[1] | 1 | MODULE poisfft_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[90] | 6 | ! |
---|
[1] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: poisfft.f90 90 2007-05-30 09:18:47Z raasch $ |
---|
[77] | 11 | ! |
---|
[90] | 12 | ! 85 2007-05-11 09:35:14Z raasch |
---|
| 13 | ! Bugfix: work_fft*_vec removed from some PRIVATE-declarations |
---|
| 14 | ! |
---|
[77] | 15 | ! 76 2007-03-29 00:58:32Z raasch |
---|
| 16 | ! Tridiagonal coefficients adjusted for Neumann boundary conditions both at |
---|
| 17 | ! the bottom and the top. |
---|
| 18 | ! |
---|
[3] | 19 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 20 | ! |
---|
[1] | 21 | ! Revision 1.24 2006/08/04 15:00:24 raasch |
---|
| 22 | ! Default setting of the thread number tn in case of not using OpenMP |
---|
| 23 | ! |
---|
| 24 | ! Revision 1.23 2006/02/23 12:48:38 raasch |
---|
| 25 | ! Additional compiler directive in routine tridia_1dd for preventing loop |
---|
| 26 | ! exchange on NEC-SX6 |
---|
| 27 | ! |
---|
| 28 | ! Revision 1.20 2004/04/30 12:38:09 raasch |
---|
| 29 | ! Parts of former poisfft_hybrid moved to this subroutine, |
---|
| 30 | ! former subroutine changed to a module, renaming of FFT-subroutines and |
---|
| 31 | ! -module, FFTs completely substituted by calls of fft_x and fft_y, |
---|
| 32 | ! NAG fft used in the non-parallel case completely removed, l in maketri |
---|
| 33 | ! is now a 1d-array, variables passed by modules instead of using parameter |
---|
| 34 | ! lists, enlarged transposition arrays introduced |
---|
| 35 | ! |
---|
| 36 | ! Revision 1.1 1997/07/24 11:24:14 raasch |
---|
| 37 | ! Initial revision |
---|
| 38 | ! |
---|
| 39 | ! |
---|
| 40 | ! Description: |
---|
| 41 | ! ------------ |
---|
| 42 | ! See below. |
---|
| 43 | !------------------------------------------------------------------------------! |
---|
| 44 | |
---|
| 45 | !--------------------------------------------------------------------------! |
---|
| 46 | ! poisfft ! |
---|
| 47 | ! ! |
---|
| 48 | ! Original version: Stephan Siano (pois3d) ! |
---|
| 49 | ! ! |
---|
| 50 | ! Institute of Meteorology and Climatology, University of Hannover ! |
---|
| 51 | ! Germany ! |
---|
| 52 | ! ! |
---|
| 53 | ! Version as of July 23,1996 ! |
---|
| 54 | ! ! |
---|
| 55 | ! ! |
---|
| 56 | ! Version for parallel computers: Siegfried Raasch ! |
---|
| 57 | ! ! |
---|
| 58 | ! Version as of July 03,1997 ! |
---|
| 59 | ! ! |
---|
| 60 | ! Solves the Poisson equation with a 2D spectral method ! |
---|
| 61 | ! d^2 p / dx^2 + d^2 p / dy^2 + d^2 p / dz^2 = s ! |
---|
| 62 | ! ! |
---|
| 63 | ! Input: ! |
---|
| 64 | ! real ar contains in the (nnx,nny,nnz) elements, ! |
---|
| 65 | ! starting from the element (1,nys,nxl), the ! |
---|
| 66 | ! values for s ! |
---|
| 67 | ! real work Temporary array ! |
---|
| 68 | ! ! |
---|
| 69 | ! Output: ! |
---|
| 70 | ! real ar contains the solution for p ! |
---|
| 71 | !--------------------------------------------------------------------------! |
---|
| 72 | |
---|
| 73 | USE fft_xy |
---|
| 74 | USE indices |
---|
| 75 | USE transpose_indices |
---|
| 76 | |
---|
| 77 | IMPLICIT NONE |
---|
| 78 | |
---|
| 79 | PRIVATE |
---|
| 80 | PUBLIC poisfft, poisfft_init |
---|
| 81 | |
---|
| 82 | INTERFACE poisfft |
---|
| 83 | MODULE PROCEDURE poisfft |
---|
| 84 | END INTERFACE poisfft |
---|
| 85 | |
---|
| 86 | INTERFACE poisfft_init |
---|
| 87 | MODULE PROCEDURE poisfft_init |
---|
| 88 | END INTERFACE poisfft_init |
---|
| 89 | |
---|
| 90 | CONTAINS |
---|
| 91 | |
---|
| 92 | SUBROUTINE poisfft_init |
---|
| 93 | |
---|
| 94 | CALL fft_init |
---|
| 95 | |
---|
| 96 | END SUBROUTINE poisfft_init |
---|
| 97 | |
---|
| 98 | |
---|
| 99 | SUBROUTINE poisfft( ar, work ) |
---|
| 100 | |
---|
| 101 | USE cpulog |
---|
| 102 | USE interfaces |
---|
| 103 | USE pegrid |
---|
| 104 | |
---|
| 105 | IMPLICIT NONE |
---|
| 106 | |
---|
| 107 | REAL, DIMENSION(1:nza,nys:nyna,nxl:nxra) :: ar, work |
---|
| 108 | |
---|
| 109 | |
---|
| 110 | CALL cpu_log( log_point_s(3), 'poisfft', 'start' ) |
---|
| 111 | |
---|
| 112 | ! |
---|
| 113 | !-- Two-dimensional Fourier Transformation in x- and y-direction. |
---|
| 114 | #if defined( __parallel ) |
---|
| 115 | IF ( pdims(2) == 1 ) THEN |
---|
| 116 | |
---|
| 117 | ! |
---|
| 118 | !-- 1d-domain-decomposition along x: |
---|
| 119 | !-- FFT along y and transposition y --> x |
---|
| 120 | CALL ffty_tr_yx( ar, work, ar ) |
---|
| 121 | |
---|
| 122 | ! |
---|
| 123 | !-- FFT along x, solving the tridiagonal system and backward FFT |
---|
| 124 | CALL fftx_tri_fftx( ar ) |
---|
| 125 | |
---|
| 126 | ! |
---|
| 127 | !-- Transposition x --> y and backward FFT along y |
---|
| 128 | CALL tr_xy_ffty( ar, work, ar ) |
---|
| 129 | |
---|
| 130 | ELSEIF ( pdims(1) == 1 ) THEN |
---|
| 131 | |
---|
| 132 | ! |
---|
| 133 | !-- 1d-domain-decomposition along y: |
---|
| 134 | !-- FFT along x and transposition x --> y |
---|
| 135 | CALL fftx_tr_xy( ar, work, ar ) |
---|
| 136 | |
---|
| 137 | ! |
---|
| 138 | !-- FFT along y, solving the tridiagonal system and backward FFT |
---|
| 139 | CALL ffty_tri_ffty( ar ) |
---|
| 140 | |
---|
| 141 | ! |
---|
| 142 | !-- Transposition y --> x and backward FFT along x |
---|
| 143 | CALL tr_yx_fftx( ar, work, ar ) |
---|
| 144 | |
---|
| 145 | ELSE |
---|
| 146 | |
---|
| 147 | ! |
---|
| 148 | !-- 2d-domain-decomposition |
---|
| 149 | !-- Transposition z --> x |
---|
| 150 | CALL cpu_log( log_point_s(5), 'transpo forward', 'start' ) |
---|
| 151 | CALL transpose_zx( ar, work, ar, work, ar ) |
---|
| 152 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 153 | |
---|
| 154 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
| 155 | CALL fftxp( ar, 'forward' ) |
---|
| 156 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
| 157 | |
---|
| 158 | ! |
---|
| 159 | !-- Transposition x --> y |
---|
| 160 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
| 161 | CALL transpose_xy( ar, work, ar, work, ar ) |
---|
| 162 | CALL cpu_log( log_point_s(5), 'transpo forward', 'pause' ) |
---|
| 163 | |
---|
| 164 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
| 165 | CALL fftyp( ar, 'forward' ) |
---|
| 166 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 167 | |
---|
| 168 | ! |
---|
| 169 | !-- Transposition y --> z |
---|
| 170 | CALL cpu_log( log_point_s(5), 'transpo forward', 'continue' ) |
---|
| 171 | CALL transpose_yz( ar, work, ar, work, ar ) |
---|
| 172 | CALL cpu_log( log_point_s(5), 'transpo forward', 'stop' ) |
---|
| 173 | |
---|
| 174 | ! |
---|
| 175 | !-- Solve the Poisson equation in z-direction in cartesian space. |
---|
| 176 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
| 177 | CALL tridia( ar ) |
---|
| 178 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
| 179 | |
---|
| 180 | ! |
---|
| 181 | !-- Inverse Fourier Transformation |
---|
| 182 | !-- Transposition z --> y |
---|
| 183 | CALL cpu_log( log_point_s(8), 'transpo invers', 'start' ) |
---|
| 184 | CALL transpose_zy( ar, work, ar, work, ar ) |
---|
| 185 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 186 | |
