[1] | 1 | MODULE poisfft_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1112] | 22 | ! |
---|
| 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: poisfft.f90 1112 2013-03-09 00:34:37Z witha $ |
---|
| 27 | ! |
---|
| 28 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
[1111] | 29 | ! further openACC porting of non-parallel (MPI) branch: |
---|
| 30 | ! tridiagonal routines split into extermal subroutines (instead using CONTAINS), |
---|
| 31 | ! no distinction between parallel/non-parallel in poisfft and tridia any more, |
---|
[1112] | 32 | ! tridia routines moved to end of file because of probable bug in PGI compiler 12.5 |
---|
[1111] | 33 | ! (otherwise "invalid device function" is indicated during runtime), |
---|
| 34 | ! optimization of tridia routines: constant elements and coefficients of tri are |
---|
| 35 | ! stored in seperate arrays ddzuw and tric, last dimension of tri reduced from 5 |
---|
| 36 | ! to 2, |
---|
| 37 | ! poisfft_init is now called internally from poisfft, maketri is called from |
---|
| 38 | ! poisfft_init, |
---|
| 39 | ! ibc_p_b = 2 removed |
---|
[1] | 40 | ! |
---|
[1107] | 41 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 42 | ! routines fftx, ffty, fftxp, fftyp removed, calls replaced by fft_x, fft_y, |
---|
| 43 | ! in the 1D-decomposition routines fft_x, ffty are replaced by fft_x_1d, |
---|
| 44 | ! fft_y_1d |
---|
| 45 | ! |
---|
[1104] | 46 | ! 1103 2013-02-20 02:15:53Z raasch |
---|
| 47 | ! tri, ar, and ar1 arguments in tridia-routines (2d) are removed because they |
---|
| 48 | ! sometimes cause segmentation faults with intel 12.1 compiler |
---|
| 49 | ! |
---|
[1093] | 50 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 51 | ! unused variables removed |
---|
| 52 | ! |
---|
[1037] | 53 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 54 | ! code put under GPL (PALM 3.9) |
---|
| 55 | ! |
---|
[1014] | 56 | ! 2012-09-21 07:03:55Z raasch |
---|
| 57 | ! FLOAT type conversion replaced by REAL |
---|
| 58 | ! |
---|
[1004] | 59 | ! 1003 2012-09-14 14:35:53Z raasch |
---|
| 60 | ! indices nxa, nya, etc. replaced by nx, ny, etc. |
---|
| 61 | ! |
---|
[941] | 62 | ! 940 2012-07-09 14:31:00Z raasch |
---|
| 63 | ! special handling of tri-array as an argument in tridia_1dd routines switched |
---|
| 64 | ! off because it caused segmentation faults with intel 12.1 compiler |
---|
| 65 | ! |
---|
[878] | 66 | ! 877 2012-04-03 11:21:44Z suehring |
---|
| 67 | ! Bugfix: Avoid divisions by zero in case of using a 'neumann' bc for the |
---|
| 68 | ! pressure at the top of the model domain. |
---|
| 69 | ! |
---|
[810] | 70 | ! 809 2012-01-30 13:32:58Z maronga |
---|
| 71 | ! Bugfix: replaced .AND. and .NOT. with && and ! in the preprocessor directives |
---|
| 72 | ! |
---|
[808] | 73 | ! 807 2012-01-25 11:53:51Z maronga |
---|
| 74 | ! New cpp directive "__check" implemented which is used by check_namelist_files |
---|
| 75 | ! (most of the code is unneeded by check_namelist_files). |
---|
| 76 | ! |
---|
[764] | 77 | ! 763 2011-10-06 09:32:09Z suehring |
---|
| 78 | ! Comment added concerning the last change. |
---|
| 79 | ! |
---|
[762] | 80 | ! 761 2011-10-05 17:58:52Z suehring |
---|
| 81 | ! Bugfix: Avoid divisions by zero in case of using a 'neumann' bc for the |
---|
| 82 | ! pressure at the top of the model domain. |
---|
| 83 | ! |
---|
[697] | 84 | ! 696 2011-03-18 07:03:49Z raasch |
---|
| 85 | ! work_fftx removed from PRIVATE clauses in fftx_tr_xy and tr_yx_fftx |
---|
| 86 | ! |
---|
[684] | 87 | ! 683 2011-02-09 14:25:15Z raasch |
---|
| 88 | ! openMP parallelization for 2d-domain-decomposition |
---|
| 89 | ! |
---|
[668] | 90 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 91 | ! ddzu replaced by ddzu_pres due to changes in zu(0) |
---|
| 92 | ! |
---|
[623] | 93 | ! 622 2010-12-10 08:08:13Z raasch |
---|
| 94 | ! optional barriers included in order to speed up collective operations |
---|
| 95 | ! |
---|
[392] | 96 | ! 377 2009-09-04 11:09:00Z raasch |
---|
| 97 | ! __lcmuk changed to __lc to avoid problems with Intel compiler on sgi-ice |
---|
| 98 | ! |
---|
[198] | 99 | ! 164 2008-05-15 08:46:15Z raasch |
---|
| 100 | ! Arguments removed from transpose routines |
---|
| 101 | ! |
---|
[139] | 102 | ! 128 2007-10-26 13:11:14Z raasch |
---|
| 103 | ! Bugfix: wavenumber calculation for even nx in routines maketri |
---|
| 104 | ! |
---|
[90] | 105 | ! 85 2007-05-11 09:35:14Z raasch |
---|
| 106 | ! Bugfix: work_fft*_vec removed from some PRIVATE-declarations |
---|
| 107 | ! |
---|
[77] | 108 | ! 76 2007-03-29 00:58:32Z raasch |
---|
| 109 | ! Tridiagonal coefficients adjusted for Neumann boundary conditions both at |
---|
| 110 | ! the bottom and the top. |
---|
| 111 | ! |
---|
[3] | 112 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 113 | ! |
---|
[1] | 114 | ! Revision 1.24 2006/08/04 15:00:24 raasch |
---|
| 115 | ! Default setting of the thread number tn in case of not using OpenMP |
---|
| 116 | ! |
---|
| 117 | ! Revision 1.23 2006/02/23 12:48:38 raasch |
---|
| 118 | ! Additional compiler directive in routine tridia_1dd for preventing loop |
---|
| 119 | ! exchange on NEC-SX6 |
---|
| 120 | ! |
---|
| 121 | ! Revision 1.20 2004/04/30 12:38:09 raasch |
---|
| 122 | ! Parts of former poisfft_hybrid moved to this subroutine, |
---|
| 123 | ! former subroutine changed to a module, renaming of FFT-subroutines and |
---|
| 124 | ! -module, FFTs completely substituted by calls of fft_x and fft_y, |
---|
| 125 | ! NAG fft used in the non-parallel case completely removed, l in maketri |
---|
| 126 | ! is now a 1d-array, variables passed by modules instead of using parameter |
---|
| 127 | ! lists, enlarged transposition arrays introduced |
---|
| 128 | ! |
---|
| 129 | ! Revision 1.1 1997/07/24 11:24:14 raasch |
---|
| 130 | ! Initial revision |
---|
| 131 | ! |
---|
| 132 | ! |
---|
| 133 | ! Description: |
---|
| 134 | ! ------------ |
---|
| 135 | ! See below. |
---|
| 136 | !------------------------------------------------------------------------------! |
---|
| 137 | |
---|
| 138 | !--------------------------------------------------------------------------! |
---|
| 139 | ! poisfft ! |
---|
| 140 | ! ! |
---|
| 141 | ! Original version: Stephan Siano (pois3d) ! |
---|
| 142 | ! ! |
---|
| 143 | ! Institute of Meteorology and Climatology, University of Hannover ! |
---|
| 144 | ! Germany ! |
---|
| 145 | ! ! |
---|
| 146 | ! Version as of July 23,1996 ! |
---|
| 147 | ! ! |
---|
| 148 | ! ! |
---|
| 149 | ! Version for parallel computers: Siegfried Raasch ! |
---|
| 150 | ! ! |
---|
| 151 | ! Version as of July 03,1997 ! |
---|
| 152 | ! ! |
---|
| 153 | ! Solves the Poisson equation with a 2D spectral method ! |
---|
| 154 | ! d^2 p / dx^2 + d^2 p / dy^2 + d^2 p / dz^2 = s ! |
---|
| 155 | ! ! |
---|
| 156 | ! Input: ! |
---|
| 157 | ! real ar contains in the (nnx,nny,nnz) elements, ! |
---|
| 158 | ! starting from the element (1,nys,nxl), the ! |
---|
| 159 | ! values for s ! |
---|
| 160 | ! real work Temporary array ! |
---|
| 161 | ! ! |
---|
| 162 | ! Output: ! |
---|
| 163 | ! real ar contains the solution for p ! |
---|
| 164 | !--------------------------------------------------------------------------! |
