1 | MODULE pmc_interface |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
7 | ! terms of the GNU General Public License as published by the Free Software |
---|
8 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
9 | ! version. |
---|
10 | ! |
---|
11 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
12 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
13 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
14 | ! |
---|
15 | ! You should have received a copy of the GNU General Public License along with |
---|
16 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
17 | ! |
---|
18 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
19 | !------------------------------------------------------------------------------! |
---|
20 | ! |
---|
21 | ! Current revisions: |
---|
22 | ! ------------------ |
---|
23 | ! |
---|
24 | ! |
---|
25 | ! Former revisions: |
---|
26 | ! ----------------- |
---|
27 | ! $Id: pmc_interface_mod.f90 2020 2016-09-30 13:40:59Z suehring $ |
---|
28 | ! |
---|
29 | ! 2019 2016-09-30 13:40:09Z hellstea |
---|
30 | ! Bugfixes mainly in determining the anterpolation index bounds. These errors |
---|
31 | ! were detected when first time tested using 3:1 grid-spacing. |
---|
32 | ! |
---|
33 | ! 2003 2016-08-24 10:22:32Z suehring |
---|
34 | ! Humidity and passive scalar also separated in nesting mode |
---|
35 | ! |
---|
36 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
37 | ! Forced header and separation lines into 80 columns |
---|
38 | ! |
---|
39 | ! 1938 2016-06-13 15:26:05Z hellstea |
---|
40 | ! Minor clean-up. |
---|
41 | ! |
---|
42 | ! 1901 2016-05-04 15:39:38Z raasch |
---|
43 | ! Initial version of purely vertical nesting introduced. |
---|
44 | ! Code clean up. The words server/client changed to parent/child. |
---|
45 | ! |
---|
46 | ! 1900 2016-05-04 15:27:53Z raasch |
---|
47 | ! unused variables removed |
---|
48 | ! |
---|
49 | ! 1894 2016-04-27 09:01:48Z raasch |
---|
50 | ! bugfix: pt interpolations are omitted in case that the temperature equation is |
---|
51 | ! switched off |
---|
52 | ! |
---|
53 | ! 1892 2016-04-26 13:49:47Z raasch |
---|
54 | ! bugfix: pt is not set as a data array in case that the temperature equation is |
---|
55 | ! switched off with neutral = .TRUE. |
---|
56 | ! |
---|
57 | ! 1882 2016-04-20 15:24:46Z hellstea |
---|
58 | ! The factor ijfc for nfc used in anterpolation is redefined as 2-D array |
---|
59 | ! and precomputed in pmci_init_anterp_tophat. |
---|
60 | ! |
---|
61 | ! 1878 2016-04-19 12:30:36Z hellstea |
---|
62 | ! Synchronization rewritten, logc-array index order changed for cache |
---|
63 | ! optimization |
---|
64 | ! |
---|
65 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
66 | ! Module renamed |
---|
67 | ! |
---|
68 | ! |
---|
69 | ! 1808 2016-04-05 19:44:00Z raasch |
---|
70 | ! MPI module used by default on all machines |
---|
71 | ! |
---|
72 | ! 1801 2016-04-05 13:12:47Z raasch |
---|
73 | ! bugfix for r1797: zero setting of temperature within topography does not work |
---|
74 | ! and has been disabled |
---|
75 | ! |
---|
76 | ! 1797 2016-03-21 16:50:28Z raasch |
---|
77 | ! introduction of different datatransfer modes, |
---|
78 | ! further formatting cleanup, parameter checks added (including mismatches |
---|
79 | ! between root and nest model settings), |
---|
80 | ! +routine pmci_check_setting_mismatches |
---|
81 | ! comm_world_nesting introduced |
---|
82 | ! |
---|
83 | ! 1791 2016-03-11 10:41:25Z raasch |
---|
84 | ! routine pmci_update_new removed, |
---|
85 | ! pmc_get_local_model_info renamed pmc_get_model_info, some keywords also |
---|
86 | ! renamed, |
---|
87 | ! filling up redundant ghost points introduced, |
---|
88 | ! some index bound variables renamed, |
---|
89 | ! further formatting cleanup |
---|
90 | ! |
---|
91 | ! 1783 2016-03-06 18:36:17Z raasch |
---|
92 | ! calculation of nest top area simplified, |
---|
93 | ! interpolation and anterpolation moved to seperate wrapper subroutines |
---|
94 | ! |
---|
95 | ! 1781 2016-03-03 15:12:23Z raasch |
---|
96 | ! _p arrays are set zero within buildings too, t.._m arrays and respective |
---|
97 | ! settings within buildings completely removed |
---|
98 | ! |
---|
99 | ! 1779 2016-03-03 08:01:28Z raasch |
---|
100 | ! only the total number of PEs is given for the domains, npe_x and npe_y |
---|
101 | ! replaced by npe_total, two unused elements removed from array |
---|
102 | ! define_coarse_grid_real, |
---|
103 | ! array management changed from linked list to sequential loop |
---|
104 | ! |
---|
105 | ! 1766 2016-02-29 08:37:15Z raasch |
---|
106 | ! modifications to allow for using PALM's pointer version, |
---|
107 | ! +new routine pmci_set_swaplevel |
---|
108 | ! |
---|
109 | ! 1764 2016-02-28 12:45:19Z raasch |
---|
110 | ! +cpl_parent_id, |
---|
111 | ! cpp-statements for nesting replaced by __parallel statements, |
---|
112 | ! errors output with message-subroutine, |
---|
113 | ! index bugfixes in pmci_interp_tril_all, |
---|
114 | ! some adjustments to PALM style |
---|
115 | ! |
---|
116 | ! 1762 2016-02-25 12:31:13Z hellstea |
---|
117 | ! Initial revision by A. Hellsten |
---|
118 | ! |
---|
119 | ! Description: |
---|
120 | ! ------------ |
---|
121 | ! Domain nesting interface routines. The low-level inter-domain communication |
---|
122 | ! is conducted by the PMC-library routines. |
---|
123 | !-------------------------------------------------------------------------------! |
---|
124 | |
---|
125 | #if defined( __nopointer ) |
---|
126 | USE arrays_3d, & |
---|
127 | ONLY: dzu, dzw, e, e_p, pt, pt_p, q, q_p, u, u_p, v, v_p, w, w_p, zu, & |
---|
128 | zw, z0 |
---|
129 | #else |
---|
130 | USE arrays_3d, & |
---|
131 | ONLY: dzu, dzw, e, e_p, e_1, e_2, pt, pt_p, pt_1, pt_2, q, q_p, q_1, & |
---|
132 | q_2, s, s_2, u, u_p, u_1, u_2, v, v_p, v_1, v_2, w, w_p, w_1, & |
---|
133 | w_2, zu, zw, z0 |
---|
134 | #endif |
---|
135 | |
---|
136 | USE control_parameters, & |
---|
137 | ONLY: coupling_char, dt_3d, dz, humidity, message_string, & |
---|
138 | nest_bound_l, nest_bound_r, nest_bound_s, nest_bound_n, & |
---|
139 | nest_domain, neutral, passive_scalar, simulated_time, & |
---|
140 | topography, volume_flow |
---|
141 | |
---|
142 | USE cpulog, & |
---|
143 | ONLY: cpu_log, log_point_s |
---|
144 | |
---|
145 | USE grid_variables, & |
---|
146 | ONLY: dx, dy |
---|
147 | |
---|
148 | USE indices, & |
---|
149 | ONLY: nbgp, nx, nxl, nxlg, nxlu, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
150 | nysv, nz, nzb, nzb_s_inner, nzb_u_inner, nzb_u_outer, & |
---|
151 | nzb_v_inner, nzb_v_outer, nzb_w_inner, nzb_w_outer, nzt |
---|
152 | |
---|
153 | USE kinds |
---|
154 | |
---|
155 | #if defined( __parallel ) |
---|
156 | #if defined( __mpifh ) |
---|
157 | INCLUDE "mpif.h" |
---|
158 | #else |
---|
159 | USE MPI |
---|
160 | #endif |
---|
161 | |
---|
162 | USE pegrid, & |
---|
163 | ONLY: collective_wait, comm1dx, comm1dy, comm2d, myid, myidx, myidy, & |
---|
164 | numprocs |
---|
165 | |
---|
166 | USE pmc_child, & |
---|
167 | ONLY: pmc_childinit, pmc_c_clear_next_array_list, & |
---|
168 | pmc_c_getnextarray, pmc_c_get_2d_index_list, pmc_c_getbuffer, & |
---|
169 | pmc_c_putbuffer, pmc_c_setind_and_allocmem, & |
---|
170 | pmc_c_set_dataarray, pmc_set_dataarray_name |
---|
171 | |
---|
172 | USE pmc_general, & |
---|
173 | ONLY: da_namelen |
---|
174 | |
---|
175 | USE pmc_handle_communicator, & |
---|
176 | ONLY: pmc_get_model_info, pmc_init_model, pmc_is_rootmodel, & |
---|
177 | pmc_no_namelist_found, pmc_parent_for_child |
---|
178 | |
---|
179 | USE pmc_mpi_wrapper, & |
---|
180 | ONLY: pmc_bcast, pmc_recv_from_child, pmc_recv_from_parent, & |
---|
181 | pmc_send_to_child, pmc_send_to_parent |
---|
182 | |
---|
183 | USE pmc_parent, & |
---|
184 | ONLY: pmc_parentinit, pmc_s_clear_next_array_list, pmc_s_fillbuffer, & |
---|
185 | pmc_s_getdata_from_buffer, pmc_s_getnextarray, & |
---|
186 | pmc_s_setind_and_allocmem, pmc_s_set_active_data_array, & |
---|
187 | pmc_s_set_dataarray, pmc_s_set_2d_index_list |
---|
188 | |
---|
189 | #endif |
---|
190 | |
---|
191 | IMPLICIT NONE |
---|
192 | |
---|
193 | PRIVATE |
---|
194 | |
---|
195 | ! |
---|
196 | !-- Constants |
---|
197 | INTEGER(iwp), PARAMETER :: child_to_parent = 2 !: |
---|
198 | INTEGER(iwp), PARAMETER :: parent_to_child = 1 !: |
---|
199 | |
---|
200 | ! |
---|
201 | !-- Coupler setup |
---|
202 | INTEGER(iwp), SAVE :: comm_world_nesting !: |
---|
203 | INTEGER(iwp), SAVE :: cpl_id = 1 !: |
---|
204 | CHARACTER(LEN=32), SAVE :: cpl_name !: |
---|
205 | INTEGER(iwp), SAVE :: cpl_npe_total !: |
---|
206 | INTEGER(iwp), SAVE :: cpl_parent_id !: |
---|
207 | |
---|
208 | ! |
---|
209 | !-- Control parameters, will be made input parameters later |
---|
210 | CHARACTER(LEN=7), SAVE :: nesting_datatransfer_mode = 'mixed' !: steering |
---|
211 | !: parameter for data- |
---|
212 | !: transfer mode |
---|
213 | CHARACTER(LEN=8), SAVE :: nesting_mode = 'two-way' !: steering parameter |
---|
214 | !: for 1- or 2-way nesting |
---|
215 | |
---|
216 | LOGICAL, SAVE :: nested_run = .FALSE. !: general switch |
---|
217 | |
---|
218 | REAL(wp), SAVE :: anterp_relax_length_l = -1.0_wp !: |
---|
219 | REAL(wp), SAVE :: anterp_relax_length_r = -1.0_wp !: |
---|
220 | REAL(wp), SAVE :: anterp_relax_length_s = -1.0_wp !: |
---|
221 | REAL(wp), SAVE :: anterp_relax_length_n = -1.0_wp !: |
---|
222 | REAL(wp), SAVE :: anterp_relax_length_t = -1.0_wp !: |
---|
223 | |
---|
224 | ! |
---|
225 | !-- Geometry |
---|
226 | REAL(wp), SAVE :: area_t !: |
---|
227 | REAL(wp), SAVE, DIMENSION(:), ALLOCATABLE :: coord_x !: |
---|
228 | REAL(wp), SAVE, DIMENSION(:), ALLOCATABLE :: coord_y !: |
---|
229 | REAL(wp), SAVE :: lower_left_coord_x !: |
---|
230 | REAL(wp), SAVE :: lower_left_coord_y !: |
---|
231 | |
---|
232 | ! |
---|
233 | !-- Child coarse data arrays |
---|
234 | INTEGER(iwp), DIMENSION(5) :: coarse_bound !: |
---|
235 | |
---|
236 | REAL(wp), SAVE :: xexl !: |
---|
237 | REAL(wp), SAVE :: xexr !: |
---|
238 | REAL(wp), SAVE :: yexs !: |
---|
239 | REAL(wp), SAVE :: yexn !: |
---|
240 | REAL(wp), SAVE, DIMENSION(:,:), ALLOCATABLE :: tkefactor_l !: |
---|
241 | REAL(wp), SAVE, DIMENSION(:,:), ALLOCATABLE :: tkefactor_n !: |
---|
242 | REAL(wp), SAVE, DIMENSION(:,:), ALLOCATABLE :: tkefactor_r !: |
---|
243 | REAL(wp), SAVE, DIMENSION(:,:), ALLOCATABLE :: tkefactor_s !: |
---|
244 | REAL(wp), SAVE, DIMENSION(:,:), ALLOCATABLE :: tkefactor_t !: |
---|
245 | |
---|
246 | REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET :: ec !: |
---|
247 | REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET :: ptc !: |
---|
248 | REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET :: uc !: |
---|
249 | REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET :: vc !: |
---|
250 | REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET :: wc !: |
---|
251 | REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET :: qc !: |
---|
252 | REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET :: sc !: |
---|
253 | |
---|
254 | ! |
---|
255 | !-- Child interpolation coefficients and child-array indices to be |
---|
256 | !-- precomputed and stored. |
---|
257 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: ico !: |
---|
258 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: icu !: |
---|
259 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: jco !: |
---|
260 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: jcv !: |
---|
261 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: kco !: |
---|
262 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: kcw !: |
---|
263 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:) :: r1xo !: |
---|
264 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:) :: r2xo !: |
---|
265 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:) :: r1xu !: |
---|
266 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:) :: r2xu !: |
---|
267 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:) :: r1yo !: |
---|
268 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:) :: r2yo !: |
---|
269 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:) :: r1yv !: |
---|
270 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:) :: r2yv !: |
---|
271 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:) :: r1zo !: |
---|
272 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:) :: r2zo !: |
---|
273 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:) :: r1zw !: |
---|
274 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:) :: r2zw !: |
---|
275 | |
---|
276 | ! |
---|
277 | !-- Child index arrays and log-ratio arrays for the log-law near-wall |
---|
278 | !-- corrections. These are not truly 3-D arrays but multiple 2-D arrays. |
---|
279 | INTEGER(iwp), SAVE :: ncorr !: 4th dimension of the log_ratio-arrays |
---|
280 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_u_l !: |
---|
281 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_u_n !: |
---|
282 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_u_r !: |
---|
283 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_u_s !: |
---|
284 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_v_l !: |
---|
285 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_v_n !: |
---|
286 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_v_r !: |
---|
287 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_v_s !: |
---|
288 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_w_l !: |
---|
289 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_w_n !: |
---|
290 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_w_r !: |
---|
291 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_w_s !: |
---|
292 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_u_l !: |
---|
293 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_u_n !: |
---|
294 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_u_r !: |
---|
295 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_u_s !: |
---|
296 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_v_l !: |
---|
297 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_v_n !: |
---|
298 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_v_r !: |
---|
299 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_v_s !: |
---|
300 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_w_l !: |
---|
301 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_w_n !: |
---|
302 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_w_r !: |
---|
303 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_w_s !: |
---|
304 | |
---|
305 | ! |
---|
306 | !-- Upper bounds for k in anterpolation. |
---|
307 | INTEGER(iwp), SAVE :: kctu !: |
---|
308 | INTEGER(iwp), SAVE :: kctw !: |
---|
309 | |
---|
310 | ! |
---|
311 | !-- Upper bound for k in log-law correction in interpolation. |
---|
312 | INTEGER(iwp), SAVE :: nzt_topo_nestbc_l !: |
---|
313 | INTEGER(iwp), SAVE :: nzt_topo_nestbc_n !: |
---|
314 | INTEGER(iwp), SAVE :: nzt_topo_nestbc_r !: |
---|
315 | INTEGER(iwp), SAVE :: nzt_topo_nestbc_s !: |
---|
316 | |
---|
317 | ! |
---|
318 | !-- Number of ghost nodes in coarse-grid arrays for i and j in anterpolation. |
---|
319 | INTEGER(iwp), SAVE :: nhll !: |
---|
320 | INTEGER(iwp), SAVE :: nhlr !: |
---|
321 | INTEGER(iwp), SAVE :: nhls !: |
---|
322 | INTEGER(iwp), SAVE :: nhln !: |
---|
323 | |
---|
324 | ! |
---|
325 | !-- Spatial under-relaxation coefficients for anterpolation. |
---|
326 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:) :: frax !: |
---|
327 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:) :: fray !: |
---|
328 | REAL(wp), SAVE, ALLOCATABLE, DIMENSION(:) :: fraz !: |
---|
329 | |
---|
330 | ! |
---|
331 | !-- Child-array indices to be precomputed and stored for anterpolation. |
---|
332 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: iflu !: |
---|
333 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: ifuu !: |
---|
334 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: iflo !: |
---|
335 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: ifuo !: |
---|
336 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: jflv !: |
---|
337 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: jfuv !: |
---|
338 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: jflo !: |
---|
339 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: jfuo !: |
---|
340 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: kflw !: |
---|
341 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: kfuw !: |
---|
342 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: kflo !: |
---|
343 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:) :: kfuo !: |
---|
344 | |
---|
345 | ! |
---|
346 | !-- Number of fine-grid nodes inside coarse-grid ij-faces |
---|
347 | !-- to be precomputed for anterpolation. |
---|
348 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:,:) :: ijfc_u !: |
---|
349 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:,:) :: ijfc_v !: |
---|
350 | INTEGER(iwp), SAVE, ALLOCATABLE, DIMENSION(:,:) :: ijfc_s !: |
---|
351 | |
---|
352 | INTEGER(iwp), DIMENSION(3) :: define_coarse_grid_int !: |
---|
353 | REAL(wp), DIMENSION(7) :: define_coarse_grid_real !: |
---|
354 | |
---|
355 | TYPE coarsegrid_def |
---|
356 | INTEGER(iwp) :: nx |
---|
357 | INTEGER(iwp) :: ny |
---|
358 | INTEGER(iwp) :: nz |
---|
359 | REAL(wp) :: dx |
---|
360 | REAL(wp) :: dy |
---|
361 | REAL(wp) :: dz |
---|
362 | REAL(wp) :: lower_left_coord_x |
---|
363 | REAL(wp) :: lower_left_coord_y |
---|
364 | REAL(wp) :: xend |
---|
365 | REAL(wp) :: yend |
---|
366 | REAL(wp), DIMENSION(:), ALLOCATABLE :: coord_x |
---|
367 | REAL(wp), DIMENSION(:), ALLOCATABLE :: coord_y |
---|
368 | REAL(wp), DIMENSION(:), ALLOCATABLE :: dzu |
---|
369 | REAL(wp), DIMENSION(:), ALLOCATABLE :: dzw |
---|
370 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zu |
---|
371 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zw |
---|
372 | END TYPE coarsegrid_def |
---|
373 | |
---|
374 | TYPE(coarsegrid_def), SAVE :: cg !: |
---|
375 | |
---|
376 | |
---|
377 | INTERFACE pmci_check_setting_mismatches |
---|
378 | MODULE PROCEDURE pmci_check_setting_mismatches |
---|
379 | END INTERFACE |
---|
380 | |
---|
381 | INTERFACE pmci_child_initialize |
---|
382 | MODULE PROCEDURE pmci_child_initialize |
---|
383 | END INTERFACE |
---|
384 | |
---|
385 | INTERFACE pmci_synchronize |
---|
386 | MODULE PROCEDURE pmci_synchronize |
---|
387 | END INTERFACE |
---|
388 | |
---|
389 | INTERFACE pmci_datatrans |
---|
390 | MODULE PROCEDURE pmci_datatrans |
---|
391 | END INTERFACE pmci_datatrans |
---|
392 | |
---|
393 | INTERFACE pmci_ensure_nest_mass_conservation |
---|
394 | MODULE PROCEDURE pmci_ensure_nest_mass_conservation |
---|
395 | END INTERFACE |
---|
396 | |
---|
397 | INTERFACE pmci_init |
---|
398 | MODULE PROCEDURE pmci_init |
---|
399 | END INTERFACE |
---|
400 | |
---|
401 | INTERFACE pmci_modelconfiguration |
---|
402 | MODULE PROCEDURE pmci_modelconfiguration |
---|
403 | END INTERFACE |
---|
404 | |
---|
405 | INTERFACE pmci_parent_initialize |
---|
406 | MODULE PROCEDURE pmci_parent_initialize |
---|
407 | END INTERFACE |
---|
408 | |
---|
409 | INTERFACE pmci_set_swaplevel |
---|
410 | MODULE PROCEDURE pmci_set_swaplevel |
---|
411 | END INTERFACE pmci_set_swaplevel |
---|
412 | |
---|
413 | PUBLIC anterp_relax_length_l, anterp_relax_length_r, & |
---|
414 | anterp_relax_length_s, anterp_relax_length_n, & |
---|
415 | anterp_relax_length_t, child_to_parent, comm_world_nesting, & |
---|
416 | cpl_id, nested_run, nesting_datatransfer_mode, nesting_mode, & |
---|
417 | parent_to_child |
---|
418 | PUBLIC pmci_child_initialize |
---|
419 | PUBLIC pmci_datatrans |
---|
420 | PUBLIC pmci_ensure_nest_mass_conservation |
---|
421 | PUBLIC pmci_init |
---|
422 | PUBLIC pmci_modelconfiguration |
---|
423 | PUBLIC pmci_parent_initialize |
---|
424 | PUBLIC pmci_synchronize |
---|
425 | PUBLIC pmci_set_swaplevel |
---|
426 | |
---|
427 | |
---|
428 | CONTAINS |
---|
429 | |
---|
430 | |
---|
431 | SUBROUTINE pmci_init( world_comm ) |