---|
| 187 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
| 188 | CALL fftyp( ar, 'backward' ) |
---|
| 189 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 190 | |
---|
| 191 | ! |
---|
| 192 | !-- Transposition y --> x |
---|
| 193 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
| 194 | CALL transpose_yx( ar, work, ar, work, ar ) |
---|
| 195 | CALL cpu_log( log_point_s(8), 'transpo invers', 'pause' ) |
---|
| 196 | |
---|
| 197 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
| 198 | CALL fftxp( ar, 'backward' ) |
---|
| 199 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 200 | |
---|
| 201 | ! |
---|
| 202 | !-- Transposition x --> z |
---|
| 203 | CALL cpu_log( log_point_s(8), 'transpo invers', 'continue' ) |
---|
| 204 | CALL transpose_xz( ar, work, ar, work, ar ) |
---|
| 205 | CALL cpu_log( log_point_s(8), 'transpo invers', 'stop' ) |
---|
| 206 | |
---|
| 207 | ENDIF |
---|
| 208 | |
---|
| 209 | #else |
---|
| 210 | |
---|
| 211 | ! |
---|
| 212 | !-- Two-dimensional Fourier Transformation along x- and y-direction. |
---|
| 213 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
| 214 | CALL fftx( ar, 'forward' ) |
---|
| 215 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
| 216 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
| 217 | CALL ffty( ar, 'forward' ) |
---|
| 218 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 219 | |
---|
| 220 | ! |
---|
| 221 | !-- Solve the Poisson equation in z-direction in cartesian space. |
---|
| 222 | CALL cpu_log( log_point_s(6), 'tridia', 'start' ) |
---|
| 223 | CALL tridia( ar ) |
---|
| 224 | CALL cpu_log( log_point_s(6), 'tridia', 'stop' ) |
---|
| 225 | |
---|
| 226 | ! |
---|
| 227 | !-- Inverse Fourier Transformation. |
---|
| 228 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
| 229 | CALL ffty( ar, 'backward' ) |
---|
| 230 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 231 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
| 232 | CALL fftx( ar, 'backward' ) |
---|
| 233 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 234 | |
---|
| 235 | #endif |
---|
| 236 | |
---|
| 237 | CALL cpu_log( log_point_s(3), 'poisfft', 'stop' ) |
---|
| 238 | |
---|
| 239 | END SUBROUTINE poisfft |
---|
| 240 | |
---|
| 241 | |
---|
| 242 | |
---|
| 243 | SUBROUTINE tridia( ar ) |
---|
| 244 | |
---|
| 245 | !------------------------------------------------------------------------------! |
---|
| 246 | ! solves the linear system of equations: |
---|
| 247 | ! |
---|
| 248 | ! -(4 pi^2(i^2/(dx^2*nnx^2)+j^2/(dy^2*nny^2))+ |
---|
| 249 | ! 1/(dzu(k)*dzw(k))+1/(dzu(k-1)*dzw(k)))*p(i,j,k)+ |
---|
| 250 | ! 1/(dzu(k)*dzw(k))*p(i,j,k+1)+1/(dzu(k-1)*dzw(k))*p(i,j,k-1)=d(i,j,k) |
---|
| 251 | ! |
---|
| 252 | ! by using the Thomas algorithm |
---|
| 253 | !------------------------------------------------------------------------------! |
---|
| 254 | |
---|
| 255 | USE arrays_3d |
---|
| 256 | |
---|
| 257 | IMPLICIT NONE |
---|
| 258 | |
---|
| 259 | INTEGER :: i, j, k, nnyh |
---|
| 260 | |
---|
| 261 | REAL, DIMENSION(nxl_z:nxr_z,0:nz-1) :: ar1 |
---|
| 262 | REAL, DIMENSION(5,nxl_z:nxr_z,0:nz-1) :: tri |
---|
| 263 | |
---|
| 264 | #if defined( __parallel ) |
---|
| 265 | REAL :: ar(nxl_z:nxr_za,nys_z:nyn_za,1:nza) |
---|
| 266 | #else |
---|
| 267 | REAL :: ar(1:nz,nys_z:nyn_z,nxl_z:nxr_z) |
---|
| 268 | #endif |
---|
| 269 | |
---|
| 270 | |
---|
| 271 | nnyh = (ny+1) / 2 |
---|
| 272 | |
---|
| 273 | ! |
---|
| 274 | !-- Define constant elements of the tridiagonal matrix. |
---|
| 275 | DO k = 0, nz-1 |
---|
| 276 | DO i = nxl_z, nxr_z |
---|
| 277 | tri(2,i,k) = ddzu(k+1) * ddzw(k+1) |
---|
| 278 | tri(3,i,k) = ddzu(k+2) * ddzw(k+1) |
---|
| 279 | ENDDO |
---|
| 280 | ENDDO |
---|
| 281 | |
---|
| 282 | #if defined( __parallel ) |
---|
| 283 | ! |
---|
| 284 | !-- Repeat for all y-levels. |
---|
| 285 | DO j = nys_z, nyn_z |
---|
| 286 | IF ( j <= nnyh ) THEN |
---|
| 287 | CALL maketri( tri, j ) |
---|
| 288 | ELSE |
---|
| 289 | CALL maketri( tri, ny+1-j ) |
---|
| 290 | ENDIF |
---|
| 291 | CALL split( tri ) |
---|
| 292 | CALL substi( ar, ar1, tri, j ) |
---|
| 293 | ENDDO |
---|
| 294 | #else |
---|
| 295 | ! |
---|
| 296 | !-- First y-level. |
---|
| 297 | CALL maketri( tri, nys_z ) |
---|
| 298 | CALL split( tri ) |
---|
| 299 | CALL substi( ar, ar1, tri, 0 ) |
---|
| 300 | |
---|
| 301 | ! |
---|
| 302 | !-- Further y-levels. |
---|
| 303 | DO j = 1, nnyh - 1 |
---|
| 304 | CALL maketri( tri, j ) |
---|
| 305 | CALL split( tri ) |
---|
| 306 | CALL substi( ar, ar1, tri, j ) |
---|
| 307 | CALL substi( ar, ar1, tri, ny+1-j ) |
---|
| 308 | ENDDO |
---|
| 309 | CALL maketri( tri, nnyh ) |
---|
| 310 | CALL split( tri ) |
---|
| 311 | CALL substi( ar, ar1, tri, nnyh+nys ) |
---|
| 312 | #endif |
---|
| 313 | |
---|
| 314 | CONTAINS |
---|
| 315 | |
---|
| 316 | SUBROUTINE maketri( tri, j ) |
---|
| 317 | |
---|
| 318 | !------------------------------------------------------------------------------! |
---|
| 319 | ! Computes the i- and j-dependent component of the matrix |
---|
| 320 | !------------------------------------------------------------------------------! |
---|
| 321 | |
---|
| 322 | USE arrays_3d |
---|
| 323 | USE constants |
---|
| 324 | USE control_parameters |
---|
| 325 | USE grid_variables |
---|
| 326 | |
---|
| 327 | IMPLICIT NONE |
---|
| 328 | |
---|
| 329 | INTEGER :: i, j, k, nnxh |
---|
| 330 | REAL :: a, c |
---|
| 331 | REAL :: ll(nxl_z:nxr_z) |
---|
| 332 | REAL :: tri(5,nxl_z:nxr_z,0:nz-1) |
---|
| 333 | |
---|
| 334 | |
---|
| 335 | nnxh = ( nx + 1 ) / 2 |
---|
| 336 | |
---|
| 337 | ! |
---|
| 338 | !-- Provide the tridiagonal matrix for solution of the Poisson equation in |
---|
| 339 | !-- Fourier space. The coefficients are computed following the method of |
---|
| 340 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 341 | !-- Siano's original version by discretizing the Poisson equation, |
---|
| 342 | !-- before it is Fourier-transformed |
---|
| 343 | #if defined( __parallel ) |
---|
| 344 | DO i = nxl_z, nxr_z |
---|
| 345 | IF ( i >= 0 .AND. i < nnxh ) THEN |
---|
| 346 | ll(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * i ) / & |
---|
| 347 | FLOAT( nx+1 ) ) ) / ( dx * dx ) + & |
---|
| 348 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
| 349 | FLOAT( ny+1 ) ) ) / ( dy * dy ) |
---|
| 350 | ELSEIF ( i == nnxh ) THEN |
---|
| 351 | ll(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( nx+1-i ) ) / & |
---|
| 352 | FLOAT( nx+1 ) ) ) / ( dx * dx ) + & |
---|
| 353 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
| 354 | FLOAT( ny+1 ) ) ) / ( dy * dy ) |
---|
| 355 | ELSE |
---|
| 356 | ll(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( nx+1-i ) ) / & |
---|
| 357 | FLOAT( nx+1 ) ) ) / ( dx * dx ) + & |
---|
| 358 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
| 359 | FLOAT( ny+1 ) ) ) / ( dy * dy ) |
---|
| 360 | ENDIF |
---|
| 361 | DO k = 0,nz-1 |
---|
| 362 | a = -1.0 * ddzu(k+2) * ddzw(k+1) |
---|
| 363 | c = -1.0 * ddzu(k+1) * ddzw(k+1) |
---|
| 364 | tri(1,i,k) = a + c - ll(i) |