---|
| 165 | |
---|
| 166 | USE fft_xy |
---|
| 167 | USE indices |
---|
| 168 | USE transpose_indices |
---|
| 169 | |
---|
| 170 | IMPLICIT NONE |
---|
| 171 | |
---|
[1111] | 172 | LOGICAL, SAVE :: poisfft_initialized = .FALSE. |
---|
| 173 | |
---|
| 174 | REAL, DIMENSION(:,:), ALLOCATABLE :: ddzuw |
---|
| 175 | |
---|
[1] | 176 | PRIVATE |
---|
[807] | 177 | |
---|
[809] | 178 | #if ! defined ( __check ) |
---|
[1] | 179 | PUBLIC poisfft, poisfft_init |
---|
| 180 | |
---|
| 181 | INTERFACE poisfft |
---|
| 182 | MODULE PROCEDURE poisfft |
---|
| 183 | END INTERFACE poisfft |
---|
| 184 | |
---|
| 185 | INTERFACE poisfft_init |
---|
| 186 | MODULE PROCEDURE poisfft_init |
---|
| 187 | END INTERFACE poisfft_init |
---|
[807] | 188 | #else |
---|
| 189 | PUBLIC poisfft_init |
---|
[1] | 190 | |
---|
[807] | 191 | INTERFACE poisfft_init |
---|
| 192 | MODULE PROCEDURE poisfft_init |
---|
| 193 | END INTERFACE poisfft_init |
---|
| 194 | #endif |
---|
| 195 | |
---|
[1] | 196 | CONTAINS |
---|
| 197 | |
---|
| 198 | SUBROUTINE poisfft_init |
---|
| 199 | |
---|
[1111] | 200 | USE arrays_3d, ONLY: ddzu_pres, ddzw |
---|
| 201 | |
---|
| 202 | IMPLICIT NONE |
---|
| 203 | |
---|
| 204 | INTEGER :: k |
---|
| 205 | |
---|
| 206 | |
---|
[1] | 207 | CALL fft_init |
---|
| 208 | |
---|
[1111] | 209 | ALLOCATE( ddzuw(0:nz-1,3) ) |
---|
| 210 | |
---|
| 211 | DO k = 0, nz-1 |
---|
| 212 | ddzuw(k,1) = ddzu_pres(k+1) * ddzw(k+1) |
---|
| 213 | ddzuw(k,2) = ddzu_pres(k+2) * ddzw(k+1) |
---|
| 214 | ddzuw(k,3) = -1.0 * & |
---|
| 215 | ( ddzu_pres(k+2) * ddzw(k+1) + ddzu_pres(k+1) * ddzw(k+1) ) |
---|
| 216 | ENDDO |
---|
| 217 | ! |
---|
| 218 | !-- Calculate constant coefficients of the tridiagonal matrix |
---|
| 219 | #if ! defined ( __check ) |
---|
| 220 | CALL maketri |
---|
| 221 | #endif |
---|
| 222 | |
---|
| 223 | poisfft_initialized = .TRUE. |
---|
| 224 | |
---|
[1] | 225 | END SUBROUTINE poisfft_init |
---|
| 226 | |
---|
[1111] | 227 | |
---|
[809] | 228 | #if ! defined ( __check ) |
---|
[1] | 229 | SUBROUTINE poisfft( ar, work ) |
---|
| 230 | |
---|
| 231 | USE cpulog |
---|
| 232 | USE interfaces |
---|
| 233 | USE pegrid |
---|
| 234 | |
---|
| 235 | IMPLICIT NONE |
---|
| 236 | |
---|
[1003] | 237 | REAL, DIMENSION(1:nz,nys:nyn,nxl:nxr) :: ar, work |
---|
[1] | 238 | |
---|
| 239 | |
---|
| 240 | CALL cpu_log( log_point_s(3), 'poisfft', 'start' ) |
---|
| 241 | |
---|
[1111] | 242 | IF ( .NOT. poisfft_initialized ) CALL poisfft_init |
---|
| 243 | |
---|
[1] | 244 | ! |
---|
| 245 | !-- Two-dimensional Fourier Transformation in x- and y-direction. |
---|
[1111] | 246 | IF ( pdims(2) == 1 .AND. pdims(1) > 1 ) THEN |
---|
[1] | 247 | |
---|
| 248 | ! |
---|
| 249 | !-- 1d-domain-decomposition along x: |
---|
| 250 | !-- FFT along y and transposition y --> x |
---|
| 251 | CALL ffty_tr_yx( ar, work, ar ) |
---|
| 252 | |
---|
| 253 | ! |
---|
| 254 | !-- FFT along x, solving the tridiagonal system and backward FFT |
---|
| 255 | CALL fftx_tri_fftx( ar ) |
---|
| 256 | |
---|
| 257 | ! |
---|
| 258 | !-- Transposition x --> y and backward FFT along y |
---|
| 259 | CALL tr_xy_ffty( ar, work, ar ) |
---|
| 260 | |
---|
[1111] | 261 | ELSEIF ( pdims(1) == 1 .AND. pdims(2) > 1 ) THEN |
---|
[1] | 262 | |
---|
| 263 | ! |
---|
| 264 | !-- 1d-domain-decomposition along y: |
---|
| 265 | !-- FFT along x and transposition x --> y |
---|
| 266 | CALL fftx_tr_xy( ar, work, ar ) |
---|
| 267 | |
---|
| 268 | ! |
---|
| 269 | !-- FFT along y, solving the tridiagonal system and backward FFT |
---|
| 270 | CALL ffty_tri_ffty( ar ) |
---|
| 271 | |
---|
| 272 | ! |
---|
| 273 | !-- Transposition y --> x and backward FFT along x |
---|
| 274 | CALL tr_yx_fftx( ar, work, ar ) |
---|
| 275 | |
---|
| 276 | ELSE |
---|
| 277 | |
---|
| 278 | ! |
---|
[1111] | 279 | !-- 2d-domain-decomposition or no decomposition (1 PE run) |
---|
[1] | 280 | !-- Transposition z --> x |
---|
| 281 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start' ) |
---|
[164] | 282 | CALL transpose_zx( ar, work, ar ) |
---|
[1] | 283 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 284 | |
---|
| 285 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
[1106] | 286 | CALL fft_x( ar, 'forward' ) |
---|
[1] | 287 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
| 288 | |
---|
| 289 | ! |
---|
| 290 | !-- Transposition x --> y |
---|
| 291 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[164] | 292 | CALL transpose_xy( ar, work, ar ) |
---|
[1] | 293 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 294 | |
---|
| 295 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
[1106] | 296 | CALL fft_y( ar, 'forward' ) |
---|
[1] | 297 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 298 | |
---|
| 299 | ! |
---|
| 300 | !-- Transposition y --> z |
---|
| 301 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
[164] | 302 | CALL transpose_yz( ar, work, ar ) |
---|
[1] | 303 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
| 304 | |
---|
| 305 | ! |
---|
[1106] | 306 | !-- Solve the tridiagonal equation system along z |
---|
[1] | 307 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
| 308 | CALL tridia( ar ) |
---|
| 309 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
| 310 | |
---|
| 311 | ! |
---|
| 312 | !-- Inverse Fourier Transformation |
---|
| 313 | !-- Transposition z --> y |
---|
| 314 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start' ) |
---|
[164] | 315 | CALL transpose_zy( ar, work, ar ) |
---|
[1] | 316 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 317 | |
---|
| 318 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
[1106] | 319 | CALL fft_y( ar, 'backward' ) |
---|
[1] | 320 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 321 | |
---|
| 322 | ! |
---|
| 323 | !-- Transposition y --> x |
---|
| 324 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[164] | 325 | CALL transpose_yx( ar, work, ar ) |
---|
[1] | 326 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 327 | |
---|
| 328 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
[1106] | 329 | CALL fft_x( ar, 'backward' ) |
---|
[1] | 330 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 331 | |
---|
| 332 | ! |
---|
| 333 | !-- Transposition x --> z |
---|
| 334 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
[164] | 335 | CALL transpose_xz( ar, work, ar ) |
---|
[1] | 336 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
| 337 | |
---|
| 338 | ENDIF |
---|
| 339 | |
---|
| 340 | CALL cpu_log( log_point_s(3), 'poisfft', 'stop' ) |
---|
| 341 | |
---|
| 342 | END SUBROUTINE poisfft |
---|
| 343 | |
---|
| 344 | |
---|
| 345 | |
---|
| 346 | SUBROUTINE ffty_tr_yx( f_in, work, f_out ) |
---|
| 347 | |
---|
| 348 | !------------------------------------------------------------------------------! |
---|
| 349 | ! Fourier-transformation along y with subsequent transposition y --> x for |
---|
| 350 | ! a 1d-decomposition along x |
---|
| 351 | ! |
---|
| 352 | ! ATTENTION: The performance of this routine is much faster on the NEC-SX6, |
---|
| 353 | ! if the first index of work_ffty_vec is odd. Otherwise |
---|
| 354 | ! memory bank conflicts may occur (especially if the index is a |
---|