---|
432 | |
---|
433 | USE control_parameters, & |
---|
434 | ONLY: message_string |
---|
435 | |
---|
436 | IMPLICIT NONE |
---|
437 | |
---|
438 | INTEGER, INTENT(OUT) :: world_comm !: |
---|
439 | |
---|
440 | #if defined( __parallel ) |
---|
441 | |
---|
442 | INTEGER(iwp) :: ierr !: |
---|
443 | INTEGER(iwp) :: istat !: |
---|
444 | INTEGER(iwp) :: pmc_status !: |
---|
445 | |
---|
446 | |
---|
447 | CALL pmc_init_model( world_comm, nesting_datatransfer_mode, nesting_mode, & |
---|
448 | pmc_status ) |
---|
449 | |
---|
450 | IF ( pmc_status == pmc_no_namelist_found ) THEN |
---|
451 | ! |
---|
452 | !-- This is not a nested run |
---|
453 | world_comm = MPI_COMM_WORLD |
---|
454 | cpl_id = 1 |
---|
455 | cpl_name = "" |
---|
456 | |
---|
457 | RETURN |
---|
458 | |
---|
459 | ENDIF |
---|
460 | |
---|
461 | ! |
---|
462 | !-- Check steering parameter values |
---|
463 | IF ( TRIM( nesting_mode ) /= 'one-way' .AND. & |
---|
464 | TRIM( nesting_mode ) /= 'two-way' .AND. & |
---|
465 | TRIM( nesting_mode ) /= 'vertical' ) & |
---|
466 | THEN |
---|
467 | message_string = 'illegal nesting mode: ' // TRIM( nesting_mode ) |
---|
468 | CALL message( 'pmci_init', 'PA0417', 3, 2, 0, 6, 0 ) |
---|
469 | ENDIF |
---|
470 | |
---|
471 | IF ( TRIM( nesting_datatransfer_mode ) /= 'cascade' .AND. & |
---|
472 | TRIM( nesting_datatransfer_mode ) /= 'mixed' .AND. & |
---|
473 | TRIM( nesting_datatransfer_mode ) /= 'overlap' ) & |
---|
474 | THEN |
---|
475 | message_string = 'illegal nesting datatransfer mode: ' & |
---|
476 | // TRIM( nesting_datatransfer_mode ) |
---|
477 | CALL message( 'pmci_init', 'PA0418', 3, 2, 0, 6, 0 ) |
---|
478 | ENDIF |
---|
479 | |
---|
480 | ! |
---|
481 | !-- Set the general steering switch which tells PALM that its a nested run |
---|
482 | nested_run = .TRUE. |
---|
483 | |
---|
484 | ! |
---|
485 | !-- Get some variables required by the pmc-interface (and in some cases in the |
---|
486 | !-- PALM code out of the pmci) out of the pmc-core |
---|
487 | CALL pmc_get_model_info( comm_world_nesting = comm_world_nesting, & |
---|
488 | cpl_id = cpl_id, cpl_parent_id = cpl_parent_id, & |
---|
489 | cpl_name = cpl_name, npe_total = cpl_npe_total, & |
---|
490 | lower_left_x = lower_left_coord_x, & |
---|
491 | lower_left_y = lower_left_coord_y ) |
---|
492 | ! |
---|
493 | !-- Set the steering switch which tells the models that they are nested (of |
---|
494 | !-- course the root domain (cpl_id = 1) is not nested) |
---|
495 | IF ( cpl_id >= 2 ) THEN |
---|
496 | nest_domain = .TRUE. |
---|
497 | WRITE( coupling_char, '(A1,I2.2)') '_', cpl_id |
---|
498 | ENDIF |
---|
499 | |
---|
500 | ! |
---|
501 | !-- Message that communicators for nesting are initialized. |
---|
502 | !-- Attention: myid has been set at the end of pmc_init_model in order to |
---|
503 | !-- guarantee that only PE0 of the root domain does the output. |
---|
504 | CALL location_message( 'finished', .TRUE. ) |
---|
505 | ! |
---|
506 | !-- Reset myid to its default value |
---|
507 | myid = 0 |
---|
508 | #else |
---|
509 | ! |
---|
510 | !-- Nesting cannot be used in serial mode. cpl_id is set to root domain (1) |
---|
511 | !-- because no location messages would be generated otherwise. |
---|
512 | !-- world_comm is given a dummy value to avoid compiler warnings (INTENT(OUT) |
---|
513 | !-- should get an explicit value) |
---|
514 | cpl_id = 1 |
---|
515 | nested_run = .FALSE. |
---|
516 | world_comm = 1 |
---|
517 | #endif |
---|
518 | |
---|
519 | END SUBROUTINE pmci_init |
---|
520 | |
---|
521 | |
---|
522 | |
---|
523 | SUBROUTINE pmci_modelconfiguration |
---|
524 | |
---|
525 | IMPLICIT NONE |
---|
526 | |
---|
527 | CALL location_message( 'setup the nested model configuration', .FALSE. ) |
---|
528 | ! |
---|
529 | !-- Compute absolute coordinates for all models |
---|
530 | CALL pmci_setup_coordinates |
---|
531 | ! |
---|
532 | !-- Initialize the child (must be called before pmc_setup_parent) |
---|
533 | CALL pmci_setup_child |
---|
534 | ! |
---|
535 | !-- Initialize PMC parent |
---|
536 | CALL pmci_setup_parent |
---|
537 | ! |
---|
538 | !-- Check for mismatches between settings of master and child variables |
---|
539 | !-- (e.g., all children have to follow the end_time settings of the root master) |
---|
540 | CALL pmci_check_setting_mismatches |
---|
541 | |
---|
542 | CALL location_message( 'finished', .TRUE. ) |
---|
543 | |
---|
544 | END SUBROUTINE pmci_modelconfiguration |
---|
545 | |
---|
546 | |
---|
547 | |
---|
548 | SUBROUTINE pmci_setup_parent |
---|
549 | |
---|
550 | #if defined( __parallel ) |
---|
551 | IMPLICIT NONE |
---|
552 | |
---|
553 | CHARACTER(LEN=32) :: myname |
---|
554 | |
---|
555 | INTEGER(iwp) :: child_id !: |
---|
556 | INTEGER(iwp) :: ierr !: |
---|
557 | INTEGER(iwp) :: i !: |
---|
558 | INTEGER(iwp) :: j !: |
---|
559 | INTEGER(iwp) :: k !: |
---|
560 | INTEGER(iwp) :: m !: |
---|
561 | INTEGER(iwp) :: mm !: |
---|
562 | INTEGER(iwp) :: nest_overlap !: |
---|
563 | INTEGER(iwp) :: nomatch !: |
---|
564 | INTEGER(iwp) :: nx_cl !: |
---|
565 | INTEGER(iwp) :: ny_cl !: |
---|
566 | INTEGER(iwp) :: nz_cl !: |
---|
567 | |
---|
568 | INTEGER(iwp), DIMENSION(5) :: val !: |
---|
569 | |
---|
570 | |
---|
571 | REAL(wp), DIMENSION(:), ALLOCATABLE :: ch_xl !: |
---|
572 | REAL(wp), DIMENSION(:), ALLOCATABLE :: ch_xr !: |
---|
573 | REAL(wp), DIMENSION(:), ALLOCATABLE :: ch_ys !: |
---|
574 | REAL(wp), DIMENSION(:), ALLOCATABLE :: ch_yn !: |
---|
575 | REAL(wp) :: dx_cl !: |
---|
576 | REAL(wp) :: dy_cl !: |
---|
577 | REAL(wp) :: left_limit !: |
---|
578 | REAL(wp) :: north_limit !: |
---|
579 | REAL(wp) :: right_limit !: |
---|
580 | REAL(wp) :: south_limit !: |
---|
581 | REAL(wp) :: xez !: |
---|
582 | REAL(wp) :: yez !: |
---|
583 | |
---|
584 | REAL(wp), DIMENSION(1) :: fval !: |
---|
585 | |
---|
586 | REAL(wp), DIMENSION(:), ALLOCATABLE :: cl_coord_x !: |
---|
587 | REAL(wp), DIMENSION(:), ALLOCATABLE :: cl_coord_y !: |
---|
588 | |
---|
589 | |
---|
590 | ! |
---|
591 | ! Initialize the pmc parent |
---|
592 | CALL pmc_parentinit |
---|
593 | |
---|
594 | ! |
---|
595 | !-- Corners of all children of the present parent |
---|
596 | IF ( ( SIZE( pmc_parent_for_child ) - 1 > 0 ) .AND. myid == 0 ) THEN |
---|
597 | ALLOCATE( ch_xl(1:SIZE( pmc_parent_for_child ) - 1) ) |
---|
598 | ALLOCATE( ch_xr(1:SIZE( pmc_parent_for_child ) - 1) ) |
---|
599 | ALLOCATE( ch_ys(1:SIZE( pmc_parent_for_child ) - 1) ) |
---|
600 | ALLOCATE( ch_yn(1:SIZE( pmc_parent_for_child ) - 1) ) |
---|
601 | ENDIF |
---|
602 | |
---|
603 | ! |
---|
604 | !-- Get coordinates from all children |
---|
605 | DO m = 1, SIZE( pmc_parent_for_child ) - 1 |
---|
606 | |
---|
607 | child_id = pmc_parent_for_child(m) |
---|
608 | IF ( myid == 0 ) THEN |
---|
609 | |
---|
610 | CALL pmc_recv_from_child( child_id, val, size(val), 0, 123, ierr ) |
---|
611 | CALL pmc_recv_from_child( child_id, fval, size(fval), 0, 124, ierr ) |
---|
612 | |
---|
613 | nx_cl = val(1) |
---|
614 | ny_cl = val(2) |
---|
615 | dx_cl = val(4) |
---|
616 | dy_cl = val(5) |
---|
617 | |
---|
618 | nz_cl = nz |
---|
619 | |
---|
620 | ! |
---|
621 | !-- Find the highest nest level in the coarse grid for the reduced z |
---|
622 | !-- transfer |
---|
623 | DO k = 1, nz |
---|
624 | IF ( zw(k) > fval(1) ) THEN |
---|
625 | nz_cl = k |
---|
626 | EXIT |
---|
627 | ENDIF |
---|
628 | ENDDO |
---|
629 | |
---|
630 | ! |
---|
631 | !-- Get absolute coordinates from the child |
---|
632 | ALLOCATE( cl_coord_x(-nbgp:nx_cl+nbgp) ) |
---|
633 | ALLOCATE( cl_coord_y(-nbgp:ny_cl+nbgp) ) |
---|
634 | |
---|
635 | CALL pmc_recv_from_child( child_id, cl_coord_x, SIZE( cl_coord_x ), & |
---|
636 | 0, 11, ierr ) |
---|
637 | CALL pmc_recv_from_child( child_id, cl_coord_y, SIZE( cl_coord_y ), & |
---|
638 | 0, 12, ierr ) |
---|
639 | ! WRITE ( 0, * ) 'receive from pmc child ', child_id, nx_cl, ny_cl |
---|
640 | |
---|
641 | define_coarse_grid_real(1) = lower_left_coord_x |
---|
642 | define_coarse_grid_real(2) = lower_left_coord_y |
---|
643 | define_coarse_grid_real(3) = dx |
---|
644 | define_coarse_grid_real(4) = dy |
---|
645 | define_coarse_grid_real(5) = lower_left_coord_x + ( nx + 1 ) * dx |
---|
646 | define_coarse_grid_real(6) = lower_left_coord_y + ( ny + 1 ) * dy |
---|
647 | define_coarse_grid_real(7) = dz |
---|
648 | |
---|
649 | define_coarse_grid_int(1) = nx |
---|
650 | define_coarse_grid_int(2) = ny |
---|
651 | define_coarse_grid_int(3) = nz_cl |
---|
652 | |
---|
653 | ! |
---|
654 | !-- Check that the child domain matches parent domain. |
---|
655 | nomatch = 0 |
---|
656 | IF ( nesting_mode == 'vertical' ) THEN |
---|
657 | right_limit = define_coarse_grid_real(5) |
---|
658 | north_limit = define_coarse_grid_real(6) |
---|
659 | IF ( ( cl_coord_x(nx_cl+1) /= right_limit ) .OR. & |
---|
660 | ( cl_coord_y(ny_cl+1) /= north_limit ) ) THEN |
---|
661 | nomatch = 1 |
---|
662 | ENDIF |
---|
663 | ELSE |
---|
664 | |
---|
665 | ! |
---|
666 | !-- Check that the children domain is completely inside the parent domain. |
---|
667 | xez = ( nbgp + 1 ) * dx |
---|
668 | yez = ( nbgp + 1 ) * dy |
---|
669 | left_limit = lower_left_coord_x + xez |
---|
670 | right_limit = define_coarse_grid_real(5) - xez |
---|
671 | south_limit = lower_left_coord_y + yez |
---|
672 | north_limit = define_coarse_grid_real(6) - yez |
---|
673 | IF ( ( cl_coord_x(0) < left_limit ) .OR. & |
---|
674 | ( cl_coord_x(nx_cl+1) > right_limit ) .OR. & |
---|
675 | ( cl_coord_y(0) < south_limit ) .OR. & |
---|
676 | ( cl_coord_y(ny_cl+1) > north_limit ) ) THEN |
---|
677 | nomatch = 1 |
---|
678 | ENDIF |
---|
679 | ENDIF |
---|
680 | |
---|
681 | ! |
---|
682 | !-- Check that parallel nest domains, if any, do not overlap. |
---|
683 | nest_overlap = 0 |
---|
684 | IF ( SIZE( pmc_parent_for_child ) - 1 > 0 ) THEN |
---|
685 | ch_xl(m) = cl_coord_x(-nbgp) |
---|
686 | ch_xr(m) = cl_coord_x(nx_cl+nbgp) |
---|
687 | ch_ys(m) = cl_coord_y(-nbgp) |
---|
688 | ch_yn(m) = cl_coord_y(ny_cl+nbgp) |
---|
689 | |
---|
690 | IF ( m > 1 ) THEN |
---|
691 | DO mm = 1, m-1 |
---|
692 | IF ( ( ch_xl(m) < ch_xr(mm) .OR. & |
---|
693 | ch_xr(m) > ch_xl(mm) ) .AND. & |
---|
694 | ( ch_ys(m) < ch_yn(mm) .OR. & |
---|
695 | ch_yn(m) > ch_ys(mm) ) ) THEN |
---|
696 | nest_overlap = 1 |
---|
697 | ENDIF |
---|
698 | ENDDO |
---|
699 | ENDIF |
---|
700 | ENDIF |
---|
701 | |
---|
702 | DEALLOCATE( cl_coord_x ) |
---|
703 | DEALLOCATE( cl_coord_y ) |
---|
704 | |
---|
705 | ! |
---|
706 | !-- Send coarse grid information to child |
---|
707 | CALL pmc_send_to_child( child_id, define_coarse_grid_real, & |
---|
708 | SIZE( define_coarse_grid_real ), 0, 21, & |
---|
709 | ierr ) |
---|
710 | CALL pmc_send_to_child( child_id, define_coarse_grid_int, 3, 0, & |
---|
711 | 22, ierr ) |
---|
712 | |
---|
713 | ! |
---|
714 | !-- Send local grid to child |
---|
715 | CALL pmc_send_to_child( child_id, coord_x, nx+1+2*nbgp, 0, 24, & |
---|
716 | ierr ) |
---|
717 | CALL pmc_send_to_child( child_id, coord_y, ny+1+2*nbgp, 0, 25, & |
---|
718 | ierr ) |
---|
719 | |
---|
720 | ! |
---|
721 | !-- Also send the dzu-, dzw-, zu- and zw-arrays here |
---|
722 | CALL pmc_send_to_child( child_id, dzu, nz_cl+1, 0, 26, ierr ) |
---|
723 | CALL pmc_send_to_child( child_id, dzw, nz_cl+1, 0, 27, ierr ) |
---|
724 | CALL pmc_send_to_child( child_id, zu, nz_cl+2, 0, 28, ierr ) |
---|
725 | CALL pmc_send_to_child( child_id, zw, nz_cl+2, 0, 29, ierr ) |
---|
726 | |
---|
727 | ENDIF |
---|
728 | |
---|
729 | CALL MPI_BCAST( nomatch, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
730 | IF ( nomatch /= 0 ) THEN |
---|
731 | WRITE ( message_string, * ) 'nested child domain does ', & |
---|
732 | 'not fit into its parent domain' |
---|
733 | CALL message( 'pmci_setup_parent', 'PA0425', 3, 2, 0, 6, 0 ) |
---|
734 | ENDIF |
---|
735 | |
---|
736 | CALL MPI_BCAST( nest_overlap, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
737 | IF ( nest_overlap /= 0 ) THEN |
---|
738 | WRITE ( message_string, * ) 'nested parallel child domains overlap' |
---|
739 | CALL message( 'pmci_setup_parent', 'PA0426', 3, 2, 0, 6, 0 ) |
---|
740 | ENDIF |
---|
741 | |
---|
742 | CALL MPI_BCAST( nz_cl, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
743 | |
---|
744 | ! |
---|
745 | !-- TO_DO: Klaus: please give a comment what is done here |
---|
746 | CALL pmci_create_index_list |
---|
747 | |
---|
748 | ! |
---|
749 | !-- Include couple arrays into parent content |
---|
750 | !-- TO_DO: Klaus: please give a more meaningful comment |
---|
751 | CALL pmc_s_clear_next_array_list |
---|
752 | DO WHILE ( pmc_s_getnextarray( child_id, myname ) ) |
---|
753 | CALL pmci_set_array_pointer( myname, child_id = child_id, & |
---|
754 | nz_cl = nz_cl ) |
---|
755 | ENDDO |
---|
756 | CALL pmc_s_setind_and_allocmem( child_id ) |
---|
757 | ENDDO |
---|
758 | |
---|
759 | IF ( ( SIZE( pmc_parent_for_child ) - 1 > 0 ) .AND. myid == 0 ) THEN |
---|
760 | DEALLOCATE( ch_xl ) |
---|
761 | DEALLOCATE( ch_xr ) |
---|
762 | DEALLOCATE( ch_ys ) |
---|
763 | DEALLOCATE( ch_yn ) |
---|
764 | ENDIF |
---|
765 | |
---|
766 | CONTAINS |
---|
767 | |
---|
768 | |
---|
769 | SUBROUTINE pmci_create_index_list |
---|
770 | |
---|
771 | IMPLICIT NONE |
---|
772 | |
---|
773 | INTEGER(iwp) :: i !: |
---|
774 | INTEGER(iwp) :: ic !: |
---|
775 | INTEGER(iwp) :: ierr !: |
---|
776 | INTEGER(iwp) :: j !: |
---|
777 | INTEGER(iwp) :: k !: |
---|
778 | INTEGER(iwp) :: m !: |
---|
779 | INTEGER(iwp) :: n !: |
---|
780 | INTEGER(iwp) :: npx !: |
---|
781 | INTEGER(iwp) :: npy !: |
---|
782 | INTEGER(iwp) :: nrx !: |
---|
783 | INTEGER(iwp) :: nry !: |
---|
784 | INTEGER(iwp) :: px !: |
---|
785 | INTEGER(iwp) :: py !: |
---|
786 | INTEGER(iwp) :: parent_pe !: |
---|
787 | |
---|
788 | INTEGER(iwp), DIMENSION(2) :: scoord !: |
---|
789 | INTEGER(iwp), DIMENSION(2) :: size_of_array !: |
---|
790 | |
---|
791 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: coarse_bound_all !: |
---|
792 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: index_list !: |
---|
793 | |
---|
794 | IF ( myid == 0 ) THEN |
---|
795 | !-- TO_DO: Klaus: give more specific comment what size_of_array stands for |
---|
796 | CALL pmc_recv_from_child( child_id, size_of_array, 2, 0, 40, ierr ) |
---|
797 | ALLOCATE( coarse_bound_all(size_of_array(1),size_of_array(2)) ) |
---|
798 | CALL pmc_recv_from_child( child_id, coarse_bound_all, & |
---|
799 | SIZE( coarse_bound_all ), 0, 41, ierr ) |
---|
800 | |
---|
801 | ! |
---|
802 | !-- Compute size of index_list. |
---|
803 | ic = 0 |
---|
804 | DO k = 1, size_of_array(2) |
---|
805 | DO j = coarse_bound_all(3,k), coarse_bound_all(4,k) |
---|
806 | DO i = coarse_bound_all(1,k), coarse_bound_all(2,k) |
---|
807 | ic = ic + 1 |
---|
808 | ENDDO |
---|
809 | ENDDO |
---|
810 | ENDDO |
---|
811 | |
---|
812 | ALLOCATE( index_list(6,ic) ) |
---|
813 | |
---|
814 | CALL MPI_COMM_SIZE( comm1dx, npx, ierr ) |
---|
815 | CALL MPI_COMM_SIZE( comm1dy, npy, ierr ) |
---|
816 | ! |
---|
817 | !-- The +1 in index is because PALM starts with nx=0 |
---|
818 | nrx = nxr - nxl + 1 |
---|
819 | nry = nyn - nys + 1 |
---|
820 | ic = 0 |
---|
821 | ! |
---|
822 | !-- Loop over all children PEs |
---|
823 | DO k = 1, size_of_array(2) |
---|
824 | ! |
---|
825 | !-- Area along y required by actual child PE |
---|
826 | DO j = coarse_bound_all(3,k), coarse_bound_all(4,k) |
---|
827 | ! |
---|
828 | !-- Area along x required by actual child PE |
---|
829 | DO i = coarse_bound_all(1,k), coarse_bound_all(2,k) |
---|
830 | |
---|
831 | px = i / nrx |
---|
832 | py = j / nry |
---|
833 | scoord(1) = px |
---|
834 | scoord(2) = py |
---|
835 | CALL MPI_CART_RANK( comm2d, scoord, parent_pe, ierr ) |
---|
836 | |
---|
837 | ic = ic + 1 |
---|
838 | ! |
---|
839 | !-- First index in parent array |
---|
840 | index_list(1,ic) = i - ( px * nrx ) + 1 + nbgp |
---|
841 | ! |
---|
842 | !-- Second index in parent array |
---|
843 | index_list(2,ic) = j - ( py * nry ) + 1 + nbgp |
---|
844 | ! |
---|
845 | !-- x index of child coarse grid |
---|
846 | index_list(3,ic) = i - coarse_bound_all(1,k) + 1 |
---|
847 | ! |
---|
848 | !-- y index of child coarse grid |
---|
849 | index_list(4,ic) = j - coarse_bound_all(3,k) + 1 |
---|
850 | ! |
---|
851 | !-- PE number of child |
---|
852 | index_list(5,ic) = k - 1 |
---|
853 | ! |
---|
854 | !-- PE number of parent |
---|
855 | index_list(6,ic) = parent_pe |
---|
856 | |
---|
857 | ENDDO |
---|
858 | ENDDO |
---|
859 | ENDDO |
---|
860 | ! |
---|
861 | !-- TO_DO: Klaus: comment what is done here |
---|
862 | CALL pmc_s_set_2d_index_list( child_id, index_list(:,1:ic) ) |
---|
863 | |
---|
864 | ELSE |
---|
865 | ! |
---|
866 | !-- TO_DO: Klaus: comment why this dummy allocation is required |
---|
867 | ALLOCATE( index_list(6,1) ) |
---|
868 | CALL pmc_s_set_2d_index_list( child_id, index_list ) |
---|
869 | ENDIF |
---|
870 | |
---|
871 | DEALLOCATE(index_list) |
---|
872 | |
---|
873 | END SUBROUTINE pmci_create_index_list |
---|
874 | |
---|
875 | #endif |
---|
876 | END SUBROUTINE pmci_setup_parent |
---|
877 | |
---|
878 | |
---|
879 | |
---|
880 | SUBROUTINE pmci_setup_child |
---|
881 | |
---|
882 | #if defined( __parallel ) |
---|
883 | IMPLICIT NONE |
---|
884 | |
---|
885 | CHARACTER(LEN=da_namelen) :: myname !: |
---|
886 | |
---|
887 | INTEGER(iwp) :: i !: |
---|
888 | INTEGER(iwp) :: ierr !: |
---|
889 | INTEGER(iwp) :: icl !: |
---|
890 | INTEGER(iwp) :: icr !: |
---|
891 | INTEGER(iwp) :: j !: |
---|
892 | INTEGER(iwp) :: jcn !: |
---|
893 | INTEGER(iwp) :: jcs !: |
---|
894 | |
---|
895 | INTEGER(iwp), DIMENSION(5) :: val !: |
---|
896 | |
---|
897 | REAL(wp) :: xcs !: |
---|
898 | REAL(wp) :: xce !: |
---|
899 | REAL(wp) :: ycs !: |
---|
900 | REAL(wp) :: yce !: |
---|
901 | |
---|
902 | REAL(wp), DIMENSION(1) :: fval !: |
---|
903 | |
---|
904 | ! |
---|
905 | !-- TO_DO: describe what is happening in this if-clause |
---|
906 | !-- Root model does not have a parent and is not a child |
---|
907 | IF ( .NOT. pmc_is_rootmodel() ) THEN |
---|
908 | |
---|
909 | CALL pmc_childinit |
---|
910 | ! |
---|
911 | !-- Here AND ONLY HERE the arrays are defined, which actualy will be |
---|
912 | !-- exchanged between child and parent. |
---|
913 | !-- If a variable is removed, it only has to be removed from here. |
---|
914 | !-- Please check, if the arrays are in the list of POSSIBLE exchange arrays |
---|
915 | !-- in subroutines: |
---|
916 | !-- pmci_set_array_pointer (for parent arrays) |
---|
917 | !-- pmci_create_child_arrays (for child arrays) |
---|
918 | CALL pmc_set_dataarray_name( 'coarse', 'u' ,'fine', 'u', ierr ) |
---|
919 | CALL pmc_set_dataarray_name( 'coarse', 'v' ,'fine', 'v', ierr ) |
---|
920 | CALL pmc_set_dataarray_name( 'coarse', 'w' ,'fine', 'w', ierr ) |
---|
921 | CALL pmc_set_dataarray_name( 'coarse', 'e' ,'fine', 'e', ierr ) |
---|
922 | IF ( .NOT. neutral ) THEN |
---|
923 | CALL pmc_set_dataarray_name( 'coarse', 'pt' ,'fine', 'pt', ierr ) |
---|
924 | ENDIF |
---|
925 | IF ( humidity ) THEN |
---|
926 | CALL pmc_set_dataarray_name( 'coarse', 'q' ,'fine', 'q', ierr ) |
---|
927 | ENDIF |
---|
928 | IF ( passive_scalar ) THEN |
---|
929 | CALL pmc_set_dataarray_name( 'coarse', 's' ,'fine', 's', ierr ) |
---|
930 | ENDIF |
---|
931 | |
---|
932 | CALL pmc_set_dataarray_name( lastentry = .TRUE. ) |
---|
933 | |
---|
934 | ! |
---|
935 | !-- Send grid to parent |
---|
936 | val(1) = nx |
---|
937 | val(2) = ny |
---|
938 | val(3) = nz |
---|
939 | val(4) = dx |
---|
940 | val(5) = dy |
---|
941 | fval(1) = zw(nzt+1) |
---|
942 | |
---|
943 | IF ( myid == 0 ) THEN |
---|
944 | |
---|
945 | CALL pmc_send_to_parent( val, SIZE( val ), 0, 123, ierr ) |
---|
946 | CALL pmc_send_to_parent( fval, SIZE( fval ), 0, 124, ierr ) |
---|
947 | CALL pmc_send_to_parent( coord_x, nx + 1 + 2 * nbgp, 0, 11, ierr ) |
---|
948 | CALL pmc_send_to_parent( coord_y, ny + 1 + 2 * nbgp, 0, 12, ierr ) |
---|
949 | |
---|
950 | ! |
---|
951 | !-- Receive Coarse grid information. |
---|
952 | !-- TO_DO: find shorter and more meaningful name for define_coarse_grid_real |
---|
