---|
| 904 | |
---|
| 905 | ELSE |
---|
| 906 | |
---|
| 907 | ! |
---|
| 908 | !-- Cache optimized code. |
---|
| 909 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 910 | !-- loop for better cache performance |
---|
| 911 | !$OMP PARALLEL PRIVATE ( i, iend, iouter, ir, j, k, work_ffty ) |
---|
| 912 | !$OMP DO |
---|
| 913 | DO iouter = nxl, nxr, stridex |
---|
| 914 | |
---|
| 915 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 916 | |
---|
| 917 | DO k = 1, nz |
---|
| 918 | ! |
---|
| 919 | !-- Resort |
---|
| 920 | DO j = 0, ny |
---|
| 921 | DO i = iouter, iend |
---|
| 922 | work_ffty(j,i-iouter+1) = work(i,k,j) |
---|
| 923 | ENDDO |
---|
| 924 | ENDDO |
---|
| 925 | |
---|
| 926 | DO i = iouter, iend |
---|
| 927 | |
---|
| 928 | ! |
---|
| 929 | !-- FFT along y |
---|
| 930 | ir = i-iouter+1 ! counter within a stride |
---|
[1106] | 931 | CALL fft_y_1d( work_ffty(:,ir), 'backward' ) |
---|
[1] | 932 | |
---|
| 933 | DO j = 0, ny |
---|
| 934 | f_out(k,j,i) = work_ffty(j,ir) |
---|
| 935 | ENDDO |
---|
| 936 | ENDDO |
---|
| 937 | |
---|
| 938 | ENDDO |
---|
| 939 | |
---|
| 940 | ENDDO |
---|
| 941 | !$OMP END PARALLEL |
---|
| 942 | |
---|
| 943 | ENDIF |
---|
| 944 | |
---|
[1106] | 945 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'stop' ) |
---|
[1] | 946 | |
---|
| 947 | END SUBROUTINE tr_xy_ffty |
---|
| 948 | |
---|
| 949 | |
---|
| 950 | SUBROUTINE fftx_tri_fftx( ar ) |
---|
| 951 | |
---|
| 952 | !------------------------------------------------------------------------------! |
---|
| 953 | ! FFT along x, solution of the tridiagonal system and backward FFT for |
---|
| 954 | ! a 1d-decomposition along x |
---|
| 955 | ! |
---|
| 956 | ! WARNING: this subroutine may still not work for hybrid parallelization |
---|
| 957 | ! with OpenMP (for possible necessary changes see the original |
---|
| 958 | ! routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
| 959 | !------------------------------------------------------------------------------! |
---|
| 960 | |
---|
| 961 | USE control_parameters |
---|
| 962 | USE cpulog |
---|
| 963 | USE grid_variables |
---|
| 964 | USE indices |
---|
| 965 | USE interfaces |
---|
| 966 | USE pegrid |
---|
| 967 | USE transpose_indices |
---|
| 968 | |
---|
| 969 | IMPLICIT NONE |
---|
| 970 | |
---|
| 971 | INTEGER :: i, j, k, m, n, omp_get_thread_num, tn |
---|
| 972 | |
---|
[1003] | 973 | REAL, DIMENSION(0:nx) :: work_fftx |
---|
| 974 | REAL, DIMENSION(0:nx,1:nz) :: work_trix |
---|
| 975 | REAL, DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: ar |
---|
| 976 | REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: tri |
---|
[1] | 977 | |
---|
| 978 | |
---|
[1106] | 979 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'start' ) |
---|
[1] | 980 | |
---|
| 981 | ALLOCATE( tri(5,0:nx,0:nz-1,0:threads_per_task-1) ) |
---|
| 982 | |
---|
| 983 | tn = 0 ! Default thread number in case of one thread |
---|
| 984 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_fftx, work_trix ) |
---|
| 985 | DO j = nys_x, nyn_x |