| 355 | ! multiple of 128). That's why work_ffty_vec is dimensioned as |
---|
| 356 | ! 0:ny+1. |
---|
| 357 | ! Of course, this will not work if users are using an odd number |
---|
| 358 | ! of gridpoints along y. |
---|
| 359 | !------------------------------------------------------------------------------! |
---|
| 360 | |
---|
| 361 | USE control_parameters |
---|
| 362 | USE cpulog |
---|
| 363 | USE indices |
---|
| 364 | USE interfaces |
---|
| 365 | USE pegrid |
---|
| 366 | USE transpose_indices |
---|
| 367 | |
---|
| 368 | IMPLICIT NONE |
---|
| 369 | |
---|
| 370 | INTEGER :: i, iend, iouter, ir, j, k |
---|
| 371 | INTEGER, PARAMETER :: stridex = 4 |
---|
| 372 | |
---|
| 373 | REAL, DIMENSION(0:ny,stridex) :: work_ffty |
---|
| 374 | #if defined( __nec ) |
---|
| 375 | REAL, DIMENSION(0:ny+1,1:nz,nxl:nxr) :: work_ffty_vec |
---|
| 376 | #endif |
---|
[1003] | 377 | REAL, DIMENSION(1:nz,0:ny,nxl:nxr) :: f_in |
---|
| 378 | REAL, DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_out |
---|
| 379 | REAL, DIMENSION(nxl:nxr,1:nz,0:ny) :: work |
---|
[1] | 380 | |
---|
| 381 | ! |
---|
| 382 | !-- Carry out the FFT along y, where all data are present due to the |
---|
| 383 | !-- 1d-decomposition along x. Resort the data in a way that x becomes |
---|
| 384 | !-- the first index. |
---|
[1106] | 385 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'start' ) |
---|
[1] | 386 | |
---|
| 387 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 388 | #if defined( __nec ) |
---|
| 389 | ! |
---|
| 390 | !-- Code optimized for vector processors |
---|
[85] | 391 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 392 | !$OMP DO |
---|
| 393 | DO i = nxl, nxr |
---|
| 394 | |
---|
| 395 | DO j = 0, ny |
---|
| 396 | DO k = 1, nz |
---|
| 397 | work_ffty_vec(j,k,i) = f_in(k,j,i) |
---|
| 398 | ENDDO |
---|
| 399 | ENDDO |
---|
| 400 | |
---|
| 401 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'forward' ) |
---|
| 402 | |
---|
| 403 | ENDDO |
---|
| 404 | |
---|
| 405 | !$OMP DO |
---|
| 406 | DO k = 1, nz |
---|
| 407 | DO j = 0, ny |
---|
| 408 | DO i = nxl, nxr |
---|
| 409 | work(i,k,j) = work_ffty_vec(j,k,i) |
---|
| 410 | ENDDO |
---|
| 411 | ENDDO |
---|
| 412 | ENDDO |
---|
| 413 | !$OMP END PARALLEL |
---|
| 414 | #endif |
---|
| 415 | |
---|
| 416 | ELSE |
---|
| 417 | |
---|
| 418 | ! |
---|
| 419 | !-- Cache optimized code. |
---|
| 420 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 421 | !-- loop for better cache performance |
---|
| 422 | !$OMP PARALLEL PRIVATE (i,iend,iouter,ir,j,k,work_ffty) |
---|
| 423 | !$OMP DO |
---|
| 424 | DO iouter = nxl, nxr, stridex |
---|
| 425 | |
---|
| 426 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 427 | |
---|
| 428 | DO k = 1, nz |
---|
| 429 | |
---|
| 430 | DO i = iouter, iend |
---|
| 431 | |
---|
| 432 | ir = i-iouter+1 ! counter within a stride |
---|
| 433 | DO j = 0, ny |
---|
| 434 | work_ffty(j,ir) = f_in(k,j,i) |
---|
| 435 | ENDDO |
---|
| 436 | ! |
---|
| 437 | !-- FFT along y |
---|
[1106] | 438 | CALL fft_y_1d( work_ffty(:,ir), 'forward' ) |
---|
[1] | 439 | |
---|
| 440 | ENDDO |
---|
| 441 | |
---|
| 442 | ! |
---|
| 443 | !-- Resort |
---|
| 444 | DO j = 0, ny |
---|
| 445 | DO i = iouter, iend |
---|
| 446 | work(i,k,j) = work_ffty(j,i-iouter+1) |
---|
| 447 | ENDDO |
---|
| 448 | ENDDO |
---|
| 449 | |
---|
| 450 | ENDDO |
---|
| 451 | |
---|
| 452 | ENDDO |
---|
| 453 | !$OMP END PARALLEL |
---|
| 454 | |
---|
| 455 | ENDIF |
---|
[1106] | 456 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'pause' ) |
---|
[1] | 457 | |
---|
| 458 | ! |
---|
| 459 | !-- Transpose array |
---|
[1111] | 460 | #if defined( __parallel ) |
---|
[1] | 461 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 462 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 463 | CALL MPI_ALLTOALL( work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 464 | f_out(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 465 | comm1dx, ierr ) |
---|
| 466 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 467 | #endif |
---|
[1] | 468 | |
---|
| 469 | END SUBROUTINE ffty_tr_yx |
---|
| 470 | |
---|
| 471 | |
---|
| 472 | SUBROUTINE tr_xy_ffty( f_in, work, f_out ) |
---|
| 473 | |
---|
| 474 | !------------------------------------------------------------------------------! |
---|
| 475 | ! Transposition x --> y with a subsequent backward Fourier transformation for |
---|
| 476 | ! a 1d-decomposition along x |
---|
| 477 | !------------------------------------------------------------------------------! |
---|
| 478 | |
---|
| 479 | USE control_parameters |
---|
| 480 | USE cpulog |
---|
| 481 | USE indices |
---|
| 482 | USE interfaces |
---|
| 483 | USE pegrid |
---|
| 484 | USE transpose_indices |
---|
| 485 | |
---|
| 486 | IMPLICIT NONE |
---|
| 487 | |
---|
| 488 | INTEGER :: i, iend, iouter, ir, j, k |
---|
| 489 | INTEGER, PARAMETER :: stridex = 4 |
---|
| 490 | |
---|
| 491 | REAL, DIMENSION(0:ny,stridex) :: work_ffty |
---|
| 492 | #if defined( __nec ) |
---|
| 493 | REAL, DIMENSION(0:ny+1,1:nz,nxl:nxr) :: work_ffty_vec |
---|
| 494 | #endif |
---|
[1003] | 495 | REAL, DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: f_in |
---|
| 496 | REAL, DIMENSION(1:nz,0:ny,nxl:nxr) :: f_out |
---|
| 497 | REAL, DIMENSION(nxl:nxr,1:nz,0:ny) :: work |
---|
[1] | 498 | |
---|
| 499 | ! |
---|
| 500 | !-- Transpose array |
---|
[1111] | 501 | #if defined( __parallel ) |
---|
[1] | 502 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 503 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 504 | CALL MPI_ALLTOALL( f_in(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 505 | work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 506 | comm1dx, ierr ) |
---|
| 507 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 508 | #endif |
---|
[1] | 509 | |
---|
| 510 | ! |
---|
| 511 | !-- Resort the data in a way that y becomes the first index and carry out the |
---|
| 512 | !-- backward fft along y. |
---|
[1106] | 513 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'continue' ) |
---|
[1] | 514 | |
---|
| 515 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 516 | #if defined( __nec ) |
---|
| 517 | ! |
---|
| 518 | !-- Code optimized for vector processors |
---|
[85] | 519 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 520 | !$OMP DO |
---|
| 521 | DO k = 1, nz |
---|
| 522 | DO j = 0, ny |
---|
| 523 | DO i = nxl, nxr |
---|
| 524 | work_ffty_vec(j,k,i) = work(i,k,j) |
---|
| 525 | ENDDO |
---|
| 526 | ENDDO |
---|
| 527 | ENDDO |
---|
| 528 | |
---|
| 529 | !$OMP DO |
---|
| 530 | DO i = nxl, nxr |
---|
| 531 | |
---|
| 532 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'backward' ) |
---|
| 533 | |
---|
| 534 | DO j = 0, ny |
---|
| 535 | DO k = 1, nz |
---|
| 536 | f_out(k,j,i) = work_ffty_vec(j,k,i) |
---|
| 537 | ENDDO |
---|
| 538 | ENDDO |
---|
| 539 | |
---|
| 540 | ENDDO |
---|
| 541 | !$OMP END PARALLEL |
---|
| 542 | #endif |
---|
| 543 | |
---|
| 544 | ELSE |
---|
| 545 | |
---|
| 546 | ! |
---|
| 547 | !-- Cache optimized code. |
---|
| 548 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 549 | !-- loop for better cache performance |
---|
| 550 | !$OMP PARALLEL PRIVATE ( i, iend, iouter, ir, j, k, work_ffty ) |