953 | CALL pmc_recv_from_parent( define_coarse_grid_real, & |
---|
954 | SIZE(define_coarse_grid_real), 0, 21, ierr ) |
---|
955 | CALL pmc_recv_from_parent( define_coarse_grid_int, 3, 0, 22, ierr ) |
---|
956 | ! |
---|
957 | !-- Debug-printouts - keep them |
---|
958 | ! WRITE(0,*) 'Coarse grid from parent ' |
---|
959 | ! WRITE(0,*) 'startx_tot = ',define_coarse_grid_real(1) |
---|
960 | ! WRITE(0,*) 'starty_tot = ',define_coarse_grid_real(2) |
---|
961 | ! WRITE(0,*) 'endx_tot = ',define_coarse_grid_real(5) |
---|
962 | ! WRITE(0,*) 'endy_tot = ',define_coarse_grid_real(6) |
---|
963 | ! WRITE(0,*) 'dx = ',define_coarse_grid_real(3) |
---|
964 | ! WRITE(0,*) 'dy = ',define_coarse_grid_real(4) |
---|
965 | ! WRITE(0,*) 'dz = ',define_coarse_grid_real(7) |
---|
966 | ! WRITE(0,*) 'nx_coarse = ',define_coarse_grid_int(1) |
---|
967 | ! WRITE(0,*) 'ny_coarse = ',define_coarse_grid_int(2) |
---|
968 | ! WRITE(0,*) 'nz_coarse = ',define_coarse_grid_int(3) |
---|
969 | ENDIF |
---|
970 | |
---|
971 | CALL MPI_BCAST( define_coarse_grid_real, SIZE(define_coarse_grid_real), & |
---|
972 | MPI_REAL, 0, comm2d, ierr ) |
---|
973 | CALL MPI_BCAST( define_coarse_grid_int, 3, MPI_INTEGER, 0, comm2d, ierr ) |
---|
974 | |
---|
975 | cg%dx = define_coarse_grid_real(3) |
---|
976 | cg%dy = define_coarse_grid_real(4) |
---|
977 | cg%dz = define_coarse_grid_real(7) |
---|
978 | cg%nx = define_coarse_grid_int(1) |
---|
979 | cg%ny = define_coarse_grid_int(2) |
---|
980 | cg%nz = define_coarse_grid_int(3) |
---|
981 | |
---|
982 | ! |
---|
983 | !-- Get parent coordinates on coarse grid |
---|
984 | ALLOCATE( cg%coord_x(-nbgp:cg%nx+nbgp) ) |
---|
985 | ALLOCATE( cg%coord_y(-nbgp:cg%ny+nbgp) ) |
---|
986 | |
---|
987 | ALLOCATE( cg%dzu(1:cg%nz+1) ) |
---|
988 | ALLOCATE( cg%dzw(1:cg%nz+1) ) |
---|
989 | ALLOCATE( cg%zu(0:cg%nz+1) ) |
---|
990 | ALLOCATE( cg%zw(0:cg%nz+1) ) |
---|
991 | |
---|
992 | ! |
---|
993 | !-- Get coarse grid coordinates and values of the z-direction from the parent |
---|
994 | IF ( myid == 0) THEN |
---|
995 | |
---|
996 | CALL pmc_recv_from_parent( cg%coord_x, cg%nx+1+2*nbgp, 0, 24, ierr ) |
---|
997 | CALL pmc_recv_from_parent( cg%coord_y, cg%ny+1+2*nbgp, 0, 25, ierr ) |
---|
998 | CALL pmc_recv_from_parent( cg%dzu, cg%nz + 1, 0, 26, ierr ) |
---|
999 | CALL pmc_recv_from_parent( cg%dzw, cg%nz + 1, 0, 27, ierr ) |
---|
1000 | CALL pmc_recv_from_parent( cg%zu, cg%nz + 2, 0, 28, ierr ) |
---|
1001 | CALL pmc_recv_from_parent( cg%zw, cg%nz + 2, 0, 29, ierr ) |
---|
1002 | |
---|
1003 | ENDIF |
---|
1004 | |
---|
1005 | ! |
---|
1006 | !-- Broadcast this information |
---|
1007 | CALL MPI_BCAST( cg%coord_x, cg%nx+1+2*nbgp, MPI_REAL, 0, comm2d, ierr ) |
---|
1008 | CALL MPI_BCAST( cg%coord_y, cg%ny+1+2*nbgp, MPI_REAL, 0, comm2d, ierr ) |
---|
1009 | CALL MPI_BCAST( cg%dzu, cg%nz+1, MPI_REAL, 0, comm2d, ierr ) |
---|
1010 | CALL MPI_BCAST( cg%dzw, cg%nz+1, MPI_REAL, 0, comm2d, ierr ) |
---|
1011 | CALL MPI_BCAST( cg%zu, cg%nz+2, MPI_REAL, 0, comm2d, ierr ) |
---|
1012 | CALL MPI_BCAST( cg%zw, cg%nz+2, MPI_REAL, 0, comm2d, ierr ) |
---|
1013 | |
---|
1014 | ! |
---|
1015 | !-- Find the index bounds for the nest domain in the coarse-grid index space |
---|
1016 | CALL pmci_map_fine_to_coarse_grid |
---|
1017 | ! |
---|
1018 | !-- TO_DO: Klaus give a comment what is happening here |
---|
1019 | CALL pmc_c_get_2d_index_list |
---|
1020 | |
---|
1021 | ! |
---|
1022 | !-- Include couple arrays into child content |
---|
1023 | !-- TO_DO: Klaus: better explain the above comment (what is child content?) |
---|
1024 | CALL pmc_c_clear_next_array_list |
---|
1025 | DO WHILE ( pmc_c_getnextarray( myname ) ) |
---|
1026 | !-- TO_DO: Klaus, why the child-arrays are still up to cg%nz?? |
---|
1027 | CALL pmci_create_child_arrays ( myname, icl, icr, jcs, jcn, cg%nz ) |
---|
1028 | ENDDO |
---|
1029 | CALL pmc_c_setind_and_allocmem |
---|
1030 | |
---|
1031 | ! |
---|
1032 | !-- Precompute interpolation coefficients and child-array indices |
---|
1033 | CALL pmci_init_interp_tril |
---|
1034 | |
---|
1035 | ! |
---|
1036 | !-- Precompute the log-law correction index- and ratio-arrays |
---|
1037 | CALL pmci_init_loglaw_correction |
---|
1038 | |
---|
1039 | ! |
---|
1040 | !-- Define the SGS-TKE scaling factor based on the grid-spacing ratio |
---|
1041 | CALL pmci_init_tkefactor |
---|
1042 | |
---|
1043 | ! |
---|
1044 | !-- Two-way coupling for general and vertical nesting. |
---|
1045 | !-- Precompute the index arrays and relaxation functions for the |
---|
1046 | !-- anterpolation |
---|
1047 | IF ( TRIM( nesting_mode ) == 'two-way' .OR. & |
---|
1048 | nesting_mode == 'vertical' ) THEN |
---|
1049 | CALL pmci_init_anterp_tophat |
---|
1050 | ENDIF |
---|
1051 | |
---|
1052 | ! |
---|
1053 | !-- Finally, compute the total area of the top-boundary face of the domain. |
---|
1054 | !-- This is needed in the pmc_ensure_nest_mass_conservation |
---|
1055 | area_t = ( nx + 1 ) * (ny + 1 ) * dx * dy |
---|
1056 | |
---|
1057 | ENDIF |
---|
1058 | |
---|
1059 | CONTAINS |
---|
1060 | |
---|
1061 | SUBROUTINE pmci_map_fine_to_coarse_grid |
---|
1062 | ! |
---|
1063 | !-- Determine index bounds of interpolation/anterpolation area in the coarse |
---|
1064 | !-- grid index space |
---|
1065 | IMPLICIT NONE |
---|
1066 | |
---|
1067 | INTEGER(iwp), DIMENSION(5,numprocs) :: coarse_bound_all !: |
---|
1068 | INTEGER(iwp), DIMENSION(2) :: size_of_array !: |
---|
1069 | |
---|
1070 | REAL(wp) :: loffset !: |
---|
1071 | REAL(wp) :: noffset !: |
---|
1072 | REAL(wp) :: roffset !: |
---|
1073 | REAL(wp) :: soffset !: |
---|
1074 | |
---|
1075 | ! |
---|
1076 | !-- If the fine- and coarse grid nodes do not match: |
---|
1077 | loffset = MOD( coord_x(nxl), cg%dx ) |
---|
1078 | xexl = cg%dx + loffset |
---|
1079 | ! |
---|
1080 | !-- This is needed in the anterpolation phase |
---|
1081 | nhll = CEILING( xexl / cg%dx ) |
---|
1082 | xcs = coord_x(nxl) - xexl |
---|
1083 | DO i = 0, cg%nx |
---|
1084 | IF ( cg%coord_x(i) > xcs ) THEN |
---|
1085 | icl = MAX( -1, i-1 ) |
---|
1086 | EXIT |
---|
1087 | ENDIF |
---|
1088 | ENDDO |
---|
1089 | ! |
---|
1090 | !-- If the fine- and coarse grid nodes do not match |
---|
1091 | roffset = MOD( coord_x(nxr+1), cg%dx ) |
---|
1092 | xexr = cg%dx + roffset |
---|
1093 | ! |
---|
1094 | !-- This is needed in the anterpolation phase |
---|
1095 | nhlr = CEILING( xexr / cg%dx ) |
---|
1096 | xce = coord_x(nxr+1) + xexr |
---|
1097 | !-- One "extra" layer is taken behind the right boundary |
---|
1098 | !-- because it may be needed in cases of non-integer grid-spacing ratio |
---|
1099 | DO i = cg%nx, 0 , -1 |
---|
1100 | IF ( cg%coord_x(i) < xce ) THEN |
---|
1101 | icr = MIN( cg%nx+1, i+1 ) |
---|
1102 | EXIT |
---|
1103 | ENDIF |
---|
1104 | ENDDO |
---|
1105 | ! |
---|
1106 | !-- If the fine- and coarse grid nodes do not match |
---|
1107 | soffset = MOD( coord_y(nys), cg%dy ) |
---|
1108 | yexs = cg%dy + soffset |
---|
1109 | ! |
---|
1110 | !-- This is needed in the anterpolation phase |
---|
1111 | nhls = CEILING( yexs / cg%dy ) |
---|
1112 | ycs = coord_y(nys) - yexs |
---|
1113 | DO j = 0, cg%ny |
---|
1114 | IF ( cg%coord_y(j) > ycs ) THEN |
---|
1115 | jcs = MAX( -nbgp, j-1 ) |
---|
1116 | EXIT |
---|
1117 | ENDIF |
---|
1118 | ENDDO |
---|
1119 | ! |
---|
1120 | !-- If the fine- and coarse grid nodes do not match |
---|
1121 | noffset = MOD( coord_y(nyn+1), cg%dy ) |
---|
1122 | yexn = cg%dy + noffset |
---|
1123 | ! |
---|
1124 | !-- This is needed in the anterpolation phase |
---|
1125 | nhln = CEILING( yexn / cg%dy ) |
---|
1126 | yce = coord_y(nyn+1) + yexn |
---|
1127 | !-- One "extra" layer is taken behind the north boundary |
---|
1128 | !-- because it may be needed in cases of non-integer grid-spacing ratio |
---|
1129 | DO j = cg%ny, 0, -1 |
---|
1130 | IF ( cg%coord_y(j) < yce ) THEN |
---|
1131 | jcn = MIN( cg%ny + nbgp, j+1 ) |
---|
1132 | EXIT |
---|
1133 | ENDIF |
---|
1134 | ENDDO |
---|
1135 | |
---|
1136 | coarse_bound(1) = icl |
---|
1137 | coarse_bound(2) = icr |
---|
1138 | coarse_bound(3) = jcs |
---|
1139 | coarse_bound(4) = jcn |
---|
1140 | coarse_bound(5) = myid |
---|
1141 | ! |
---|
1142 | !-- Note that MPI_Gather receives data from all processes in the rank order |
---|
1143 | !-- TO_DO: refer to the line where this fact becomes important |
---|
1144 | CALL MPI_GATHER( coarse_bound, 5, MPI_INTEGER, coarse_bound_all, 5, & |
---|
1145 | MPI_INTEGER, 0, comm2d, ierr ) |
---|
1146 | |
---|
1147 | IF ( myid == 0 ) THEN |
---|
1148 | size_of_array(1) = SIZE( coarse_bound_all, 1 ) |
---|
1149 | size_of_array(2) = SIZE( coarse_bound_all, 2 ) |
---|
1150 | CALL pmc_send_to_parent( size_of_array, 2, 0, 40, ierr ) |
---|
1151 | CALL pmc_send_to_parent( coarse_bound_all, SIZE( coarse_bound_all ), & |
---|
1152 | 0, 41, ierr ) |
---|
1153 | ENDIF |
---|
1154 | |
---|
1155 | END SUBROUTINE pmci_map_fine_to_coarse_grid |
---|
1156 | |
---|
1157 | |
---|
1158 | |
---|
1159 | SUBROUTINE pmci_init_interp_tril |
---|
1160 | ! |
---|
1161 | !-- Precomputation of the interpolation coefficients and child-array indices |
---|
1162 | !-- to be used by the interpolation routines interp_tril_lr, interp_tril_ns |
---|
1163 | !-- and interp_tril_t. |
---|
1164 | |
---|
1165 | IMPLICIT NONE |
---|
1166 | |
---|
1167 | INTEGER(iwp) :: i !: |
---|
1168 | INTEGER(iwp) :: i1 !: |
---|
1169 | INTEGER(iwp) :: j !: |
---|
1170 | INTEGER(iwp) :: j1 !: |
---|
1171 | INTEGER(iwp) :: k !: |
---|
1172 | INTEGER(iwp) :: kc !: |
---|
1173 | |
---|
1174 | REAL(wp) :: xb !: |
---|
1175 | REAL(wp) :: xcsu !: |
---|
1176 | REAL(wp) :: xfso !: |
---|
1177 | REAL(wp) :: xcso !: |
---|
1178 | REAL(wp) :: xfsu !: |
---|
1179 | REAL(wp) :: yb !: |
---|
1180 | REAL(wp) :: ycso !: |
---|
1181 | REAL(wp) :: ycsv !: |
---|
1182 | REAL(wp) :: yfso !: |
---|
1183 | REAL(wp) :: yfsv !: |
---|
1184 | REAL(wp) :: zcso !: |
---|
1185 | REAL(wp) :: zcsw !: |
---|
1186 | REAL(wp) :: zfso !: |
---|
1187 | REAL(wp) :: zfsw !: |
---|
1188 | |
---|
1189 | |
---|
1190 | xb = nxl * dx |
---|
1191 | yb = nys * dy |
---|
1192 | |
---|
1193 | ALLOCATE( icu(nxlg:nxrg) ) |
---|
1194 | ALLOCATE( ico(nxlg:nxrg) ) |
---|
1195 | ALLOCATE( jcv(nysg:nyng) ) |
---|
1196 | ALLOCATE( jco(nysg:nyng) ) |
---|
1197 | ALLOCATE( kcw(nzb:nzt+1) ) |
---|
1198 | ALLOCATE( kco(nzb:nzt+1) ) |
---|
1199 | ALLOCATE( r1xu(nxlg:nxrg) ) |
---|
1200 | ALLOCATE( r2xu(nxlg:nxrg) ) |
---|
1201 | ALLOCATE( r1xo(nxlg:nxrg) ) |
---|
1202 | ALLOCATE( r2xo(nxlg:nxrg) ) |
---|
1203 | ALLOCATE( r1yv(nysg:nyng) ) |
---|
1204 | ALLOCATE( r2yv(nysg:nyng) ) |
---|
1205 | ALLOCATE( r1yo(nysg:nyng) ) |
---|
1206 | ALLOCATE( r2yo(nysg:nyng) ) |
---|
1207 | ALLOCATE( r1zw(nzb:nzt+1) ) |
---|
1208 | ALLOCATE( r2zw(nzb:nzt+1) ) |
---|
1209 | ALLOCATE( r1zo(nzb:nzt+1) ) |
---|
1210 | ALLOCATE( r2zo(nzb:nzt+1) ) |
---|
1211 | |
---|
1212 | ! |
---|
1213 | !-- Note that the node coordinates xfs... and xcs... are relative to the |
---|
1214 | !-- lower-left-bottom corner of the fc-array, not the actual child domain |
---|
1215 | !-- corner |
---|
1216 | DO i = nxlg, nxrg |
---|
1217 | xfsu = coord_x(i) - ( lower_left_coord_x + xb - xexl ) |
---|
1218 | xfso = coord_x(i) + 0.5_wp * dx - ( lower_left_coord_x + xb - xexl ) |
---|
1219 | icu(i) = icl + FLOOR( xfsu / cg%dx ) |
---|
1220 | ico(i) = icl + FLOOR( ( xfso - 0.5_wp * cg%dx ) / cg%dx ) |
---|
1221 | xcsu = ( icu(i) - icl ) * cg%dx |
---|
1222 | xcso = ( ico(i) - icl ) * cg%dx + 0.5_wp * cg%dx |
---|
1223 | r2xu(i) = ( xfsu - xcsu ) / cg%dx |
---|
1224 | r2xo(i) = ( xfso - xcso ) / cg%dx |
---|
1225 | r1xu(i) = 1.0_wp - r2xu(i) |
---|
1226 | r1xo(i) = 1.0_wp - r2xo(i) |
---|
1227 | ENDDO |
---|
1228 | |
---|
1229 | DO j = nysg, nyng |
---|
1230 | yfsv = coord_y(j) - ( lower_left_coord_y + yb - yexs ) |
---|
1231 | yfso = coord_y(j) + 0.5_wp * dy - ( lower_left_coord_y + yb - yexs ) |
---|
1232 | jcv(j) = jcs + FLOOR( yfsv / cg%dy ) |
---|
1233 | jco(j) = jcs + FLOOR( ( yfso -0.5_wp * cg%dy ) / cg%dy ) |
---|
1234 | ycsv = ( jcv(j) - jcs ) * cg%dy |
---|
1235 | ycso = ( jco(j) - jcs ) * cg%dy + 0.5_wp * cg%dy |
---|
1236 | r2yv(j) = ( yfsv - ycsv ) / cg%dy |
---|
1237 | r2yo(j) = ( yfso - ycso ) / cg%dy |
---|
1238 | r1yv(j) = 1.0_wp - r2yv(j) |
---|
1239 | r1yo(j) = 1.0_wp - r2yo(j) |
---|
1240 | ENDDO |
---|
1241 | |
---|
1242 | DO k = nzb, nzt + 1 |
---|
1243 | zfsw = zw(k) |
---|
1244 | zfso = zu(k) |
---|
1245 | |
---|
1246 | kc = 0 |
---|
1247 | DO WHILE ( cg%zw(kc) <= zfsw ) |
---|
1248 | kc = kc + 1 |
---|
1249 | ENDDO |
---|
1250 | kcw(k) = kc - 1 |
---|
1251 | |
---|
1252 | kc = 0 |
---|
1253 | DO WHILE ( cg%zu(kc) <= zfso ) |
---|
1254 | kc = kc + 1 |
---|
1255 | ENDDO |
---|
1256 | kco(k) = kc - 1 |
---|
1257 | |
---|
1258 | zcsw = cg%zw(kcw(k)) |
---|
1259 | zcso = cg%zu(kco(k)) |
---|
1260 | r2zw(k) = ( zfsw - zcsw ) / cg%dzw(kcw(k)+1) |
---|
1261 | r2zo(k) = ( zfso - zcso ) / cg%dzu(kco(k)+1) |
---|
1262 | r1zw(k) = 1.0_wp - r2zw(k) |
---|
1263 | r1zo(k) = 1.0_wp - r2zo(k) |
---|
1264 | ENDDO |
---|
1265 | |
---|
1266 | END SUBROUTINE pmci_init_interp_tril |
---|
1267 | |
---|
1268 | |
---|
1269 | |
---|
1270 | SUBROUTINE pmci_init_loglaw_correction |
---|
1271 | ! |
---|
1272 | !-- Precomputation of the index and log-ratio arrays for the log-law |
---|
1273 | !-- corrections for near-wall nodes after the nest-BC interpolation. |
---|
1274 | !-- These are used by the interpolation routines interp_tril_lr and |
---|
1275 | !-- interp_tril_ns. |
---|
1276 | |
---|
1277 | IMPLICIT NONE |
---|
1278 | |
---|
1279 | INTEGER(iwp) :: direction !: Wall normal index: 1=k, 2=j, 3=i. |
---|
1280 | INTEGER(iwp) :: i !: |
---|
1281 | INTEGER(iwp) :: icorr !: |
---|
1282 | INTEGER(iwp) :: inc !: Wall outward-normal index increment -1 |
---|
1283 | !: or 1, for direction=1, inc=1 always |
---|
1284 | INTEGER(iwp) :: iw !: |
---|
1285 | INTEGER(iwp) :: j !: |
---|
1286 | INTEGER(iwp) :: jcorr !: |
---|
1287 | INTEGER(iwp) :: jw !: |
---|
1288 | INTEGER(iwp) :: k !: |
---|
1289 | INTEGER(iwp) :: kb !: |
---|
1290 | INTEGER(iwp) :: kcorr !: |
---|
1291 | INTEGER(iwp) :: lc !: |
---|
1292 | INTEGER(iwp) :: ni !: |
---|
1293 | INTEGER(iwp) :: nj !: |
---|
1294 | INTEGER(iwp) :: nk !: |
---|
1295 | INTEGER(iwp) :: nzt_topo_max !: |
---|
1296 | INTEGER(iwp) :: wall_index !: Index of the wall-node coordinate |
---|
1297 | |
---|
1298 | REAL(wp), ALLOCATABLE, DIMENSION(:) :: lcr !: |
---|
1299 | |
---|
1300 | ! |
---|
1301 | !-- First determine the maximum k-index needed for the near-wall corrections. |
---|
1302 | !-- This maximum is individual for each boundary to minimize the storage |
---|
1303 | !-- requirements and to minimize the corresponding loop k-range in the |
---|
1304 | !-- interpolation routines. |
---|
1305 | nzt_topo_nestbc_l = nzb |
---|
1306 | IF ( nest_bound_l ) THEN |
---|
1307 | DO i = nxl-1, nxl |
---|
1308 | DO j = nys, nyn |
---|
1309 | nzt_topo_nestbc_l = MAX( nzt_topo_nestbc_l, nzb_u_inner(j,i), & |
---|
1310 | nzb_v_inner(j,i), nzb_w_inner(j,i) ) |
---|
1311 | ENDDO |
---|
1312 | ENDDO |
---|
1313 | nzt_topo_nestbc_l = nzt_topo_nestbc_l + 1 |
---|
1314 | ENDIF |
---|
1315 | |
---|
1316 | nzt_topo_nestbc_r = nzb |
---|
1317 | IF ( nest_bound_r ) THEN |
---|
1318 | i = nxr + 1 |
---|
1319 | DO j = nys, nyn |
---|
1320 | nzt_topo_nestbc_r = MAX( nzt_topo_nestbc_r, nzb_u_inner(j,i), & |
---|
1321 | nzb_v_inner(j,i), nzb_w_inner(j,i) ) |
---|
1322 | ENDDO |
---|
1323 | nzt_topo_nestbc_r = nzt_topo_nestbc_r + 1 |
---|
1324 | ENDIF |
---|
1325 | |
---|
1326 | nzt_topo_nestbc_s = nzb |
---|
1327 | IF ( nest_bound_s ) THEN |
---|
1328 | DO j = nys-1, nys |
---|
1329 | DO i = nxl, nxr |
---|
1330 | nzt_topo_nestbc_s = MAX( nzt_topo_nestbc_s, nzb_u_inner(j,i), & |
---|
1331 | nzb_v_inner(j,i), nzb_w_inner(j,i) ) |
---|
1332 | ENDDO |
---|
1333 | ENDDO |
---|
1334 | nzt_topo_nestbc_s = nzt_topo_nestbc_s + 1 |
---|
1335 | ENDIF |
---|
1336 | |
---|
1337 | nzt_topo_nestbc_n = nzb |
---|
1338 | IF ( nest_bound_n ) THEN |
---|
1339 | j = nyn + 1 |
---|
1340 | DO i = nxl, nxr |
---|
1341 | nzt_topo_nestbc_n = MAX( nzt_topo_nestbc_n, nzb_u_inner(j,i), & |
---|
1342 | nzb_v_inner(j,i), nzb_w_inner(j,i) ) |
---|
1343 | ENDDO |
---|
1344 | nzt_topo_nestbc_n = nzt_topo_nestbc_n + 1 |
---|
1345 | ENDIF |
---|
1346 | |
---|
1347 | ! |
---|
1348 | !-- Then determine the maximum number of near-wall nodes per wall point based |
---|
1349 | !-- on the grid-spacing ratios. |
---|
1350 | nzt_topo_max = MAX( nzt_topo_nestbc_l, nzt_topo_nestbc_r, & |
---|
1351 | nzt_topo_nestbc_s, nzt_topo_nestbc_n ) |
---|
1352 | |
---|
1353 | ! |
---|
1354 | !-- Note that the outer division must be integer division. |
---|
1355 | ni = CEILING( cg%dx / dx ) / 2 |
---|
1356 | nj = CEILING( cg%dy / dy ) / 2 |
---|
1357 | nk = 1 |
---|
1358 | DO k = 1, nzt_topo_max |
---|
1359 | nk = MAX( nk, CEILING( cg%dzu(k) / dzu(k) ) ) |
---|
1360 | ENDDO |
---|
1361 | nk = nk / 2 ! Note that this must be integer division. |
---|
1362 | ncorr = MAX( ni, nj, nk ) |
---|
1363 | |
---|
1364 | ALLOCATE( lcr(0:ncorr-1) ) |
---|
1365 | lcr = 1.0_wp |
---|
1366 | |
---|
1367 | ! |
---|
1368 | !-- First horizontal walls. Note that also logc_w_? and logc_ratio_w_? need to |
---|
1369 | !-- be allocated and initialized here. |
---|
1370 | !-- Left boundary |
---|
1371 | IF ( nest_bound_l ) THEN |
---|
1372 | |
---|
1373 | ALLOCATE( logc_u_l(1:2,nzb:nzt_topo_nestbc_l,nys:nyn) ) |
---|
1374 | ALLOCATE( logc_v_l(1:2,nzb:nzt_topo_nestbc_l,nys:nyn) ) |
---|
1375 | ALLOCATE( logc_w_l(1:2,nzb:nzt_topo_nestbc_l,nys:nyn) ) |
---|
1376 | ALLOCATE( logc_ratio_u_l(1:2,0:ncorr-1,nzb:nzt_topo_nestbc_l,nys:nyn) ) |
---|
1377 | ALLOCATE( logc_ratio_v_l(1:2,0:ncorr-1,nzb:nzt_topo_nestbc_l,nys:nyn) ) |
---|
1378 | ALLOCATE( logc_ratio_w_l(1:2,0:ncorr-1,nzb:nzt_topo_nestbc_l,nys:nyn) ) |
---|
1379 | logc_u_l = 0 |
---|
1380 | logc_v_l = 0 |
---|
1381 | logc_w_l = 0 |
---|
1382 | logc_ratio_u_l = 1.0_wp |
---|
1383 | logc_ratio_v_l = 1.0_wp |
---|
1384 | logc_ratio_w_l = 1.0_wp |
---|
1385 | direction = 1 |
---|
1386 | inc = 1 |
---|
1387 | |
---|
1388 | DO j = nys, nyn |
---|
1389 | ! |
---|
1390 | !-- Left boundary for u |
---|
1391 | i = 0 |
---|
1392 | kb = nzb_u_inner(j,i) |
---|
1393 | k = kb + 1 |
---|
1394 | wall_index = kb |
---|
1395 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, & |
---|
1396 | inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1397 | logc_u_l(1,k,j) = lc |
---|
1398 | logc_ratio_u_l(1,0:ncorr-1,k,j) = lcr(0:ncorr-1) |
---|
1399 | lcr(0:ncorr-1) = 1.0_wp |
---|
1400 | ! |
---|
1401 | !-- Left boundary for v |
---|
1402 | i = -1 |
---|
1403 | kb = nzb_v_inner(j,i) |
---|
1404 | k = kb + 1 |
---|
1405 | wall_index = kb |
---|
1406 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, & |
---|
1407 | inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1408 | logc_v_l(1,k,j) = lc |
---|
1409 | logc_ratio_v_l(1,0:ncorr-1,k,j) = lcr(0:ncorr-1) |
---|
1410 | lcr(0:ncorr-1) = 1.0_wp |
---|
1411 | |
---|
1412 | ENDDO |
---|
1413 | |
---|
1414 | ENDIF |
---|
1415 | |
---|
1416 | ! |
---|
1417 | !-- Right boundary |
---|
1418 | IF ( nest_bound_r ) THEN |
---|
1419 | |
---|
1420 | ALLOCATE( logc_u_r(1:2,nzb:nzt_topo_nestbc_r,nys:nyn) ) |
---|
1421 | ALLOCATE( logc_v_r(1:2,nzb:nzt_topo_nestbc_r,nys:nyn) ) |
---|
1422 | ALLOCATE( logc_w_r(1:2,nzb:nzt_topo_nestbc_r,nys:nyn) ) |
---|
1423 | ALLOCATE( logc_ratio_u_r(1:2,0:ncorr-1,nzb:nzt_topo_nestbc_r,nys:nyn) ) |
---|
1424 | ALLOCATE( logc_ratio_v_r(1:2,0:ncorr-1,nzb:nzt_topo_nestbc_r,nys:nyn) ) |
---|
1425 | ALLOCATE( logc_ratio_w_r(1:2,0:ncorr-1,nzb:nzt_topo_nestbc_r,nys:nyn) ) |
---|
1426 | logc_u_r = 0 |
---|
1427 | logc_v_r = 0 |
---|
1428 | logc_w_r = 0 |
---|
1429 | logc_ratio_u_r = 1.0_wp |
---|
1430 | logc_ratio_v_r = 1.0_wp |
---|
1431 | logc_ratio_w_r = 1.0_wp |
---|
1432 | direction = 1 |
---|
1433 | inc = 1 |
---|
1434 | |
---|
1435 | DO j = nys, nyn |
---|
1436 | ! |
---|
1437 | !-- Right boundary for u |
---|
1438 | i = nxr + 1 |
---|
1439 | kb = nzb_u_inner(j,i) |
---|
1440 | k = kb + 1 |
---|
1441 | wall_index = kb |
---|
1442 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, & |