---|
| 365 | ENDDO |
---|
| 366 | ENDDO |
---|
| 367 | #else |
---|
| 368 | DO i = 0, nnxh |
---|
| 369 | ll(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * i ) / FLOAT( nx+1 ) ) ) / & |
---|
| 370 | ( dx * dx ) + & |
---|
| 371 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / FLOAT( ny+1 ) ) ) / & |
---|
| 372 | ( dy * dy ) |
---|
| 373 | DO k = 0, nz-1 |
---|
| 374 | a = -1.0 * ddzu(k+2) * ddzw(k+1) |
---|
| 375 | c = -1.0 * ddzu(k+1) * ddzw(k+1) |
---|
| 376 | tri(1,i,k) = a + c - ll(i) |
---|
| 377 | IF ( i >= 1 .and. i < nnxh ) THEN |
---|
| 378 | tri(1,nx+1-i,k) = tri(1,i,k) |
---|
| 379 | ENDIF |
---|
| 380 | ENDDO |
---|
| 381 | ENDDO |
---|
| 382 | #endif |
---|
| 383 | IF ( ibc_p_b == 1 .OR. ibc_p_b == 2 ) THEN |
---|
| 384 | DO i = nxl_z, nxr_z |
---|
| 385 | tri(1,i,0) = tri(1,i,0) + tri(2,i,0) |
---|
| 386 | ENDDO |
---|
| 387 | ENDIF |
---|
| 388 | IF ( ibc_p_t == 1 ) THEN |
---|
| 389 | DO i = nxl_z, nxr_z |
---|
| 390 | tri(1,i,nz-1) = tri(1,i,nz-1) + tri(3,i,nz-1) |
---|
| 391 | ENDDO |
---|
| 392 | ENDIF |
---|
| 393 | |
---|
| 394 | END SUBROUTINE maketri |
---|
| 395 | |
---|
| 396 | |
---|
| 397 | SUBROUTINE substi( ar, ar1, tri, j ) |
---|
| 398 | |
---|
| 399 | !------------------------------------------------------------------------------! |
---|
| 400 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
| 401 | !------------------------------------------------------------------------------! |
---|
| 402 | |
---|
[76] | 403 | USE control_parameters |
---|
| 404 | |
---|
[1] | 405 | IMPLICIT NONE |
---|
| 406 | |
---|
| 407 | INTEGER :: i, j, k |
---|
| 408 | REAL :: ar1(nxl_z:nxr_z,0:nz-1) |
---|
| 409 | REAL :: tri(5,nxl_z:nxr_z,0:nz-1) |
---|
| 410 | #if defined( __parallel ) |
---|
| 411 | REAL :: ar(nxl_z:nxr_za,nys_z:nyn_za,1:nza) |
---|
| 412 | #else |
---|
| 413 | REAL :: ar(1:nz,nys_z:nyn_z,nxl_z:nxr_z) |
---|
| 414 | #endif |
---|
| 415 | |
---|
| 416 | ! |
---|
| 417 | !-- Forward substitution. |
---|
| 418 | DO i = nxl_z, nxr_z |
---|
| 419 | #if defined( __parallel ) |
---|
| 420 | ar1(i,0) = ar(i,j,1) |
---|
| 421 | #else |
---|
| 422 | ar1(i,0) = ar(1,j,i) |
---|
| 423 | #endif |
---|
| 424 | ENDDO |
---|
| 425 | DO k = 1, nz - 1 |
---|
| 426 | DO i = nxl_z, nxr_z |
---|
| 427 | #if defined( __parallel ) |
---|
| 428 | ar1(i,k) = ar(i,j,k+1) - tri(5,i,k) * ar1(i,k-1) |
---|
| 429 | #else |
---|
| 430 | ar1(i,k) = ar(k+1,j,i) - tri(5,i,k) * ar1(i,k-1) |
---|
| 431 | #endif |
---|
| 432 | ENDDO |
---|
| 433 | ENDDO |
---|
| 434 | |
---|
| 435 | ! |
---|
| 436 | !-- Backward substitution. |
---|
| 437 | DO i = nxl_z, nxr_z |
---|
| 438 | #if defined( __parallel ) |
---|
| 439 | ar(i,j,nz) = ar1(i,nz-1) / tri(4,i,nz-1) |
---|
| 440 | #else |
---|
| 441 | ar(nz,j,i) = ar1(i,nz-1) / tri(4,i,nz-1) |
---|
| 442 | #endif |
---|
| 443 | ENDDO |
---|
| 444 | DO k = nz-2, 0, -1 |
---|
| 445 | DO i = nxl_z, nxr_z |
---|
| 446 | #if defined( __parallel ) |
---|
| 447 | ar(i,j,k+1) = ( ar1(i,k) - tri(3,i,k) * ar(i,j,k+2) ) & |
---|
| 448 | / tri(4,i,k) |
---|
| 449 | #else |
---|
| 450 | ar(k+1,j,i) = ( ar1(i,k) - tri(3,i,k) * ar(k+2,j,i) ) & |
---|
| 451 | / tri(4,i,k) |
---|
| 452 | #endif |
---|
| 453 | ENDDO |
---|
| 454 | ENDDO |
---|
| 455 | |
---|
[76] | 456 | ! |
---|
| 457 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 458 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 459 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 460 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 461 | IF ( j == 0 .AND. nxl_z == 0 ) THEN |
---|
| 462 | #if defined( __parallel ) |
---|
| 463 | DO k = 1, nz |
---|
| 464 | ar(nxl_z,j,k) = 0.0 |
---|
| 465 | ENDDO |
---|
| 466 | #else |
---|
| 467 | DO k = 1, nz |
---|
| 468 | ar(k,j,nxl_z) = 0.0 |
---|
| 469 | ENDDO |
---|
| 470 | #endif |
---|
| 471 | ENDIF |
---|
| 472 | ENDIF |
---|
| 473 | |
---|
[1] | 474 | END SUBROUTINE substi |
---|
| 475 | |
---|
| 476 | |
---|
| 477 | SUBROUTINE split( tri ) |
---|
| 478 | |
---|
| 479 | !------------------------------------------------------------------------------! |
---|
| 480 | ! Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
| 481 | !------------------------------------------------------------------------------! |
---|
| 482 | |
---|
| 483 | IMPLICIT NONE |
---|
| 484 | |
---|
| 485 | INTEGER :: i, k |
---|
| 486 | REAL :: tri(5,nxl_z:nxr_z,0:nz-1) |
---|
| 487 | |
---|
| 488 | ! |
---|
| 489 | !-- Splitting. |
---|
| 490 | DO i = nxl_z, nxr_z |
---|
| 491 | tri(4,i,0) = tri(1,i,0) |
---|
| 492 | ENDDO |
---|
| 493 | DO k = 1, nz-1 |
---|
| 494 | DO i = nxl_z, nxr_z |
---|
| 495 | tri(5,i,k) = tri(2,i,k) / tri(4,i,k-1) |
---|
| 496 | tri(4,i,k) = tri(1,i,k) - tri(3,i,k-1) * tri(5,i,k) |
---|
| 497 | ENDDO |
---|
| 498 | ENDDO |
---|
| 499 | |
---|
| 500 | END SUBROUTINE split |
---|
| 501 | |
---|
| 502 | END SUBROUTINE tridia |
---|
| 503 | |
---|
| 504 | |
---|
| 505 | #if defined( __parallel ) |
---|
| 506 | SUBROUTINE fftxp( ar, direction ) |
---|
| 507 | |
---|
| 508 | !------------------------------------------------------------------------------! |
---|
| 509 | ! Fourier-transformation along x-direction Parallelized version |
---|
| 510 | !------------------------------------------------------------------------------! |
---|
| 511 | |
---|
| 512 | IMPLICIT NONE |
---|
| 513 | |
---|
| 514 | CHARACTER (LEN=*) :: direction |
---|
| 515 | INTEGER :: j, k |
---|
| 516 | REAL :: ar(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa) |
---|
| 517 | |
---|
| 518 | ! |
---|
| 519 | !-- Performing the fft with one of the methods implemented |
---|
| 520 | DO k = nzb_x, nzt_x |
---|
| 521 | DO j = nys_x, nyn_x |
---|
| 522 | CALL fft_x( ar(0:nx,j,k), direction ) |
---|
| 523 | ENDDO |
---|
| 524 | ENDDO |
---|
| 525 | |
---|
| 526 | END SUBROUTINE fftxp |
---|
| 527 | |
---|
| 528 | #else |
---|
| 529 | SUBROUTINE fftx( ar, direction ) |
---|
| 530 | |
---|
| 531 | !------------------------------------------------------------------------------! |
---|
| 532 | ! Fourier-transformation along x-direction Non parallel version |
---|
| 533 | !------------------------------------------------------------------------------! |
---|
| 534 | |
---|
| 535 | IMPLICIT NONE |
---|
| 536 | |
---|
| 537 | CHARACTER (LEN=*) :: direction |
---|
| 538 | INTEGER :: i, j, k |
---|
| 539 | REAL :: ar(1:nz,0:ny,0:nx) |
---|
| 540 | |
---|
| 541 | ! |
---|
| 542 | !-- Performing the fft with one of the methods implemented |
---|
| 543 | DO k = 1, nz |
---|
| 544 | DO j = 0, ny |
---|
| 545 | CALL fft_x( ar(k,j,0:nx), direction ) |
---|
| 546 | ENDDO |
---|
| 547 | ENDDO |
---|
| 548 | |
---|
| 549 | END SUBROUTINE fftx |
---|
| 550 | #endif |
---|
| 551 | |
---|
| 552 | |
---|
| 553 | #if defined( __parallel ) |
---|
| 554 | SUBROUTINE fftyp( ar, direction ) |
---|
| 555 | |
---|
| 556 | !------------------------------------------------------------------------------! |
---|
| 557 | ! Fourier-transformation along y-direction Parallelized version |
---|
| 558 | !------------------------------------------------------------------------------! |