---|
| 551 | !$OMP DO |
---|
| 552 | DO iouter = nxl, nxr, stridex |
---|
| 553 | |
---|
| 554 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 555 | |
---|
| 556 | DO k = 1, nz |
---|
| 557 | ! |
---|
| 558 | !-- Resort |
---|
| 559 | DO j = 0, ny |
---|
| 560 | DO i = iouter, iend |
---|
| 561 | work_ffty(j,i-iouter+1) = work(i,k,j) |
---|
| 562 | ENDDO |
---|
| 563 | ENDDO |
---|
| 564 | |
---|
| 565 | DO i = iouter, iend |
---|
| 566 | |
---|
| 567 | ! |
---|
| 568 | !-- FFT along y |
---|
| 569 | ir = i-iouter+1 ! counter within a stride |
---|
[1106] | 570 | CALL fft_y_1d( work_ffty(:,ir), 'backward' ) |
---|
[1] | 571 | |
---|
| 572 | DO j = 0, ny |
---|
| 573 | f_out(k,j,i) = work_ffty(j,ir) |
---|
| 574 | ENDDO |
---|
| 575 | ENDDO |
---|
| 576 | |
---|
| 577 | ENDDO |
---|
| 578 | |
---|
| 579 | ENDDO |
---|
| 580 | !$OMP END PARALLEL |
---|
| 581 | |
---|
| 582 | ENDIF |
---|
| 583 | |
---|
[1106] | 584 | CALL cpu_log( log_point_s(7), 'fft_y_1d', 'stop' ) |
---|
[1] | 585 | |
---|
| 586 | END SUBROUTINE tr_xy_ffty |
---|
| 587 | |
---|
| 588 | |
---|
| 589 | SUBROUTINE fftx_tri_fftx( ar ) |
---|
| 590 | |
---|
| 591 | !------------------------------------------------------------------------------! |
---|
| 592 | ! FFT along x, solution of the tridiagonal system and backward FFT for |
---|
| 593 | ! a 1d-decomposition along x |
---|
| 594 | ! |
---|
| 595 | ! WARNING: this subroutine may still not work for hybrid parallelization |
---|
| 596 | ! with OpenMP (for possible necessary changes see the original |
---|
| 597 | ! routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
| 598 | !------------------------------------------------------------------------------! |
---|
| 599 | |
---|
| 600 | USE control_parameters |
---|
| 601 | USE cpulog |
---|
| 602 | USE grid_variables |
---|
| 603 | USE indices |
---|
| 604 | USE interfaces |
---|
| 605 | USE pegrid |
---|
| 606 | USE transpose_indices |
---|
| 607 | |
---|
| 608 | IMPLICIT NONE |
---|
| 609 | |
---|
| 610 | INTEGER :: i, j, k, m, n, omp_get_thread_num, tn |
---|
| 611 | |
---|
[1003] | 612 | REAL, DIMENSION(0:nx) :: work_fftx |
---|
| 613 | REAL, DIMENSION(0:nx,1:nz) :: work_trix |
---|
| 614 | REAL, DIMENSION(nnx,1:nz,nys_x:nyn_x,pdims(1)) :: ar |
---|
| 615 | REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: tri |
---|
[1] | 616 | |
---|
| 617 | |
---|
[1106] | 618 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'start' ) |
---|
[1] | 619 | |
---|
| 620 | ALLOCATE( tri(5,0:nx,0:nz-1,0:threads_per_task-1) ) |
---|
| 621 | |
---|
| 622 | tn = 0 ! Default thread number in case of one thread |
---|
| 623 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_fftx, work_trix ) |
---|
| 624 | DO j = nys_x, nyn_x |
---|
| 625 | |
---|
| 626 | !$ tn = omp_get_thread_num() |
---|
| 627 | |
---|
| 628 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 629 | ! |
---|
| 630 | !-- Code optimized for vector processors |
---|
| 631 | DO k = 1, nz |
---|
| 632 | |
---|
| 633 | m = 0 |
---|
| 634 | DO n = 1, pdims(1) |
---|
[1003] | 635 | DO i = 1, nnx |
---|
[1] | 636 | work_trix(m,k) = ar(i,k,j,n) |
---|
| 637 | m = m + 1 |
---|
| 638 | ENDDO |
---|
| 639 | ENDDO |
---|
| 640 | |
---|
| 641 | ENDDO |
---|
| 642 | |
---|
| 643 | CALL fft_x_m( work_trix, 'forward' ) |
---|
| 644 | |
---|
| 645 | ELSE |
---|
| 646 | ! |
---|
| 647 | !-- Cache optimized code |
---|
| 648 | DO k = 1, nz |
---|
| 649 | |
---|
| 650 | m = 0 |
---|
| 651 | DO n = 1, pdims(1) |
---|
[1003] | 652 | DO i = 1, nnx |
---|
[1] | 653 | work_fftx(m) = ar(i,k,j,n) |
---|
| 654 | m = m + 1 |
---|
| 655 | ENDDO |
---|
| 656 | ENDDO |
---|
| 657 | |
---|
[1106] | 658 | CALL fft_x_1d( work_fftx, 'forward' ) |
---|
[1] | 659 | |
---|
| 660 | DO i = 0, nx |
---|
| 661 | work_trix(i,k) = work_fftx(i) |
---|
| 662 | ENDDO |
---|
| 663 | |
---|
| 664 | ENDDO |
---|
| 665 | |
---|
| 666 | ENDIF |
---|
| 667 | |
---|
| 668 | ! |
---|
| 669 | !-- Solve the linear equation system |
---|
| 670 | CALL tridia_1dd( ddx2, ddy2, nx, ny, j, work_trix, tri(:,:,:,tn) ) |
---|
| 671 | |
---|
| 672 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 673 | ! |
---|
| 674 | !-- Code optimized for vector processors |
---|
| 675 | CALL fft_x_m( work_trix, 'backward' ) |
---|
| 676 | |
---|
| 677 | DO k = 1, nz |
---|
| 678 | |
---|
| 679 | m = 0 |
---|
| 680 | DO n = 1, pdims(1) |
---|
[1003] | 681 | DO i = 1, nnx |
---|
[1] | 682 | ar(i,k,j,n) = work_trix(m,k) |
---|
| 683 | m = m + 1 |
---|
| 684 | ENDDO |
---|
| 685 | ENDDO |
---|
| 686 | |
---|
| 687 | ENDDO |
---|
| 688 | |
---|
| 689 | ELSE |
---|
| 690 | ! |
---|
| 691 | !-- Cache optimized code |
---|
| 692 | DO k = 1, nz |
---|
| 693 | |
---|
| 694 | DO i = 0, nx |
---|
| 695 | work_fftx(i) = work_trix(i,k) |
---|
| 696 | ENDDO |
---|
| 697 | |
---|
[1106] | 698 | CALL fft_x_1d( work_fftx, 'backward' ) |
---|
[1] | 699 | |
---|
| 700 | m = 0 |
---|
| 701 | DO n = 1, pdims(1) |
---|
[1003] | 702 | DO i = 1, nnx |
---|
[1] | 703 | ar(i,k,j,n) = work_fftx(m) |
---|
| 704 | m = m + 1 |
---|
| 705 | ENDDO |
---|
| 706 | ENDDO |
---|
| 707 | |
---|
| 708 | ENDDO |
---|
| 709 | |
---|
| 710 | ENDIF |
---|
| 711 | |
---|
| 712 | ENDDO |
---|
| 713 | |
---|
| 714 | DEALLOCATE( tri ) |
---|
| 715 | |
---|
[1106] | 716 | CALL cpu_log( log_point_s(33), 'fft_x_1d + tridia', 'stop' ) |
---|
[1] | 717 | |
---|
| 718 | END SUBROUTINE fftx_tri_fftx |
---|
| 719 | |
---|
| 720 | |
---|
| 721 | SUBROUTINE fftx_tr_xy( f_in, work, f_out ) |
---|
| 722 | |
---|
| 723 | !------------------------------------------------------------------------------! |
---|
| 724 | ! Fourier-transformation along x with subsequent transposition x --> y for |
---|
| 725 | ! a 1d-decomposition along y |
---|
| 726 | ! |
---|
| 727 | ! ATTENTION: The NEC-branch of this routine may significantly profit from |
---|
| 728 | ! further optimizations. So far, performance is much worse than |
---|
| 729 | ! for routine ffty_tr_yx (more than three times slower). |
---|
| 730 | !------------------------------------------------------------------------------! |
---|
| 731 | |
---|
| 732 | USE control_parameters |
---|
| 733 | USE cpulog |
---|
| 734 | USE indices |
---|
| 735 | USE interfaces |
---|
| 736 | USE pegrid |
---|
| 737 | USE transpose_indices |
---|
| 738 | |
---|
| 739 | IMPLICIT NONE |
---|
| 740 | |
---|
| 741 | INTEGER :: i, j, k |
---|
| 742 | |
---|
[1003] | 743 | REAL, DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx |
---|
| 744 | REAL, DIMENSION(1:nz,nys:nyn,0:nx) :: f_in |
---|
| 745 | REAL, DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_out |
---|
| 746 | REAL, DIMENSION(nys:nyn,1:nz,0:nx) :: work |
---|
[1] | 747 | |
---|
| 748 | ! |
---|
| 749 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 750 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 751 | !-- the first index. |
---|
[1106] | 752 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'start' ) |
---|
[1] | 753 | |
---|
| 754 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 755 | ! |
---|
| 756 | !-- Code for vector processors |
---|
[85] | 757 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 758 | !$OMP DO |
---|
| 759 | DO i = 0, nx |
---|
| 760 | |
---|