---|
1443 | inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1444 | logc_u_r(1,k,j) = lc |
---|
1445 | logc_ratio_u_r(1,0:ncorr-1,k,j) = lcr(0:ncorr-1) |
---|
1446 | lcr(0:ncorr-1) = 1.0_wp |
---|
1447 | ! |
---|
1448 | !-- Right boundary for v |
---|
1449 | i = nxr + 1 |
---|
1450 | kb = nzb_v_inner(j,i) |
---|
1451 | k = kb + 1 |
---|
1452 | wall_index = kb |
---|
1453 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, & |
---|
1454 | inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1455 | logc_v_r(1,k,j) = lc |
---|
1456 | logc_ratio_v_r(1,0:ncorr-1,k,j) = lcr(0:ncorr-1) |
---|
1457 | lcr(0:ncorr-1) = 1.0_wp |
---|
1458 | |
---|
1459 | ENDDO |
---|
1460 | |
---|
1461 | ENDIF |
---|
1462 | |
---|
1463 | ! |
---|
1464 | !-- South boundary |
---|
1465 | IF ( nest_bound_s ) THEN |
---|
1466 | |
---|
1467 | ALLOCATE( logc_u_s(1:2,nzb:nzt_topo_nestbc_s,nxl:nxr) ) |
---|
1468 | ALLOCATE( logc_v_s(1:2,nzb:nzt_topo_nestbc_s,nxl:nxr) ) |
---|
1469 | ALLOCATE( logc_w_s(1:2,nzb:nzt_topo_nestbc_s,nxl:nxr) ) |
---|
1470 | ALLOCATE( logc_ratio_u_s(1:2,0:ncorr-1,nzb:nzt_topo_nestbc_s,nxl:nxr) ) |
---|
1471 | ALLOCATE( logc_ratio_v_s(1:2,0:ncorr-1,nzb:nzt_topo_nestbc_s,nxl:nxr) ) |
---|
1472 | ALLOCATE( logc_ratio_w_s(1:2,0:ncorr-1,nzb:nzt_topo_nestbc_s,nxl:nxr) ) |
---|
1473 | logc_u_s = 0 |
---|
1474 | logc_v_s = 0 |
---|
1475 | logc_w_s = 0 |
---|
1476 | logc_ratio_u_s = 1.0_wp |
---|
1477 | logc_ratio_v_s = 1.0_wp |
---|
1478 | logc_ratio_w_s = 1.0_wp |
---|
1479 | direction = 1 |
---|
1480 | inc = 1 |
---|
1481 | |
---|
1482 | DO i = nxl, nxr |
---|
1483 | ! |
---|
1484 | !-- South boundary for u |
---|
1485 | j = -1 |
---|
1486 | kb = nzb_u_inner(j,i) |
---|
1487 | k = kb + 1 |
---|
1488 | wall_index = kb |
---|
1489 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, & |
---|
1490 | inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1491 | logc_u_s(1,k,i) = lc |
---|
1492 | logc_ratio_u_s(1,0:ncorr-1,k,i) = lcr(0:ncorr-1) |
---|
1493 | lcr(0:ncorr-1) = 1.0_wp |
---|
1494 | ! |
---|
1495 | !-- South boundary for v |
---|
1496 | j = 0 |
---|
1497 | kb = nzb_v_inner(j,i) |
---|
1498 | k = kb + 1 |
---|
1499 | wall_index = kb |
---|
1500 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, & |
---|
1501 | inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1502 | logc_v_s(1,k,i) = lc |
---|
1503 | logc_ratio_v_s(1,0:ncorr-1,k,i) = lcr(0:ncorr-1) |
---|
1504 | lcr(0:ncorr-1) = 1.0_wp |
---|
1505 | |
---|
1506 | ENDDO |
---|
1507 | |
---|
1508 | ENDIF |
---|
1509 | |
---|
1510 | ! |
---|
1511 | !-- North boundary |
---|
1512 | IF ( nest_bound_n ) THEN |
---|
1513 | |
---|
1514 | ALLOCATE( logc_u_n(1:2,nzb:nzt_topo_nestbc_n,nxl:nxr) ) |
---|
1515 | ALLOCATE( logc_v_n(1:2,nzb:nzt_topo_nestbc_n,nxl:nxr) ) |
---|
1516 | ALLOCATE( logc_w_n(1:2,nzb:nzt_topo_nestbc_n,nxl:nxr) ) |
---|
1517 | ALLOCATE( logc_ratio_u_n(1:2,0:ncorr-1,nzb:nzt_topo_nestbc_n,nxl:nxr) ) |
---|
1518 | ALLOCATE( logc_ratio_v_n(1:2,0:ncorr-1,nzb:nzt_topo_nestbc_n,nxl:nxr) ) |
---|
1519 | ALLOCATE( logc_ratio_w_n(1:2,0:ncorr-1,nzb:nzt_topo_nestbc_n,nxl:nxr) ) |
---|
1520 | logc_u_n = 0 |
---|
1521 | logc_v_n = 0 |
---|
1522 | logc_w_n = 0 |
---|
1523 | logc_ratio_u_n = 1.0_wp |
---|
1524 | logc_ratio_v_n = 1.0_wp |
---|
1525 | logc_ratio_w_n = 1.0_wp |
---|
1526 | direction = 1 |
---|
1527 | inc = 1 |
---|
1528 | |
---|
1529 | DO i = nxl, nxr |
---|
1530 | ! |
---|
1531 | !-- North boundary for u |
---|
1532 | j = nyn + 1 |
---|
1533 | kb = nzb_u_inner(j,i) |
---|
1534 | k = kb + 1 |
---|
1535 | wall_index = kb |
---|
1536 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, & |
---|
1537 | inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1538 | logc_u_n(1,k,i) = lc |
---|
1539 | logc_ratio_u_n(1,0:ncorr-1,k,i) = lcr(0:ncorr-1) |
---|
1540 | lcr(0:ncorr-1) = 1.0_wp |
---|
1541 | ! |
---|
1542 | !-- North boundary for v |
---|
1543 | j = nyn + 1 |
---|
1544 | kb = nzb_v_inner(j,i) |
---|
1545 | k = kb + 1 |
---|
1546 | wall_index = kb |
---|
1547 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, & |
---|
1548 | inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1549 | logc_v_n(1,k,i) = lc |
---|
1550 | logc_ratio_v_n(1,0:ncorr-1,k,i) = lcr(0:ncorr-1) |
---|
1551 | lcr(0:ncorr-1) = 1.0_wp |
---|
1552 | |
---|
1553 | ENDDO |
---|
1554 | |
---|
1555 | ENDIF |
---|
1556 | |
---|
1557 | ! |
---|
1558 | !-- Then vertical walls and corners if necessary |
---|
1559 | IF ( topography /= 'flat' ) THEN |
---|
1560 | |
---|
1561 | kb = 0 ! kb is not used when direction > 1 |
---|
1562 | ! |
---|
1563 | !-- Left boundary |
---|
1564 | IF ( nest_bound_l ) THEN |
---|
1565 | |
---|
1566 | direction = 2 |
---|
1567 | |
---|
1568 | DO j = nys, nyn |
---|
1569 | DO k = nzb, nzt_topo_nestbc_l |
---|
1570 | ! |
---|
1571 | !-- Wall for u on the south side, but not on the north side |
---|
1572 | i = 0 |
---|
1573 | IF ( ( nzb_u_outer(j,i) > nzb_u_outer(j+1,i) ) .AND. & |
---|
1574 | ( nzb_u_outer(j,i) == nzb_u_outer(j-1,i) ) ) & |
---|
1575 | THEN |
---|
1576 | inc = 1 |
---|
1577 | wall_index = j |
---|
1578 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, & |
---|
1579 | k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1580 | ! |
---|
1581 | !-- The direction of the wall-normal index is stored as the |
---|
1582 | !-- sign of the logc-element. |
---|
1583 | logc_u_l(2,k,j) = inc * lc |
---|
1584 | logc_ratio_u_l(2,0:ncorr-1,k,j) = lcr(0:ncorr-1) |
---|
1585 | lcr(0:ncorr-1) = 1.0_wp |
---|
1586 | ENDIF |
---|
1587 | |
---|
1588 | ! |
---|
1589 | !-- Wall for u on the north side, but not on the south side |
---|
1590 | i = 0 |
---|
1591 | IF ( ( nzb_u_outer(j,i) > nzb_u_outer(j-1,i) ) .AND. & |
---|
1592 | ( nzb_u_outer(j,i) == nzb_u_outer(j+1,i) ) ) THEN |
---|
1593 | inc = -1 |
---|
1594 | wall_index = j + 1 |
---|
1595 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, & |
---|
1596 | k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1597 | ! |
---|
1598 | !-- The direction of the wall-normal index is stored as the |
---|
1599 | !-- sign of the logc-element. |
---|
1600 | logc_u_l(2,k,j) = inc * lc |
---|
1601 | logc_ratio_u_l(2,0:ncorr-1,k,j) = lcr(0:ncorr-1) |
---|
1602 | lcr(0:ncorr-1) = 1.0_wp |
---|
1603 | ENDIF |
---|
1604 | |
---|
1605 | ! |
---|
1606 | !-- Wall for w on the south side, but not on the north side. |
---|
1607 | i = -1 |
---|
1608 | IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j+1,i) ) .AND. & |
---|
1609 | ( nzb_w_outer(j,i) == nzb_w_outer(j-1,i) ) ) THEN |
---|
1610 | inc = 1 |
---|
1611 | wall_index = j |
---|
1612 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, & |
---|
1613 | k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1614 | ! |
---|
1615 | !-- The direction of the wall-normal index is stored as the |
---|
1616 | !-- sign of the logc-element. |
---|
1617 | logc_w_l(2,k,j) = inc * lc |
---|
1618 | logc_ratio_w_l(2,0:ncorr-1,k,j) = lcr(0:ncorr-1) |
---|
1619 | lcr(0:ncorr-1) = 1.0_wp |
---|
1620 | ENDIF |
---|
1621 | |
---|
1622 | ! |
---|
1623 | !-- Wall for w on the north side, but not on the south side. |
---|
1624 | i = -1 |
---|
1625 | IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j-1,i) ) .AND. & |
---|
1626 | ( nzb_w_outer(j,i) == nzb_w_outer(j+1,i) ) ) THEN |
---|
1627 | inc = -1 |
---|
1628 | wall_index = j+1 |
---|
1629 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, & |
---|
1630 | k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1631 | ! |
---|
1632 | !-- The direction of the wall-normal index is stored as the |
---|
1633 | !-- sign of the logc-element. |
---|
1634 | logc_w_l(2,k,j) = inc * lc |
---|
1635 | logc_ratio_w_l(2,0:ncorr-1,k,j) = lcr(0:ncorr-1) |
---|
1636 | lcr(0:ncorr-1) = 1.0_wp |
---|
1637 | ENDIF |
---|
1638 | |
---|
1639 | ENDDO |
---|
1640 | ENDDO |
---|
1641 | |
---|
1642 | ENDIF ! IF ( nest_bound_l ) |
---|
1643 | |
---|
1644 | ! |
---|
1645 | !-- Right boundary |
---|
1646 | IF ( nest_bound_r ) THEN |
---|
1647 | |
---|
1648 | direction = 2 |
---|
1649 | i = nxr + 1 |
---|
1650 | |
---|
1651 | DO j = nys, nyn |
---|
1652 | DO k = nzb, nzt_topo_nestbc_r |
---|
1653 | ! |
---|
1654 | !-- Wall for u on the south side, but not on the north side |
---|
1655 | IF ( ( nzb_u_outer(j,i) > nzb_u_outer(j+1,i) ) .AND. & |
---|
1656 | ( nzb_u_outer(j,i) == nzb_u_outer(j-1,i) ) ) THEN |
---|
1657 | inc = 1 |
---|
1658 | wall_index = j |
---|
1659 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, & |
---|
1660 | k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1661 | ! |
---|
1662 | !-- The direction of the wall-normal index is stored as the |
---|
1663 | !-- sign of the logc-element. |
---|
1664 | logc_u_r(2,k,j) = inc * lc |
---|
1665 | logc_ratio_u_r(2,0:ncorr-1,k,j) = lcr(0:ncorr-1) |
---|
1666 | lcr(0:ncorr-1) = 1.0_wp |
---|
1667 | ENDIF |
---|
1668 | |
---|
1669 | ! |
---|
1670 | !-- Wall for u on the north side, but not on the south side |
---|
1671 | IF ( ( nzb_u_outer(j,i) > nzb_u_outer(j-1,i) ) .AND. & |
---|
1672 | ( nzb_u_outer(j,i) == nzb_u_outer(j+1,i) ) ) THEN |
---|
1673 | inc = -1 |
---|
1674 | wall_index = j+1 |
---|
1675 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, & |
---|
1676 | k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1677 | ! |
---|
1678 | !-- The direction of the wall-normal index is stored as the |
---|
1679 | !-- sign of the logc-element. |
---|
1680 | logc_u_r(2,k,j) = inc * lc |
---|
1681 | logc_ratio_u_r(2,0:ncorr-1,k,j) = lcr(0:ncorr-1) |
---|
1682 | lcr(0:ncorr-1) = 1.0_wp |
---|
1683 | ENDIF |
---|
1684 | |
---|
1685 | ! |
---|
1686 | !-- Wall for w on the south side, but not on the north side |
---|
1687 | IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j+1,i) ) .AND. & |
---|
1688 | ( nzb_w_outer(j,i) == nzb_w_outer(j-1,i) ) ) THEN |
---|
1689 | inc = 1 |
---|
1690 | wall_index = j |
---|
1691 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, & |
---|
1692 | k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1693 | ! |
---|
1694 | !-- The direction of the wall-normal index is stored as the |
---|
1695 | !-- sign of the logc-element. |
---|
1696 | logc_w_r(2,k,j) = inc * lc |
---|
1697 | logc_ratio_w_r(2,0:ncorr-1,k,j) = lcr(0:ncorr-1) |
---|
1698 | lcr(0:ncorr-1) = 1.0_wp |
---|
1699 | ENDIF |
---|
1700 | |
---|
1701 | ! |
---|
1702 | !-- Wall for w on the north side, but not on the south side |
---|
1703 | IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j-1,i) ) .AND. & |
---|
1704 | ( nzb_w_outer(j,i) == nzb_w_outer(j+1,i) ) ) THEN |
---|
1705 | inc = -1 |
---|
1706 | wall_index = j+1 |
---|
1707 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, & |
---|
1708 | k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1709 | |
---|
1710 | ! |
---|
1711 | !-- The direction of the wall-normal index is stored as the |
---|
1712 | !-- sign of the logc-element. |
---|
1713 | logc_w_r(2,k,j) = inc * lc |
---|
1714 | logc_ratio_w_r(2,0:ncorr-1,k,j) = lcr(0:ncorr-1) |
---|
1715 | lcr(0:ncorr-1) = 1.0_wp |
---|
1716 | ENDIF |
---|
1717 | |
---|
1718 | ENDDO |
---|
1719 | ENDDO |
---|
1720 | |
---|
1721 | ENDIF ! IF ( nest_bound_r ) |
---|
1722 | |
---|
1723 | ! |
---|
1724 | !-- South boundary |
---|
1725 | IF ( nest_bound_s ) THEN |
---|
1726 | |
---|
1727 | direction = 3 |
---|
1728 | |
---|
1729 | DO i = nxl, nxr |
---|
1730 | DO k = nzb, nzt_topo_nestbc_s |
---|
1731 | ! |
---|
1732 | !-- Wall for v on the left side, but not on the right side |
---|
1733 | j = 0 |
---|
1734 | IF ( ( nzb_v_outer(j,i) > nzb_v_outer(j,i+1) ) .AND. & |
---|
1735 | ( nzb_v_outer(j,i) == nzb_v_outer(j,i-1) ) ) THEN |
---|
1736 | inc = 1 |
---|
1737 | wall_index = i |
---|
1738 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, & |
---|
1739 | k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1740 | ! |
---|
1741 | !-- The direction of the wall-normal index is stored as the |
---|
1742 | !-- sign of the logc-element. |
---|
1743 | logc_v_s(2,k,i) = inc * lc |
---|
1744 | logc_ratio_v_s(2,0:ncorr-1,k,i) = lcr(0:ncorr-1) |
---|
1745 | lcr(0:ncorr-1) = 1.0_wp |
---|
1746 | ENDIF |
---|
1747 | |
---|
1748 | ! |
---|
1749 | !-- Wall for v on the right side, but not on the left side |
---|
1750 | j = 0 |
---|
1751 | IF ( ( nzb_v_outer(j,i) > nzb_v_outer(j,i-1) ) .AND. & |
---|
1752 | ( nzb_v_outer(j,i) == nzb_v_outer(j,i+1) ) ) THEN |
---|
1753 | inc = -1 |
---|
1754 | wall_index = i+1 |
---|
1755 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, & |
---|
1756 | k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1757 | ! |
---|
1758 | !-- The direction of the wall-normal index is stored as the |
---|
1759 | !-- sign of the logc-element. |
---|
1760 | logc_v_s(2,k,i) = inc * lc |
---|
1761 | logc_ratio_v_s(2,0:ncorr-1,k,i) = lcr(0:ncorr-1) |
---|
1762 | lcr(0:ncorr-1) = 1.0_wp |
---|
1763 | ENDIF |
---|
1764 | |
---|
1765 | ! |
---|
1766 | !-- Wall for w on the left side, but not on the right side |
---|
1767 | j = -1 |
---|
1768 | IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j,i+1) ) .AND. & |
---|
1769 | ( nzb_w_outer(j,i) == nzb_w_outer(j,i-1) ) ) THEN |
---|
1770 | inc = 1 |
---|
1771 | wall_index = i |
---|
1772 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, & |
---|
1773 | k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1774 | ! |
---|
1775 | !-- The direction of the wall-normal index is stored as the |
---|
1776 | !-- sign of the logc-element. |
---|
1777 | logc_w_s(2,k,i) = inc * lc |
---|
1778 | logc_ratio_w_s(2,0:ncorr-1,k,i) = lcr(0:ncorr-1) |
---|
1779 | lcr(0:ncorr-1) = 1.0_wp |
---|
1780 | ENDIF |
---|
1781 | |
---|
1782 | ! |
---|
1783 | !-- Wall for w on the right side, but not on the left side |
---|
1784 | j = -1 |
---|
1785 | IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j,i-1) ) .AND. & |
---|
1786 | ( nzb_w_outer(j,i) == nzb_w_outer(j,i+1) ) ) THEN |
---|
1787 | inc = -1 |
---|
1788 | wall_index = i+1 |
---|
1789 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, & |
---|
1790 | k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1791 | ! |
---|
1792 | !-- The direction of the wall-normal index is stored as the |
---|
1793 | !-- sign of the logc-element. |
---|
1794 | logc_w_s(2,k,i) = inc * lc |
---|
1795 | logc_ratio_w_s(2,0:ncorr-1,k,i) = lcr(0:ncorr-1) |
---|
1796 | lcr(0:ncorr-1) = 1.0_wp |
---|
1797 | ENDIF |
---|
1798 | |
---|
1799 | ENDDO |
---|
1800 | ENDDO |
---|
1801 | |
---|
1802 | ENDIF ! IF (nest_bound_s ) |
---|
1803 | |
---|
1804 | ! |
---|
1805 | !-- North boundary |
---|
1806 | IF ( nest_bound_n ) THEN |
---|
1807 | |
---|
1808 | direction = 3 |
---|
1809 | j = nyn + 1 |
---|
1810 | |
---|
1811 | DO i = nxl, nxr |
---|
1812 | DO k = nzb, nzt_topo_nestbc_n |
---|
1813 | ! |
---|
1814 | !-- Wall for v on the left side, but not on the right side |
---|
1815 | IF ( ( nzb_v_outer(j,i) > nzb_v_outer(j,i+1) ) .AND. & |
---|
1816 | ( nzb_v_outer(j,i) == nzb_v_outer(j,i-1) ) ) THEN |
---|
1817 | inc = 1 |
---|
1818 | wall_index = i |
---|
1819 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, & |
---|
1820 | k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1821 | ! |
---|
1822 | !-- The direction of the wall-normal index is stored as the |
---|
1823 | !-- sign of the logc-element. |
---|
1824 | logc_v_n(2,k,i) = inc * lc |
---|
1825 | logc_ratio_v_n(2,0:ncorr-1,k,i) = lcr(0:ncorr-1) |
---|
1826 | lcr(0:ncorr-1) = 1.0_wp |
---|
1827 | ENDIF |
---|
1828 | |
---|
1829 | ! |
---|
1830 | !-- Wall for v on the right side, but not on the left side |
---|
1831 | IF ( ( nzb_v_outer(j,i) > nzb_v_outer(j,i-1) ) .AND. & |
---|
1832 | ( nzb_v_outer(j,i) == nzb_v_outer(j,i+1) ) ) THEN |
---|
1833 | inc = -1 |
---|
1834 | wall_index = i + 1 |
---|
1835 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, & |
---|
1836 | k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1837 | ! |
---|
1838 | !-- The direction of the wall-normal index is stored as the |
---|
1839 | !-- sign of the logc-element. |
---|
1840 | logc_v_n(2,k,i) = inc * lc |
---|
1841 | logc_ratio_v_n(2,0:ncorr-1,k,i) = lcr(0:ncorr-1) |
---|
1842 | lcr(0:ncorr-1) = 1.0_wp |
---|
1843 | ENDIF |
---|
1844 | |
---|
1845 | ! |
---|
1846 | !-- Wall for w on the left side, but not on the right side |
---|
1847 | IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j,i+1) ) .AND. & |
---|
1848 | ( nzb_w_outer(j,i) == nzb_w_outer(j,i-1) ) ) THEN |
---|
1849 | inc = 1 |
---|
1850 | wall_index = i |
---|
1851 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, & |
---|
1852 | k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1853 | ! |
---|
1854 | !-- The direction of the wall-normal index is stored as the |
---|
1855 | !-- sign of the logc-element. |
---|
1856 | logc_w_n(2,k,i) = inc * lc |
---|
1857 | logc_ratio_w_n(2,0:ncorr-1,k,i) = lcr(0:ncorr-1) |
---|
1858 | lcr(0:ncorr-1) = 1.0_wp |
---|
1859 | ENDIF |
---|
1860 | |
---|
1861 | ! |
---|
1862 | !-- Wall for w on the right side, but not on the left side |
---|
1863 | IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j,i-1) ) .AND. & |
---|
1864 | ( nzb_w_outer(j,i) == nzb_w_outer(j,i+1) ) ) THEN |
---|
1865 | inc = -1 |
---|
1866 | wall_index = i+1 |
---|
1867 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, & |
---|
1868 | k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1869 | ! |
---|
1870 | !-- The direction of the wall-normal index is stored as the |
---|
1871 | !-- sign of the logc-element. |
---|
1872 | logc_w_n(2,k,i) = inc * lc |
---|
1873 | logc_ratio_w_n(2,0:ncorr-1,k,i) = lcr(0:ncorr-1) |
---|
1874 | lcr(0:ncorr-1) = 1.0_wp |
---|
1875 | ENDIF |
---|
1876 | |
---|
1877 | ENDDO |
---|
1878 | ENDDO |
---|
1879 | |
---|
1880 | ENDIF ! IF ( nest_bound_n ) |
---|
1881 | |
---|
1882 | ENDIF ! IF ( topography /= 'flat' ) |
---|
1883 | |
---|
1884 | END SUBROUTINE pmci_init_loglaw_correction |
---|
1885 | |
---|
1886 | |
---|
1887 | |
---|
1888 | SUBROUTINE pmci_define_loglaw_correction_parameters( lc, lcr, k, ij, inc, & |
---|
1889 | wall_index, z0_l, kb, direction, ncorr ) |
---|
1890 | |
---|
1891 | IMPLICIT NONE |
---|
1892 | |
---|
1893 | INTEGER(iwp), INTENT(IN) :: direction !: |
---|
1894 | INTEGER(iwp), INTENT(IN) :: ij !: |
---|
1895 | INTEGER(iwp), INTENT(IN) :: inc !: |
---|
1896 | INTEGER(iwp), INTENT(IN) :: k !: |
---|
1897 | INTEGER(iwp), INTENT(IN) :: kb !: |
---|
1898 | INTEGER(iwp), INTENT(OUT) :: lc !: |
---|
1899 | INTEGER(iwp), INTENT(IN) :: ncorr !: |
---|
1900 | INTEGER(iwp), INTENT(IN) :: wall_index !: |
---|
1901 | |
---|
1902 | INTEGER(iwp) :: alcorr !: |
---|
1903 | INTEGER(iwp) :: corr_index !: |
---|
1904 | INTEGER(iwp) :: lcorr !: |
---|
1905 | |
---|
1906 | LOGICAL :: more !: |
---|
1907 | |
---|
1908 | REAL(wp), DIMENSION(0:ncorr-1), INTENT(OUT) :: lcr !: |
---|
1909 | REAL(wp), INTENT(IN) :: z0_l !: |
---|
1910 | |
---|
1911 | REAL(wp) :: logvelc1 !: |
---|
1912 | |
---|
1913 | |
---|
1914 | SELECT CASE ( direction ) |
---|
1915 | |
---|
1916 | CASE (1) ! k |
---|
1917 | more = .TRUE. |
---|
1918 | lcorr = 0 |
---|
1919 | DO WHILE ( more .AND. lcorr <= ncorr-1 ) |
---|
1920 | corr_index = k + lcorr |
---|
1921 | IF ( lcorr == 0 ) THEN |
---|
1922 | CALL pmci_find_logc_pivot_k( lc, logvelc1, z0_l, kb ) |
---|
1923 | ENDIF |
---|
1924 | |
---|
1925 | IF ( corr_index < lc ) THEN |
---|
1926 | lcr(lcorr) = LOG( ( zu(k) - zw(kb) ) / z0_l ) / logvelc1 |
---|
1927 | more = .TRUE. |
---|
1928 | ELSE |
---|
1929 | lcr(lcorr) = 1.0 |
---|
1930 | more = .FALSE. |
---|
1931 | ENDIF |
---|
1932 | lcorr = lcorr + 1 |
---|
1933 | ENDDO |
---|
1934 | |
---|
1935 | CASE (2) ! j |
---|
1936 | more = .TRUE. |
---|
1937 | lcorr = 0 |
---|
1938 | alcorr = 0 |
---|
1939 | DO WHILE ( more .AND. alcorr <= ncorr-1 ) |
---|
1940 | corr_index = ij + lcorr ! In this case (direction = 2) ij is j |
---|
1941 | IF ( lcorr == 0 ) THEN |
---|
1942 | CALL pmci_find_logc_pivot_j( lc, logvelc1, ij, wall_index, & |
---|
1943 | z0_l, inc ) |
---|
1944 | ENDIF |
---|
1945 | |
---|
1946 | ! |
---|
1947 | !-- The role of inc here is to make the comparison operation "<" |
---|
1948 | !-- valid in both directions |
---|
1949 | IF ( inc * corr_index < inc * lc ) THEN |
---|