---|
| 986 | |
---|
| 987 | !$ tn = omp_get_thread_num() |
---|
| 988 | |
---|
| 989 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 990 | ! |
---|
| 991 | !-- Code optimized for vector processors |
---|
| 992 | DO k = 1, nz |
---|
| 993 | |
---|
| 994 | m = 0 |
---|
| 995 | DO n = 1, pdims(1) |
---|
[1003] | 996 | DO i = 1, nnx |
---|
[1] | 997 | work_trix(m,k) = ar(i,k,j,n) |
---|
| 998 | m = m + 1 |
---|
| 999 | ENDDO |
---|
| 1000 | ENDDO |
---|
| 1001 | |
---|
| 1002 | ENDDO |
---|
| 1003 | |
---|
| 1004 | CALL fft_x_m( work_trix, 'forward' ) |
---|
| 1005 | |
---|
| 1006 | ELSE |
---|
| 1007 | ! |
---|
| 1008 | !-- Cache optimized code |
---|
| 1009 | DO k = 1, nz |
---|
| 1010 | |
---|
| 1011 | m = 0 |
---|
| 1012 | DO n = 1, pdims(1) |
---|
[1003] | 1013 | DO i = 1, nnx |
---|
[1] | 1014 | work_fftx(m) = ar(i,k,j,n) |
---|
| 1015 | m = m + 1 |
---|
| 1016 | ENDDO |
---|
| 1017 | ENDDO |
---|
| 1018 | |
---|
[1106] | 1019 | CALL fft_x_1d( work_fftx, 'forward' ) |
---|
[1] | 1020 | |
---|
| 1021 | DO i = 0, nx |
---|
| 1022 | work_trix(i,k) = work_fftx(i) |
---|
| 1023 | ENDDO |
---|
| 1024 | |
---|
| 1025 | ENDDO |
---|
| 1026 | |
---|
| 1027 | ENDIF |
---|
| 1028 | |
---|
| 1029 | ! |
---|
| 1030 | !-- Solve the linear equation system |
---|
| 1031 | CALL tridia_1dd( ddx2, ddy2, nx, ny, j, work_trix, tri(:,:,:,tn) ) |
---|
| 1032 | |
---|
| 1033 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1034 | ! |
---|
| 1035 | !-- Code optimized for vector processors |
---|
| 1036 | CALL fft_x_m( work_trix, 'backward' ) |
---|
| 1037 | |
---|
| 1038 | DO k = 1, nz |
---|
| 1039 | |
---|
| 1040 | m = 0 |
---|
| 1041 | DO n = 1, pdims(1) |
---|
[1003] | 1042 | DO i = 1, nnx |
---|
[1] | 1043 | ar(i,k,j,n) = work_trix(m,k) |
---|
| 1044 | m = m + 1 |
---|
| 1045 | ENDDO |
---|
| 1046 | ENDDO |
---|
| 1047 | |
---|
| 1048 | ENDDO |
---|
| 1049 | |
---|
| 1050 | ELSE |
---|
| 1051 | ! |
---|
| 1052 | !-- Cache optimized code |
---|
| 1053 | DO k = 1, nz |
---|
| 1054 | |
---|
| 1055 | DO i = 0, nx |
---|
| 1056 | work_fftx(i) = work_trix(i,k) |
---|
| 1057 | ENDDO |
---|
| 1058 | |
---|
[1106] | 1059 | CALL fft_x_1d( work_fftx, 'backward' ) |
---|
[1] | 1060 | |
---|
| 1061 | m = 0 |
---|
| 1062 | DO n = 1, pdims(1) |
---|
[1003] | 1063 | DO i = 1, nnx |
---|
[1] | 1064 | ar(i,k,j,n) = work_fftx(m) |
---|
| 1065 | m = m + 1 |
---|
| 1066 | ENDDO |
---|
| 1067 | ENDDO |
---|
| 1068 | |
---|
| 1069 | ENDDO |
---|
| 1070 | |
---|
| 1071 | ENDIF |
---|
| 1072 | |
---|
| 1073 | ENDDO |
---|
| 1074 | |
---|
| 1075 | DEALLOCATE( tri ) |
---|
| 1076 | |
---|
[1106] | 1077 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'stop' ) |
---|
[1] | 1078 | |
---|
| 1079 | END SUBROUTINE fftx_tri_fftx |
---|
| 1080 | |
---|
| 1081 | |
---|
[1216] | 1082 | SUBROUTINE fftx_tr_xy( f_in, f_out ) |
---|
[1] | 1083 | |
---|
| 1084 | !------------------------------------------------------------------------------! |
---|
| 1085 | ! Fourier-transformation along x with subsequent transposition x --> y for |
---|