---|
| 559 | |
---|
| 560 | IMPLICIT NONE |
---|
| 561 | |
---|
| 562 | CHARACTER (LEN=*) :: direction |
---|
| 563 | INTEGER :: i, k |
---|
| 564 | REAL :: ar(0:nya,nxl_y:nxr_ya,nzb_y:nzt_ya) |
---|
| 565 | |
---|
| 566 | ! |
---|
| 567 | !-- Performing the fft with one of the methods implemented |
---|
| 568 | DO k = nzb_y, nzt_y |
---|
| 569 | DO i = nxl_y, nxr_y |
---|
| 570 | CALL fft_y( ar(0:ny,i,k), direction ) |
---|
| 571 | ENDDO |
---|
| 572 | ENDDO |
---|
| 573 | |
---|
| 574 | END SUBROUTINE fftyp |
---|
| 575 | |
---|
| 576 | #else |
---|
| 577 | SUBROUTINE ffty( ar, direction ) |
---|
| 578 | |
---|
| 579 | !------------------------------------------------------------------------------! |
---|
| 580 | ! Fourier-transformation along y-direction Non parallel version |
---|
| 581 | !------------------------------------------------------------------------------! |
---|
| 582 | |
---|
| 583 | IMPLICIT NONE |
---|
| 584 | |
---|
| 585 | CHARACTER (LEN=*) :: direction |
---|
| 586 | INTEGER :: i, k |
---|
| 587 | REAL :: ar(1:nz,0:ny,0:nx) |
---|
| 588 | |
---|
| 589 | ! |
---|
| 590 | !-- Performing the fft with one of the methods implemented |
---|
| 591 | DO k = 1, nz |
---|
| 592 | DO i = 0, nx |
---|
| 593 | CALL fft_y( ar(k,0:ny,i), direction ) |
---|
| 594 | ENDDO |
---|
| 595 | ENDDO |
---|
| 596 | |
---|
| 597 | END SUBROUTINE ffty |
---|
| 598 | #endif |
---|
| 599 | |
---|
| 600 | #if defined( __parallel ) |
---|
| 601 | SUBROUTINE ffty_tr_yx( f_in, work, f_out ) |
---|
| 602 | |
---|
| 603 | !------------------------------------------------------------------------------! |
---|
| 604 | ! Fourier-transformation along y with subsequent transposition y --> x for |
---|
| 605 | ! a 1d-decomposition along x |
---|
| 606 | ! |
---|
| 607 | ! ATTENTION: The performance of this routine is much faster on the NEC-SX6, |
---|
| 608 | ! if the first index of work_ffty_vec is odd. Otherwise |
---|
| 609 | ! memory bank conflicts may occur (especially if the index is a |
---|
| 610 | ! multiple of 128). That's why work_ffty_vec is dimensioned as |
---|
| 611 | ! 0:ny+1. |
---|
| 612 | ! Of course, this will not work if users are using an odd number |
---|
| 613 | ! of gridpoints along y. |
---|
| 614 | !------------------------------------------------------------------------------! |
---|
| 615 | |
---|
| 616 | USE control_parameters |
---|
| 617 | USE cpulog |
---|
| 618 | USE indices |
---|
| 619 | USE interfaces |
---|
| 620 | USE pegrid |
---|
| 621 | USE transpose_indices |
---|
| 622 | |
---|
| 623 | IMPLICIT NONE |
---|
| 624 | |
---|
| 625 | INTEGER :: i, iend, iouter, ir, j, k |
---|
| 626 | INTEGER, PARAMETER :: stridex = 4 |
---|
| 627 | |
---|
| 628 | REAL, DIMENSION(0:ny,stridex) :: work_ffty |
---|
| 629 | #if defined( __nec ) |
---|
| 630 | REAL, DIMENSION(0:ny+1,1:nz,nxl:nxr) :: work_ffty_vec |
---|
| 631 | #endif |
---|
| 632 | REAL, DIMENSION(1:nza,0:nya,nxl:nxra) :: f_in |
---|
| 633 | REAL, DIMENSION(nnx,1:nza,nys_x:nyn_xa,pdims(1)) :: f_out |
---|
| 634 | REAL, DIMENSION(nxl:nxra,1:nza,0:nya) :: work |
---|
| 635 | |
---|
| 636 | ! |
---|
| 637 | !-- Carry out the FFT along y, where all data are present due to the |
---|
| 638 | !-- 1d-decomposition along x. Resort the data in a way that x becomes |
---|
| 639 | !-- the first index. |
---|
| 640 | CALL cpu_log( log_point_s(7), 'fft_y', 'start' ) |
---|
| 641 | |
---|
| 642 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 643 | #if defined( __nec ) |
---|
| 644 | ! |
---|
| 645 | !-- Code optimized for vector processors |
---|
[85] | 646 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 647 | !$OMP DO |
---|
| 648 | DO i = nxl, nxr |
---|
| 649 | |
---|
| 650 | DO j = 0, ny |
---|
| 651 | DO k = 1, nz |
---|
| 652 | work_ffty_vec(j,k,i) = f_in(k,j,i) |
---|
| 653 | ENDDO |
---|
| 654 | ENDDO |
---|
| 655 | |
---|
| 656 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'forward' ) |
---|
| 657 | |
---|
| 658 | ENDDO |
---|
| 659 | |
---|
| 660 | !$OMP DO |
---|
| 661 | DO k = 1, nz |
---|
| 662 | DO j = 0, ny |
---|
| 663 | DO i = nxl, nxr |
---|
| 664 | work(i,k,j) = work_ffty_vec(j,k,i) |
---|
| 665 | ENDDO |
---|
| 666 | ENDDO |
---|
| 667 | ENDDO |
---|
| 668 | !$OMP END PARALLEL |
---|
| 669 | #endif |
---|
| 670 | |
---|
| 671 | ELSE |
---|
| 672 | |
---|
| 673 | ! |
---|
| 674 | !-- Cache optimized code. |
---|
| 675 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 676 | !-- loop for better cache performance |
---|
| 677 | !$OMP PARALLEL PRIVATE (i,iend,iouter,ir,j,k,work_ffty) |
---|
| 678 | !$OMP DO |
---|
| 679 | DO iouter = nxl, nxr, stridex |
---|
| 680 | |
---|
| 681 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 682 | |
---|
| 683 | DO k = 1, nz |
---|
| 684 | |
---|
| 685 | DO i = iouter, iend |
---|
| 686 | |
---|
| 687 | ir = i-iouter+1 ! counter within a stride |
---|
| 688 | DO j = 0, ny |
---|
| 689 | work_ffty(j,ir) = f_in(k,j,i) |
---|
| 690 | ENDDO |
---|
| 691 | ! |
---|
| 692 | !-- FFT along y |
---|
| 693 | CALL fft_y( work_ffty(:,ir), 'forward' ) |
---|
| 694 | |
---|
| 695 | ENDDO |
---|
| 696 | |
---|
| 697 | ! |
---|
| 698 | !-- Resort |
---|
| 699 | DO j = 0, ny |
---|
| 700 | DO i = iouter, iend |
---|
| 701 | work(i,k,j) = work_ffty(j,i-iouter+1) |
---|
| 702 | ENDDO |
---|
| 703 | ENDDO |
---|
| 704 | |
---|
| 705 | ENDDO |
---|
| 706 | |
---|
| 707 | ENDDO |
---|
| 708 | !$OMP END PARALLEL |
---|
| 709 | |
---|
| 710 | ENDIF |
---|
| 711 | CALL cpu_log( log_point_s(7), 'fft_y', 'pause' ) |
---|
| 712 | |
---|
| 713 | ! |
---|
| 714 | !-- Transpose array |
---|
| 715 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 716 | CALL MPI_ALLTOALL( work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 717 | f_out(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 718 | comm1dx, ierr ) |
---|
| 719 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 720 | |
---|
| 721 | END SUBROUTINE ffty_tr_yx |
---|
| 722 | |
---|
| 723 | |
---|
| 724 | SUBROUTINE tr_xy_ffty( f_in, work, f_out ) |
---|
| 725 | |
---|
| 726 | !------------------------------------------------------------------------------! |
---|
| 727 | ! Transposition x --> y with a subsequent backward Fourier transformation for |
---|
| 728 | ! a 1d-decomposition along x |
---|
| 729 | !------------------------------------------------------------------------------! |
---|
| 730 | |
---|
| 731 | USE control_parameters |
---|
| 732 | USE cpulog |
---|
| 733 | USE indices |
---|
| 734 | USE interfaces |
---|
| 735 | USE pegrid |
---|
| 736 | USE transpose_indices |
---|
| 737 | |
---|
| 738 | IMPLICIT NONE |
---|
| 739 | |
---|
| 740 | INTEGER :: i, iend, iouter, ir, j, k |
---|
| 741 | INTEGER, PARAMETER :: stridex = 4 |
---|
| 742 | |
---|
| 743 | REAL, DIMENSION(0:ny,stridex) :: work_ffty |
---|
| 744 | #if defined( __nec ) |
---|
| 745 | REAL, DIMENSION(0:ny+1,1:nz,nxl:nxr) :: work_ffty_vec |
---|
| 746 | #endif |
---|
| 747 | REAL, DIMENSION(nnx,1:nza,nys_x:nyn_xa,pdims(1)) :: f_in |
---|
| 748 | REAL, DIMENSION(1:nza,0:nya,nxl:nxra) :: f_out |
---|
| 749 | REAL, DIMENSION(nxl:nxra,1:nza,0:nya) :: work |