| 761 | DO j = nys, nyn |
---|
| 762 | DO k = 1, nz |
---|
| 763 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 764 | ENDDO |
---|
| 765 | ENDDO |
---|
| 766 | |
---|
| 767 | ENDDO |
---|
| 768 | |
---|
| 769 | !$OMP DO |
---|
| 770 | DO j = nys, nyn |
---|
| 771 | |
---|
| 772 | CALL fft_x_m( work_fftx(:,:,j), 'forward' ) |
---|
| 773 | |
---|
| 774 | DO k = 1, nz |
---|
| 775 | DO i = 0, nx |
---|
| 776 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 777 | ENDDO |
---|
| 778 | ENDDO |
---|
| 779 | |
---|
| 780 | ENDDO |
---|
| 781 | !$OMP END PARALLEL |
---|
| 782 | |
---|
| 783 | ELSE |
---|
| 784 | |
---|
| 785 | ! |
---|
| 786 | !-- Cache optimized code (there might be still a potential for better |
---|
| 787 | !-- optimization). |
---|
[696] | 788 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
[1] | 789 | !$OMP DO |
---|
| 790 | DO i = 0, nx |
---|
| 791 | |
---|
| 792 | DO j = nys, nyn |
---|
| 793 | DO k = 1, nz |
---|
| 794 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 795 | ENDDO |
---|
| 796 | ENDDO |
---|
| 797 | |
---|
| 798 | ENDDO |
---|
| 799 | |
---|
| 800 | !$OMP DO |
---|
| 801 | DO j = nys, nyn |
---|
| 802 | DO k = 1, nz |
---|
| 803 | |
---|
[1106] | 804 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'forward' ) |
---|
[1] | 805 | |
---|
| 806 | DO i = 0, nx |
---|
| 807 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 808 | ENDDO |
---|
| 809 | ENDDO |
---|
| 810 | |
---|
| 811 | ENDDO |
---|
| 812 | !$OMP END PARALLEL |
---|
| 813 | |
---|
| 814 | ENDIF |
---|
[1106] | 815 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'pause' ) |
---|
[1] | 816 | |
---|
| 817 | ! |
---|
| 818 | !-- Transpose array |
---|
[1111] | 819 | #if defined( __parallel ) |
---|
[1] | 820 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 821 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 822 | CALL MPI_ALLTOALL( work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 823 | f_out(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 824 | comm1dy, ierr ) |
---|
| 825 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 826 | #endif |
---|
[1] | 827 | |
---|
| 828 | END SUBROUTINE fftx_tr_xy |
---|
| 829 | |
---|
| 830 | |
---|
| 831 | SUBROUTINE tr_yx_fftx( f_in, work, f_out ) |
---|
| 832 | |
---|
| 833 | !------------------------------------------------------------------------------! |
---|
| 834 | ! Transposition y --> x with a subsequent backward Fourier transformation for |
---|
| 835 | ! a 1d-decomposition along x |
---|
| 836 | !------------------------------------------------------------------------------! |
---|
| 837 | |
---|
| 838 | USE control_parameters |
---|
| 839 | USE cpulog |
---|
| 840 | USE indices |
---|
| 841 | USE interfaces |
---|
| 842 | USE pegrid |
---|
| 843 | USE transpose_indices |
---|
| 844 | |
---|
| 845 | IMPLICIT NONE |
---|
| 846 | |
---|
| 847 | INTEGER :: i, j, k |
---|
| 848 | |
---|
[1003] | 849 | REAL, DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx |
---|
| 850 | REAL, DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: f_in |
---|
| 851 | REAL, DIMENSION(1:nz,nys:nyn,0:nx) :: f_out |
---|
| 852 | REAL, DIMENSION(nys:nyn,1:nz,0:nx) :: work |
---|
[1] | 853 | |
---|
| 854 | ! |
---|
| 855 | !-- Transpose array |
---|
[1111] | 856 | #if defined( __parallel ) |
---|
[1] | 857 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 858 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 859 | CALL MPI_ALLTOALL( f_in(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 860 | work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 861 | comm1dy, ierr ) |
---|
| 862 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1111] | 863 | #endif |
---|
[1] | 864 | |
---|
| 865 | ! |
---|
| 866 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 867 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 868 | !-- the first index. |
---|
[1106] | 869 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'continue' ) |
---|
[1] | 870 | |
---|
| 871 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 872 | ! |
---|
| 873 | !-- Code optimized for vector processors |
---|
[85] | 874 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 875 | !$OMP DO |
---|
| 876 | DO j = nys, nyn |
---|
| 877 | |
---|
| 878 | DO k = 1, nz |
---|
| 879 | DO i = 0, nx |
---|
| 880 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 881 | ENDDO |
---|
| 882 | ENDDO |
---|
| 883 | |
---|
| 884 | CALL fft_x_m( work_fftx(:,:,j), 'backward' ) |
---|
| 885 | |
---|
| 886 | ENDDO |
---|
| 887 | |
---|
| 888 | !$OMP DO |
---|
| 889 | DO i = 0, nx |
---|
| 890 | DO j = nys, nyn |
---|
| 891 | DO k = 1, nz |
---|
| 892 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 893 | ENDDO |
---|
| 894 | ENDDO |
---|
| 895 | ENDDO |
---|
| 896 | !$OMP END PARALLEL |
---|
| 897 | |
---|
| 898 | ELSE |
---|
| 899 | |
---|
| 900 | ! |
---|
| 901 | !-- Cache optimized code (there might be still a potential for better |
---|
| 902 | !-- optimization). |
---|
[696] | 903 | !$OMP PARALLEL PRIVATE (i,j,k) |
---|
[1] | 904 | !$OMP DO |
---|
| 905 | DO j = nys, nyn |
---|
| 906 | DO k = 1, nz |
---|
| 907 | |
---|
| 908 | DO i = 0, nx |
---|
| 909 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 910 | ENDDO |
---|
| 911 | |
---|
[1106] | 912 | CALL fft_x_1d( work_fftx(0:nx,k,j), 'backward' ) |
---|
[1] | 913 | |
---|
| 914 | ENDDO |
---|
| 915 | ENDDO |
---|
| 916 | |
---|
| 917 | !$OMP DO |
---|
| 918 | DO i = 0, nx |
---|
| 919 | DO j = nys, nyn |
---|
| 920 | DO k = 1, nz |
---|
| 921 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 922 | ENDDO |
---|
| 923 | ENDDO |
---|
| 924 | ENDDO |
---|
| 925 | !$OMP END PARALLEL |
---|
| 926 | |
---|
| 927 | ENDIF |
---|
[1106] | 928 | CALL cpu_log( log_point_s(4), 'fft_x_1d', 'stop' ) |
---|
[1] | 929 | |
---|
| 930 | END SUBROUTINE tr_yx_fftx |
---|
| 931 | |
---|
| 932 | |
---|
| 933 | SUBROUTINE ffty_tri_ffty( ar ) |
---|
| 934 | |
---|
| 935 | !------------------------------------------------------------------------------! |
---|
| 936 | ! FFT along y, solution of the tridiagonal system and backward FFT for |
---|
| 937 | ! a 1d-decomposition along y |
---|
| 938 | ! |
---|
| 939 | ! WARNING: this subroutine may still not work for hybrid parallelization |
---|
| 940 | ! with OpenMP (for possible necessary changes see the original |
---|
| 941 | ! routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
| 942 | !------------------------------------------------------------------------------! |
---|
| 943 | |
---|
| 944 | USE control_parameters |
---|
| 945 | USE cpulog |
---|
| 946 | USE grid_variables |
---|
| 947 | USE indices |
---|
| 948 | USE interfaces |
---|
| 949 | USE pegrid |
---|
| 950 | USE transpose_indices |
---|
| 951 | |
---|
| 952 | IMPLICIT NONE |
---|
| 953 | |
---|
| 954 | INTEGER :: i, j, k, m, n, omp_get_thread_num, tn |
---|
| 955 | |
---|
[1003] | 956 | REAL, DIMENSION(0:ny) :: work_ffty |
---|
| 957 | REAL, DIMENSION(0:ny,1:nz) :: work_triy |
---|
| 958 | REAL, DIMENSION(nny,1:nz,nxl_y:nxr_y,pdims(2)) :: ar |
---|
| 959 | REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: tri |
---|
[1] | 960 | |
---|
| 961 | |
---|
[1106] | 962 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'start' ) |