| 1086 | ! a 1d-decomposition along y |
---|
| 1087 | ! |
---|
| 1088 | ! ATTENTION: The NEC-branch of this routine may significantly profit from |
---|
| 1089 | ! further optimizations. So far, performance is much worse than |
---|
| 1090 | ! for routine ffty_tr_yx (more than three times slower). |
---|
| 1091 | !------------------------------------------------------------------------------! |
---|
| 1092 | |
---|
| 1093 | USE control_parameters |
---|
| 1094 | USE cpulog |
---|
| 1095 | USE indices |
---|
| 1096 | USE interfaces |
---|
| 1097 | USE pegrid |
---|
| 1098 | USE transpose_indices |
---|
| 1099 | |
---|
| 1100 | IMPLICIT NONE |
---|
| 1101 | |
---|
| 1102 | INTEGER :: i, j, k |
---|
| 1103 | |
---|
[1003] | 1104 | REAL, DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx |
---|
| 1105 | REAL, DIMENSION(1:nz,nys:nyn,0:nx) :: f_in |
---|
| 1106 | REAL, DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_out |
---|
| 1107 | REAL, DIMENSION(nys:nyn,1:nz,0:nx) :: work |
---|
[1] | 1108 | |
---|
| 1109 | ! |
---|
| 1110 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 1111 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 1112 | !-- the first index. |
---|
[1106] | 1113 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'start' ) |
---|
[1] | 1114 | |
---|
| 1115 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1116 | ! |
---|
| 1117 | !-- Code for vector processors |
---|
[85] | 1118 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 1119 | !$OMP DO |
---|
| 1120 | DO i = 0, nx |
---|
| 1121 | |
---|
| 1122 | DO j = nys, nyn |
---|
| 1123 | DO k = 1, nz |
---|
| 1124 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 1125 | ENDDO |
---|
| 1126 | ENDDO |
---|
| 1127 | |
---|
| 1128 | ENDDO |
---|
| 1129 | |
---|
| 1130 | !$OMP DO |
---|
| 1131 | DO j = nys, nyn |
---|
| 1132 | |
---|
| 1133 | CALL fft_x_m( work_fftx(:,:,j), 'forward' ) |
---|
| 1134 | |
---|
| 1135 | DO k = 1, nz |
---|
| 1136 | DO i = 0, nx |
---|
| 1137 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 1138 | ENDDO |
---|
| 1139 | ENDDO |
---|
| 1140 | |
---|
| 1141 | ENDDO |
---|
| 1142 | !$OMP END PARALLEL |
---|
| 1143 | |
---|
| 1144 | ELSE |
---|
| 1145 | |
---|
| 1146 | ! |
---|
| 1147 | !-- Cache optimized code (there might be still a potential for better |
---|
| 1148 | !-- optimization). |
---|
[696] | 1149 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
[1] | 1150 | !$OMP DO |
---|
| 1151 | DO i = 0, nx |
---|
| 1152 | |
---|
| 1153 | DO j = nys, nyn |
---|
| 1154 | DO k = 1, nz |
---|
| 1155 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 1156 | ENDDO |
---|
| 1157 | ENDDO |
---|
| 1158 | |
---|
| 1159 | ENDDO |
---|
| 1160 | |
---|
| 1161 | !$OMP DO |
---|
| 1162 | DO j = nys, nyn |
---|
| 1163 | DO k = 1, nz |
---|
| 1164 | |
---|
[1106] | 1165 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'forward' ) |
---|
[1] | 1166 | |
---|
| 1167 | DO i = 0, nx |
---|
| 1168 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 1169 | ENDDO |
---|
| 1170 | ENDDO |
---|
| 1171 | |