---|
| 750 | |
---|
| 751 | ! |
---|
| 752 | !-- Transpose array |
---|
| 753 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 754 | CALL MPI_ALLTOALL( f_in(1,1,nys_x,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 755 | work(nxl,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 756 | comm1dx, ierr ) |
---|
| 757 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 758 | |
---|
| 759 | ! |
---|
| 760 | !-- Resort the data in a way that y becomes the first index and carry out the |
---|
| 761 | !-- backward fft along y. |
---|
| 762 | CALL cpu_log( log_point_s(7), 'fft_y', 'continue' ) |
---|
| 763 | |
---|
| 764 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 765 | #if defined( __nec ) |
---|
| 766 | ! |
---|
| 767 | !-- Code optimized for vector processors |
---|
[85] | 768 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 769 | !$OMP DO |
---|
| 770 | DO k = 1, nz |
---|
| 771 | DO j = 0, ny |
---|
| 772 | DO i = nxl, nxr |
---|
| 773 | work_ffty_vec(j,k,i) = work(i,k,j) |
---|
| 774 | ENDDO |
---|
| 775 | ENDDO |
---|
| 776 | ENDDO |
---|
| 777 | |
---|
| 778 | !$OMP DO |
---|
| 779 | DO i = nxl, nxr |
---|
| 780 | |
---|
| 781 | CALL fft_y_m( work_ffty_vec(:,:,i), ny+1, 'backward' ) |
---|
| 782 | |
---|
| 783 | DO j = 0, ny |
---|
| 784 | DO k = 1, nz |
---|
| 785 | f_out(k,j,i) = work_ffty_vec(j,k,i) |
---|
| 786 | ENDDO |
---|
| 787 | ENDDO |
---|
| 788 | |
---|
| 789 | ENDDO |
---|
| 790 | !$OMP END PARALLEL |
---|
| 791 | #endif |
---|
| 792 | |
---|
| 793 | ELSE |
---|
| 794 | |
---|
| 795 | ! |
---|
| 796 | !-- Cache optimized code. |
---|
| 797 | !-- The i-(x-)direction is split into a strided outer loop and an inner |
---|
| 798 | !-- loop for better cache performance |
---|
| 799 | !$OMP PARALLEL PRIVATE ( i, iend, iouter, ir, j, k, work_ffty ) |
---|
| 800 | !$OMP DO |
---|
| 801 | DO iouter = nxl, nxr, stridex |
---|
| 802 | |
---|
| 803 | iend = MIN( iouter+stridex-1, nxr ) ! Upper bound for inner i loop |
---|
| 804 | |
---|
| 805 | DO k = 1, nz |
---|
| 806 | ! |
---|
| 807 | !-- Resort |
---|
| 808 | DO j = 0, ny |
---|
| 809 | DO i = iouter, iend |
---|
| 810 | work_ffty(j,i-iouter+1) = work(i,k,j) |
---|
| 811 | ENDDO |
---|
| 812 | ENDDO |
---|
| 813 | |
---|
| 814 | DO i = iouter, iend |
---|
| 815 | |
---|
| 816 | ! |
---|
| 817 | !-- FFT along y |
---|
| 818 | ir = i-iouter+1 ! counter within a stride |
---|
| 819 | CALL fft_y( work_ffty(:,ir), 'backward' ) |
---|
| 820 | |
---|
| 821 | DO j = 0, ny |
---|
| 822 | f_out(k,j,i) = work_ffty(j,ir) |
---|
| 823 | ENDDO |
---|
| 824 | ENDDO |
---|
| 825 | |
---|
| 826 | ENDDO |
---|
| 827 | |
---|
| 828 | ENDDO |
---|
| 829 | !$OMP END PARALLEL |
---|
| 830 | |
---|
| 831 | ENDIF |
---|
| 832 | |
---|
| 833 | CALL cpu_log( log_point_s(7), 'fft_y', 'stop' ) |
---|
| 834 | |
---|
| 835 | END SUBROUTINE tr_xy_ffty |
---|
| 836 | |
---|
| 837 | |
---|
| 838 | SUBROUTINE fftx_tri_fftx( ar ) |
---|
| 839 | |
---|
| 840 | !------------------------------------------------------------------------------! |
---|
| 841 | ! FFT along x, solution of the tridiagonal system and backward FFT for |
---|
| 842 | ! a 1d-decomposition along x |
---|
| 843 | ! |
---|
| 844 | ! WARNING: this subroutine may still not work for hybrid parallelization |
---|
| 845 | ! with OpenMP (for possible necessary changes see the original |
---|
| 846 | ! routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
| 847 | !------------------------------------------------------------------------------! |
---|
| 848 | |
---|
| 849 | USE control_parameters |
---|
| 850 | USE cpulog |
---|
| 851 | USE grid_variables |
---|
| 852 | USE indices |
---|
| 853 | USE interfaces |
---|
| 854 | USE pegrid |
---|
| 855 | USE transpose_indices |
---|
| 856 | |
---|
| 857 | IMPLICIT NONE |
---|
| 858 | |
---|
| 859 | character(len=3) :: myth_char |
---|
| 860 | |
---|
| 861 | INTEGER :: i, j, k, m, n, omp_get_thread_num, tn |
---|
| 862 | |
---|
| 863 | REAL, DIMENSION(0:nx) :: work_fftx |
---|
| 864 | REAL, DIMENSION(0:nx,1:nz) :: work_trix |
---|
| 865 | REAL, DIMENSION(nnx,1:nza,nys_x:nyn_xa,pdims(1)) :: ar |
---|
| 866 | REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: tri |
---|
| 867 | |
---|
| 868 | |
---|
| 869 | CALL cpu_log( log_point_s(33), 'fft_x + tridia', 'start' ) |
---|
| 870 | |
---|
| 871 | ALLOCATE( tri(5,0:nx,0:nz-1,0:threads_per_task-1) ) |
---|
| 872 | |
---|
| 873 | tn = 0 ! Default thread number in case of one thread |
---|
| 874 | !$OMP PARALLEL DO PRIVATE ( i, j, k, m, n, tn, work_fftx, work_trix ) |
---|
| 875 | DO j = nys_x, nyn_x |
---|
| 876 | |
---|
| 877 | !$ tn = omp_get_thread_num() |
---|
| 878 | |
---|
| 879 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 880 | ! |
---|
| 881 | !-- Code optimized for vector processors |
---|
| 882 | DO k = 1, nz |
---|
| 883 | |
---|
| 884 | m = 0 |
---|
| 885 | DO n = 1, pdims(1) |
---|
| 886 | DO i = 1, nnx_pe( n-1 ) ! WARN: pcoord(i) should be used!! |
---|
| 887 | work_trix(m,k) = ar(i,k,j,n) |
---|
| 888 | m = m + 1 |
---|
| 889 | ENDDO |
---|
| 890 | ENDDO |
---|
| 891 | |
---|
| 892 | ENDDO |
---|
| 893 | |
---|
| 894 | CALL fft_x_m( work_trix, 'forward' ) |
---|
| 895 | |
---|
| 896 | ELSE |
---|
| 897 | ! |
---|
| 898 | !-- Cache optimized code |
---|
| 899 | DO k = 1, nz |
---|
| 900 | |
---|
| 901 | m = 0 |
---|
| 902 | DO n = 1, pdims(1) |
---|
| 903 | DO i = 1, nnx_pe( n-1 ) ! WARN: pcoord(i) should be used!! |
---|
| 904 | work_fftx(m) = ar(i,k,j,n) |
---|
| 905 | m = m + 1 |
---|
| 906 | ENDDO |
---|
| 907 | ENDDO |
---|
| 908 | |
---|
| 909 | CALL fft_x( work_fftx, 'forward' ) |
---|
| 910 | |
---|
| 911 | DO i = 0, nx |
---|
| 912 | work_trix(i,k) = work_fftx(i) |
---|
| 913 | ENDDO |
---|
| 914 | |
---|
| 915 | ENDDO |
---|
| 916 | |
---|
| 917 | ENDIF |
---|
| 918 | |
---|
| 919 | ! |
---|
| 920 | !-- Solve the linear equation system |
---|
| 921 | CALL tridia_1dd( ddx2, ddy2, nx, ny, j, work_trix, tri(:,:,:,tn) ) |
---|
| 922 | |
---|
| 923 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 924 | ! |
---|
| 925 | !-- Code optimized for vector processors |
---|
| 926 | CALL fft_x_m( work_trix, 'backward' ) |
---|
| 927 | |
---|
| 928 | DO k = 1, nz |
---|
| 929 | |
---|
| 930 | m = 0 |
---|
| 931 | DO n = 1, pdims(1) |
---|
| 932 | DO i = 1, nnx_pe( n-1 ) ! WARN: pcoord(i) should be used!! |
---|
| 933 | ar(i,k,j,n) = work_trix(m,k) |
---|
| 934 | m = m + 1 |
---|
| 935 | ENDDO |
---|
| 936 | ENDDO |
---|
| 937 | |
---|
| 938 | ENDDO |
---|
| 939 | |
---|
| 940 | ELSE |
---|
| 941 | ! |
---|
| 942 | !-- Cache optimized code |
---|
| 943 | DO k = 1, nz |
---|
| 944 | |
---|
| 945 | DO i = 0, nx |
---|
| 946 | work_fftx(i) = work_trix(i,k) |
---|
| 947 | ENDDO |
---|
| 948 | |
---|
| 949 | CALL fft_x( work_fftx, 'backward' ) |
---|
| 950 | |
---|
| 951 | m = 0 |
---|
| 952 | DO n = 1, pdims(1) |
---|
| 953 | DO i = 1, nnx_pe( n-1 ) ! WARN: pcoord(i) should be used!! |
---|
| 954 | ar(i,k,j,n) = work_fftx(m) |
---|
| 955 | m = m + 1 |
---|
| 956 | ENDDO |
---|
| 957 | ENDDO |
---|
| 958 | |
---|
| 959 | ENDDO |
---|