---|
[1] | 963 | |
---|
| 964 | ALLOCATE( tri(5,0:ny,0:nz-1,0:threads_per_task-1) ) |
---|
| 965 | |
---|
| 966 | tn = 0 ! Default thread number in case of one thread |
---|
[696] | 967 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_ffty, work_triy ) |
---|
[1] | 968 | DO i = nxl_y, nxr_y |
---|
| 969 | |
---|
| 970 | !$ tn = omp_get_thread_num() |
---|
| 971 | |
---|
| 972 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 973 | ! |
---|
| 974 | !-- Code optimized for vector processors |
---|
| 975 | DO k = 1, nz |
---|
| 976 | |
---|
| 977 | m = 0 |
---|
| 978 | DO n = 1, pdims(2) |
---|
[1003] | 979 | DO j = 1, nny |
---|
[1] | 980 | work_triy(m,k) = ar(j,k,i,n) |
---|
| 981 | m = m + 1 |
---|
| 982 | ENDDO |
---|
| 983 | ENDDO |
---|
| 984 | |
---|
| 985 | ENDDO |
---|
| 986 | |
---|
| 987 | CALL fft_y_m( work_triy, ny, 'forward' ) |
---|
| 988 | |
---|
| 989 | ELSE |
---|
| 990 | ! |
---|
| 991 | !-- Cache optimized code |
---|
| 992 | DO k = 1, nz |
---|
| 993 | |
---|
| 994 | m = 0 |
---|
| 995 | DO n = 1, pdims(2) |
---|
[1003] | 996 | DO j = 1, nny |
---|
[1] | 997 | work_ffty(m) = ar(j,k,i,n) |
---|
| 998 | m = m + 1 |
---|
| 999 | ENDDO |
---|
| 1000 | ENDDO |
---|
| 1001 | |
---|
[1106] | 1002 | CALL fft_y_1d( work_ffty, 'forward' ) |
---|
[1] | 1003 | |
---|
| 1004 | DO j = 0, ny |
---|
| 1005 | work_triy(j,k) = work_ffty(j) |
---|
| 1006 | ENDDO |
---|
| 1007 | |
---|
| 1008 | ENDDO |
---|
| 1009 | |
---|
| 1010 | ENDIF |
---|
| 1011 | |
---|
| 1012 | ! |
---|
| 1013 | !-- Solve the linear equation system |
---|
| 1014 | CALL tridia_1dd( ddy2, ddx2, ny, nx, i, work_triy, tri(:,:,:,tn) ) |
---|
| 1015 | |
---|
| 1016 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1017 | ! |
---|
| 1018 | !-- Code optimized for vector processors |
---|
| 1019 | CALL fft_y_m( work_triy, ny, 'backward' ) |
---|
| 1020 | |
---|
| 1021 | DO k = 1, nz |
---|
| 1022 | |
---|
| 1023 | m = 0 |
---|
| 1024 | DO n = 1, pdims(2) |
---|
[1003] | 1025 | DO j = 1, nny |
---|
[1] | 1026 | ar(j,k,i,n) = work_triy(m,k) |
---|
| 1027 | m = m + 1 |
---|
| 1028 | ENDDO |
---|
| 1029 | ENDDO |
---|
| 1030 | |
---|
| 1031 | ENDDO |
---|
| 1032 | |
---|
| 1033 | ELSE |
---|
| 1034 | ! |
---|
| 1035 | !-- Cache optimized code |
---|
| 1036 | DO k = 1, nz |
---|
| 1037 | |
---|
| 1038 | DO j = 0, ny |
---|
| 1039 | work_ffty(j) = work_triy(j,k) |
---|
| 1040 | ENDDO |
---|
| 1041 | |
---|
[1106] | 1042 | CALL fft_y_1d( work_ffty, 'backward' ) |
---|
[1] | 1043 | |
---|
| 1044 | m = 0 |
---|
| 1045 | DO n = 1, pdims(2) |
---|
[1003] | 1046 | DO j = 1, nny |
---|
[1] | 1047 | ar(j,k,i,n) = work_ffty(m) |
---|
| 1048 | m = m + 1 |
---|
| 1049 | ENDDO |
---|
| 1050 | ENDDO |
---|
| 1051 | |
---|
| 1052 | ENDDO |
---|
| 1053 | |
---|
| 1054 | ENDIF |
---|
| 1055 | |
---|
| 1056 | ENDDO |
---|
| 1057 | |
---|
| 1058 | DEALLOCATE( tri ) |
---|
| 1059 | |
---|
[1106] | 1060 | CALL cpu_log( log_point_s(39), 'fft_y_1d + tridia', 'stop' ) |
---|
[1] | 1061 | |
---|
| 1062 | END SUBROUTINE ffty_tri_ffty |
---|
| 1063 | |
---|
| 1064 | |
---|
| 1065 | SUBROUTINE tridia_1dd( ddx2, ddy2, nx, ny, j, ar, tri ) |
---|
| 1066 | |
---|
| 1067 | !------------------------------------------------------------------------------! |
---|
| 1068 | ! Solves the linear system of equations for a 1d-decomposition along x (see |
---|
| 1069 | ! tridia) |
---|
| 1070 | ! |
---|
[940] | 1071 | ! Attention: when using the intel compilers older than 12.0, array tri must |
---|
| 1072 | ! be passed as an argument to the contained subroutines. Otherwise |
---|
| 1073 | ! addres faults will occur. This feature can be activated with |
---|
| 1074 | ! cpp-switch __intel11 |
---|
[1] | 1075 | ! On NEC, tri should not be passed (except for routine substi_1dd) |
---|
| 1076 | ! because this causes very bad performance. |
---|
| 1077 | !------------------------------------------------------------------------------! |
---|
| 1078 | |
---|
| 1079 | USE arrays_3d |
---|
| 1080 | USE control_parameters |
---|
| 1081 | |
---|
| 1082 | USE pegrid |
---|
| 1083 | |
---|
| 1084 | IMPLICIT NONE |
---|
| 1085 | |
---|
| 1086 | INTEGER :: i, j, k, nnyh, nx, ny, omp_get_thread_num, tn |
---|
| 1087 | |
---|
| 1088 | REAL :: ddx2, ddy2 |
---|
| 1089 | |
---|
| 1090 | REAL, DIMENSION(0:nx,1:nz) :: ar |
---|
| 1091 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri |
---|
| 1092 | |
---|
| 1093 | |
---|
| 1094 | nnyh = ( ny + 1 ) / 2 |
---|
| 1095 | |
---|
| 1096 | ! |
---|
| 1097 | !-- Define constant elements of the tridiagonal matrix. |
---|
| 1098 | !-- The compiler on SX6 does loop exchange. If 0:nx is a high power of 2, |
---|
| 1099 | !-- the exchanged loops create bank conflicts. The following directive |
---|
| 1100 | !-- prohibits loop exchange and the loops perform much better. |
---|
| 1101 | ! tn = omp_get_thread_num() |
---|
| 1102 | ! WRITE( 120+tn, * ) '+++ id=',myid,' nx=',nx,' thread=', omp_get_thread_num() |
---|
[82] | 1103 | ! CALL local_flush( 120+tn ) |
---|
[1] | 1104 | !CDIR NOLOOPCHG |
---|
| 1105 | DO k = 0, nz-1 |
---|
| 1106 | DO i = 0,nx |
---|
[667] | 1107 | tri(2,i,k) = ddzu_pres(k+1) * ddzw(k+1) |
---|
| 1108 | tri(3,i,k) = ddzu_pres(k+2) * ddzw(k+1) |
---|
[1] | 1109 | ENDDO |
---|
| 1110 | ENDDO |
---|
| 1111 | ! WRITE( 120+tn, * ) '+++ id=',myid,' end of first tridia loop thread=', omp_get_thread_num() |
---|
[82] | 1112 | ! CALL local_flush( 120+tn ) |
---|
[1] | 1113 | |
---|
| 1114 | IF ( j <= nnyh ) THEN |
---|
[940] | 1115 | #if defined( __intel11 ) |
---|
[1] | 1116 | CALL maketri_1dd( j, tri ) |
---|
| 1117 | #else |
---|
| 1118 | CALL maketri_1dd( j ) |
---|
| 1119 | #endif |
---|
| 1120 | ELSE |
---|
[940] | 1121 | #if defined( __intel11 ) |
---|
[1] | 1122 | CALL maketri_1dd( ny+1-j, tri ) |
---|
| 1123 | #else |
---|
| 1124 | CALL maketri_1dd( ny+1-j ) |
---|
| 1125 | #endif |
---|
| 1126 | ENDIF |
---|
[940] | 1127 | #if defined( __intel11 ) |
---|
[1] | 1128 | CALL split_1dd( tri ) |
---|
| 1129 | #else |
---|
| 1130 | CALL split_1dd |
---|
| 1131 | #endif |
---|
| 1132 | CALL substi_1dd( ar, tri ) |
---|
| 1133 | |
---|
| 1134 | CONTAINS |
---|
| 1135 | |
---|
[940] | 1136 | #if defined( __intel11 ) |
---|
[1] | 1137 | SUBROUTINE maketri_1dd( j, tri ) |
---|
| 1138 | #else |
---|
| 1139 | SUBROUTINE maketri_1dd( j ) |
---|
| 1140 | #endif |
---|
| 1141 | |
---|
| 1142 | !------------------------------------------------------------------------------! |
---|
| 1143 | ! computes the i- and j-dependent component of the matrix |
---|
| 1144 | !------------------------------------------------------------------------------! |
---|
| 1145 | |
---|
| 1146 | USE constants |
---|
| 1147 | |
---|
| 1148 | IMPLICIT NONE |
---|
| 1149 | |
---|
| 1150 | INTEGER :: i, j, k, nnxh |
---|
| 1151 | REAL :: a, c |
---|
| 1152 | |
---|
| 1153 | REAL, DIMENSION(0:nx) :: l |
---|
| 1154 | |
---|
[940] | 1155 | #if defined( __intel11 ) |
---|
[1] | 1156 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri |
---|
| 1157 | #endif |
---|
| 1158 | |
---|
| 1159 | |
---|
| 1160 | nnxh = ( nx + 1 ) / 2 |
---|
| 1161 | ! |
---|
| 1162 | !-- Provide the tridiagonal matrix for solution of the Poisson equation in |
---|