1950 | lcr(alcorr) = LOG( ABS( coord_y(corr_index) + 0.5_wp * dy & |
---|
1951 | - coord_y(wall_index) ) / z0_l ) & |
---|
1952 | / logvelc1 |
---|
1953 | more = .TRUE. |
---|
1954 | ELSE |
---|
1955 | lcr(alcorr) = 1.0_wp |
---|
1956 | more = .FALSE. |
---|
1957 | ENDIF |
---|
1958 | lcorr = lcorr + inc |
---|
1959 | alcorr = ABS( lcorr ) |
---|
1960 | ENDDO |
---|
1961 | |
---|
1962 | CASE (3) ! i |
---|
1963 | more = .TRUE. |
---|
1964 | lcorr = 0 |
---|
1965 | alcorr = 0 |
---|
1966 | DO WHILE ( more .AND. alcorr <= ncorr-1 ) |
---|
1967 | corr_index = ij + lcorr ! In this case (direction = 3) ij is i |
---|
1968 | IF ( lcorr == 0 ) THEN |
---|
1969 | CALL pmci_find_logc_pivot_i( lc, logvelc1, ij, wall_index, & |
---|
1970 | z0_l, inc ) |
---|
1971 | ENDIF |
---|
1972 | ! |
---|
1973 | !-- The role of inc here is to make the comparison operation "<" |
---|
1974 | !-- valid in both directions |
---|
1975 | IF ( inc * corr_index < inc * lc ) THEN |
---|
1976 | lcr(alcorr) = LOG( ABS( coord_x(corr_index) + 0.5_wp * dx & |
---|
1977 | - coord_x(wall_index) ) / z0_l ) & |
---|
1978 | / logvelc1 |
---|
1979 | more = .TRUE. |
---|
1980 | ELSE |
---|
1981 | lcr(alcorr) = 1.0_wp |
---|
1982 | more = .FALSE. |
---|
1983 | ENDIF |
---|
1984 | lcorr = lcorr + inc |
---|
1985 | alcorr = ABS( lcorr ) |
---|
1986 | ENDDO |
---|
1987 | |
---|
1988 | END SELECT |
---|
1989 | |
---|
1990 | END SUBROUTINE pmci_define_loglaw_correction_parameters |
---|
1991 | |
---|
1992 | |
---|
1993 | |
---|
1994 | SUBROUTINE pmci_find_logc_pivot_k( lc, logzc1, z0_l, kb ) |
---|
1995 | ! |
---|
1996 | !-- Finds the pivot node and te log-law factor for near-wall nodes for |
---|
1997 | !-- which the wall-parallel velocity components will be log-law corrected |
---|
1998 | !-- after interpolation. This subroutine is only for horizontal walls. |
---|
1999 | |
---|
2000 | IMPLICIT NONE |
---|
2001 | |
---|
2002 | INTEGER(iwp), INTENT(IN) :: kb !: |
---|
2003 | INTEGER(iwp), INTENT(OUT) :: lc !: |
---|
2004 | |
---|
2005 | INTEGER(iwp) :: kbc !: |
---|
2006 | INTEGER(iwp) :: k1 !: |
---|
2007 | |
---|
2008 | REAL(wp), INTENT(OUT) :: logzc1 !: |
---|
2009 | REAL(wp), INTENT(IN) :: z0_l !: |
---|
2010 | |
---|
2011 | REAL(wp) :: zuc1 !: |
---|
2012 | |
---|
2013 | |
---|
2014 | kbc = nzb + 1 |
---|
2015 | ! |
---|
2016 | !-- kbc is the first coarse-grid point above the surface |
---|
2017 | DO WHILE ( cg%zu(kbc) < zu(kb) ) |
---|
2018 | kbc = kbc + 1 |
---|
2019 | ENDDO |
---|
2020 | zuc1 = cg%zu(kbc) |
---|
2021 | k1 = kb + 1 |
---|
2022 | DO WHILE ( zu(k1) < zuc1 ) ! Important: must be <, not <= |
---|
2023 | k1 = k1 + 1 |
---|
2024 | ENDDO |
---|
2025 | logzc1 = LOG( (zu(k1) - zw(kb) ) / z0_l ) |
---|
2026 | lc = k1 |
---|
2027 | |
---|
2028 | END SUBROUTINE pmci_find_logc_pivot_k |
---|
2029 | |
---|
2030 | |
---|
2031 | |
---|
2032 | SUBROUTINE pmci_find_logc_pivot_j( lc, logyc1, j, jw, z0_l, inc ) |
---|
2033 | ! |
---|
2034 | !-- Finds the pivot node and te log-law factor for near-wall nodes for |
---|
2035 | !-- which the wall-parallel velocity components will be log-law corrected |
---|
2036 | !-- after interpolation. This subroutine is only for vertical walls on |
---|
2037 | !-- south/north sides of the node. |
---|
2038 | |
---|
2039 | IMPLICIT NONE |
---|
2040 | |
---|
2041 | INTEGER(iwp), INTENT(IN) :: inc !: increment must be 1 or -1. |
---|
2042 | INTEGER(iwp), INTENT(IN) :: j !: |
---|
2043 | INTEGER(iwp), INTENT(IN) :: jw !: |
---|
2044 | INTEGER(iwp), INTENT(OUT) :: lc !: |
---|
2045 | |
---|
2046 | INTEGER(iwp) :: j1 !: |
---|
2047 | |
---|
2048 | REAL(wp), INTENT(IN) :: z0_l !: |
---|
2049 | |
---|
2050 | REAL(wp) :: logyc1 !: |
---|
2051 | REAL(wp) :: yc1 !: |
---|
2052 | |
---|
2053 | ! |
---|
2054 | !-- yc1 is the y-coordinate of the first coarse-grid u- and w-nodes out from |
---|
2055 | !-- the wall |
---|
2056 | yc1 = coord_y(jw) + 0.5_wp * inc * cg%dy |
---|
2057 | ! |
---|
2058 | !-- j1 is the first fine-grid index further away from the wall than yc1 |
---|
2059 | j1 = j |
---|
2060 | ! |
---|
2061 | !-- Important: must be <, not <= |
---|
2062 | DO WHILE ( inc * ( coord_y(j1) + 0.5_wp * dy ) < inc * yc1 ) |
---|
2063 | j1 = j1 + inc |
---|
2064 | ENDDO |
---|
2065 | |
---|
2066 | logyc1 = LOG( ABS( coord_y(j1) + 0.5_wp * dy - coord_y(jw) ) / z0_l ) |
---|
2067 | lc = j1 |
---|
2068 | |
---|
2069 | END SUBROUTINE pmci_find_logc_pivot_j |
---|
2070 | |
---|
2071 | |
---|
2072 | |
---|
2073 | SUBROUTINE pmci_find_logc_pivot_i( lc, logxc1, i, iw, z0_l, inc ) |
---|
2074 | ! |
---|
2075 | !-- Finds the pivot node and the log-law factor for near-wall nodes for |
---|
2076 | !-- which the wall-parallel velocity components will be log-law corrected |
---|
2077 | !-- after interpolation. This subroutine is only for vertical walls on |
---|
2078 | !-- south/north sides of the node. |
---|
2079 | |
---|
2080 | IMPLICIT NONE |
---|
2081 | |
---|
2082 | INTEGER(iwp), INTENT(IN) :: i !: |
---|
2083 | INTEGER(iwp), INTENT(IN) :: inc !: increment must be 1 or -1. |
---|
2084 | INTEGER(iwp), INTENT(IN) :: iw !: |
---|
2085 | INTEGER(iwp), INTENT(OUT) :: lc !: |
---|
2086 | |
---|
2087 | INTEGER(iwp) :: i1 !: |
---|
2088 | |
---|
2089 | REAL(wp), INTENT(IN) :: z0_l !: |
---|
2090 | |
---|
2091 | REAL(wp) :: logxc1 !: |
---|
2092 | REAL(wp) :: xc1 !: |
---|
2093 | |
---|
2094 | ! |
---|
2095 | !-- xc1 is the x-coordinate of the first coarse-grid v- and w-nodes out from |
---|
2096 | !-- the wall |
---|
2097 | xc1 = coord_x(iw) + 0.5_wp * inc * cg%dx |
---|
2098 | ! |
---|
2099 | !-- i1 is the first fine-grid index futher away from the wall than xc1. |
---|
2100 | i1 = i |
---|
2101 | ! |
---|
2102 | !-- Important: must be <, not <= |
---|
2103 | DO WHILE ( inc * ( coord_x(i1) + 0.5_wp *dx ) < inc * xc1 ) |
---|
2104 | i1 = i1 + inc |
---|
2105 | ENDDO |
---|
2106 | |
---|
2107 | logxc1 = LOG( ABS( coord_x(i1) + 0.5_wp*dx - coord_x(iw) ) / z0_l ) |
---|
2108 | lc = i1 |
---|
2109 | |
---|
2110 | END SUBROUTINE pmci_find_logc_pivot_i |
---|
2111 | |
---|
2112 | |
---|
2113 | |
---|
2114 | |
---|
2115 | SUBROUTINE pmci_init_anterp_tophat |
---|
2116 | ! |
---|
2117 | !-- Precomputation of the child-array indices for |
---|
2118 | !-- corresponding coarse-grid array index and the |
---|
2119 | !-- Under-relaxation coefficients to be used by anterp_tophat. |
---|
2120 | |
---|
2121 | IMPLICIT NONE |
---|
2122 | |
---|
2123 | INTEGER(iwp) :: i !: Fine-grid index |
---|
2124 | INTEGER(iwp) :: ifc_o !: |
---|
2125 | INTEGER(iwp) :: ifc_u !: |
---|
2126 | INTEGER(iwp) :: ii !: Coarse-grid index |
---|
2127 | INTEGER(iwp) :: istart !: |
---|
2128 | INTEGER(iwp) :: j !: Fine-grid index |
---|
2129 | INTEGER(iwp) :: jj !: Coarse-grid index |
---|
2130 | INTEGER(iwp) :: jstart !: |
---|
2131 | INTEGER(iwp) :: k !: Fine-grid index |
---|
2132 | INTEGER(iwp) :: kk !: Coarse-grid index |
---|
2133 | INTEGER(iwp) :: kstart !: |
---|
2134 | REAL(wp) :: xi !: |
---|
2135 | REAL(wp) :: eta !: |
---|
2136 | REAL(wp) :: zeta !: |
---|
2137 | |
---|
2138 | ! |
---|
2139 | !-- Default values: |
---|
2140 | IF ( anterp_relax_length_l < 0.0_wp ) THEN |
---|
2141 | anterp_relax_length_l = 0.1_wp * ( nx + 1 ) * dx |
---|
2142 | ENDIF |
---|
2143 | IF ( anterp_relax_length_r < 0.0_wp ) THEN |
---|
2144 | anterp_relax_length_r = 0.1_wp * ( nx + 1 ) * dx |
---|
2145 | ENDIF |
---|
2146 | IF ( anterp_relax_length_s < 0.0_wp ) THEN |
---|
2147 | anterp_relax_length_s = 0.1_wp * ( ny + 1 ) * dy |
---|
2148 | ENDIF |
---|
2149 | IF ( anterp_relax_length_n < 0.0_wp ) THEN |
---|
2150 | anterp_relax_length_n = 0.1_wp * ( ny + 1 ) * dy |
---|
2151 | ENDIF |
---|
2152 | IF ( anterp_relax_length_t < 0.0_wp ) THEN |
---|
2153 | anterp_relax_length_t = 0.1_wp * zu(nzt) |
---|
2154 | ENDIF |
---|
2155 | |
---|
2156 | ! |
---|
2157 | !-- First determine kctu and kctw that are the coarse-grid upper bounds for |
---|
2158 | !-- index k |
---|
2159 | kk = 0 |
---|
2160 | DO WHILE ( cg%zu(kk) <= zu(nzt) ) |
---|
2161 | kk = kk + 1 |
---|
2162 | ENDDO |
---|
2163 | kctu = kk - 1 |
---|
2164 | |
---|
2165 | kk = 0 |
---|
2166 | DO WHILE ( cg%zw(kk) <= zw(nzt-1) ) |
---|
2167 | kk = kk + 1 |
---|
2168 | ENDDO |
---|
2169 | kctw = kk - 1 |
---|
2170 | |
---|
2171 | ALLOCATE( iflu(icl:icr) ) |
---|
2172 | ALLOCATE( iflo(icl:icr) ) |
---|
2173 | ALLOCATE( ifuu(icl:icr) ) |
---|
2174 | ALLOCATE( ifuo(icl:icr) ) |
---|
2175 | ALLOCATE( jflv(jcs:jcn) ) |
---|
2176 | ALLOCATE( jflo(jcs:jcn) ) |
---|
2177 | ALLOCATE( jfuv(jcs:jcn) ) |
---|
2178 | ALLOCATE( jfuo(jcs:jcn) ) |
---|
2179 | ALLOCATE( kflw(0:kctw) ) |
---|
2180 | ALLOCATE( kflo(0:kctu) ) |
---|
2181 | ALLOCATE( kfuw(0:kctw) ) |
---|
2182 | ALLOCATE( kfuo(0:kctu) ) |
---|
2183 | |
---|
2184 | ALLOCATE( ijfc_u(jcs:jcn,icl:icr) ) |
---|
2185 | ALLOCATE( ijfc_v(jcs:jcn,icl:icr) ) |
---|
2186 | ALLOCATE( ijfc_s(jcs:jcn,icl:icr) ) |
---|
2187 | |
---|
2188 | ! |
---|
2189 | !-- i-indices of u for each ii-index value |
---|
2190 | !-- ii=icr is redundant for anterpolation |
---|
2191 | istart = nxlg |
---|
2192 | DO ii = icl, icr-1 |
---|
2193 | i = istart |
---|
2194 | DO WHILE ( ( coord_x(i) < cg%coord_x(ii) - 0.5_wp * cg%dx ) .AND. & |
---|
2195 | ( i < nxrg ) ) |
---|
2196 | i = i + 1 |
---|
2197 | ENDDO |
---|
2198 | iflu(ii) = MIN( MAX( i, nxlg ), nxrg ) |
---|
2199 | DO WHILE ( ( coord_x(i) <= cg%coord_x(ii) + 0.5_wp * cg%dx ) .AND. & |
---|
2200 | ( i < nxrg+1 ) ) |
---|
2201 | i = i + 1 |
---|
2202 | ENDDO |
---|
2203 | ifuu(ii) = MIN( MAX( i-1, iflu(ii) ), nxrg ) |
---|
2204 | istart = iflu(ii) |
---|
2205 | ENDDO |
---|
2206 | iflu(icr) = nxrg |
---|
2207 | ifuu(icr) = nxrg |
---|
2208 | |
---|
2209 | ! |
---|
2210 | !-- i-indices of others for each ii-index value |
---|
2211 | !-- ii=icr is redundant for anterpolation |
---|
2212 | istart = nxlg |
---|
2213 | DO ii = icl, icr-1 |
---|
2214 | i = istart |
---|
2215 | DO WHILE ( ( coord_x(i) + 0.5_wp * dx < cg%coord_x(ii) ) .AND. & |
---|
2216 | ( i < nxrg ) ) |
---|
2217 | i = i + 1 |
---|
2218 | ENDDO |
---|
2219 | iflo(ii) = MIN( MAX( i, nxlg ), nxrg ) |
---|
2220 | DO WHILE ( ( coord_x(i) + 0.5_wp * dx <= cg%coord_x(ii) + cg%dx ) & |
---|
2221 | .AND. ( i < nxrg+1 ) ) |
---|
2222 | i = i + 1 |
---|
2223 | ENDDO |
---|
2224 | ifuo(ii) = MIN( MAX( i-1, iflo(ii) ), nxrg ) |
---|
2225 | istart = iflo(ii) |
---|
2226 | ENDDO |
---|
2227 | iflo(icr) = nxrg |
---|
2228 | ifuo(icr) = nxrg |
---|
2229 | |
---|
2230 | ! |
---|
2231 | !-- j-indices of v for each jj-index value |
---|
2232 | !-- jj=jcn is redundant for anterpolation |
---|
2233 | jstart = nysg |
---|
2234 | DO jj = jcs, jcn-1 |
---|
2235 | j = jstart |
---|
2236 | DO WHILE ( ( coord_y(j) < cg%coord_y(jj) - 0.5_wp * cg%dy ) .AND. & |
---|
2237 | ( j < nyng ) ) |
---|
2238 | j = j + 1 |
---|
2239 | ENDDO |
---|
2240 | jflv(jj) = MIN( MAX( j, nysg ), nyng ) |
---|
2241 | DO WHILE ( ( coord_y(j) <= cg%coord_y(jj) + 0.5_wp * cg%dy ) .AND. & |
---|
2242 | ( j < nyng+1 ) ) |
---|
2243 | j = j + 1 |
---|
2244 | ENDDO |
---|
2245 | jfuv(jj) = MIN( MAX( j-1, jflv(jj) ), nyng ) |
---|
2246 | jstart = jflv(jj) |
---|
2247 | ENDDO |
---|
2248 | jflv(jcn) = nyng |
---|
2249 | jfuv(jcn) = nyng |
---|
2250 | ! |
---|
2251 | !-- j-indices of others for each jj-index value |
---|
2252 | !-- jj=jcn is redundant for anterpolation |
---|
2253 | jstart = nysg |
---|
2254 | DO jj = jcs, jcn-1 |
---|
2255 | j = jstart |
---|
2256 | DO WHILE ( ( coord_y(j) + 0.5_wp * dy < cg%coord_y(jj) ) .AND. & |
---|
2257 | ( j < nyng ) ) |
---|
2258 | j = j + 1 |
---|
2259 | ENDDO |
---|
2260 | jflo(jj) = MIN( MAX( j, nysg ), nyng ) |
---|
2261 | DO WHILE ( ( coord_y(j) + 0.5_wp * dy <= cg%coord_y(jj) + cg%dy ) & |
---|
2262 | .AND. ( j < nyng+1 ) ) |
---|
2263 | j = j + 1 |
---|
2264 | ENDDO |
---|
2265 | jfuo(jj) = MIN( MAX( j-1, jflo(jj) ), nyng ) |
---|
2266 | jstart = jflo(jj) |
---|
2267 | ENDDO |
---|
2268 | jflo(jcn) = nyng |
---|
2269 | jfuo(jcn) = nyng |
---|
2270 | |
---|
2271 | ! |
---|
2272 | !-- k-indices of w for each kk-index value |
---|
2273 | kstart = 0 |
---|
2274 | kflw(0) = 0 |
---|
2275 | kfuw(0) = 0 |
---|
2276 | DO kk = 1, kctw |
---|
2277 | k = kstart |
---|
2278 | DO WHILE ( ( zw(k) < cg%zu(kk) ) .AND. ( k < nzt ) ) |
---|
2279 | k = k + 1 |
---|
2280 | ENDDO |
---|
2281 | kflw(kk) = MIN( MAX( k, 1 ), nzt + 1 ) |
---|
2282 | DO WHILE ( ( zw(k) <= cg%zu(kk+1) ) .AND. ( k < nzt+1 ) ) |
---|
2283 | k = k + 1 |
---|
2284 | ENDDO |
---|
2285 | kfuw(kk) = MIN( MAX( k-1, kflw(kk) ), nzt + 1 ) |
---|
2286 | kstart = kflw(kk) |
---|
2287 | ENDDO |
---|
2288 | |
---|
2289 | ! |
---|
2290 | !-- k-indices of others for each kk-index value |
---|
2291 | kstart = 0 |
---|
2292 | kflo(0) = 0 |
---|
2293 | kfuo(0) = 0 |
---|
2294 | DO kk = 1, kctu |
---|
2295 | k = kstart |
---|
2296 | DO WHILE ( ( zu(k) < cg%zw(kk-1) ) .AND. ( k < nzt ) ) |
---|
2297 | k = k + 1 |
---|
2298 | ENDDO |
---|
2299 | kflo(kk) = MIN( MAX( k, 1 ), nzt + 1 ) |
---|
2300 | DO WHILE ( ( zu(k) <= cg%zw(kk) ) .AND. ( k < nzt+1 ) ) |
---|
2301 | k = k + 1 |
---|
2302 | ENDDO |
---|
2303 | kfuo(kk) = MIN( MAX( k-1, kflo(kk) ), nzt + 1 ) |
---|
2304 | kstart = kflo(kk) |
---|
2305 | ENDDO |
---|
2306 | |
---|
2307 | ! |
---|
2308 | !-- Precomputation of number of fine-grid nodes inside coarse-grid ij-faces. |
---|
2309 | !-- Note that ii, jj, and kk are coarse-grid indices. |
---|
2310 | !-- This information is needed in anterpolation. |
---|
2311 | DO ii = icl, icr |
---|
2312 | ifc_u = ifuu(ii) - iflu(ii) + 1 |
---|
2313 | ifc_o = ifuo(ii) - iflo(ii) + 1 |
---|
2314 | DO jj = jcs, jcn |
---|
2315 | ijfc_u(jj,ii) = ifc_u * ( jfuo(jj) - jflo(jj) + 1 ) |
---|
2316 | ijfc_v(jj,ii) = ifc_o * ( jfuv(jj) - jflv(jj) + 1 ) |
---|
2317 | ijfc_s(jj,ii) = ifc_o * ( jfuo(jj) - jflo(jj) + 1 ) |
---|
2318 | ENDDO |
---|
2319 | ENDDO |
---|
2320 | |
---|
2321 | ! |
---|
2322 | !-- Spatial under-relaxation coefficients |
---|
2323 | ALLOCATE( frax(icl:icr) ) |
---|
2324 | ALLOCATE( fray(jcs:jcn) ) |
---|
2325 | |
---|
2326 | frax(icl:icr) = 1.0_wp |
---|
2327 | fray(jcs:jcn) = 1.0_wp |
---|
2328 | |
---|
2329 | IF ( nesting_mode /= 'vertical' ) THEN |
---|
2330 | DO ii = icl, icr |
---|
2331 | IF ( nest_bound_l ) THEN |
---|
2332 | xi = ( MAX( 0.0_wp, ( cg%coord_x(ii) - & |
---|
2333 | lower_left_coord_x ) ) / anterp_relax_length_l )**4 |
---|
2334 | ELSEIF ( nest_bound_r ) THEN |
---|
2335 | xi = ( MAX( 0.0_wp, ( lower_left_coord_x + ( nx + 1 ) * dx - & |
---|
2336 | cg%coord_x(ii) ) ) / & |
---|
2337 | anterp_relax_length_r )**4 |
---|
2338 | ELSE |
---|
2339 | xi = 999999.9_wp |
---|
2340 | ENDIF |
---|
2341 | frax(ii) = xi / ( 1.0_wp + xi ) |
---|
2342 | ENDDO |
---|
2343 | |
---|
2344 | |
---|
2345 | DO jj = jcs, jcn |
---|
2346 | IF ( nest_bound_s ) THEN |
---|
2347 | eta = ( MAX( 0.0_wp, ( cg%coord_y(jj) - & |
---|
2348 | lower_left_coord_y ) ) / anterp_relax_length_s )**4 |
---|
2349 | ELSEIF ( nest_bound_n ) THEN |
---|
2350 | eta = ( MAX( 0.0_wp, ( lower_left_coord_y + ( ny + 1 ) * dy - & |
---|
2351 | cg%coord_y(jj)) ) / & |
---|
2352 | anterp_relax_length_n )**4 |
---|
2353 | ELSE |
---|
2354 | eta = 999999.9_wp |
---|
2355 | ENDIF |
---|
2356 | fray(jj) = eta / ( 1.0_wp + eta ) |
---|
2357 | ENDDO |
---|
2358 | ENDIF |
---|
2359 | |
---|
2360 | ALLOCATE( fraz(0:kctu) ) |
---|
2361 | DO kk = 0, kctu |
---|
2362 | zeta = ( ( zu(nzt) - cg%zu(kk) ) / anterp_relax_length_t )**4 |
---|
2363 | fraz(kk) = zeta / ( 1.0_wp + zeta ) |
---|
2364 | ENDDO |
---|
2365 | |
---|
2366 | END SUBROUTINE pmci_init_anterp_tophat |
---|
2367 | |
---|
2368 | |
---|
2369 | |
---|
2370 | SUBROUTINE pmci_init_tkefactor |
---|
2371 | |
---|
2372 | ! |
---|
2373 | !-- Computes the scaling factor for the SGS TKE from coarse grid to be used |
---|
2374 | !-- as BC for the fine grid. Based on the Kolmogorov energy spectrum |
---|
2375 | !-- for the inertial subrange and assumption of sharp cut-off of the resolved |
---|
2376 | !-- energy spectrum. Near the surface, the reduction of TKE is made |
---|
2377 | !-- smaller than further away from the surface. |
---|
2378 | |
---|
2379 | IMPLICIT NONE |
---|
2380 | REAL(wp), PARAMETER :: cfw = 0.2_wp !: |
---|
2381 | REAL(wp), PARAMETER :: c_tkef = 0.6_wp !: |
---|
2382 | REAL(wp) :: fw !: |
---|
2383 | REAL(wp), PARAMETER :: fw0 = 0.9_wp !: |
---|
2384 | REAL(wp) :: glsf !: |
---|
2385 | REAL(wp) :: glsc !: |
---|
2386 | REAL(wp) :: height !: |
---|
2387 | REAL(wp), PARAMETER :: p13 = 1.0_wp/3.0_wp !: |
---|
2388 | REAL(wp), PARAMETER :: p23 = 2.0_wp/3.0_wp !: |
---|
2389 | INTEGER(iwp) :: k !: |
---|
2390 | INTEGER(iwp) :: kc !: |
---|
2391 | |
---|
2392 | |
---|
2393 | IF ( nest_bound_l ) THEN |
---|
2394 | ALLOCATE( tkefactor_l(nzb:nzt+1,nysg:nyng) ) |
---|
2395 | tkefactor_l = 0.0_wp |
---|
2396 | i = nxl - 1 |
---|
2397 | DO j = nysg, nyng |
---|
2398 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
2399 | kc = kco(k+1) |
---|
2400 | glsf = ( dx * dy * dzu(k) )**p13 |
---|
2401 | glsc = ( cg%dx * cg%dy *cg%dzu(kc) )**p13 |
---|
2402 | height = zu(k) - zu(nzb_s_inner(j,i)) |
---|
2403 | fw = EXP( -cfw * height / glsf ) |
---|
2404 | tkefactor_l(k,j) = c_tkef * ( fw0 * fw + ( 1.0_wp - fw ) * & |
---|
2405 | ( glsf / glsc )**p23 ) |
---|
2406 | ENDDO |
---|
2407 | tkefactor_l(nzb_s_inner(j,i),j) = c_tkef * fw0 |
---|
2408 | ENDDO |
---|
2409 | ENDIF |
---|
2410 | |
---|
2411 | IF ( nest_bound_r ) THEN |
---|
2412 | ALLOCATE( tkefactor_r(nzb:nzt+1,nysg:nyng) ) |
---|
2413 | tkefactor_r = 0.0_wp |
---|
2414 | i = nxr + 1 |
---|
2415 | DO j = nysg, nyng |
---|
2416 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
2417 | kc = kco(k+1) |
---|
2418 | glsf = ( dx * dy * dzu(k) )**p13 |
---|
2419 | glsc = ( cg%dx * cg%dy * cg%dzu(kc) )**p13 |
---|
2420 | height = zu(k) - zu(nzb_s_inner(j,i)) |
---|
2421 | fw = EXP( -cfw * height / glsf ) |
---|
2422 | tkefactor_r(k,j) = c_tkef * ( fw0 * fw + ( 1.0_wp - fw ) * & |
---|
2423 | ( glsf / glsc )**p23 ) |
---|
2424 | ENDDO |
---|
2425 | tkefactor_r(nzb_s_inner(j,i),j) = c_tkef * fw0 |
---|
2426 | ENDDO |
---|
2427 | ENDIF |
---|
2428 | |
---|
2429 | IF ( nest_bound_s ) THEN |
---|
2430 | ALLOCATE( tkefactor_s(nzb:nzt+1,nxlg:nxrg) ) |
---|
2431 | tkefactor_s = 0.0_wp |
---|
2432 | j = nys - 1 |
---|
2433 | DO i = nxlg, nxrg |
---|
2434 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
2435 | kc = kco(k+1) |
---|
2436 | glsf = ( dx * dy * dzu(k) )**p13 |
---|
2437 | glsc = ( cg%dx * cg%dy * cg%dzu(kc) ) ** p13 |
---|
2438 | height = zu(k) - zu(nzb_s_inner(j,i)) |
---|
2439 | fw = EXP( -cfw*height / glsf ) |
---|
2440 | tkefactor_s(k,i) = c_tkef * ( fw0 * fw + ( 1.0_wp - fw ) * & |
---|
2441 | ( glsf / glsc )**p23 ) |
---|
2442 | ENDDO |
---|
2443 | tkefactor_s(nzb_s_inner(j,i),i) = c_tkef * fw0 |
---|
2444 | ENDDO |
---|
2445 | ENDIF |
---|
2446 | |
---|
2447 | IF ( nest_bound_n ) THEN |
---|
2448 | ALLOCATE( tkefactor_n(nzb:nzt+1,nxlg:nxrg) ) |
---|
2449 | tkefactor_n = 0.0_wp |
---|
2450 | j = nyn + 1 |
---|
2451 | DO i = nxlg, nxrg |
---|
2452 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2453 | kc = kco(k+1) |
---|
2454 | glsf = ( dx * dy * dzu(k) )**p13 |
---|
2455 | glsc = ( cg%dx * cg%dy * cg%dzu(kc) )**p13 |
---|
2456 | height = zu(k) - zu(nzb_s_inner(j,i)) |
---|
2457 | fw = EXP( -cfw * height / glsf ) |
---|
2458 | tkefactor_n(k,i) = c_tkef * ( fw0 * fw + ( 1.0_wp - fw ) * & |
---|
2459 | ( glsf / glsc )**p23 ) |
---|
2460 | ENDDO |
---|
2461 | tkefactor_n(nzb_s_inner(j,i),i) = c_tkef * fw0 |
---|
2462 | ENDDO |
---|
2463 | ENDIF |
---|
2464 | |
---|
2465 | ALLOCATE( tkefactor_t(nysg:nyng,nxlg:nxrg) ) |
---|
2466 | k = nzt |
---|
2467 | DO i = nxlg, nxrg |
---|
2468 | DO j = nysg, nyng |
---|
2469 | kc = kco(k+1) |
---|
2470 | glsf = ( dx * dy * dzu(k) )**p13 |
---|
2471 | glsc = ( cg%dx * cg%dy * cg%dzu(kc) )**p13 |
---|
2472 | height = zu(k) - zu(nzb_s_inner(j,i)) |
---|
2473 | fw = EXP( -cfw * height / glsf ) |
---|
2474 | tkefactor_t(j,i) = c_tkef * ( fw0 * fw + ( 1.0_wp - fw ) * & |
---|
2475 | ( glsf / glsc )**p23 ) |
---|
2476 | ENDDO |
---|
2477 | ENDDO |
---|
2478 | |
---|
2479 | END SUBROUTINE pmci_init_tkefactor |
---|
2480 | |