| 960 | |
---|
| 961 | ENDIF |
---|
| 962 | |
---|
| 963 | ENDDO |
---|
| 964 | |
---|
| 965 | DEALLOCATE( tri ) |
---|
| 966 | |
---|
| 967 | CALL cpu_log( log_point_s(33), 'fft_x + tridia', 'stop' ) |
---|
| 968 | |
---|
| 969 | END SUBROUTINE fftx_tri_fftx |
---|
| 970 | |
---|
| 971 | |
---|
| 972 | SUBROUTINE fftx_tr_xy( f_in, work, f_out ) |
---|
| 973 | |
---|
| 974 | !------------------------------------------------------------------------------! |
---|
| 975 | ! Fourier-transformation along x with subsequent transposition x --> y for |
---|
| 976 | ! a 1d-decomposition along y |
---|
| 977 | ! |
---|
| 978 | ! ATTENTION: The NEC-branch of this routine may significantly profit from |
---|
| 979 | ! further optimizations. So far, performance is much worse than |
---|
| 980 | ! for routine ffty_tr_yx (more than three times slower). |
---|
| 981 | !------------------------------------------------------------------------------! |
---|
| 982 | |
---|
| 983 | USE control_parameters |
---|
| 984 | USE cpulog |
---|
| 985 | USE indices |
---|
| 986 | USE interfaces |
---|
| 987 | USE pegrid |
---|
| 988 | USE transpose_indices |
---|
| 989 | |
---|
| 990 | IMPLICIT NONE |
---|
| 991 | |
---|
| 992 | INTEGER :: i, j, k |
---|
| 993 | |
---|
| 994 | REAL, DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx |
---|
| 995 | REAL, DIMENSION(1:nza,nys:nyna,0:nxa) :: f_in |
---|
| 996 | REAL, DIMENSION(nny,1:nza,nxl_y:nxr_ya,pdims(2)) :: f_out |
---|
| 997 | REAL, DIMENSION(nys:nyna,1:nza,0:nxa) :: work |
---|
| 998 | |
---|
| 999 | ! |
---|
| 1000 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 1001 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 1002 | !-- the first index. |
---|
| 1003 | CALL cpu_log( log_point_s(4), 'fft_x', 'start' ) |
---|
| 1004 | |
---|
| 1005 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1006 | ! |
---|
| 1007 | !-- Code for vector processors |
---|
[85] | 1008 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 1009 | !$OMP DO |
---|
| 1010 | DO i = 0, nx |
---|
| 1011 | |
---|
| 1012 | DO j = nys, nyn |
---|
| 1013 | DO k = 1, nz |
---|
| 1014 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 1015 | ENDDO |
---|
| 1016 | ENDDO |
---|
| 1017 | |
---|
| 1018 | ENDDO |
---|
| 1019 | |
---|
| 1020 | !$OMP DO |
---|
| 1021 | DO j = nys, nyn |
---|
| 1022 | |
---|
| 1023 | CALL fft_x_m( work_fftx(:,:,j), 'forward' ) |
---|
| 1024 | |
---|
| 1025 | DO k = 1, nz |
---|
| 1026 | DO i = 0, nx |
---|
| 1027 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 1028 | ENDDO |
---|
| 1029 | ENDDO |
---|
| 1030 | |
---|
| 1031 | ENDDO |
---|
| 1032 | !$OMP END PARALLEL |
---|
| 1033 | |
---|
| 1034 | ELSE |
---|
| 1035 | |
---|
| 1036 | ! |
---|
| 1037 | !-- Cache optimized code (there might be still a potential for better |
---|
| 1038 | !-- optimization). |
---|
| 1039 | !$OMP PARALLEL PRIVATE (i,j,k,work_fftx) |
---|
| 1040 | !$OMP DO |
---|
| 1041 | DO i = 0, nx |
---|
| 1042 | |
---|
| 1043 | DO j = nys, nyn |
---|
| 1044 | DO k = 1, nz |
---|
| 1045 | work_fftx(i,k,j) = f_in(k,j,i) |
---|
| 1046 | ENDDO |
---|
| 1047 | ENDDO |
---|
| 1048 | |
---|
| 1049 | ENDDO |
---|
| 1050 | |
---|
| 1051 | !$OMP DO |
---|
| 1052 | DO j = nys, nyn |
---|
| 1053 | DO k = 1, nz |
---|
| 1054 | |
---|
| 1055 | CALL fft_x( work_fftx(0:nx,k,j), 'forward' ) |
---|
| 1056 | |
---|
| 1057 | DO i = 0, nx |
---|
| 1058 | work(j,k,i) = work_fftx(i,k,j) |
---|
| 1059 | ENDDO |
---|
| 1060 | ENDDO |
---|
| 1061 | |
---|
| 1062 | ENDDO |
---|
| 1063 | !$OMP END PARALLEL |
---|
| 1064 | |
---|
| 1065 | ENDIF |
---|
| 1066 | CALL cpu_log( log_point_s(4), 'fft_x', 'pause' ) |
---|
| 1067 | |
---|
| 1068 | ! |
---|
| 1069 | !-- Transpose array |
---|
| 1070 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 1071 | CALL MPI_ALLTOALL( work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 1072 | f_out(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 1073 | comm1dy, ierr ) |
---|
| 1074 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 1075 | |
---|
| 1076 | END SUBROUTINE fftx_tr_xy |
---|
| 1077 | |
---|
| 1078 | |
---|
| 1079 | SUBROUTINE tr_yx_fftx( f_in, work, f_out ) |
---|
| 1080 | |
---|
| 1081 | !------------------------------------------------------------------------------! |
---|
| 1082 | ! Transposition y --> x with a subsequent backward Fourier transformation for |
---|
| 1083 | ! a 1d-decomposition along x |
---|
| 1084 | !------------------------------------------------------------------------------! |
---|
| 1085 | |
---|
| 1086 | USE control_parameters |
---|
| 1087 | USE cpulog |
---|
| 1088 | USE indices |
---|
| 1089 | USE interfaces |
---|
| 1090 | USE pegrid |
---|
| 1091 | USE transpose_indices |
---|
| 1092 | |
---|
| 1093 | IMPLICIT NONE |
---|
| 1094 | |
---|
| 1095 | INTEGER :: i, j, k |
---|
| 1096 | |
---|
| 1097 | REAL, DIMENSION(0:nx,1:nz,nys:nyn) :: work_fftx |
---|
| 1098 | REAL, DIMENSION(nny,1:nza,nxl_y:nxr_ya,pdims(2)) :: f_in |
---|
| 1099 | REAL, DIMENSION(1:nza,nys:nyna,0:nxa) :: f_out |
---|
| 1100 | REAL, DIMENSION(nys:nyna,1:nza,0:nxa) :: work |
---|
| 1101 | |
---|
| 1102 | ! |
---|
| 1103 | !-- Transpose array |
---|
| 1104 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 1105 | CALL MPI_ALLTOALL( f_in(1,1,nxl_y,1), sendrecvcount_xy, MPI_REAL, & |
---|
| 1106 | work(nys,1,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 1107 | comm1dy, ierr ) |
---|
| 1108 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 1109 | |
---|
| 1110 | ! |
---|
| 1111 | !-- Carry out the FFT along x, where all data are present due to the |
---|
| 1112 | !-- 1d-decomposition along y. Resort the data in a way that y becomes |
---|
| 1113 | !-- the first index. |
---|
| 1114 | CALL cpu_log( log_point_s(4), 'fft_x', 'continue' ) |
---|
| 1115 | |
---|
| 1116 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1117 | ! |
---|
| 1118 | !-- Code optimized for vector processors |
---|
[85] | 1119 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
[1] | 1120 | !$OMP DO |
---|
| 1121 | DO j = nys, nyn |
---|
| 1122 | |
---|
| 1123 | DO k = 1, nz |
---|
| 1124 | DO i = 0, nx |
---|
| 1125 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1126 | ENDDO |
---|
| 1127 | ENDDO |
---|
| 1128 | |
---|
| 1129 | CALL fft_x_m( work_fftx(:,:,j), 'backward' ) |
---|
| 1130 | |
---|
| 1131 | ENDDO |
---|
| 1132 | |
---|
| 1133 | !$OMP DO |
---|
| 1134 | DO i = 0, nx |
---|
| 1135 | DO j = nys, nyn |
---|
| 1136 | DO k = 1, nz |
---|
| 1137 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 1138 | ENDDO |
---|
| 1139 | ENDDO |
---|
| 1140 | ENDDO |
---|
| 1141 | !$OMP END PARALLEL |
---|
| 1142 | |
---|
| 1143 | ELSE |
---|
| 1144 | |
---|
| 1145 | ! |
---|
| 1146 | !-- Cache optimized code (there might be still a potential for better |
---|
| 1147 | !-- optimization). |
---|
| 1148 | !$OMP PARALLEL PRIVATE (i,j,k,work_fftx) |
---|
| 1149 | !$OMP DO |
---|
| 1150 | DO j = nys, nyn |
---|
| 1151 | DO k = 1, nz |
---|
| 1152 | |
---|
| 1153 | DO i = 0, nx |
---|
| 1154 | work_fftx(i,k,j) = work(j,k,i) |
---|
| 1155 | ENDDO |
---|
| 1156 | |
---|