| 1163 | !-- Fourier space. The coefficients are computed following the method of |
---|
| 1164 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 1165 | !-- Siano's original version by discretizing the Poisson equation, |
---|
| 1166 | !-- before it is Fourier-transformed |
---|
| 1167 | DO i = 0, nx |
---|
[128] | 1168 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1] | 1169 | l(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * i ) / & |
---|
[1013] | 1170 | REAL( nx+1 ) ) ) * ddx2 + & |
---|
[1] | 1171 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
[1013] | 1172 | REAL( ny+1 ) ) ) * ddy2 |
---|
[1] | 1173 | ELSE |
---|
| 1174 | l(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( nx+1-i ) ) / & |
---|
[1013] | 1175 | REAL( nx+1 ) ) ) * ddx2 + & |
---|
[1] | 1176 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
[1013] | 1177 | REAL( ny+1 ) ) ) * ddy2 |
---|
[1] | 1178 | ENDIF |
---|
| 1179 | ENDDO |
---|
| 1180 | |
---|
| 1181 | DO k = 0, nz-1 |
---|
| 1182 | DO i = 0, nx |
---|
[667] | 1183 | a = -1.0 * ddzu_pres(k+2) * ddzw(k+1) |
---|
| 1184 | c = -1.0 * ddzu_pres(k+1) * ddzw(k+1) |
---|
[1] | 1185 | tri(1,i,k) = a + c - l(i) |
---|
| 1186 | ENDDO |
---|
| 1187 | ENDDO |
---|
[1111] | 1188 | IF ( ibc_p_b == 1 ) THEN |
---|
[1] | 1189 | DO i = 0, nx |
---|
| 1190 | tri(1,i,0) = tri(1,i,0) + tri(2,i,0) |
---|
| 1191 | ENDDO |
---|
| 1192 | ENDIF |
---|
| 1193 | IF ( ibc_p_t == 1 ) THEN |
---|
| 1194 | DO i = 0, nx |
---|
| 1195 | tri(1,i,nz-1) = tri(1,i,nz-1) + tri(3,i,nz-1) |
---|
| 1196 | ENDDO |
---|
| 1197 | ENDIF |
---|
| 1198 | |
---|
| 1199 | END SUBROUTINE maketri_1dd |
---|
| 1200 | |
---|
| 1201 | |
---|
[940] | 1202 | #if defined( __intel11 ) |
---|
[1] | 1203 | SUBROUTINE split_1dd( tri ) |
---|
| 1204 | #else |
---|
| 1205 | SUBROUTINE split_1dd |
---|
| 1206 | #endif |
---|
| 1207 | |
---|
| 1208 | !------------------------------------------------------------------------------! |
---|
| 1209 | ! Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
| 1210 | !------------------------------------------------------------------------------! |
---|
| 1211 | |
---|
| 1212 | IMPLICIT NONE |
---|
| 1213 | |
---|
| 1214 | INTEGER :: i, k |
---|
| 1215 | |
---|
[940] | 1216 | #if defined( __intel11 ) |
---|
[1] | 1217 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri |
---|
| 1218 | #endif |
---|
| 1219 | |
---|
| 1220 | |
---|
| 1221 | ! |
---|
| 1222 | !-- Splitting |
---|
| 1223 | DO i = 0, nx |
---|
| 1224 | tri(4,i,0) = tri(1,i,0) |
---|
| 1225 | ENDDO |
---|
| 1226 | DO k = 1, nz-1 |
---|
| 1227 | DO i = 0, nx |
---|
| 1228 | tri(5,i,k) = tri(2,i,k) / tri(4,i,k-1) |
---|
| 1229 | tri(4,i,k) = tri(1,i,k) - tri(3,i,k-1) * tri(5,i,k) |
---|
| 1230 | ENDDO |
---|
| 1231 | ENDDO |
---|
| 1232 | |
---|
| 1233 | END SUBROUTINE split_1dd |
---|
| 1234 | |
---|
| 1235 | |
---|
| 1236 | SUBROUTINE substi_1dd( ar, tri ) |
---|
| 1237 | |
---|
| 1238 | !------------------------------------------------------------------------------! |
---|
| 1239 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
| 1240 | !------------------------------------------------------------------------------! |
---|
| 1241 | |
---|
| 1242 | IMPLICIT NONE |
---|
| 1243 | |
---|
[76] | 1244 | INTEGER :: i, k |
---|
[1] | 1245 | |
---|
| 1246 | REAL, DIMENSION(0:nx,nz) :: ar |
---|
| 1247 | REAL, DIMENSION(0:nx,0:nz-1) :: ar1 |
---|
| 1248 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri |
---|
| 1249 | |
---|
| 1250 | ! |
---|
| 1251 | !-- Forward substitution |
---|
| 1252 | DO i = 0, nx |
---|
| 1253 | ar1(i,0) = ar(i,1) |
---|
| 1254 | ENDDO |
---|
| 1255 | DO k = 1, nz-1 |
---|
| 1256 | DO i = 0, nx |
---|
| 1257 | ar1(i,k) = ar(i,k+1) - tri(5,i,k) * ar1(i,k-1) |
---|
| 1258 | ENDDO |
---|
| 1259 | ENDDO |
---|
| 1260 | |
---|
| 1261 | ! |
---|
| 1262 | !-- Backward substitution |
---|
[763] | 1263 | !-- Note, the add of 1.0E-20 in the denominator is due to avoid divisions |
---|
| 1264 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 1265 | !-- the model domain. |
---|
[1] | 1266 | DO i = 0, nx |
---|
[761] | 1267 | ar(i,nz) = ar1(i,nz-1) / ( tri(4,i,nz-1) + 1.0E-20 ) |
---|
[1] | 1268 | ENDDO |
---|
| 1269 | DO k = nz-2, 0, -1 |
---|
| 1270 | DO i = 0, nx |
---|
| 1271 | ar(i,k+1) = ( ar1(i,k) - tri(3,i,k) * ar(i,k+2) ) & |
---|
| 1272 | / tri(4,i,k) |
---|
| 1273 | ENDDO |
---|
| 1274 | ENDDO |
---|
| 1275 | |
---|
[76] | 1276 | ! |
---|
| 1277 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 1278 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 1279 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 1280 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 1281 | IF ( j == 0 ) THEN |
---|
| 1282 | DO k = 1, nz |
---|
| 1283 | ar(0,k) = 0.0 |
---|
| 1284 | ENDDO |
---|
| 1285 | ENDIF |
---|
| 1286 | ENDIF |
---|
| 1287 | |
---|
[1] | 1288 | END SUBROUTINE substi_1dd |
---|
| 1289 | |
---|
| 1290 | END SUBROUTINE tridia_1dd |
---|
| 1291 | |
---|
[1111] | 1292 | |
---|
| 1293 | SUBROUTINE tridia( ar ) |
---|
| 1294 | |
---|
| 1295 | !------------------------------------------------------------------------------! |
---|
| 1296 | ! solves the linear system of equations: |
---|
| 1297 | ! |
---|
| 1298 | ! -(4 pi^2(i^2/(dx^2*nnx^2)+j^2/(dy^2*nny^2))+ |
---|
| 1299 | ! 1/(dzu(k)*dzw(k))+1/(dzu(k-1)*dzw(k)))*p(i,j,k)+ |
---|
| 1300 | ! 1/(dzu(k)*dzw(k))*p(i,j,k+1)+1/(dzu(k-1)*dzw(k))*p(i,j,k-1)=d(i,j,k) |
---|
| 1301 | ! |
---|
| 1302 | ! by using the Thomas algorithm |
---|
| 1303 | !------------------------------------------------------------------------------! |
---|
| 1304 | |
---|
| 1305 | USE arrays_3d |
---|
| 1306 | |
---|
| 1307 | IMPLICIT NONE |
---|
| 1308 | |
---|
| 1309 | INTEGER :: i, j, k |
---|
| 1310 | |
---|
| 1311 | !$acc declare create( tri ) |
---|
| 1312 | REAL, DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1,2) :: tri |
---|
| 1313 | |
---|
| 1314 | REAL :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) |
---|
| 1315 | |
---|
| 1316 | |
---|
| 1317 | CALL split( tri ) |
---|
| 1318 | CALL substi( ar, tri ) |
---|
| 1319 | |
---|
| 1320 | END SUBROUTINE tridia |
---|
| 1321 | |
---|
| 1322 | |
---|
| 1323 | SUBROUTINE maketri |
---|
| 1324 | |
---|
| 1325 | !------------------------------------------------------------------------------! |
---|
| 1326 | ! Computes the i- and j-dependent component of the matrix |
---|
| 1327 | !------------------------------------------------------------------------------! |
---|
| 1328 | |
---|
| 1329 | USE arrays_3d, ONLY: tric |
---|
| 1330 | USE constants |
---|
| 1331 | USE control_parameters |
---|
| 1332 | USE grid_variables |
---|
| 1333 | |
---|
| 1334 | IMPLICIT NONE |
---|
| 1335 | |
---|
| 1336 | INTEGER :: i, j, k, nnxh, nnyh |
---|
| 1337 | |
---|
| 1338 | !$acc declare create( ll ) |
---|
| 1339 | REAL :: ll(nxl_z:nxr_z,nys_z:nyn_z) |
---|
| 1340 | |
---|
| 1341 | |
---|
| 1342 | nnxh = ( nx + 1 ) / 2 |
---|
| 1343 | nnyh = ( ny + 1 ) / 2 |
---|
| 1344 | |
---|
| 1345 | ! |
---|
| 1346 | !-- Provide the constant coefficients of the tridiagonal matrix for solution |
---|
| 1347 | !-- of the Poisson equation in Fourier space. |
---|
| 1348 | !-- The coefficients are computed following the method of |
---|