---|
| 1172 | ENDDO |
---|
| 1173 | !$OMP END PARALLEL |
---|
| 1174 | |
---|
| 1175 | ENDIF |
---|
[1106] | 1176 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'pause' ) |
---|
[1] | 1177 | |
---|
| 1178 | ! |
---|
| 1179 | !-- Transpose array |
---|
[1111] | 1180 | #if defined( __parallel ) |
---|
[1] | 1181 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1182 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1183 | CALL MPI_ALLTOALL( work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 1184 | f_out(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 1185 | comm1dy, ierr ) |
---|
| 1186 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 1187 | #endif |
---|
[1] | 1188 | |
---|
| 1189 | END SUBROUTINE fftx_tr_xy |
---|
| 1190 | |
---|
| 1191 | |
---|
[1216] | 1192 | SUBROUTINE tr_yx_fftx( f_in, f_out ) |
---|
[1] | 1193 | |
---|
| 1194 | !------------------------------------------------------------------------------! |
---|
| 1195 | ! Transposition y --> x with a subsequent backward Fourier transformation for |
---|
| 1196 | ! a 1d-decomposition along x |
---|
| 1197 | !------------------------------------------------------------------------------! |
---|
| 1198 | |
---|
| 1199 | USE control_parameters |
---|
| 1200 | USE cpulog |
---|
| 1201 | USE indices |
---|
| 1202 | USE interfaces |
---|
| 1203 | USE pegrid |
---|
| 1204 | USE transpose_indices |
---|
| 1205 | |
---|
| 1206 | IMPLICIT NONE |
---|
| 1207 | |
---|
| 1208 | INTEGER :: i, j, k |
---|
| 1209 | |
---|
[1003] | 1210 | REAL, DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx |
---|
| 1211 | REAL, DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_in |
---|
| 1212 | REAL, DIMENSION(1:nz,nys:nyn,0:nx) :: f_out |
---|
| 1213 | REAL, DIMENSION(nys:nyn,1:nz,0:nx) :: work |
---|
[1] | 1214 | |
---|
| 1215 | ! |
---|
| 1216 | !-- Transpose array |
---|
[1111] | 1217 | #if defined( __parallel ) |
---|
[1] | 1218 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1219 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1220 | CALL MPI_ALLTOALL( f_in(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 1221 | work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 1222 | comm1dy, ierr ) |
---|
| 1223 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 1224 | #endif |
---|
[1] | 1225 | |
---|
| 1226 | ! |
---|
| 1227 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 1228 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 1229 | !-- the first index. |
---|
[1106] | 1230 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'continue' ) |
---|
[1] | 1231 | |
---|
| 1232 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1233 | ! |
---|
| 1234 | !-- Code optimized for vector processors |
---|
[85] | 1235 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 1236 | !$OMP DO |
---|
| 1237 | DO j = nys, nyn |
---|
| 1238 | |
---|
| 1239 | DO k = 1, nz |
---|
| 1240 | DO i = 0, nx |
---|
| 1241 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1242 | ENDDO |
---|
| 1243 | ENDDO |
---|
| 1244 | |
---|