| 1157 | CALL fft_x( work_fftx(0:nx,k,j), 'backward' ) |
---|
| 1158 | |
---|
| 1159 | ENDDO |
---|
| 1160 | ENDDO |
---|
| 1161 | |
---|
| 1162 | !$OMP DO |
---|
| 1163 | DO i = 0, nx |
---|
| 1164 | DO j = nys, nyn |
---|
| 1165 | DO k = 1, nz |
---|
| 1166 | f_out(k,j,i) = work_fftx(i,k,j) |
---|
| 1167 | ENDDO |
---|
| 1168 | ENDDO |
---|
| 1169 | ENDDO |
---|
| 1170 | !$OMP END PARALLEL |
---|
| 1171 | |
---|
| 1172 | ENDIF |
---|
| 1173 | CALL cpu_log( log_point_s(4), 'fft_x', 'stop' ) |
---|
| 1174 | |
---|
| 1175 | END SUBROUTINE tr_yx_fftx |
---|
| 1176 | |
---|
| 1177 | |
---|
| 1178 | SUBROUTINE ffty_tri_ffty( ar ) |
---|
| 1179 | |
---|
| 1180 | !------------------------------------------------------------------------------! |
---|
| 1181 | ! FFT along y, solution of the tridiagonal system and backward FFT for |
---|
| 1182 | ! a 1d-decomposition along y |
---|
| 1183 | ! |
---|
| 1184 | ! WARNING: this subroutine may still not work for hybrid parallelization |
---|
| 1185 | ! with OpenMP (for possible necessary changes see the original |
---|
| 1186 | ! routine poisfft_hybrid, developed by Klaus Ketelsen, May 2002) |
---|
| 1187 | !------------------------------------------------------------------------------! |
---|
| 1188 | |
---|
| 1189 | USE control_parameters |
---|
| 1190 | USE cpulog |
---|
| 1191 | USE grid_variables |
---|
| 1192 | USE indices |
---|
| 1193 | USE interfaces |
---|
| 1194 | USE pegrid |
---|
| 1195 | USE transpose_indices |
---|
| 1196 | |
---|
| 1197 | IMPLICIT NONE |
---|
| 1198 | |
---|
| 1199 | INTEGER :: i, j, k, m, n, omp_get_thread_num, tn |
---|
| 1200 | |
---|
| 1201 | REAL, DIMENSION(0:ny) :: work_ffty |
---|
| 1202 | REAL, DIMENSION(0:ny,1:nz) :: work_triy |
---|
| 1203 | REAL, DIMENSION(nny,1:nza,nxl_y:nxr_ya,pdims(2)) :: ar |
---|
| 1204 | REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: tri |
---|
| 1205 | |
---|
| 1206 | |
---|
| 1207 | CALL cpu_log( log_point_s(39), 'fft_y + tridia', 'start' ) |
---|
| 1208 | |
---|
| 1209 | ALLOCATE( tri(5,0:ny,0:nz-1,0:threads_per_task-1) ) |
---|
| 1210 | |
---|
| 1211 | tn = 0 ! Default thread number in case of one thread |
---|
| 1212 | !$OMP PARALLEL PRIVATE ( i, j, k, m, n, tn, work_ffty, work_triy ) |
---|
| 1213 | !$OMP DO |
---|
| 1214 | DO i = nxl_y, nxr_y |
---|
| 1215 | |
---|
| 1216 | !$ tn = omp_get_thread_num() |
---|
| 1217 | |
---|
| 1218 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1219 | ! |
---|
| 1220 | !-- Code optimized for vector processors |
---|
| 1221 | DO k = 1, nz |
---|
| 1222 | |
---|
| 1223 | m = 0 |
---|
| 1224 | DO n = 1, pdims(2) |
---|
| 1225 | DO j = 1, nny_pe( n-1 ) ! WARN: pcoord(j) should be used!! |
---|
| 1226 | work_triy(m,k) = ar(j,k,i,n) |
---|
| 1227 | m = m + 1 |
---|
| 1228 | ENDDO |
---|
| 1229 | ENDDO |
---|
| 1230 | |
---|
| 1231 | ENDDO |
---|
| 1232 | |
---|
| 1233 | CALL fft_y_m( work_triy, ny, 'forward' ) |
---|
| 1234 | |
---|
| 1235 | ELSE |
---|
| 1236 | ! |
---|
| 1237 | !-- Cache optimized code |
---|
| 1238 | DO k = 1, nz |
---|
| 1239 | |
---|
| 1240 | m = 0 |
---|
| 1241 | DO n = 1, pdims(2) |
---|
| 1242 | DO j = 1, nny_pe( n-1 ) ! WARN: pcoord(j) should be used!! |
---|
| 1243 | work_ffty(m) = ar(j,k,i,n) |
---|
| 1244 | m = m + 1 |
---|
| 1245 | ENDDO |
---|
| 1246 | ENDDO |
---|
| 1247 | |
---|
| 1248 | CALL fft_y( work_ffty, 'forward' ) |
---|
| 1249 | |
---|
| 1250 | DO j = 0, ny |
---|
| 1251 | work_triy(j,k) = work_ffty(j) |
---|
| 1252 | ENDDO |
---|
| 1253 | |
---|
| 1254 | ENDDO |
---|
| 1255 | |
---|
| 1256 | ENDIF |
---|
| 1257 | |
---|
| 1258 | ! |
---|
| 1259 | !-- Solve the linear equation system |
---|
| 1260 | CALL tridia_1dd( ddy2, ddx2, ny, nx, i, work_triy, tri(:,:,:,tn) ) |
---|
| 1261 | |
---|
| 1262 | IF ( host(1:3) == 'nec' ) THEN |
---|
| 1263 | ! |
---|
| 1264 | !-- Code optimized for vector processors |
---|
| 1265 | CALL fft_y_m( work_triy, ny, 'backward' ) |
---|
| 1266 | |
---|
| 1267 | DO k = 1, nz |
---|
| 1268 | |
---|
| 1269 | m = 0 |
---|
| 1270 | DO n = 1, pdims(2) |
---|
| 1271 | DO j = 1, nny_pe( n-1 ) ! WARN: pcoord(j) should be used!! |
---|
| 1272 | ar(j,k,i,n) = work_triy(m,k) |
---|
| 1273 | m = m + 1 |
---|
| 1274 | ENDDO |
---|
| 1275 | ENDDO |
---|
| 1276 | |
---|
| 1277 | ENDDO |
---|
| 1278 | |
---|
| 1279 | ELSE |
---|
| 1280 | ! |
---|
| 1281 | !-- Cache optimized code |
---|
| 1282 | DO k = 1, nz |
---|
| 1283 | |
---|
| 1284 | DO j = 0, ny |
---|
| 1285 | work_ffty(j) = work_triy(j,k) |
---|
| 1286 | ENDDO |
---|
| 1287 | |
---|
| 1288 | CALL fft_y( work_ffty, 'backward' ) |
---|
| 1289 | |
---|
| 1290 | m = 0 |
---|
| 1291 | DO n = 1, pdims(2) |
---|
| 1292 | DO j = 1, nny_pe( n-1 ) ! WARN: pcoord(j) should be used!! |
---|
| 1293 | ar(j,k,i,n) = work_ffty(m) |
---|
| 1294 | m = m + 1 |
---|
| 1295 | ENDDO |
---|
| 1296 | ENDDO |
---|
| 1297 | |
---|
| 1298 | ENDDO |
---|
| 1299 | |
---|
| 1300 | ENDIF |
---|
| 1301 | |
---|
| 1302 | ENDDO |
---|
| 1303 | !$OMP END PARALLEL |
---|
| 1304 | |
---|
| 1305 | DEALLOCATE( tri ) |
---|
| 1306 | |
---|
| 1307 | CALL cpu_log( log_point_s(39), 'fft_y + tridia', 'stop' ) |
---|
| 1308 | |
---|
| 1309 | END SUBROUTINE ffty_tri_ffty |
---|
| 1310 | |
---|
| 1311 | |
---|
| 1312 | SUBROUTINE tridia_1dd( ddx2, ddy2, nx, ny, j, ar, tri ) |
---|
| 1313 | |
---|
| 1314 | !------------------------------------------------------------------------------! |
---|
| 1315 | ! Solves the linear system of equations for a 1d-decomposition along x (see |
---|
| 1316 | ! tridia) |
---|
| 1317 | ! |
---|
| 1318 | ! Attention: when using the intel compiler, array tri must be passed as an |
---|
| 1319 | ! argument to the contained subroutines. Otherwise addres faults |
---|
| 1320 | ! will occur. |
---|
| 1321 | ! On NEC, tri should not be passed (except for routine substi_1dd) |
---|
| 1322 | ! because this causes very bad performance. |
---|
| 1323 | !------------------------------------------------------------------------------! |
---|
| 1324 | |
---|
| 1325 | USE arrays_3d |
---|
| 1326 | USE control_parameters |
---|
| 1327 | |
---|
| 1328 | USE pegrid |
---|
| 1329 | |
---|
| 1330 | IMPLICIT NONE |
---|
| 1331 | |
---|
| 1332 | INTEGER :: i, j, k, nnyh, nx, ny, omp_get_thread_num, tn |
---|
| 1333 | |
---|
| 1334 | REAL :: ddx2, ddy2 |
---|
| 1335 | |
---|
| 1336 | REAL, DIMENSION(0:nx,1:nz) :: ar |
---|
| 1337 | REAL, DIMENSION(0:nx,0:nz-1) :: ar1 |
---|
| 1338 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri |
---|
| 1339 | |
---|
| 1340 | |
---|
| 1341 | nnyh = ( ny + 1 ) / 2 |
---|
| 1342 | |
---|
| 1343 | ! |
---|
| 1344 | !-- Define constant elements of the tridiagonal matrix. |
---|
| 1345 | !-- The compiler on SX6 does loop exchange. If 0:nx is a high power of 2, |
---|
| 1346 | !-- the exchanged loops create bank conflicts. The following directive |
---|
| 1347 | !-- prohibits loop exchange and the loops perform much better. |
---|
| 1348 | ! tn = omp_get_thread_num() |
---|
| 1349 | ! WRITE( 120+tn, * ) '+++ id=',myid,' nx=',nx,' thread=', omp_get_thread_num() |
---|
[82] | 1350 | ! CALL local_flush( 120+tn ) |
---|