| 1349 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 1350 | !-- Siano's original version by discretizing the Poisson equation, |
---|
| 1351 | !-- before it is Fourier-transformed. |
---|
| 1352 | |
---|
| 1353 | !$acc kernels present( tric ) |
---|
| 1354 | !$acc loop vector( 32 ) |
---|
| 1355 | DO j = nys_z, nyn_z |
---|
| 1356 | DO i = nxl_z, nxr_z |
---|
| 1357 | IF ( j >= 0 .AND. j <= nnyh ) THEN |
---|
| 1358 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
| 1359 | ll(i,j) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * i ) / & |
---|
| 1360 | REAL( nx+1 ) ) ) / ( dx * dx ) + & |
---|
| 1361 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
| 1362 | REAL( ny+1 ) ) ) / ( dy * dy ) |
---|
| 1363 | ELSE |
---|
| 1364 | ll(i,j) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( nx+1-i ) ) / & |
---|
| 1365 | REAL( nx+1 ) ) ) / ( dx * dx ) + & |
---|
| 1366 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
| 1367 | REAL( ny+1 ) ) ) / ( dy * dy ) |
---|
| 1368 | ENDIF |
---|
| 1369 | ELSE |
---|
| 1370 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
| 1371 | ll(i,j) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * i ) / & |
---|
| 1372 | REAL( nx+1 ) ) ) / ( dx * dx ) + & |
---|
| 1373 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( ny+1-j ) ) / & |
---|
| 1374 | REAL( ny+1 ) ) ) / ( dy * dy ) |
---|
| 1375 | ELSE |
---|
| 1376 | ll(i,j) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( nx+1-i ) ) / & |
---|
| 1377 | REAL( nx+1 ) ) ) / ( dx * dx ) + & |
---|
| 1378 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( ny+1-j ) ) / & |
---|
| 1379 | REAL( ny+1 ) ) ) / ( dy * dy ) |
---|
| 1380 | ENDIF |
---|
| 1381 | ENDIF |
---|
| 1382 | ENDDO |
---|
| 1383 | ENDDO |
---|
| 1384 | |
---|
| 1385 | !$acc loop |
---|
| 1386 | DO k = 0, nz-1 |
---|
| 1387 | DO j = nys_z, nyn_z |
---|
| 1388 | !$acc loop vector( 32 ) |
---|
| 1389 | DO i = nxl_z, nxr_z |
---|
| 1390 | tric(i,j,k) = ddzuw(k,3) - ll(i,j) |
---|
| 1391 | ENDDO |
---|
| 1392 | ENDDO |
---|
| 1393 | ENDDO |
---|
| 1394 | !$acc end kernels |
---|
| 1395 | |
---|
| 1396 | IF ( ibc_p_b == 1 ) THEN |
---|
| 1397 | !$acc kernels present( tric ) |
---|
| 1398 | !$acc loop |
---|
| 1399 | DO j = nys_z, nyn_z |
---|
| 1400 | DO i = nxl_z, nxr_z |
---|
| 1401 | tric(i,j,0) = tric(i,j,0) + ddzuw(0,1) |
---|
| 1402 | ENDDO |
---|
| 1403 | ENDDO |
---|
| 1404 | !$acc end kernels |
---|
| 1405 | ENDIF |
---|
| 1406 | IF ( ibc_p_t == 1 ) THEN |
---|
| 1407 | !$acc kernels present( tric ) |
---|
| 1408 | !$acc loop |
---|
| 1409 | DO j = nys_z, nyn_z |
---|
| 1410 | DO i = nxl_z, nxr_z |
---|
| 1411 | tric(i,j,nz-1) = tric(i,j,nz-1) + ddzuw(nz-1,2) |
---|
| 1412 | ENDDO |
---|
| 1413 | ENDDO |
---|
| 1414 | !$acc end kernels |
---|
| 1415 | ENDIF |
---|
| 1416 | |
---|
| 1417 | END SUBROUTINE maketri |
---|
| 1418 | |
---|
| 1419 | |
---|
| 1420 | SUBROUTINE substi( ar, tri ) |
---|
| 1421 | |
---|
| 1422 | !------------------------------------------------------------------------------! |
---|
| 1423 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
| 1424 | !------------------------------------------------------------------------------! |
---|
| 1425 | |
---|
| 1426 | USE control_parameters |
---|
| 1427 | |
---|
| 1428 | IMPLICIT NONE |
---|
| 1429 | |
---|
| 1430 | INTEGER :: i, j, k |
---|
| 1431 | |
---|
| 1432 | REAL :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) |
---|
| 1433 | REAL, DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1,2) :: tri |
---|
| 1434 | |
---|
| 1435 | !$acc declare create( ar1 ) |
---|
| 1436 | REAL, DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 |
---|
| 1437 | |
---|
| 1438 | ! |
---|
| 1439 | !-- Forward substitution |
---|
| 1440 | DO k = 0, nz - 1 |
---|
| 1441 | !$acc kernels present( ar, tri ) |
---|
| 1442 | !$acc loop |
---|
| 1443 | DO j = nys_z, nyn_z |
---|
| 1444 | DO i = nxl_z, nxr_z |
---|
| 1445 | |
---|
| 1446 | IF ( k == 0 ) THEN |
---|
| 1447 | ar1(i,j,k) = ar(i,j,k+1) |
---|
| 1448 | ELSE |
---|
| 1449 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,j,k,2) * ar1(i,j,k-1) |
---|
| 1450 | ENDIF |
---|
| 1451 | |
---|
| 1452 | ENDDO |
---|
| 1453 | ENDDO |
---|
| 1454 | !$acc end kernels |
---|
| 1455 | ENDDO |
---|
| 1456 | |
---|
| 1457 | ! |
---|
| 1458 | !-- Backward substitution |
---|
| 1459 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions |
---|
| 1460 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 1461 | !-- the model domain. |
---|
| 1462 | DO k = nz-1, 0, -1 |
---|
| 1463 | !$acc kernels present( ar, tri ) |
---|
| 1464 | !$acc loop |
---|
| 1465 | DO j = nys_z, nyn_z |
---|
| 1466 | DO i = nxl_z, nxr_z |
---|
| 1467 | |
---|
| 1468 | IF ( k == nz-1 ) THEN |
---|
| 1469 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,j,k,1) + 1.0E-20 ) |
---|
| 1470 | ELSE |
---|
| 1471 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) & |
---|
| 1472 | / tri(i,j,k,1) |
---|
| 1473 | ENDIF |
---|
| 1474 | ENDDO |
---|
| 1475 | ENDDO |
---|
| 1476 | !$acc end kernels |
---|
| 1477 | ENDDO |
---|
| 1478 | |
---|
| 1479 | ! |
---|
| 1480 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 1481 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 1482 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 1483 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 1484 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
| 1485 | !$acc kernels loop present( ar ) |
---|
| 1486 | DO k = 1, nz |
---|
| 1487 | ar(nxl_z,nys_z,k) = 0.0 |
---|
| 1488 | ENDDO |
---|
| 1489 | ENDIF |
---|
| 1490 | ENDIF |
---|
| 1491 | |
---|
| 1492 | END SUBROUTINE substi |
---|
| 1493 | |
---|
| 1494 | |
---|
| 1495 | SUBROUTINE split( tri ) |
---|
| 1496 | |
---|
| 1497 | !------------------------------------------------------------------------------! |
---|
| 1498 | ! Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
| 1499 | !------------------------------------------------------------------------------! |
---|
| 1500 | |
---|
| 1501 | USE arrays_3d, ONLY: tric |
---|
| 1502 | |
---|
| 1503 | IMPLICIT NONE |
---|
| 1504 | |
---|
| 1505 | INTEGER :: i, j, k |
---|
| 1506 | |
---|
| 1507 | REAL, DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1,2) :: tri |
---|
| 1508 | |
---|
| 1509 | ! |
---|
| 1510 | !-- Splitting |
---|
| 1511 | !$acc kernels present( tri, tric ) |
---|
| 1512 | !$acc loop |
---|
| 1513 | DO j = nys_z, nyn_z |
---|
| 1514 | !$acc loop vector( 32 ) |
---|
| 1515 | DO i = nxl_z, nxr_z |
---|
| 1516 | tri(i,j,0,1) = tric(i,j,0) |
---|
| 1517 | ENDDO |
---|
| 1518 | ENDDO |
---|
| 1519 | !$acc end kernels |
---|
| 1520 | |
---|
| 1521 | DO k = 1, nz-1 |
---|
| 1522 | !$acc kernels present( tri, tric ) |
---|
| 1523 | !$acc loop |
---|
| 1524 | DO j = nys_z, nyn_z |
---|
| 1525 | !$acc loop vector( 32 ) |
---|
| 1526 | DO i = nxl_z, nxr_z |
---|
| 1527 | tri(i,j,k,2) = ddzuw(k,1) / tri(i,j,k-1,1) |
---|
| 1528 | tri(i,j,k,1) = tric(i,j,k) - ddzuw(k-1,2) * tri(i,j,k,2) |
---|
| 1529 | ENDDO |
---|
| 1530 | ENDDO |
---|
| 1531 | !$acc end kernels |
---|
| 1532 | ENDDO |
---|
| 1533 | |
---|
| 1534 | END SUBROUTINE split |
---|
| 1535 | |
---|
[1] | 1536 | #endif |
---|
[1111] | 1537 | |
---|
[1] | 1538 | END MODULE poisfft_mod |
---|