| 1245 | CALL fft_x_m( work_fftx(:,:,j), 'backward' ) |
---|
| 1246 | |
---|
| 1247 | ENDDO |
---|
| 1248 | |
---|
| 1249 | !$OMP DO |
---|
| 1250 | DO i = 0, nx |
---|
| 1251 | DO j = nys, nyn |
---|
| 1252 | DO k = 1, nz |
---|
| 1253 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 1254 | ENDDO |
---|
| 1255 | ENDDO |
---|
| 1256 | ENDDO |
---|
| 1257 | !$OMP END PARALLEL |
---|
| 1258 | |
---|
| 1259 | ELSE |
---|
| 1260 | |
---|
| 1261 | ! |
---|
| 1262 | !-- Cache optimized code (there might be still a potential for better |
---|
| 1263 | !-- optimization). |
---|
[696] | 1264 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
[1] | 1265 | !$OMP DO |
---|
| 1266 | DO j = nys, nyn |
---|
| 1267 | DO k = 1, nz |
---|
| 1268 | |
---|
| 1269 | DO i = 0, nx |
---|
| 1270 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1271 | ENDDO |
---|
| 1272 | |
---|
[1106] | 1273 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'backward' ) |
---|
[1] | 1274 | |
---|
| 1275 | ENDDO |
---|
| 1276 | ENDDO |
---|
| 1277 | |
---|
| 1278 | !$OMP DO |
---|
| 1279 | DO i = 0, nx |
---|
| 1280 | DO j = nys, nyn |
---|
| 1281 | DO k = 1, nz |
---|
| 1282 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 1283 | ENDDO |
---|
| 1284 | ENDDO |
---|
| 1285 | ENDDO |
---|
| 1286 | !$OMP END PARALLEL |
---|
| 1287 | |
---|
| 1288 | ENDIF |
---|
[1106] | 1289 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'stop' ) |
---|
[1] | 1290 | |
---|
| 1291 | END SUBROUTINE tr_yx_fftx |
---|
| 1292 | |
---|
| 1293 | |
---|
| 1294 | SUBROUTINE ffty_tri_ffty( ar ) |
---|
| 1295 | |
---|
| 1296 | !------------------------------------------------------------------------------! |
---|
| 1297 | ! FFT along y, solution of the tridiagonal system and backward FFT for |
---|
| 1298 | ! a 1d-decomposition along y |
---|
| 1299 | ! |
---|
| 1300 | ! WARNING: this subroutine may still not work for hybrid parallelization |
---|
| 1301 | ! with OpenMP (for possible necessary changes see the original |
---|
| 1302 | ! routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
| 1303 | !------------------------------------------------------------------------------! |
---|
| 1304 | |
---|
| 1305 | USE control_parameters |
---|
| 1306 | USE cpulog |
---|
| 1307 | USE grid_variables |
---|
| 1308 | USE indices |
---|
| 1309 | USE interfaces |
---|
| 1310 | USE pegrid |
---|
| 1311 | USE transpose_indices |
---|
| 1312 | |
---|
| 1313 | IMPLICIT NONE |
---|
| 1314 | |
---|
| 1315 | INTEGER :: i, j, k, m, n, omp_get_thread_num, tn |
---|
| 1316 | |
---|
[1003] | 1317 | REAL, DIMENSION(0:ny) :: work_ffty |
---|
| 1318 | REAL, DIMENSION(0:ny,1:nz) :: work_triy |
---|
| 1319 | REAL, DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: ar |
---|
| 1320 | REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: tri |
---|
[1] | 1321 | |
---|
| 1322 | |
---|
[1106] | 1323 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'start' ) |
---|
[1] | 1324 | |
---|
| 1325 | ALLOCATE( tri(5,0:ny,0:nz-1,0:threads_per_task-1) ) |
---|
| 1326 | |
---|