---|
2481 | #endif |
---|
2482 | END SUBROUTINE pmci_setup_child |
---|
2483 | |
---|
2484 | |
---|
2485 | |
---|
2486 | SUBROUTINE pmci_setup_coordinates |
---|
2487 | |
---|
2488 | #if defined( __parallel ) |
---|
2489 | IMPLICIT NONE |
---|
2490 | |
---|
2491 | INTEGER(iwp) :: i !: |
---|
2492 | INTEGER(iwp) :: j !: |
---|
2493 | |
---|
2494 | ! |
---|
2495 | !-- Create coordinate arrays. |
---|
2496 | ALLOCATE( coord_x(-nbgp:nx+nbgp) ) |
---|
2497 | ALLOCATE( coord_y(-nbgp:ny+nbgp) ) |
---|
2498 | |
---|
2499 | DO i = -nbgp, nx + nbgp |
---|
2500 | coord_x(i) = lower_left_coord_x + i * dx |
---|
2501 | ENDDO |
---|
2502 | |
---|
2503 | DO j = -nbgp, ny + nbgp |
---|
2504 | coord_y(j) = lower_left_coord_y + j * dy |
---|
2505 | ENDDO |
---|
2506 | |
---|
2507 | #endif |
---|
2508 | END SUBROUTINE pmci_setup_coordinates |
---|
2509 | |
---|
2510 | |
---|
2511 | |
---|
2512 | |
---|
2513 | SUBROUTINE pmci_set_array_pointer( name, child_id, nz_cl ) |
---|
2514 | |
---|
2515 | IMPLICIT NONE |
---|
2516 | |
---|
2517 | INTEGER, INTENT(IN) :: child_id !: |
---|
2518 | INTEGER, INTENT(IN) :: nz_cl !: |
---|
2519 | CHARACTER(LEN=*), INTENT(IN) :: name !: |
---|
2520 | |
---|
2521 | #if defined( __parallel ) |
---|
2522 | INTEGER(iwp) :: ierr !: |
---|
2523 | INTEGER(iwp) :: istat !: |
---|
2524 | |
---|
2525 | REAL(wp), POINTER, DIMENSION(:,:) :: p_2d !: |
---|
2526 | REAL(wp), POINTER, DIMENSION(:,:) :: p_2d_sec !: |
---|
2527 | REAL(wp), POINTER, DIMENSION(:,:,:) :: p_3d !: |
---|
2528 | REAL(wp), POINTER, DIMENSION(:,:,:) :: p_3d_sec !: |
---|
2529 | |
---|
2530 | |
---|
2531 | NULLIFY( p_3d ) |
---|
2532 | NULLIFY( p_2d ) |
---|
2533 | |
---|
2534 | ! |
---|
2535 | !-- List of array names, which can be coupled. |
---|
2536 | !-- In case of 3D please change also the second array for the pointer version |
---|
2537 | IF ( TRIM(name) == "u" ) p_3d => u |
---|
2538 | IF ( TRIM(name) == "v" ) p_3d => v |
---|
2539 | IF ( TRIM(name) == "w" ) p_3d => w |
---|
2540 | IF ( TRIM(name) == "e" ) p_3d => e |
---|
2541 | IF ( TRIM(name) == "pt" ) p_3d => pt |
---|
2542 | IF ( TRIM(name) == "q" ) p_3d => q |
---|
2543 | IF ( TRIM(name) == "s" ) p_3d => s |
---|
2544 | ! |
---|
2545 | !-- Next line is just an example for a 2D array (not active for coupling!) |
---|
2546 | !-- Please note, that z0 has to be declared as TARGET array in modules.f90 |
---|
2547 | ! IF ( TRIM(name) == "z0" ) p_2d => z0 |
---|
2548 | |
---|
2549 | #if defined( __nopointer ) |
---|
2550 | IF ( ASSOCIATED( p_3d ) ) THEN |
---|
2551 | CALL pmc_s_set_dataarray( child_id, p_3d, nz_cl, nz ) |
---|
2552 | ELSEIF ( ASSOCIATED( p_2d ) ) THEN |
---|
2553 | CALL pmc_s_set_dataarray( child_id, p_2d ) |
---|
2554 | ELSE |
---|
2555 | ! |
---|
2556 | !-- Give only one message for the root domain |
---|
2557 | IF ( myid == 0 .AND. cpl_id == 1 ) THEN |
---|
2558 | |
---|
2559 | message_string = 'pointer for array "' // TRIM( name ) // & |
---|
2560 | '" can''t be associated' |
---|
2561 | CALL message( 'pmci_set_array_pointer', 'PA0117', 3, 2, 0, 6, 0 ) |
---|
2562 | ELSE |
---|
2563 | ! |
---|
2564 | !-- Avoid others to continue |
---|
2565 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
2566 | ENDIF |
---|
2567 | ENDIF |
---|
2568 | #else |
---|
2569 | IF ( TRIM(name) == "u" ) p_3d_sec => u_2 |
---|
2570 | IF ( TRIM(name) == "v" ) p_3d_sec => v_2 |
---|
2571 | IF ( TRIM(name) == "w" ) p_3d_sec => w_2 |
---|
2572 | IF ( TRIM(name) == "e" ) p_3d_sec => e_2 |
---|
2573 | IF ( TRIM(name) == "pt" ) p_3d_sec => pt_2 |
---|
2574 | IF ( TRIM(name) == "q" ) p_3d_sec => q_2 |
---|
2575 | IF ( TRIM(name) == "s" ) p_3d_sec => s_2 |
---|
2576 | |
---|
2577 | IF ( ASSOCIATED( p_3d ) ) THEN |
---|
2578 | CALL pmc_s_set_dataarray( child_id, p_3d, nz_cl, nz, & |
---|
2579 | array_2 = p_3d_sec ) |
---|
2580 | ELSEIF ( ASSOCIATED( p_2d ) ) THEN |
---|
2581 | CALL pmc_s_set_dataarray( child_id, p_2d ) |
---|
2582 | ELSE |
---|
2583 | ! |
---|
2584 | !-- Give only one message for the root domain |
---|
2585 | IF ( myid == 0 .AND. cpl_id == 1 ) THEN |
---|
2586 | |
---|
2587 | message_string = 'pointer for array "' // TRIM( name ) // & |
---|
2588 | '" can''t be associated' |
---|
2589 | CALL message( 'pmci_set_array_pointer', 'PA0117', 3, 2, 0, 6, 0 ) |
---|
2590 | ELSE |
---|
2591 | ! |
---|
2592 | !-- Avoid others to continue |
---|
2593 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
2594 | ENDIF |
---|
2595 | |
---|
2596 | ENDIF |
---|
2597 | #endif |
---|
2598 | |
---|
2599 | #endif |
---|
2600 | END SUBROUTINE pmci_set_array_pointer |
---|
2601 | |
---|
2602 | |
---|
2603 | |
---|
2604 | SUBROUTINE pmci_create_child_arrays( name, is, ie, js, je, nzc ) |
---|
2605 | |
---|
2606 | IMPLICIT NONE |
---|
2607 | |
---|
2608 | CHARACTER(LEN=*), INTENT(IN) :: name !: |
---|
2609 | |
---|
2610 | INTEGER(iwp), INTENT(IN) :: ie !: |
---|
2611 | INTEGER(iwp), INTENT(IN) :: is !: |
---|
2612 | INTEGER(iwp), INTENT(IN) :: je !: |
---|
2613 | INTEGER(iwp), INTENT(IN) :: js !: |
---|
2614 | INTEGER(iwp), INTENT(IN) :: nzc !: Note that nzc is cg%nz |
---|
2615 | |
---|
2616 | #if defined( __parallel ) |
---|
2617 | INTEGER(iwp) :: ierr !: |
---|
2618 | INTEGER(iwp) :: istat !: |
---|
2619 | |
---|
2620 | REAL(wp), POINTER,DIMENSION(:,:) :: p_2d !: |
---|
2621 | REAL(wp), POINTER,DIMENSION(:,:,:) :: p_3d !: |
---|
2622 | |
---|
2623 | |
---|
2624 | NULLIFY( p_3d ) |
---|
2625 | NULLIFY( p_2d ) |
---|
2626 | |
---|
2627 | ! |
---|
2628 | !-- List of array names, which can be coupled |
---|
2629 | IF ( TRIM( name ) == "u" ) THEN |
---|
2630 | IF ( .NOT. ALLOCATED( uc ) ) ALLOCATE( uc(0:nzc+1, js:je, is:ie) ) |
---|
2631 | p_3d => uc |
---|
2632 | ELSEIF ( TRIM( name ) == "v" ) THEN |
---|
2633 | IF ( .NOT. ALLOCATED( vc ) ) ALLOCATE( vc(0:nzc+1, js:je, is:ie) ) |
---|
2634 | p_3d => vc |
---|
2635 | ELSEIF ( TRIM( name ) == "w" ) THEN |
---|
2636 | IF ( .NOT. ALLOCATED( wc ) ) ALLOCATE( wc(0:nzc+1, js:je, is:ie) ) |
---|
2637 | p_3d => wc |
---|
2638 | ELSEIF ( TRIM( name ) == "e" ) THEN |
---|
2639 | IF ( .NOT. ALLOCATED( ec ) ) ALLOCATE( ec(0:nzc+1, js:je, is:ie) ) |
---|
2640 | p_3d => ec |
---|
2641 | ELSEIF ( TRIM( name ) == "pt") THEN |
---|
2642 | IF ( .NOT. ALLOCATED( ptc ) ) ALLOCATE( ptc(0:nzc+1, js:je, is:ie) ) |
---|
2643 | p_3d => ptc |
---|
2644 | ELSEIF ( TRIM( name ) == "q") THEN |
---|
2645 | IF ( .NOT. ALLOCATED( qc ) ) ALLOCATE( qc(0:nzc+1, js:je, is:ie) ) |
---|
2646 | p_3d => qc |
---|
2647 | ELSEIF ( TRIM( name ) == "s") THEN |
---|
2648 | IF ( .NOT. ALLOCATED( sc ) ) ALLOCATE( sc(0:nzc+1, js:je, is:ie) ) |
---|
2649 | p_3d => sc |
---|
2650 | !ELSEIF (trim(name) == "z0") then |
---|
2651 | !IF (.not.allocated(z0c)) allocate(z0c(js:je, is:ie)) |
---|
2652 | !p_2d => z0c |
---|
2653 | ENDIF |
---|
2654 | |
---|
2655 | IF ( ASSOCIATED( p_3d ) ) THEN |
---|
2656 | CALL pmc_c_set_dataarray( p_3d ) |
---|
2657 | ELSEIF ( ASSOCIATED( p_2d ) ) THEN |
---|
2658 | CALL pmc_c_set_dataarray( p_2d ) |
---|
2659 | ELSE |
---|
2660 | ! |
---|
2661 | !-- Give only one message for the first child domain |
---|
2662 | IF ( myid == 0 .AND. cpl_id == 2 ) THEN |
---|
2663 | |
---|
2664 | message_string = 'pointer for array "' // TRIM( name ) // & |
---|
2665 | '" can''t be associated' |
---|
2666 | CALL message( 'pmci_create_child_arrays', 'PA0170', 3, 2, 0, 6, 0 ) |
---|
2667 | ELSE |
---|
2668 | ! |
---|
2669 | !-- Prevent others from continuing |
---|
2670 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
2671 | ENDIF |
---|
2672 | ENDIF |
---|
2673 | |
---|
2674 | #endif |
---|
2675 | END SUBROUTINE pmci_create_child_arrays |
---|
2676 | |
---|
2677 | |
---|
2678 | |
---|
2679 | SUBROUTINE pmci_parent_initialize |
---|
2680 | |
---|
2681 | ! |
---|
2682 | !-- Send data for the children in order to let them create initial |
---|
2683 | !-- conditions by interpolating the parent-domain fields. |
---|
2684 | #if defined( __parallel ) |
---|
2685 | IMPLICIT NONE |
---|
2686 | |
---|
2687 | INTEGER(iwp) :: child_id !: |
---|
2688 | INTEGER(iwp) :: m !: |
---|
2689 | |
---|
2690 | REAL(wp) :: waittime !: |
---|
2691 | |
---|
2692 | |
---|
2693 | DO m = 1, SIZE( pmc_parent_for_child ) - 1 |
---|
2694 | child_id = pmc_parent_for_child(m) |
---|
2695 | CALL pmc_s_fillbuffer( child_id, waittime=waittime ) |
---|
2696 | ENDDO |
---|
2697 | |
---|
2698 | #endif |
---|
2699 | END SUBROUTINE pmci_parent_initialize |
---|
2700 | |
---|
2701 | |
---|
2702 | |
---|
2703 | SUBROUTINE pmci_child_initialize |
---|
2704 | |
---|
2705 | ! |
---|
2706 | !-- Create initial conditions for the current child domain by interpolating |
---|
2707 | !-- the parent-domain fields. |
---|
2708 | #if defined( __parallel ) |
---|
2709 | IMPLICIT NONE |
---|
2710 | |
---|
2711 | INTEGER(iwp) :: i !: |
---|
2712 | INTEGER(iwp) :: icl !: |
---|
2713 | INTEGER(iwp) :: icr !: |
---|
2714 | INTEGER(iwp) :: j !: |
---|
2715 | INTEGER(iwp) :: jcn !: |
---|
2716 | INTEGER(iwp) :: jcs !: |
---|
2717 | |
---|
2718 | REAL(wp) :: waittime !: |
---|
2719 | |
---|
2720 | ! |
---|
2721 | !-- Root id is never a child |
---|
2722 | IF ( cpl_id > 1 ) THEN |
---|
2723 | |
---|
2724 | ! |
---|
2725 | !-- Child domain boundaries in the parent index space |
---|
2726 | icl = coarse_bound(1) |
---|
2727 | icr = coarse_bound(2) |
---|
2728 | jcs = coarse_bound(3) |
---|
2729 | jcn = coarse_bound(4) |
---|
2730 | |
---|
2731 | ! |
---|
2732 | !-- Get data from the parent |
---|
2733 | CALL pmc_c_getbuffer( waittime = waittime ) |
---|
2734 | |
---|
2735 | ! |
---|
2736 | !-- The interpolation. |
---|
2737 | CALL pmci_interp_tril_all ( u, uc, icu, jco, kco, r1xu, r2xu, r1yo, & |
---|
2738 | r2yo, r1zo, r2zo, nzb_u_inner, 'u' ) |
---|
2739 | CALL pmci_interp_tril_all ( v, vc, ico, jcv, kco, r1xo, r2xo, r1yv, & |
---|
2740 | r2yv, r1zo, r2zo, nzb_v_inner, 'v' ) |
---|
2741 | CALL pmci_interp_tril_all ( w, wc, ico, jco, kcw, r1xo, r2xo, r1yo, & |
---|
2742 | r2yo, r1zw, r2zw, nzb_w_inner, 'w' ) |
---|
2743 | CALL pmci_interp_tril_all ( e, ec, ico, jco, kco, r1xo, r2xo, r1yo, & |
---|
2744 | r2yo, r1zo, r2zo, nzb_s_inner, 'e' ) |
---|
2745 | IF ( .NOT. neutral ) THEN |
---|
2746 | CALL pmci_interp_tril_all ( pt, ptc, ico, jco, kco, r1xo, r2xo, & |
---|
2747 | r1yo, r2yo, r1zo, r2zo, nzb_s_inner, 's' ) |
---|
2748 | ENDIF |
---|
2749 | IF ( humidity ) THEN |
---|
2750 | CALL pmci_interp_tril_all ( q, qc, ico, jco, kco, r1xo, r2xo, r1yo, & |
---|
2751 | r2yo, r1zo, r2zo, nzb_s_inner, 's' ) |
---|
2752 | ENDIF |
---|
2753 | IF ( passive_scalar ) THEN |
---|
2754 | CALL pmci_interp_tril_all ( s, sc, ico, jco, kco, r1xo, r2xo, r1yo, & |
---|
2755 | r2yo, r1zo, r2zo, nzb_s_inner, 's' ) |
---|
2756 | ENDIF |
---|
2757 | |
---|
2758 | IF ( topography /= 'flat' ) THEN |
---|
2759 | ! |
---|
2760 | !-- Inside buildings set velocities and TKE back to zero. |
---|
2761 | !-- Other scalars (pt, q, s, km, kh, p, sa, ...) are ignored at present, |
---|
2762 | !-- maybe revise later. |
---|
2763 | DO i = nxlg, nxrg |
---|
2764 | DO j = nysg, nyng |
---|
2765 | u(nzb:nzb_u_inner(j,i),j,i) = 0.0_wp |
---|
2766 | v(nzb:nzb_v_inner(j,i),j,i) = 0.0_wp |
---|
2767 | w(nzb:nzb_w_inner(j,i),j,i) = 0.0_wp |
---|
2768 | e(nzb:nzb_s_inner(j,i),j,i) = 0.0_wp |
---|
2769 | u_p(nzb:nzb_u_inner(j,i),j,i) = 0.0_wp |
---|
2770 | v_p(nzb:nzb_v_inner(j,i),j,i) = 0.0_wp |
---|
2771 | w_p(nzb:nzb_w_inner(j,i),j,i) = 0.0_wp |
---|
2772 | e_p(nzb:nzb_s_inner(j,i),j,i) = 0.0_wp |
---|
2773 | ENDDO |
---|
2774 | ENDDO |
---|
2775 | ENDIF |
---|
2776 | ENDIF |
---|
2777 | |
---|
2778 | |
---|
2779 | CONTAINS |
---|
2780 | |
---|
2781 | |
---|
2782 | SUBROUTINE pmci_interp_tril_all( f, fc, ic, jc, kc, r1x, r2x, r1y, r2y, & |
---|
2783 | r1z, r2z, kb, var ) |
---|
2784 | ! |
---|
2785 | !-- Interpolation of the internal values for the child-domain initialization |
---|
2786 | !-- This subroutine is based on trilinear interpolation. |
---|
2787 | !-- Coding based on interp_tril_lr/sn/t |
---|
2788 | IMPLICIT NONE |
---|
2789 | |
---|
2790 | CHARACTER(LEN=1), INTENT(IN) :: var !: |
---|
2791 | |
---|
2792 | INTEGER(iwp), DIMENSION(nxlg:nxrg), INTENT(IN) :: ic !: |
---|
2793 | INTEGER(iwp), DIMENSION(nysg:nyng), INTENT(IN) :: jc !: |
---|
2794 | INTEGER(iwp), DIMENSION(nzb:nzt+1), INTENT(IN) :: kc !: |
---|
2795 | INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg), INTENT(IN) :: kb !: |
---|
2796 | |
---|
2797 | INTEGER(iwp) :: i !: |
---|
2798 | INTEGER(iwp) :: ib !: |
---|
2799 | INTEGER(iwp) :: ie !: |
---|
2800 | INTEGER(iwp) :: j !: |
---|
2801 | INTEGER(iwp) :: jb !: |
---|
2802 | INTEGER(iwp) :: je !: |
---|
2803 | INTEGER(iwp) :: k !: |
---|
2804 | INTEGER(iwp) :: k1 !: |
---|
2805 | INTEGER(iwp) :: kbc !: |
---|
2806 | INTEGER(iwp) :: l !: |
---|
2807 | INTEGER(iwp) :: m !: |
---|
2808 | INTEGER(iwp) :: n !: |
---|
2809 | |
---|
2810 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(INOUT) :: f !: |
---|
2811 | REAL(wp), DIMENSION(0:cg%nz+1,jcs:jcn,icl:icr), INTENT(IN) :: fc !: |
---|
2812 | REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r1x !: |
---|
2813 | REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r2x !: |
---|
2814 | REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r1y !: |
---|
2815 | REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r2y !: |
---|
2816 | REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r1z !: |
---|
2817 | REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r2z !: |
---|
2818 | |
---|
2819 | REAL(wp) :: fk !: |
---|
2820 | REAL(wp) :: fkj !: |
---|
2821 | REAL(wp) :: fkjp !: |
---|
2822 | REAL(wp) :: fkp !: |
---|
2823 | REAL(wp) :: fkpj !: |
---|
2824 | REAL(wp) :: fkpjp !: |
---|
2825 | REAL(wp) :: logratio !: |
---|
2826 | REAL(wp) :: logzuc1 !: |
---|
2827 | REAL(wp) :: zuc1 !: |
---|
2828 | |
---|
2829 | |
---|
2830 | ib = nxl |
---|
2831 | ie = nxr |
---|
2832 | jb = nys |
---|
2833 | je = nyn |
---|
2834 | IF ( nesting_mode /= 'vertical' ) THEN |
---|
2835 | IF ( nest_bound_l ) THEN |
---|
2836 | ib = nxl - 1 |
---|
2837 | ! |
---|
2838 | !-- For u, nxl is a ghost node, but not for the other variables |
---|
2839 | IF ( var == 'u' ) THEN |
---|
2840 | ib = nxl |
---|
2841 | ENDIF |
---|
2842 | ENDIF |
---|
2843 | IF ( nest_bound_s ) THEN |
---|
2844 | jb = nys - 1 |
---|
2845 | ! |
---|
2846 | !-- For v, nys is a ghost node, but not for the other variables |
---|
2847 | IF ( var == 'v' ) THEN |
---|
2848 | jb = nys |
---|
2849 | ENDIF |
---|
2850 | ENDIF |
---|
2851 | IF ( nest_bound_r ) THEN |
---|
2852 | ie = nxr + 1 |
---|
2853 | ENDIF |
---|
2854 | IF ( nest_bound_n ) THEN |
---|
2855 | je = nyn + 1 |
---|
2856 | ENDIF |
---|
2857 | ENDIF |
---|
2858 | ! |
---|
2859 | !-- Trilinear interpolation. |
---|
2860 | DO i = ib, ie |
---|
2861 | DO j = jb, je |
---|
2862 | DO k = kb(j,i), nzt + 1 |
---|
2863 | l = ic(i) |
---|
2864 | m = jc(j) |
---|
2865 | n = kc(k) |
---|
2866 | fkj = r1x(i) * fc(n,m,l) + r2x(i) * fc(n,m,l+1) |
---|
2867 | fkjp = r1x(i) * fc(n,m+1,l) + r2x(i) * fc(n,m+1,l+1) |
---|
2868 | fkpj = r1x(i) * fc(n+1,m,l) + r2x(i) * fc(n+1,m,l+1) |
---|
2869 | fkpjp = r1x(i) * fc(n+1,m+1,l) + r2x(i) * fc(n+1,m+1,l+1) |
---|
2870 | fk = r1y(j) * fkj + r2y(j) * fkjp |
---|
2871 | fkp = r1y(j) * fkpj + r2y(j) * fkpjp |
---|
2872 | f(k,j,i) = r1z(k) * fk + r2z(k) * fkp |
---|
2873 | ENDDO |
---|
2874 | ENDDO |
---|
2875 | ENDDO |
---|
2876 | |
---|
2877 | ! |
---|
2878 | !-- Correct the interpolated values of u and v in near-wall nodes, i.e. in |
---|
2879 | !-- the nodes below the coarse-grid nodes with k=1. The corrction is only |
---|
2880 | !-- made over horizontal wall surfaces in this phase. For the nest boundary |
---|
2881 | !-- conditions, a corresponding correction is made for all vertical walls, |
---|
2882 | !-- too. |
---|
2883 | IF ( var == 'u' .OR. var == 'v' ) THEN |
---|
2884 | DO i = ib, nxr |
---|
2885 | DO j = jb, nyn |
---|
2886 | kbc = 1 |
---|
2887 | ! |
---|
2888 | !-- kbc is the first coarse-grid point above the surface |
---|
2889 | DO WHILE ( cg%zu(kbc) < zu(kb(j,i)) ) |
---|
2890 | kbc = kbc + 1 |
---|
2891 | ENDDO |
---|
2892 | zuc1 = cg%zu(kbc) |
---|
2893 | k1 = kb(j,i) + 1 |
---|
2894 | DO WHILE ( zu(k1) < zuc1 ) |
---|
2895 | k1 = k1 + 1 |
---|
2896 | ENDDO |
---|
2897 | logzuc1 = LOG( ( zu(k1) - zu(kb(j,i)) ) / z0(j,i) ) |
---|
2898 | |
---|
2899 | k = kb(j,i) + 1 |
---|
2900 | DO WHILE ( zu(k) < zuc1 ) |
---|
2901 | logratio = ( LOG( ( zu(k) - zu(kb(j,i)) ) / z0(j,i)) ) / & |
---|
2902 | logzuc1 |
---|
2903 | f(k,j,i) = logratio * f(k1,j,i) |
---|
2904 | k = k + 1 |
---|
2905 | ENDDO |
---|
2906 | f(kb(j,i),j,i) = 0.0_wp |
---|
2907 | ENDDO |
---|
2908 | ENDDO |
---|
2909 | |
---|
2910 | ELSEIF ( var == 'w' ) THEN |
---|
2911 | |
---|
2912 | DO i = ib, nxr |
---|
2913 | DO j = jb, nyn |
---|
2914 | f(kb(j,i),j,i) = 0.0_wp |
---|
2915 | ENDDO |
---|
2916 | ENDDO |
---|
2917 | |
---|
2918 | ENDIF |
---|
2919 | |
---|
2920 | END SUBROUTINE pmci_interp_tril_all |
---|
2921 | |
---|
2922 | #endif |
---|
2923 | END SUBROUTINE pmci_child_initialize |
---|
2924 | |
---|
2925 | |
---|
2926 | |
---|
2927 | SUBROUTINE pmci_check_setting_mismatches |
---|
2928 | ! |
---|
2929 | !-- Check for mismatches between settings of master and child variables |
---|
2930 | !-- (e.g., all children have to follow the end_time settings of the root model). |
---|
2931 | !-- The root model overwrites variables in the other models, so these variables |
---|
2932 | !-- only need to be set once in file PARIN. |
---|
2933 | |
---|
2934 | #if defined( __parallel ) |
---|
2935 | |
---|
2936 | USE control_parameters, & |
---|
2937 | ONLY: dt_restart, end_time, message_string, restart_time, time_restart |
---|
2938 | |
---|
2939 | IMPLICIT NONE |
---|
2940 | |
---|
2941 | INTEGER :: ierr |
---|
2942 | |
---|
2943 | REAL(wp) :: dt_restart_root |
---|
2944 | REAL(wp) :: end_time_root |
---|
2945 | REAL(wp) :: restart_time_root |
---|
2946 | REAL(wp) :: time_restart_root |
---|
2947 | |
---|
2948 | ! |
---|
2949 | !-- Check the time to be simulated. |
---|
2950 | !-- Here, and in the following, the root process communicates the respective |
---|
2951 | !-- variable to all others, and its value will then be compared with the local |
---|
2952 | !-- values. |
---|
2953 | IF ( pmc_is_rootmodel() ) end_time_root = end_time |
---|
2954 | CALL MPI_BCAST( end_time_root, 1, MPI_REAL, 0, comm_world_nesting, ierr ) |
---|
2955 | |
---|
2956 | IF ( .NOT. pmc_is_rootmodel() ) THEN |
---|
2957 | IF ( end_time /= end_time_root ) THEN |
---|
2958 | WRITE( message_string, * ) 'mismatch between root model and ', & |
---|
2959 | 'child settings & end_time(root) = ', end_time_root, & |
---|
2960 | ' & end_time(child) = ', end_time, ' & child value is set', & |
---|
2961 | ' to root value' |
---|
2962 | CALL message( 'pmci_check_setting_mismatches', 'PA0419', 0, 1, 0, 6, & |
---|
2963 | 0 ) |
---|
2964 | end_time = end_time_root |
---|
2965 | ENDIF |
---|
2966 | ENDIF |
---|
2967 | |
---|
2968 | ! |
---|
2969 | !-- Same for restart time |
---|
2970 | IF ( pmc_is_rootmodel() ) restart_time_root = restart_time |
---|
2971 | CALL MPI_BCAST( restart_time_root, 1, MPI_REAL, 0, comm_world_nesting, ierr ) |
---|
2972 | |
---|
2973 | IF ( .NOT. pmc_is_rootmodel() ) THEN |
---|
2974 | IF ( restart_time /= restart_time_root ) THEN |
---|
2975 | WRITE( message_string, * ) 'mismatch between root model and ', & |
---|
2976 | 'child settings & restart_time(root) = ', restart_time_root, & |
---|
2977 | ' & restart_time(child) = ', restart_time, ' & child ', & |
---|
2978 | 'value is set to root value' |
---|
2979 | CALL message( 'pmci_check_setting_mismatches', 'PA0419', 0, 1, 0, 6, & |
---|
2980 | 0 ) |
---|
2981 | restart_time = restart_time_root |
---|
2982 | ENDIF |
---|
2983 | ENDIF |
---|
2984 | |
---|
2985 | ! |
---|
2986 | !-- Same for dt_restart |
---|
2987 | IF ( pmc_is_rootmodel() ) dt_restart_root = dt_restart |
---|
2988 | CALL MPI_BCAST( dt_restart_root, 1, MPI_REAL, 0, comm_world_nesting, ierr ) |
---|
2989 | |
---|
2990 | IF ( .NOT. pmc_is_rootmodel() ) THEN |
---|
2991 | IF ( dt_restart /= dt_restart_root ) THEN |
---|
2992 | WRITE( message_string, * ) 'mismatch between root model and ', & |