[1] | 1351 | !CDIR NOLOOPCHG |
---|
| 1352 | DO k = 0, nz-1 |
---|
| 1353 | DO i = 0,nx |
---|
| 1354 | tri(2,i,k) = ddzu(k+1) * ddzw(k+1) |
---|
| 1355 | tri(3,i,k) = ddzu(k+2) * ddzw(k+1) |
---|
| 1356 | ENDDO |
---|
| 1357 | ENDDO |
---|
| 1358 | ! WRITE( 120+tn, * ) '+++ id=',myid,' end of first tridia loop thread=', omp_get_thread_num() |
---|
[82] | 1359 | ! CALL local_flush( 120+tn ) |
---|
[1] | 1360 | |
---|
| 1361 | IF ( j <= nnyh ) THEN |
---|
| 1362 | #if defined( __lcmuk ) |
---|
| 1363 | CALL maketri_1dd( j, tri ) |
---|
| 1364 | #else |
---|
| 1365 | CALL maketri_1dd( j ) |
---|
| 1366 | #endif |
---|
| 1367 | ELSE |
---|
| 1368 | #if defined( __lcmuk ) |
---|
| 1369 | CALL maketri_1dd( ny+1-j, tri ) |
---|
| 1370 | #else |
---|
| 1371 | CALL maketri_1dd( ny+1-j ) |
---|
| 1372 | #endif |
---|
| 1373 | ENDIF |
---|
| 1374 | #if defined( __lcmuk ) |
---|
| 1375 | CALL split_1dd( tri ) |
---|
| 1376 | #else |
---|
| 1377 | CALL split_1dd |
---|
| 1378 | #endif |
---|
| 1379 | CALL substi_1dd( ar, tri ) |
---|
| 1380 | |
---|
| 1381 | CONTAINS |
---|
| 1382 | |
---|
| 1383 | #if defined( __lcmuk ) |
---|
| 1384 | SUBROUTINE maketri_1dd( j, tri ) |
---|
| 1385 | #else |
---|
| 1386 | SUBROUTINE maketri_1dd( j ) |
---|
| 1387 | #endif |
---|
| 1388 | |
---|
| 1389 | !------------------------------------------------------------------------------! |
---|
| 1390 | ! computes the i- and j-dependent component of the matrix |
---|
| 1391 | !------------------------------------------------------------------------------! |
---|
| 1392 | |
---|
| 1393 | USE constants |
---|
| 1394 | |
---|
| 1395 | IMPLICIT NONE |
---|
| 1396 | |
---|
| 1397 | INTEGER :: i, j, k, nnxh |
---|
| 1398 | REAL :: a, c |
---|
| 1399 | |
---|
| 1400 | REAL, DIMENSION(0:nx) :: l |
---|
| 1401 | |
---|
| 1402 | #if defined( __lcmuk ) |
---|
| 1403 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri |
---|
| 1404 | #endif |
---|
| 1405 | |
---|
| 1406 | |
---|
| 1407 | nnxh = ( nx + 1 ) / 2 |
---|
| 1408 | ! |
---|
| 1409 | !-- Provide the tridiagonal matrix for solution of the Poisson equation in |
---|
| 1410 | !-- Fourier space. The coefficients are computed following the method of |
---|
| 1411 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 1412 | !-- Siano's original version by discretizing the Poisson equation, |
---|
| 1413 | !-- before it is Fourier-transformed |
---|
| 1414 | DO i = 0, nx |
---|
| 1415 | IF ( i >= 0 .AND. i < nnxh ) THEN |
---|
| 1416 | l(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * i ) / & |
---|
| 1417 | FLOAT( nx+1 ) ) ) * ddx2 + & |
---|
| 1418 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
| 1419 | FLOAT( ny+1 ) ) ) * ddy2 |
---|
| 1420 | ELSEIF ( i == nnxh ) THEN |
---|
| 1421 | l(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( nx+1-i ) ) / & |
---|
| 1422 | FLOAT( nx+1 ) ) ) * ddx2 + & |
---|
| 1423 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
| 1424 | FLOAT( ny+1 ) ) ) * ddy2 |
---|
| 1425 | ELSE |
---|
| 1426 | l(i) = 2.0 * ( 1.0 - COS( ( 2.0 * pi * ( nx+1-i ) ) / & |
---|
| 1427 | FLOAT( nx+1 ) ) ) * ddx2 + & |
---|
| 1428 | 2.0 * ( 1.0 - COS( ( 2.0 * pi * j ) / & |
---|
| 1429 | FLOAT( ny+1 ) ) ) * ddy2 |
---|
| 1430 | ENDIF |
---|
| 1431 | ENDDO |
---|
| 1432 | |
---|
| 1433 | DO k = 0, nz-1 |
---|
| 1434 | DO i = 0, nx |
---|
| 1435 | a = -1.0 * ddzu(k+2) * ddzw(k+1) |
---|
| 1436 | c = -1.0 * ddzu(k+1) * ddzw(k+1) |
---|
| 1437 | tri(1,i,k) = a + c - l(i) |
---|
| 1438 | ENDDO |
---|
| 1439 | ENDDO |
---|
| 1440 | IF ( ibc_p_b == 1 .OR. ibc_p_b == 2 ) THEN |
---|
| 1441 | DO i = 0, nx |
---|
| 1442 | tri(1,i,0) = tri(1,i,0) + tri(2,i,0) |
---|
| 1443 | ENDDO |
---|
| 1444 | ENDIF |
---|
| 1445 | IF ( ibc_p_t == 1 ) THEN |
---|
| 1446 | DO i = 0, nx |
---|
| 1447 | tri(1,i,nz-1) = tri(1,i,nz-1) + tri(3,i,nz-1) |
---|
| 1448 | ENDDO |
---|
| 1449 | ENDIF |
---|
| 1450 | |
---|
| 1451 | END SUBROUTINE maketri_1dd |
---|
| 1452 | |
---|
| 1453 | |
---|
| 1454 | #if defined( __lcmuk ) |
---|
| 1455 | SUBROUTINE split_1dd( tri ) |
---|
| 1456 | #else |
---|
| 1457 | SUBROUTINE split_1dd |
---|
| 1458 | #endif |
---|
| 1459 | |
---|
| 1460 | !------------------------------------------------------------------------------! |
---|
| 1461 | ! Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
| 1462 | !------------------------------------------------------------------------------! |
---|
| 1463 | |
---|
| 1464 | IMPLICIT NONE |
---|
| 1465 | |
---|
| 1466 | INTEGER :: i, k |
---|
| 1467 | |
---|
| 1468 | #if defined( __lcmuk ) |
---|
| 1469 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri |
---|
| 1470 | #endif |
---|
| 1471 | |
---|
| 1472 | |
---|
| 1473 | ! |
---|
| 1474 | !-- Splitting |
---|
| 1475 | DO i = 0, nx |
---|
| 1476 | tri(4,i,0) = tri(1,i,0) |
---|
| 1477 | ENDDO |
---|
| 1478 | DO k = 1, nz-1 |
---|
| 1479 | DO i = 0, nx |
---|
| 1480 | tri(5,i,k) = tri(2,i,k) / tri(4,i,k-1) |
---|
| 1481 | tri(4,i,k) = tri(1,i,k) - tri(3,i,k-1) * tri(5,i,k) |
---|
| 1482 | ENDDO |
---|
| 1483 | ENDDO |
---|
| 1484 | |
---|
| 1485 | END SUBROUTINE split_1dd |
---|
| 1486 | |
---|
| 1487 | |
---|
| 1488 | SUBROUTINE substi_1dd( ar, tri ) |
---|
| 1489 | |
---|
| 1490 | !------------------------------------------------------------------------------! |
---|
| 1491 | ! Substitution (Forward and Backward) (Thomas algorithm) |
---|
| 1492 | !------------------------------------------------------------------------------! |
---|
| 1493 | |
---|
| 1494 | IMPLICIT NONE |
---|
| 1495 | |
---|
[76] | 1496 | INTEGER :: i, k |
---|
[1] | 1497 | |
---|
| 1498 | REAL, DIMENSION(0:nx,nz) :: ar |
---|
| 1499 | REAL, DIMENSION(0:nx,0:nz-1) :: ar1 |
---|
| 1500 | REAL, DIMENSION(5,0:nx,0:nz-1) :: tri |
---|
| 1501 | |
---|
| 1502 | ! |
---|
| 1503 | !-- Forward substitution |
---|
| 1504 | DO i = 0, nx |
---|
| 1505 | ar1(i,0) = ar(i,1) |
---|
| 1506 | ENDDO |
---|
| 1507 | DO k = 1, nz-1 |
---|
| 1508 | DO i = 0, nx |
---|
| 1509 | ar1(i,k) = ar(i,k+1) - tri(5,i,k) * ar1(i,k-1) |
---|
| 1510 | ENDDO |
---|
| 1511 | ENDDO |
---|
| 1512 | |
---|
| 1513 | ! |
---|
| 1514 | !-- Backward substitution |
---|
| 1515 | DO i = 0, nx |
---|
| 1516 | ar(i,nz) = ar1(i,nz-1) / tri(4,i,nz-1) |
---|
| 1517 | ENDDO |
---|
| 1518 | DO k = nz-2, 0, -1 |
---|
| 1519 | DO i = 0, nx |
---|
| 1520 | ar(i,k+1) = ( ar1(i,k) - tri(3,i,k) * ar(i,k+2) ) & |
---|
| 1521 | / tri(4,i,k) |
---|
| 1522 | ENDDO |
---|
| 1523 | ENDDO |
---|
| 1524 | |
---|
[76] | 1525 | ! |
---|
| 1526 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 1527 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 1528 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 1529 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 1530 | IF ( j == 0 ) THEN |
---|
| 1531 | DO k = 1, nz |
---|
| 1532 | ar(0,k) = 0.0 |
---|
| 1533 | ENDDO |
---|
| 1534 | ENDIF |
---|
| 1535 | ENDIF |
---|
| 1536 | |
---|
[1] | 1537 | END SUBROUTINE substi_1dd |
---|
| 1538 | |
---|
| 1539 | END SUBROUTINE tridia_1dd |
---|
| 1540 | |
---|
| 1541 | #endif |
---|
| 1542 | |
---|
| 1543 | END MODULE poisfft_mod |
---|