| 1327 | tn = 0 ! Default thread number in case of one thread |
---|
[696] | 1328 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_ffty, work_triy ) |
---|
[1] | 1329 | DO i = nxl_y, nxr_y |
---|
| 1330 | |
---|
| 1331 | !$ tn = omp_get_thread_num() |
---|
| 1332 | |
---|
| 1333 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1334 | ! |
---|
| 1335 | !-- Code optimized for vector processors |
---|
| 1336 | DO k = 1, nz |
---|
| 1337 | |
---|
| 1338 | m = 0 |
---|
| 1339 | DO n = 1, pdims(2) |
---|
[1003] | 1340 | DO j = 1, nny |
---|
[1] | 1341 | work_triy(m,k) = ar(j,k,i,n) |
---|
| 1342 | m = m + 1 |
---|
| 1343 | ENDDO |
---|
| 1344 | ENDDO |
---|
| 1345 | |
---|
| 1346 | ENDDO |
---|
| 1347 | |
---|
| 1348 | CALL fft_y_m( work_triy, ny, 'forward' ) |
---|
| 1349 | |
---|
| 1350 | ELSE |
---|
| 1351 | ! |
---|
| 1352 | !-- Cache optimized code |
---|
| 1353 | DO k = 1, nz |
---|
| 1354 | |
---|
| 1355 | m = 0 |
---|
| 1356 | DO n = 1, pdims(2) |
---|
[1003] | 1357 | DO j = 1, nny |
---|
[1] | 1358 | work_ffty(m) = ar(j,k,i,n) |
---|
| 1359 | m = m + 1 |
---|
| 1360 | ENDDO |
---|
| 1361 | ENDDO |
---|
| 1362 | |
---|
[1106] | 1363 | CALL fft_y_1d( work_ffty, 'forward' ) |
---|
[1] | 1364 | |
---|
| 1365 | DO j = 0, ny |
---|
| 1366 | work_triy(j,k) = work_ffty(j) |
---|
| 1367 | ENDDO |
---|
| 1368 | |
---|
| 1369 | ENDDO |
---|
| 1370 | |
---|
| 1371 | ENDIF |
---|
| 1372 | |
---|
| 1373 | ! |
---|
| 1374 | !-- Solve the linear equation system |
---|
| 1375 | CALL tridia_1dd( ddy2, ddx2, ny, nx, i, work_triy, tri(:,:,:,tn) ) |
---|
| 1376 | |
---|
| 1377 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1378 | ! |
---|
| 1379 | !-- Code optimized for vector processors |
---|
| 1380 | CALL fft_y_m( work_triy, ny, 'backward' ) |
---|
| 1381 | |
---|
| 1382 | DO k = 1, nz |
---|
| 1383 | |
---|
| 1384 | m = 0 |
---|
| 1385 | DO n = 1, pdims(2) |
---|
[1003] | 1386 | DO j = 1, nny |
---|
[1] | 1387 | ar(j,k,i,n) = work_triy(m,k) |
---|
| 1388 | m = m + 1 |
---|
| 1389 | ENDDO |
---|
| 1390 | ENDDO |
---|
| 1391 | |
---|
| 1392 | ENDDO |
---|
| 1393 | |
---|
| 1394 | ELSE |
---|
| 1395 | ! |
---|
| 1396 | !-- Cache optimized code |
---|
| 1397 | DO k = 1, nz |
---|
| 1398 | |
---|
| 1399 | DO j = 0, ny |
---|
| 1400 | work_ffty(j) = work_triy(j,k) |
---|
| 1401 | ENDDO |
---|
| 1402 | |
---|
[1106] | 1403 | CALL fft_y_1d( work_ffty, 'backward' ) |
---|
[1] | 1404 | |
---|
| 1405 | m = 0 |
---|
| 1406 | DO n = 1, pdims(2) |
---|
[1003] | 1407 | DO j = 1, nny |
---|
[1] | 1408 | ar(j,k,i,n) = work_ffty(m) |
---|
| 1409 | m = m + 1 |
---|
| 1410 | ENDDO |
---|
| 1411 | ENDDO |
---|
| 1412 | |
---|
| 1413 | ENDDO |
---|
| 1414 | |
---|
| 1415 | ENDIF |
---|
| 1416 | |
---|
| 1417 | ENDDO |
---|
| 1418 | |
---|
| 1419 | DEALLOCATE( tri ) |
---|
| 1420 | |
---|
[1106] | 1421 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'stop' ) |
---|
[1] | 1422 | |
---|
| 1423 | END SUBROUTINE ffty_tri_ffty |
---|
| 1424 | |
---|
| 1425 | #endif |
---|
| 1426 | |
---|
| 1427 | END MODULE poisfft_mod |
---|