---|
2993 | 'child settings & dt_restart(root) = ', dt_restart_root, & |
---|
2994 | ' & dt_restart(child) = ', dt_restart, ' & child ', & |
---|
2995 | 'value is set to root value' |
---|
2996 | CALL message( 'pmci_check_setting_mismatches', 'PA0419', 0, 1, 0, 6, & |
---|
2997 | 0 ) |
---|
2998 | dt_restart = dt_restart_root |
---|
2999 | ENDIF |
---|
3000 | ENDIF |
---|
3001 | |
---|
3002 | ! |
---|
3003 | !-- Same for time_restart |
---|
3004 | IF ( pmc_is_rootmodel() ) time_restart_root = time_restart |
---|
3005 | CALL MPI_BCAST( time_restart_root, 1, MPI_REAL, 0, comm_world_nesting, ierr ) |
---|
3006 | |
---|
3007 | IF ( .NOT. pmc_is_rootmodel() ) THEN |
---|
3008 | IF ( time_restart /= time_restart_root ) THEN |
---|
3009 | WRITE( message_string, * ) 'mismatch between root model and ', & |
---|
3010 | 'child settings & time_restart(root) = ', time_restart_root, & |
---|
3011 | ' & time_restart(child) = ', time_restart, ' & child ', & |
---|
3012 | 'value is set to root value' |
---|
3013 | CALL message( 'pmci_check_setting_mismatches', 'PA0419', 0, 1, 0, 6, & |
---|
3014 | 0 ) |
---|
3015 | time_restart = time_restart_root |
---|
3016 | ENDIF |
---|
3017 | ENDIF |
---|
3018 | |
---|
3019 | #endif |
---|
3020 | |
---|
3021 | END SUBROUTINE pmci_check_setting_mismatches |
---|
3022 | |
---|
3023 | |
---|
3024 | |
---|
3025 | SUBROUTINE pmci_ensure_nest_mass_conservation |
---|
3026 | |
---|
3027 | ! |
---|
3028 | !-- Adjust the volume-flow rate through the top boundary so that the net volume |
---|
3029 | !-- flow through all boundaries of the current nest domain becomes zero. |
---|
3030 | IMPLICIT NONE |
---|
3031 | |
---|
3032 | INTEGER(iwp) :: i !: |
---|
3033 | INTEGER(iwp) :: ierr !: |
---|
3034 | INTEGER(iwp) :: j !: |
---|
3035 | INTEGER(iwp) :: k !: |
---|
3036 | |
---|
3037 | REAL(wp) :: dxdy !: |
---|
3038 | REAL(wp) :: innor !: |
---|
3039 | REAL(wp) :: w_lt !: |
---|
3040 | REAL(wp), DIMENSION(1:3) :: volume_flow_l !: |
---|
3041 | |
---|
3042 | ! |
---|
3043 | !-- Sum up the volume flow through the left/right boundaries |
---|
3044 | volume_flow(1) = 0.0_wp |
---|
3045 | volume_flow_l(1) = 0.0_wp |
---|
3046 | |
---|
3047 | IF ( nest_bound_l ) THEN |
---|
3048 | i = 0 |
---|
3049 | innor = dy |
---|
3050 | DO j = nys, nyn |
---|
3051 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
3052 | volume_flow_l(1) = volume_flow_l(1) + innor * u(k,j,i) * dzw(k) |
---|
3053 | ENDDO |
---|
3054 | ENDDO |
---|
3055 | ENDIF |
---|
3056 | |
---|
3057 | IF ( nest_bound_r ) THEN |
---|
3058 | i = nx + 1 |
---|
3059 | innor = -dy |
---|
3060 | DO j = nys, nyn |
---|
3061 | DO k = nzb_u_inner(j,i)+1, nzt |
---|
3062 | volume_flow_l(1) = volume_flow_l(1) + innor * u(k,j,i) * dzw(k) |
---|
3063 | ENDDO |
---|
3064 | ENDDO |
---|
3065 | ENDIF |
---|
3066 | |
---|
3067 | #if defined( __parallel ) |
---|
3068 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
3069 | CALL MPI_ALLREDUCE( volume_flow_l(1), volume_flow(1), 1, MPI_REAL, & |
---|
3070 | MPI_SUM, comm2d, ierr ) |
---|
3071 | #else |
---|
3072 | volume_flow(1) = volume_flow_l(1) |
---|
3073 | #endif |
---|
3074 | |
---|
3075 | ! |
---|
3076 | !-- Sum up the volume flow through the south/north boundaries |
---|
3077 | volume_flow(2) = 0.0_wp |
---|
3078 | volume_flow_l(2) = 0.0_wp |
---|
3079 | |
---|
3080 | IF ( nest_bound_s ) THEN |
---|
3081 | j = 0 |
---|
3082 | innor = dx |
---|
3083 | DO i = nxl, nxr |
---|
3084 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
3085 | volume_flow_l(2) = volume_flow_l(2) + innor * v(k,j,i) * dzw(k) |
---|
3086 | ENDDO |
---|
3087 | ENDDO |
---|
3088 | ENDIF |
---|
3089 | |
---|
3090 | IF ( nest_bound_n ) THEN |
---|
3091 | j = ny + 1 |
---|
3092 | innor = -dx |
---|
3093 | DO i = nxl, nxr |
---|
3094 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
3095 | volume_flow_l(2) = volume_flow_l(2) + innor * v(k,j,i) * dzw(k) |
---|
3096 | ENDDO |
---|
3097 | ENDDO |
---|
3098 | ENDIF |
---|
3099 | |
---|
3100 | #if defined( __parallel ) |
---|
3101 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
3102 | CALL MPI_ALLREDUCE( volume_flow_l(2), volume_flow(2), 1, MPI_REAL, & |
---|
3103 | MPI_SUM, comm2d, ierr ) |
---|
3104 | #else |
---|
3105 | volume_flow(2) = volume_flow_l(2) |
---|
3106 | #endif |
---|
3107 | |
---|
3108 | ! |
---|
3109 | !-- Sum up the volume flow through the top boundary |
---|
3110 | volume_flow(3) = 0.0_wp |
---|
3111 | volume_flow_l(3) = 0.0_wp |
---|
3112 | dxdy = dx * dy |
---|
3113 | k = nzt |
---|
3114 | DO i = nxl, nxr |
---|
3115 | DO j = nys, nyn |
---|
3116 | volume_flow_l(3) = volume_flow_l(3) - w(k,j,i) * dxdy |
---|
3117 | ENDDO |
---|
3118 | ENDDO |
---|
3119 | |
---|
3120 | #if defined( __parallel ) |
---|
3121 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
3122 | CALL MPI_ALLREDUCE( volume_flow_l(3), volume_flow(3), 1, MPI_REAL, & |
---|
3123 | MPI_SUM, comm2d, ierr ) |
---|
3124 | #else |
---|
3125 | volume_flow(3) = volume_flow_l(3) |
---|
3126 | #endif |
---|
3127 | |
---|
3128 | ! |
---|
3129 | !-- Correct the top-boundary value of w |
---|
3130 | w_lt = (volume_flow(1) + volume_flow(2) + volume_flow(3)) / area_t |
---|
3131 | DO i = nxl, nxr |
---|
3132 | DO j = nys, nyn |
---|
3133 | DO k = nzt, nzt + 1 |
---|
3134 | w(k,j,i) = w(k,j,i) + w_lt |
---|
3135 | ENDDO |
---|
3136 | ENDDO |
---|
3137 | ENDDO |
---|
3138 | |
---|
3139 | END SUBROUTINE pmci_ensure_nest_mass_conservation |
---|
3140 | |
---|
3141 | |
---|
3142 | |
---|
3143 | SUBROUTINE pmci_synchronize |
---|
3144 | |
---|
3145 | #if defined( __parallel ) |
---|
3146 | ! |
---|
3147 | !-- Unify the time steps for each model and synchronize using |
---|
3148 | !-- MPI_ALLREDUCE with the MPI_MIN operator over all processes using |
---|
3149 | !-- the global communicator MPI_COMM_WORLD. |
---|
3150 | IMPLICIT NONE |
---|
3151 | |
---|
3152 | INTEGER(iwp) :: ierr !: |
---|
3153 | REAL(wp), DIMENSION(1) :: dtl !: |
---|
3154 | REAL(wp), DIMENSION(1) :: dtg !: |
---|
3155 | |
---|
3156 | |
---|
3157 | dtl(1) = dt_3d |
---|
3158 | CALL MPI_ALLREDUCE( dtl, dtg, 1, MPI_REAL, MPI_MIN, MPI_COMM_WORLD, ierr ) |
---|
3159 | dt_3d = dtg(1) |
---|
3160 | |
---|
3161 | #endif |
---|
3162 | END SUBROUTINE pmci_synchronize |
---|
3163 | |
---|
3164 | |
---|
3165 | |
---|
3166 | SUBROUTINE pmci_set_swaplevel( swaplevel ) |
---|
3167 | ! |
---|
3168 | !-- After each Runge-Kutta sub-timestep, alternately set buffer one or buffer |
---|
3169 | !-- two active |
---|
3170 | |
---|
3171 | IMPLICIT NONE |
---|
3172 | |
---|
3173 | INTEGER(iwp), INTENT(IN) :: swaplevel !: swaplevel (1 or 2) of PALM's |
---|
3174 | !: timestep |
---|
3175 | |
---|
3176 | INTEGER(iwp) :: child_id !: |
---|
3177 | INTEGER(iwp) :: m !: |
---|
3178 | |
---|
3179 | DO m = 1, SIZE( pmc_parent_for_child )-1 |
---|
3180 | child_id = pmc_parent_for_child(m) |
---|
3181 | CALL pmc_s_set_active_data_array( child_id, swaplevel ) |
---|
3182 | ENDDO |
---|
3183 | |
---|
3184 | END SUBROUTINE pmci_set_swaplevel |
---|
3185 | |
---|
3186 | |
---|
3187 | |
---|
3188 | SUBROUTINE pmci_datatrans( local_nesting_mode ) |
---|
3189 | ! |
---|
3190 | !-- This subroutine controls the nesting according to the nestpar |
---|
3191 | !-- parameter nesting_mode (two-way (default) or one-way) and the |
---|
3192 | !-- order of anterpolations according to the nestpar parameter |
---|
3193 | !-- nesting_datatransfer_mode (cascade, overlap or mixed (default)). |
---|
3194 | !-- Although nesting_mode is a variable of this model, pass it as |
---|
3195 | !-- an argument to allow for example to force one-way initialization |
---|
3196 | !-- phase. |
---|
3197 | |
---|
3198 | IMPLICIT NONE |
---|
3199 | |
---|
3200 | INTEGER(iwp) :: ierr !: |
---|
3201 | INTEGER(iwp) :: istat !: |
---|
3202 | |
---|
3203 | CHARACTER(LEN=*), INTENT(IN) :: local_nesting_mode |
---|
3204 | |
---|
3205 | IF ( TRIM( local_nesting_mode ) == 'one-way' ) THEN |
---|
3206 | |
---|
3207 | CALL pmci_child_datatrans( parent_to_child ) |
---|
3208 | CALL pmci_parent_datatrans( parent_to_child ) |
---|
3209 | |
---|
3210 | ELSE |
---|
3211 | |
---|
3212 | IF( nesting_datatransfer_mode == 'cascade' ) THEN |
---|
3213 | |
---|
3214 | CALL pmci_child_datatrans( parent_to_child ) |
---|
3215 | CALL pmci_parent_datatrans( parent_to_child ) |
---|
3216 | |
---|
3217 | CALL pmci_parent_datatrans( child_to_parent ) |
---|
3218 | CALL pmci_child_datatrans( child_to_parent ) |
---|
3219 | |
---|
3220 | ELSEIF( nesting_datatransfer_mode == 'overlap') THEN |
---|
3221 | |
---|
3222 | CALL pmci_parent_datatrans( parent_to_child ) |
---|
3223 | CALL pmci_child_datatrans( parent_to_child ) |
---|
3224 | |
---|
3225 | CALL pmci_child_datatrans( child_to_parent ) |
---|
3226 | CALL pmci_parent_datatrans( child_to_parent ) |
---|
3227 | |
---|
3228 | ELSEIF( TRIM( nesting_datatransfer_mode ) == 'mixed' ) THEN |
---|
3229 | |
---|
3230 | CALL pmci_parent_datatrans( parent_to_child ) |
---|
3231 | CALL pmci_child_datatrans( parent_to_child ) |
---|
3232 | |
---|
3233 | CALL pmci_parent_datatrans( child_to_parent ) |
---|
3234 | CALL pmci_child_datatrans( child_to_parent ) |
---|
3235 | |
---|
3236 | ENDIF |
---|
3237 | |
---|
3238 | ENDIF |
---|
3239 | |
---|
3240 | END SUBROUTINE pmci_datatrans |
---|
3241 | |
---|
3242 | |
---|
3243 | |
---|
3244 | |
---|
3245 | SUBROUTINE pmci_parent_datatrans( direction ) |
---|
3246 | |
---|
3247 | IMPLICIT NONE |
---|
3248 | |
---|
3249 | INTEGER(iwp), INTENT(IN) :: direction !: |
---|
3250 | |
---|
3251 | #if defined( __parallel ) |
---|
3252 | INTEGER(iwp) :: child_id !: |
---|
3253 | INTEGER(iwp) :: i !: |
---|
3254 | INTEGER(iwp) :: j !: |
---|
3255 | INTEGER(iwp) :: ierr !: |
---|
3256 | INTEGER(iwp) :: m !: |
---|
3257 | |
---|
3258 | REAL(wp) :: waittime !: |
---|
3259 | REAL(wp), DIMENSION(1) :: dtc !: |
---|
3260 | REAL(wp), DIMENSION(1) :: dtl !: |
---|
3261 | |
---|
3262 | |
---|
3263 | DO m = 1, SIZE( pmc_parent_for_child ) - 1 |
---|
3264 | child_id = pmc_parent_for_child(m) |
---|
3265 | |
---|
3266 | IF ( direction == parent_to_child ) THEN |
---|
3267 | CALL cpu_log( log_point_s(71), 'pmc parent send', 'start' ) |
---|
3268 | CALL pmc_s_fillbuffer( child_id ) |
---|
3269 | CALL cpu_log( log_point_s(71), 'pmc parent send', 'stop' ) |
---|
3270 | ELSE |
---|
3271 | ! |
---|
3272 | !-- Communication from child to parent |
---|
3273 | CALL cpu_log( log_point_s(72), 'pmc parent recv', 'start' ) |
---|
3274 | child_id = pmc_parent_for_child(m) |
---|
3275 | CALL pmc_s_getdata_from_buffer( child_id ) |
---|
3276 | CALL cpu_log( log_point_s(72), 'pmc parent recv', 'stop' ) |
---|
3277 | |
---|
3278 | ! |
---|
3279 | !-- The anterpolated data is now available in u etc |
---|
3280 | IF ( topography /= 'flat' ) THEN |
---|
3281 | |
---|
3282 | ! |
---|
3283 | !-- Inside buildings/topography reset velocities and TKE back to zero. |
---|
3284 | !-- Other scalars (pt, q, s, km, kh, p, sa, ...) are ignored at |
---|
3285 | !-- present, maybe revise later. |
---|
3286 | DO i = nxlg, nxrg |
---|
3287 | DO j = nysg, nyng |
---|
3288 | u(nzb:nzb_u_inner(j,i),j,i) = 0.0_wp |
---|
3289 | v(nzb:nzb_v_inner(j,i),j,i) = 0.0_wp |
---|
3290 | w(nzb:nzb_w_inner(j,i),j,i) = 0.0_wp |
---|
3291 | e(nzb:nzb_s_inner(j,i),j,i) = 0.0_wp |
---|
3292 | ! |
---|
3293 | !-- TO_DO: zero setting of temperature within topography creates |
---|
3294 | !-- wrong results |
---|
3295 | ! pt(nzb:nzb_s_inner(j,i),j,i) = 0.0_wp |
---|
3296 | ! IF ( humidity .OR. passive_scalar ) THEN |
---|
3297 | ! q(nzb:nzb_s_inner(j,i),j,i) = 0.0_wp |
---|
3298 | ! ENDIF |
---|
3299 | ENDDO |
---|
3300 | ENDDO |
---|
3301 | ENDIF |
---|
3302 | ENDIF |
---|
3303 | ENDDO |
---|
3304 | |
---|
3305 | #endif |
---|
3306 | END SUBROUTINE pmci_parent_datatrans |
---|
3307 | |
---|
3308 | |
---|
3309 | |
---|
3310 | SUBROUTINE pmci_child_datatrans( direction ) |
---|
3311 | |
---|
3312 | IMPLICIT NONE |
---|
3313 | |
---|
3314 | INTEGER(iwp), INTENT(IN) :: direction !: |
---|
3315 | |
---|
3316 | #if defined( __parallel ) |
---|
3317 | INTEGER(iwp) :: ierr !: |
---|
3318 | INTEGER(iwp) :: icl !: |
---|
3319 | INTEGER(iwp) :: icr !: |
---|
3320 | INTEGER(iwp) :: jcs !: |
---|
3321 | INTEGER(iwp) :: jcn !: |
---|
3322 | |
---|
3323 | REAL(wp), DIMENSION(1) :: dtl !: |
---|
3324 | REAL(wp), DIMENSION(1) :: dts !: |
---|
3325 | |
---|
3326 | |
---|
3327 | dtl = dt_3d |
---|
3328 | IF ( cpl_id > 1 ) THEN |
---|
3329 | ! |
---|
3330 | !-- Child domain boundaries in the parent indice space. |
---|
3331 | icl = coarse_bound(1) |
---|
3332 | icr = coarse_bound(2) |
---|
3333 | jcs = coarse_bound(3) |
---|
3334 | jcn = coarse_bound(4) |
---|
3335 | |
---|
3336 | IF ( direction == parent_to_child ) THEN |
---|
3337 | |
---|
3338 | CALL cpu_log( log_point_s(73), 'pmc child recv', 'start' ) |
---|
3339 | CALL pmc_c_getbuffer( ) |
---|
3340 | CALL cpu_log( log_point_s(73), 'pmc child recv', 'stop' ) |
---|
3341 | |
---|
3342 | CALL cpu_log( log_point_s(75), 'pmc interpolation', 'start' ) |
---|
3343 | CALL pmci_interpolation |
---|
3344 | CALL cpu_log( log_point_s(75), 'pmc interpolation', 'stop' ) |
---|
3345 | |
---|
3346 | ELSE |
---|
3347 | ! |
---|
3348 | !-- direction == child_to_parent |
---|
3349 | CALL cpu_log( log_point_s(76), 'pmc anterpolation', 'start' ) |
---|
3350 | CALL pmci_anterpolation |
---|
3351 | CALL cpu_log( log_point_s(76), 'pmc anterpolation', 'stop' ) |
---|
3352 | |
---|
3353 | CALL cpu_log( log_point_s(74), 'pmc child send', 'start' ) |
---|
3354 | CALL pmc_c_putbuffer( ) |
---|
3355 | CALL cpu_log( log_point_s(74), 'pmc child send', 'stop' ) |
---|
3356 | |
---|
3357 | ENDIF |
---|
3358 | ENDIF |
---|
3359 | |
---|
3360 | CONTAINS |
---|
3361 | |
---|
3362 | SUBROUTINE pmci_interpolation |
---|
3363 | |
---|
3364 | ! |
---|
3365 | !-- A wrapper routine for all interpolation and extrapolation actions |
---|
3366 | IMPLICIT NONE |
---|
3367 | |
---|
3368 | ! |
---|
3369 | !-- In case of vertical nesting no interpolation is needed for the |
---|
3370 | !-- horizontal boundaries |
---|
3371 | IF ( nesting_mode /= 'vertical' ) THEN |
---|
3372 | |
---|
3373 | ! |
---|
3374 | !-- Left border pe: |
---|
3375 | IF ( nest_bound_l ) THEN |
---|
3376 | CALL pmci_interp_tril_lr( u, uc, icu, jco, kco, r1xu, r2xu, & |
---|
3377 | r1yo, r2yo, r1zo, r2zo, nzb_u_inner, & |
---|
3378 | logc_u_l, logc_ratio_u_l, & |
---|
3379 | nzt_topo_nestbc_l, 'l', 'u' ) |
---|
3380 | CALL pmci_interp_tril_lr( v, vc, ico, jcv, kco, r1xo, r2xo, & |
---|
3381 | r1yv, r2yv, r1zo, r2zo, nzb_v_inner, & |
---|
3382 | logc_v_l, logc_ratio_v_l, & |
---|
3383 | nzt_topo_nestbc_l, 'l', 'v' ) |
---|
3384 | CALL pmci_interp_tril_lr( w, wc, ico, jco, kcw, r1xo, r2xo, & |
---|
3385 | r1yo, r2yo, r1zw, r2zw, nzb_w_inner, & |
---|
3386 | logc_w_l, logc_ratio_w_l, & |
---|
3387 | nzt_topo_nestbc_l, 'l', 'w' ) |
---|
3388 | CALL pmci_interp_tril_lr( e, ec, ico, jco, kco, r1xo, r2xo, & |
---|
3389 | r1yo, r2yo, r1zo, r2zo, nzb_s_inner, & |
---|
3390 | logc_u_l, logc_ratio_u_l, & |
---|
3391 | nzt_topo_nestbc_l, 'l', 'e' ) |
---|
3392 | IF ( .NOT. neutral ) THEN |
---|
3393 | CALL pmci_interp_tril_lr( pt, ptc, ico, jco, kco, r1xo, r2xo, & |
---|
3394 | r1yo, r2yo, r1zo, r2zo, nzb_s_inner, & |
---|
3395 | logc_u_l, logc_ratio_u_l, & |
---|
3396 | nzt_topo_nestbc_l, 'l', 's' ) |
---|
3397 | ENDIF |
---|
3398 | IF ( humidity ) THEN |
---|
3399 | CALL pmci_interp_tril_lr( q, qc, ico, jco, kco, r1xo, r2xo, & |
---|
3400 | r1yo, r2yo, r1zo, r2zo, nzb_s_inner, & |
---|
3401 | logc_u_l, logc_ratio_u_l, & |
---|
3402 | nzt_topo_nestbc_l, 'l', 's' ) |
---|
3403 | ENDIF |
---|
3404 | IF ( passive_scalar ) THEN |
---|
3405 | CALL pmci_interp_tril_lr( s, sc, ico, jco, kco, r1xo, r2xo, & |
---|
3406 | r1yo, r2yo, r1zo, r2zo, nzb_s_inner, & |
---|
3407 | logc_u_l, logc_ratio_u_l, & |
---|
3408 | nzt_topo_nestbc_l, 'l', 's' ) |
---|
3409 | ENDIF |
---|
3410 | |
---|
3411 | IF ( TRIM( nesting_mode ) == 'one-way' ) THEN |
---|
3412 | CALL pmci_extrap_ifoutflow_lr( u, nzb_u_inner, 'l', 'u' ) |
---|
3413 | CALL pmci_extrap_ifoutflow_lr( v, nzb_v_inner, 'l', 'v' ) |
---|
3414 | CALL pmci_extrap_ifoutflow_lr( w, nzb_w_inner, 'l', 'w' ) |
---|
3415 | CALL pmci_extrap_ifoutflow_lr( e, nzb_s_inner, 'l', 'e' ) |
---|
3416 | IF ( .NOT. neutral ) THEN |
---|
3417 | CALL pmci_extrap_ifoutflow_lr( pt,nzb_s_inner, 'l', 's' ) |
---|
3418 | ENDIF |
---|
3419 | IF ( humidity ) THEN |
---|
3420 | CALL pmci_extrap_ifoutflow_lr( q, nzb_s_inner, 'l', 's' ) |
---|
3421 | ENDIF |
---|
3422 | IF ( passive_scalar ) THEN |
---|
3423 | CALL pmci_extrap_ifoutflow_lr( s, nzb_s_inner, 'l', 's' ) |
---|
3424 | ENDIF |
---|
3425 | ENDIF |
---|
3426 | |
---|
3427 | ENDIF |
---|
3428 | |
---|
3429 | ! |
---|
3430 | !-- Right border pe |
---|
3431 | IF ( nest_bound_r ) THEN |
---|
3432 | CALL pmci_interp_tril_lr( u, uc, icu, jco, kco, r1xu, r2xu, & |
---|
3433 | r1yo, r2yo, r1zo, r2zo, nzb_u_inner, & |
---|
3434 | logc_u_r, logc_ratio_u_r, & |
---|
3435 | nzt_topo_nestbc_r, 'r', 'u' ) |
---|
3436 | CALL pmci_interp_tril_lr( v, vc, ico, jcv, kco, r1xo, r2xo, & |
---|
3437 | r1yv, r2yv, r1zo, r2zo, nzb_v_inner, & |
---|
3438 | logc_v_r, logc_ratio_v_r, & |
---|
3439 | nzt_topo_nestbc_r, 'r', 'v' ) |
---|
3440 | CALL pmci_interp_tril_lr( w, wc, ico, jco, kcw, r1xo, r2xo, & |
---|
3441 | r1yo, r2yo, r1zw, r2zw, nzb_w_inner, & |
---|
3442 | logc_w_r, logc_ratio_w_r, & |
---|
3443 | nzt_topo_nestbc_r, 'r', 'w' ) |
---|
3444 | CALL pmci_interp_tril_lr( e, ec, ico, jco, kco, r1xo, r2xo, & |
---|
3445 | r1yo,r2yo, r1zo, r2zo, nzb_s_inner, & |
---|
3446 | logc_u_r, logc_ratio_u_r, & |
---|
3447 | nzt_topo_nestbc_r, 'r', 'e' ) |
---|
3448 | IF ( .NOT. neutral ) THEN |
---|
3449 | CALL pmci_interp_tril_lr( pt, ptc, ico, jco, kco, r1xo, r2xo, & |
---|
3450 | r1yo, r2yo, r1zo, r2zo, nzb_s_inner, & |
---|
3451 | logc_u_r, logc_ratio_u_r, & |
---|
3452 | nzt_topo_nestbc_r, 'r', 's' ) |
---|
3453 | ENDIF |
---|
3454 | IF ( humidity ) THEN |
---|
3455 | CALL pmci_interp_tril_lr( q, qc, ico, jco, kco, r1xo, r2xo, & |
---|
3456 | r1yo, r2yo, r1zo, r2zo, nzb_s_inner, & |
---|
3457 | logc_u_r, logc_ratio_u_r, & |
---|
3458 | nzt_topo_nestbc_r, 'r', 's' ) |
---|
3459 | ENDIF |
---|
3460 | IF ( passive_scalar ) THEN |
---|
3461 | CALL pmci_interp_tril_lr( s, sc, ico, jco, kco, r1xo, r2xo, & |
---|
3462 | r1yo, r2yo, r1zo, r2zo, nzb_s_inner, & |
---|
3463 | logc_u_r, logc_ratio_u_r, & |
---|
3464 | nzt_topo_nestbc_r, 'r', 's' ) |
---|
3465 | ENDIF |
---|
3466 | |
---|
3467 | IF ( TRIM( nesting_mode ) == 'one-way' ) THEN |
---|
3468 | CALL pmci_extrap_ifoutflow_lr( u, nzb_u_inner, 'r', 'u' ) |
---|
3469 | CALL pmci_extrap_ifoutflow_lr( v, nzb_v_inner, 'r', 'v' ) |
---|
3470 | CALL pmci_extrap_ifoutflow_lr( w, nzb_w_inner, 'r', 'w' ) |
---|
3471 | CALL pmci_extrap_ifoutflow_lr( e, nzb_s_inner, 'r', 'e' ) |
---|
3472 | IF ( .NOT. neutral ) THEN |
---|
3473 | CALL pmci_extrap_ifoutflow_lr( pt,nzb_s_inner, 'r', 's' ) |
---|
3474 | ENDIF |
---|
3475 | IF ( humidity ) THEN |
---|
3476 | CALL pmci_extrap_ifoutflow_lr( q, nzb_s_inner, 'r', 's' ) |
---|
3477 | ENDIF |
---|
3478 | IF ( passive_scalar ) THEN |
---|
3479 | CALL pmci_extrap_ifoutflow_lr( s, nzb_s_inner, 'r', 's' ) |
---|
3480 | ENDIF |
---|
3481 | ENDIF |
---|
3482 | |
---|
3483 | ENDIF |
---|
3484 | |
---|
3485 | ! |
---|
3486 | !-- South border pe |
---|
3487 | IF ( nest_bound_s ) THEN |
---|
3488 | CALL pmci_interp_tril_sn( u, uc, icu, jco, kco, r1xu, r2xu, & |
---|
3489 | r1yo, r2yo, r1zo, r2zo, nzb_u_inner, & |
---|
3490 | logc_u_s, logc_ratio_u_s, & |
---|
3491 | nzt_topo_nestbc_s, 's', 'u' ) |
---|
3492 | CALL pmci_interp_tril_sn( v, vc, ico, jcv, kco, r1xo, r2xo, & |
---|
3493 | r1yv, r2yv, r1zo, r2zo, nzb_v_inner, & |
---|
3494 | logc_v_s, logc_ratio_v_s, & |
---|
3495 | nzt_topo_nestbc_s, 's', 'v' ) |
---|
3496 | CALL pmci_interp_tril_sn( w, wc, ico, jco, kcw, r1xo, r2xo, & |
---|
3497 | r1yo, r2yo, r1zw, r2zw, nzb_w_inner, & |
---|
3498 | logc_w_s, logc_ratio_w_s, & |
---|
3499 | nzt_topo_nestbc_s, 's','w' ) |
---|
3500 | CALL pmci_interp_tril_sn( e, ec, ico, jco, kco, r1xo, r2xo, & |
---|
3501 | r1yo, r2yo, r1zo, r2zo, nzb_s_inner, & |
---|
3502 | logc_u_s, logc_ratio_u_s, & |
---|
3503 | nzt_topo_nestbc_s, 's', 'e' ) |
---|
3504 | IF ( .NOT. neutral ) THEN |
---|
3505 | CALL pmci_interp_tril_sn( pt, ptc, ico, jco, kco, r1xo, r2xo, & |
---|
3506 | r1yo, r2yo, r1zo, r2zo, nzb_s_inner, & |
---|
3507 | logc_u_s, logc_ratio_u_s, & |
---|
3508 | nzt_topo_nestbc_s, 's', 's' ) |
---|
3509 | ENDIF |
---|
3510 | IF ( humidity ) THEN |
---|
3511 | CALL pmci_interp_tril_sn( q, qc, ico, jco, kco, r1xo, r2xo, & |
---|
3512 | r1yo,r2yo, r1zo, r2zo, nzb_s_inner, & |
---|
3513 | logc_u_s, logc_ratio_u_s, & |
---|
3514 | nzt_topo_nestbc_s, 's', 's' ) |
---|
3515 | ENDIF |
---|
3516 | IF ( passive_scalar ) THEN |
---|
3517 | CALL pmci_interp_tril_sn( s, sc, ico, jco, kco, r1xo, r2xo, & |
---|
3518 | r1yo,r2yo, r1zo, r2zo, nzb_s_inner, & |
---|
3519 | logc_u_s, logc_ratio_u_s, & |
---|
3520 | nzt_topo_nestbc_s, 's', 's' ) |
---|
3521 | ENDIF |
---|
3522 | |
---|
3523 | IF ( TRIM( nesting_mode ) == 'one-way' ) THEN |
---|
3524 | CALL pmci_extrap_ifoutflow_sn( u, nzb_u_inner, 's', 'u' ) |
---|
3525 | CALL pmci_extrap_ifoutflow_sn( v, nzb_v_inner, 's', 'v' ) |
---|
3526 | CALL pmci_extrap_ifoutflow_sn( w, nzb_w_inner, 's', 'w' ) |
---|
3527 | CALL pmci_extrap_ifoutflow_sn( e, nzb_s_inner, 's', 'e' ) |
---|
3528 | IF ( .NOT. neutral ) THEN |
---|
3529 | CALL pmci_extrap_ifoutflow_sn( pt,nzb_s_inner, 's', 's' ) |
---|
3530 | ENDIF |
---|
3531 | IF ( humidity ) THEN |
---|
3532 | CALL pmci_extrap_ifoutflow_sn( q, nzb_s_inner, 's', 's' ) |
---|
3533 | ENDIF |
---|
3534 | IF ( passive_scalar ) THEN |
---|
3535 | CALL pmci_extrap_ifoutflow_sn( s, nzb_s_inner, 's', 's' ) |
---|
3536 | ENDIF |
---|
3537 | ENDIF |
---|
3538 | |
---|
3539 | ENDIF |
---|
3540 | |
---|
3541 | ! |
---|
3542 | !-- North border pe |
---|
3543 | IF ( nest_bound_n ) THEN |
---|
3544 | CALL pmci_interp_tril_sn( u, uc, icu, jco, kco, r1xu, r2xu, & |
---|
3545 | r1yo, r2yo, r1zo, r2zo, nzb_u_inner, & |
---|
3546 | logc_u_n, logc_ratio_u_n, & |
---|
3547 | nzt_topo_nestbc_n, 'n', 'u' ) |
---|
3548 | CALL pmci_interp_tril_sn( v, vc, ico, jcv, kco, r1xo, r2xo, & |
---|
3549 | r1yv, r2yv, r1zo, r2zo, nzb_v_inner, & |
---|
3550 | logc_v_n, logc_ratio_v_n, & |
---|
3551 | nzt_topo_nestbc_n, 'n', 'v' ) |
---|
3552 | CALL pmci_interp_tril_sn( w, wc, ico, jco, kcw, r1xo, r2xo, & |
---|
3553 | r1yo, r2yo, r1zw, r2zw, nzb_w_inner, & |
---|
3554 | logc_w_n, logc_ratio_w_n, & |
---|
3555 | nzt_topo_nestbc_n, 'n', 'w' ) |
---|
3556 | CALL pmci_interp_tril_sn( e, ec, ico, jco, kco, r1xo, r2xo, & |
---|
3557 | r1yo, r2yo, r1zo, r2zo, nzb_s_inner, & |
---|
3558 | logc_u_n, logc_ratio_u_n, & |
---|
3559 | nzt_topo_nestbc_n, 'n', 'e' ) |
---|
3560 | IF ( .NOT. neutral ) THEN |
---|
3561 | CALL pmci_interp_tril_sn( pt, ptc, ico, jco, kco, r1xo, r2xo, & |
---|
3562 | r1yo, r2yo, r1zo, r2zo, nzb_s_inner, & |
---|
3563 | logc_u_n, logc_ratio_u_n, & |
---|
3564 | nzt_topo_nestbc_n, 'n', 's' ) |
---|
3565 | ENDIF |
---|
3566 | IF ( humidity ) THEN |
---|
3567 | CALL pmci_interp_tril_sn( q, qc, ico, jco, kco, r1xo, r2xo, & |
---|
3568 | r1yo, r2yo, r1zo, r2zo, nzb_s_inner, & |
---|
3569 | logc_u_n, logc_ratio_u_n, & |
---|
3570 | nzt_topo_nestbc_n, 'n', 's' ) |
---|
3571 | ENDIF |
---|
3572 | IF ( passive_scalar ) THEN |
---|
3573 | CALL pmci_interp_tril_sn( s, sc, ico, jco, kco, r1xo, r2xo, & |
---|
3574 | r1yo, r2yo, r1zo, r2zo, nzb_s_inner, & |
---|
3575 | logc_u_n, logc_ratio_u_n, & |
---|
3576 | nzt_topo_nestbc_n, 'n', 's' ) |
---|
3577 | ENDIF |
---|
3578 | |
---|
3579 | IF ( TRIM( nesting_mode ) == 'one-way' ) THEN |
---|
3580 | CALL pmci_extrap_ifoutflow_sn( u, nzb_u_inner, 'n', 'u' ) |
---|
3581 | CALL pmci_extrap_ifoutflow_sn( v, nzb_v_inner, 'n', 'v' ) |
---|
3582 | CALL pmci_extrap_ifoutflow_sn( w, nzb_w_inner, 'n', 'w' ) |
---|
3583 | CALL pmci_extrap_ifoutflow_sn( e, nzb_s_inner, 'n', 'e' ) |
---|
3584 | IF ( .NOT. neutral ) THEN |
---|
3585 | CALL pmci_extrap_ifoutflow_sn( pt,nzb_s_inner, 'n', 's' ) |
---|
3586 | ENDIF |
---|
3587 | IF ( humidity ) THEN |
---|
3588 | CALL pmci_extrap_ifoutflow_sn( q, nzb_s_inner, 'n', 's' ) |
---|
3589 | ENDIF |
---|
3590 | IF ( passive_scalar ) THEN |
---|
3591 | CALL pmci_extrap_ifoutflow_sn( s, nzb_s_inner, 'n', 's' ) |
---|
3592 | ENDIF |
---|
3593 | |
---|
3594 | ENDIF |
---|
3595 | |
---|
3596 | ENDIF |
---|
3597 | |
---|
3598 | ENDIF !: IF ( nesting_mode /= 'vertical' ) |
---|
3599 | |
---|
3600 | ! |
---|
3601 | !-- All PEs are top-border PEs |
---|
3602 | CALL pmci_interp_tril_t( u, uc, icu, jco, kco, r1xu, r2xu, r1yo, & |
---|
3603 | r2yo, r1zo, r2zo, 'u' ) |
---|
3604 | CALL pmci_interp_tril_t( v, vc, ico, jcv, kco, r1xo, r2xo, r1yv, & |
---|
3605 | r2yv, r1zo, r2zo, 'v' ) |
---|
3606 | CALL pmci_interp_tril_t( w, wc, ico, jco, kcw, r1xo, r2xo, r1yo, & |
---|
3607 | r2yo, r1zw, r2zw, 'w' ) |
---|
3608 | CALL pmci_interp_tril_t( e, ec, ico, jco, kco, r1xo, r2xo, r1yo, & |
---|
3609 | r2yo, r1zo, r2zo, 'e' ) |
---|
3610 | IF ( .NOT. neutral ) THEN |
---|
3611 | CALL pmci_interp_tril_t( pt, ptc, ico, jco, kco, r1xo, r2xo, r1yo, & |
---|
3612 | r2yo, r1zo, r2zo, 's' ) |
---|
3613 | ENDIF |
---|
3614 | IF ( humidity ) THEN |
---|
3615 | CALL pmci_interp_tril_t( q, qc, ico, jco, kco, r1xo, r2xo, r1yo, & |
---|
3616 | r2yo, r1zo, r2zo, 's' ) |
---|
3617 | ENDIF |
---|
3618 | IF ( passive_scalar ) THEN |
---|
3619 | CALL pmci_interp_tril_t( s, sc, ico, jco, kco, r1xo, r2xo, r1yo, & |
---|
3620 | r2yo, r1zo, r2zo, 's' ) |
---|
3621 | ENDIF |
---|
3622 | |
---|
3623 | IF ( TRIM( nesting_mode ) == 'one-way' ) THEN |
---|
3624 | CALL pmci_extrap_ifoutflow_t( u, 'u' ) |
---|
3625 | CALL pmci_extrap_ifoutflow_t( v, 'v' ) |
---|
3626 | CALL pmci_extrap_ifoutflow_t( w, 'w' ) |
---|
3627 | CALL pmci_extrap_ifoutflow_t( e, 'e' ) |
---|
3628 | IF ( .NOT. neutral ) THEN |
---|
3629 | CALL pmci_extrap_ifoutflow_t( pt, 's' ) |
---|
3630 | ENDIF |
---|
3631 | IF ( humidity ) THEN |
---|
3632 | CALL pmci_extrap_ifoutflow_t( q, 's' ) |
---|
3633 | ENDIF |
---|
3634 | IF ( passive_scalar ) THEN |
---|
3635 | CALL pmci_extrap_ifoutflow_t( s, 's' ) |
---|
3636 | ENDIF |
---|
3637 | ENDIF |
---|
3638 | |
---|
3639 | END SUBROUTINE pmci_interpolation |
---|
3640 | |
---|
3641 | |
---|
3642 | |
---|
3643 | SUBROUTINE pmci_anterpolation |
---|
3644 | |
---|
3645 | ! |
---|
3646 | !-- A wrapper routine for all anterpolation actions. |
---|
3647 | !-- Note that TKE is not anterpolated. |
---|
3648 | IMPLICIT NONE |
---|
3649 | |
---|
3650 | CALL pmci_anterp_tophat( u, uc, kctu, iflu, ifuu, jflo, jfuo, kflo, & |
---|
3651 | kfuo, ijfc_u, 'u' ) |
---|
3652 | CALL pmci_anterp_tophat( v, vc, kctu, iflo, ifuo, jflv, jfuv, kflo, & |
---|
3653 | kfuo, ijfc_v, 'v' ) |
---|
3654 | CALL pmci_anterp_tophat( w, wc, kctw, iflo, ifuo, jflo, jfuo, kflw, & |
---|
3655 | kfuw, ijfc_s, 'w' ) |
---|
3656 | IF ( .NOT. neutral ) THEN |
---|
3657 | CALL pmci_anterp_tophat( pt, ptc, kctu, iflo, ifuo, jflo, jfuo, kflo, & |
---|
3658 | kfuo, ijfc_s, 's' ) |
---|
3659 | ENDIF |
---|
3660 | IF ( humidity ) THEN |
---|
3661 | CALL pmci_anterp_tophat( q, qc, kctu, iflo, ifuo, jflo, jfuo, kflo, & |
---|
3662 | kfuo, ijfc_s, 's' ) |
---|
3663 | ENDIF |
---|
3664 | IF ( passive_scalar ) THEN |
---|
3665 | CALL pmci_anterp_tophat( s, sc, kctu, iflo, ifuo, jflo, jfuo, kflo, & |
---|
3666 | kfuo, ijfc_s, 's' ) |
---|
3667 | ENDIF |
---|
3668 | |
---|
3669 | END SUBROUTINE pmci_anterpolation |
---|
3670 | |
---|
3671 | |
---|
3672 | |
---|
3673 | SUBROUTINE pmci_interp_tril_lr( f, fc, ic, jc, kc, r1x, r2x, r1y, r2y, r1z, & |
---|
3674 | r2z, kb, logc, logc_ratio, nzt_topo_nestbc, & |
---|
3675 | edge, var ) |
---|
3676 | ! |
---|
3677 | !-- Interpolation of ghost-node values used as the child-domain boundary |
---|
3678 | !-- conditions. This subroutine handles the left and right boundaries. It is |
---|
3679 | !-- based on trilinear interpolation. |
---|
3680 | |
---|
3681 | IMPLICIT NONE |
---|
3682 | |
---|
3683 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
3684 | INTENT(INOUT) :: f !: |
---|
3685 | REAL(wp), DIMENSION(0:cg%nz+1,jcs:jcn,icl:icr), & |
---|
3686 | INTENT(IN) :: fc !: |
---|
3687 | REAL(wp), DIMENSION(1:2,0:ncorr-1,nzb:nzt_topo_nestbc,nys:nyn), & |
---|
3688 | INTENT(IN) :: logc_ratio !: |
---|
3689 | REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r1x !: |
---|
3690 | REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r2x !: |
---|
3691 | REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r1y !: |
---|
3692 | REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r2y !: |
---|
3693 | REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r1z !: |
---|
3694 | REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r2z !: |
---|
3695 | |
---|
3696 | INTEGER(iwp), DIMENSION(nxlg:nxrg), INTENT(IN) :: ic !: |
---|
3697 | INTEGER(iwp), DIMENSION(nysg:nyng), INTENT(IN) :: jc !: |
---|
3698 | INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg), INTENT(IN) :: kb !: |
---|
3699 | INTEGER(iwp), DIMENSION(nzb:nzt+1), INTENT(IN) :: kc !: |
---|
3700 | INTEGER(iwp), DIMENSION(1:2,nzb:nzt_topo_nestbc,nys:nyn), & |
---|
3701 | INTENT(IN) :: logc !: |
---|
3702 | INTEGER(iwp) :: nzt_topo_nestbc !: |
---|
3703 | |
---|
3704 | CHARACTER(LEN=1), INTENT(IN) :: edge !: |
---|
3705 | CHARACTER(LEN=1), INTENT(IN) :: var !: |
---|
3706 | |
---|
3707 | INTEGER(iwp) :: i !: |
---|
3708 | INTEGER(iwp) :: ib !: |
---|
3709 | INTEGER(iwp) :: ibgp !: |
---|
3710 | INTEGER(iwp) :: iw !: |
---|
3711 | INTEGER(iwp) :: j !: |
---|
3712 | INTEGER(iwp) :: jco !: |
---|
3713 | INTEGER(iwp) :: jcorr !: |
---|
3714 | INTEGER(iwp) :: jinc !: |
---|
3715 | INTEGER(iwp) :: jw !: |
---|
3716 | INTEGER(iwp) :: j1 !: |
---|
3717 | INTEGER(iwp) :: k !: |
---|
3718 | INTEGER(iwp) :: kco !: |
---|
3719 | INTEGER(iwp) :: kcorr !: |
---|
3720 | INTEGER(iwp) :: k1 !: |
---|
3721 | INTEGER(iwp) :: l !: |
---|
3722 | INTEGER(iwp) :: m !: |
---|
3723 | INTEGER(iwp) :: n !: |
---|
3724 | INTEGER(iwp) :: kbc !: |
---|
3725 | |
---|
3726 | REAL(wp) :: coarse_dx !: |
---|
3727 | REAL(wp) :: coarse_dy !: |
---|
3728 | REAL(wp) :: coarse_dz !: |
---|
3729 | REAL(wp) :: fkj !: |
---|
3730 | REAL(wp) :: fkjp !: |
---|
3731 | REAL(wp) :: fkpj !: |
---|
3732 | REAL(wp) :: fkpjp !: |
---|
3733 | REAL(wp) :: fk !: |
---|
3734 | REAL(wp) :: fkp !: |
---|
3735 | |
---|
3736 | ! |
---|
3737 | !-- Check which edge is to be handled |
---|
3738 | IF ( edge == 'l' ) THEN |
---|
3739 | ! |
---|
3740 | !-- For u, nxl is a ghost node, but not for the other variables |
---|
3741 | IF ( var == 'u' ) THEN |
---|
3742 | i = nxl |
---|
3743 | ib = nxl - 1 |
---|
3744 | ELSE |
---|
3745 | i = nxl - 1 |
---|
3746 | ib = nxl - 2 |
---|
3747 | ENDIF |
---|
3748 | ELSEIF ( edge == 'r' ) THEN |
---|
3749 | i = nxr + 1 |
---|
3750 | ib = nxr + 2 |
---|
3751 | ENDIF |
---|
3752 | |
---|
3753 | DO j = nys, nyn+1 |
---|
3754 | DO k = kb(j,i), nzt+1 |
---|
3755 | l = ic(i) |
---|
3756 | m = jc(j) |
---|
3757 | n = kc(k) |
---|
3758 | fkj = r1x(i) * fc(n,m,l) + r2x(i) * fc(n,m,l+1) |
---|
3759 | fkjp = r1x(i) * fc(n,m+1,l) + r2x(i) * fc(n,m+1,l+1) |
---|
3760 | fkpj = r1x(i) * fc(n+1,m,l) + r2x(i) * fc(n+1,m,l+1) |
---|
3761 | fkpjp = r1x(i) * fc(n+1,m+1,l) + r2x(i) * fc(n+1,m+1,l+1) |
---|
3762 | fk = r1y(j) * fkj + r2y(j) * fkjp |
---|
3763 | fkp = r1y(j) * fkpj + r2y(j) * fkpjp |
---|
3764 | f(k,j,i) = r1z(k) * fk + r2z(k) * fkp |
---|
3765 | ENDDO |
---|
3766 | ENDDO |
---|
3767 | |
---|
3768 | ! |
---|
3769 | !-- Generalized log-law-correction algorithm. |
---|
3770 | !-- Doubly two-dimensional index arrays logc(1:2,:,:) and log-ratio arrays |
---|
3771 | !-- logc_ratio(1:2,0:ncorr-1,:,:) have been precomputed in subroutine |
---|
3772 | !-- pmci_init_loglaw_correction. |
---|
3773 | ! |
---|
3774 | !-- Solid surface below the node |
---|
3775 | IF ( var == 'u' .OR. var == 'v' ) THEN |
---|
3776 | DO j = nys, nyn |
---|
3777 | k = kb(j,i)+1 |
---|
3778 | IF ( ( logc(1,k,j) /= 0 ) .AND. ( logc(2,k,j) == 0 ) ) THEN |
---|
3779 | k1 = logc(1,k,j) |
---|
3780 | DO kcorr = 0, ncorr - 1 |
---|
3781 | kco = k + kcorr |
---|
3782 | f(kco,j,i) = logc_ratio(1,kcorr,k,j) * f(k1,j,i) |
---|
3783 | ENDDO |
---|
3784 | ENDIF |
---|
3785 | ENDDO |
---|
3786 | ENDIF |
---|
3787 | |
---|
3788 | ! |
---|
3789 | !-- In case of non-flat topography, also vertical walls and corners need to be |
---|
3790 | !-- treated. Only single and double wall nodes are corrected. Triple and |
---|
3791 | !-- higher-multiple wall nodes are not corrected as the log law would not be |
---|
3792 | !-- valid anyway in such locations. |
---|
3793 | IF ( topography /= 'flat' ) THEN |
---|
3794 | IF ( var == 'u' .OR. var == 'w' ) THEN |
---|
3795 | |
---|
3796 | ! |
---|
3797 | !-- Solid surface only on south/north side of the node |
---|
3798 | DO j = nys, nyn |
---|
3799 | DO k = kb(j,i)+1, nzt_topo_nestbc |
---|
3800 | IF ( ( logc(2,k,j) /= 0 ) .AND. ( logc(1,k,j) == 0 ) ) THEN |
---|
3801 | |
---|
3802 | ! |
---|
3803 | !-- Direction of the wall-normal index is carried in as the |
---|
3804 | !-- sign of logc |
---|
3805 | jinc = SIGN( 1, logc(2,k,j) ) |
---|
3806 | j1 = ABS( logc(2,k,j) ) |
---|
3807 | DO jcorr = 0, ncorr-1 |
---|
3808 | jco = j + jinc * jcorr |
---|
3809 | f(k,jco,i) = logc_ratio(2,jcorr,k,j) * f(k,j1,i) |
---|
3810 | ENDDO |
---|
3811 | ENDIF |
---|
3812 | ENDDO |
---|
3813 | ENDDO |
---|
3814 | ENDIF |
---|
3815 | |
---|
3816 | ! |
---|
3817 | !-- Solid surface on both below and on south/north side of the node |
---|
3818 | IF ( var == 'u' ) THEN |
---|
3819 | DO j = nys, nyn |
---|
3820 | k = kb(j,i) + 1 |
---|
3821 | IF ( ( logc(2,k,j) /= 0 ) .AND. ( logc(1,k,j) /= 0 ) ) THEN |
---|
3822 | k1 = logc(1,k,j) |
---|
3823 | jinc = SIGN( 1, logc(2,k,j) ) |
---|
3824 | j1 = ABS( logc(2,k,j) ) |
---|
3825 | DO jcorr = 0, ncorr-1 |
---|
3826 | jco = j + jinc * jcorr |
---|
3827 | DO kcorr = 0, ncorr-1 |
---|
3828 | kco = k + kcorr |
---|
3829 | f(kco,jco,i) = 0.5_wp * ( logc_ratio(1,kcorr,k,j) * & |
---|
3830 | f(k1,j,i) & |
---|
3831 | + logc_ratio(2,jcorr,k,j) * & |
---|
3832 | f(k,j1,i) ) |
---|
3833 | ENDDO |
---|
3834 | ENDDO |
---|
3835 | ENDIF |
---|
3836 | ENDDO |
---|
3837 | ENDIF |
---|
3838 | |
---|
3839 | ENDIF ! ( topography /= 'flat' ) |
---|
3840 | |
---|
3841 | ! |
---|
3842 | !-- Rescale if f is the TKE. |
---|
3843 | IF ( var == 'e') THEN |
---|
3844 | IF ( edge == 'l' ) THEN |
---|
3845 | DO j = nys, nyn + 1 |
---|
3846 | DO k = kb(j,i), nzt + 1 |
---|
3847 | f(k,j,i) = tkefactor_l(k,j) * f(k,j,i) |
---|
3848 | ENDDO |
---|
3849 | ENDDO |
---|
3850 | ELSEIF ( edge == 'r' ) THEN |
---|
3851 | DO j = nys, nyn+1 |
---|
3852 | DO k = kb(j,i), nzt+1 |
---|
3853 | f(k,j,i) = tkefactor_r(k,j) * f(k,j,i) |
---|
3854 | ENDDO |
---|
3855 | ENDDO |
---|
3856 | ENDIF |
---|
3857 | ENDIF |
---|
3858 | |
---|
3859 | ! |
---|
3860 | !-- Store the boundary values also into the other redundant ghost node layers |
---|
3861 | IF ( edge == 'l' ) THEN |
---|
3862 | DO ibgp = -nbgp, ib |
---|
3863 | f(0:nzt+1,nysg:nyng,ibgp) = f(0:nzt+1,nysg:nyng,i) |
---|
3864 | ENDDO |
---|
3865 | ELSEIF ( edge == 'r' ) THEN |
---|
3866 | DO ibgp = ib, nx+nbgp |
---|
3867 | f(0:nzt+1,nysg:nyng,ibgp) = f(0:nzt+1,nysg:nyng,i) |
---|
3868 | ENDDO |
---|
3869 | ENDIF |
---|
3870 | |
---|
3871 | END SUBROUTINE pmci_interp_tril_lr |
---|
3872 | |
---|
3873 | |
---|
3874 | |
---|
3875 | SUBROUTINE pmci_interp_tril_sn( f, fc, ic, jc, kc, r1x, r2x, r1y, r2y, r1z, & |
---|
3876 | r2z, kb, logc, logc_ratio, & |
---|
3877 | nzt_topo_nestbc, edge, var ) |
---|
3878 | |
---|
3879 | ! |
---|
3880 | !-- Interpolation of ghost-node values used as the child-domain boundary |
---|
3881 | !-- conditions. This subroutine handles the south and north boundaries. |
---|
3882 | !-- This subroutine is based on trilinear interpolation. |
---|
3883 | |
---|
3884 | IMPLICIT NONE |
---|
3885 | |
---|
3886 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
3887 | INTENT(INOUT) :: f !: |
---|
3888 | REAL(wp), DIMENSION(0:cg%nz+1,jcs:jcn,icl:icr), & |
---|
3889 | INTENT(IN) :: fc !: |
---|
3890 | REAL(wp), DIMENSION(1:2,0:ncorr-1,nzb:nzt_topo_nestbc,nxl:nxr), & |
---|
3891 | INTENT(IN) :: logc_ratio !: |
---|
3892 | REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r1x !: |
---|
3893 | REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r2x !: |
---|
3894 | REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r1y !: |
---|
3895 | REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r2y !: |
---|
3896 | REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r1z !: |
---|
3897 | REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r2z !: |
---|
3898 | |
---|
3899 | INTEGER(iwp), DIMENSION(nxlg:nxrg), INTENT(IN) :: ic !: |
---|
3900 | INTEGER(iwp), DIMENSION(nysg:nyng), INTENT(IN) :: jc !: |
---|
3901 | INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg), INTENT(IN) :: kb !: |
---|
3902 | INTEGER(iwp), DIMENSION(nzb:nzt+1), INTENT(IN) :: kc !: |
---|
3903 | INTEGER(iwp), DIMENSION(1:2,nzb:nzt_topo_nestbc,nxl:nxr), & |
---|
3904 | INTENT(IN) :: logc !: |
---|
3905 | INTEGER(iwp) :: nzt_topo_nestbc !: |
---|
3906 | |
---|
3907 | CHARACTER(LEN=1), INTENT(IN) :: edge !: |
---|
3908 | CHARACTER(LEN=1), INTENT(IN) :: var !: |
---|
3909 | |
---|
3910 | INTEGER(iwp) :: i !: |
---|
3911 | INTEGER(iwp) :: iinc !: |
---|
3912 | INTEGER(iwp) :: icorr !: |
---|
3913 | INTEGER(iwp) :: ico !: |
---|
3914 | INTEGER(iwp) :: i1 !: |
---|
3915 | INTEGER(iwp) :: j !: |
---|
3916 | INTEGER(iwp) :: jb !: |
---|
3917 | INTEGER(iwp) :: jbgp !: |
---|
3918 | INTEGER(iwp) :: k !: |
---|
3919 | INTEGER(iwp) :: kcorr !: |
---|
3920 | INTEGER(iwp) :: kco !: |
---|
3921 | INTEGER(iwp) :: k1 !: |
---|
3922 | INTEGER(iwp) :: l !: |
---|
3923 | INTEGER(iwp) :: m !: |
---|
3924 | INTEGER(iwp) :: n !: |
---|
3925 | |
---|
3926 | REAL(wp) :: coarse_dx !: |
---|
3927 | REAL(wp) :: coarse_dy !: |
---|
3928 | REAL(wp) :: coarse_dz !: |
---|
3929 | REAL(wp) :: fk !: |
---|
3930 | REAL(wp) :: fkj !: |
---|
3931 | REAL(wp) :: fkjp !: |
---|
3932 | REAL(wp) :: fkpj !: |
---|
3933 | REAL(wp) :: fkpjp !: |
---|
3934 | REAL(wp) :: fkp !: |
---|
3935 | |
---|
3936 | ! |
---|
3937 | !-- Check which edge is to be handled: south or north |
---|
3938 | IF ( edge == 's' ) THEN |
---|
3939 | ! |
---|
3940 | !-- For v, nys is a ghost node, but not for the other variables |
---|
3941 | IF ( var == 'v' ) THEN |
---|
3942 | j = nys |
---|
3943 | jb = nys - 1 |
---|
3944 | ELSE |
---|
3945 | j = nys - 1 |
---|
3946 | jb = nys - 2 |
---|
3947 | ENDIF |
---|
3948 | ELSEIF ( edge == 'n' ) THEN |
---|
3949 | j = nyn + 1 |
---|
3950 | jb = nyn + 2 |
---|
3951 | ENDIF |
---|
3952 | |
---|
3953 | DO i = nxl, nxr+1 |
---|
3954 | DO k = kb(j,i), nzt+1 |
---|
3955 | l = ic(i) |
---|
3956 | m = jc(j) |
---|
3957 | n = kc(k) |
---|
3958 | fkj = r1x(i) * fc(n,m,l) + r2x(i) * fc(n,m,l+1) |
---|
3959 | fkjp = r1x(i) * fc(n,m+1,l) + r2x(i) * fc(n,m+1,l+1) |
---|
3960 | fkpj = r1x(i) * fc(n+1,m,l) + r2x(i) * fc(n+1,m,l+1) |
---|
3961 | fkpjp = r1x(i) * fc(n+1,m+1,l) + r2x(i) * fc(n+1,m+1,l+1) |
---|
3962 | fk = r1y(j) * fkj + r2y(j) * fkjp |
---|
3963 | fkp = r1y(j) * fkpj + r2y(j) * fkpjp |
---|
3964 | f(k,j,i) = r1z(k) * fk + r2z(k) * fkp |
---|
3965 | ENDDO |
---|
3966 | ENDDO |
---|
3967 | |
---|
3968 | ! |
---|
3969 | !-- Generalized log-law-correction algorithm. |
---|
3970 | !-- Multiply two-dimensional index arrays logc(1:2,:,:) and log-ratio arrays |
---|
3971 | !-- logc_ratio(1:2,0:ncorr-1,:,:) have been precomputed in subroutine |
---|
3972 | !-- pmci_init_loglaw_correction. |
---|
3973 | ! |
---|
3974 | !-- Solid surface below the node |
---|
3975 | IF ( var == 'u' .OR. var == 'v' ) THEN |
---|
3976 | DO i = nxl, nxr |
---|
3977 | k = kb(j,i) + 1 |
---|
3978 | IF ( ( logc(1,k,i) /= 0 ) .AND. ( logc(2,k,i) == 0 ) ) THEN |
---|
3979 | k1 = logc(1,k,i) |
---|
3980 | DO kcorr = 0, ncorr-1 |
---|
3981 | kco = k + kcorr |
---|
3982 | f(kco,j,i) = logc_ratio(1,kcorr,k,i) * f(k1,j,i) |
---|
3983 | ENDDO |
---|
3984 | ENDIF |
---|
3985 | ENDDO |
---|
3986 | ENDIF |
---|
3987 | |
---|
3988 | ! |
---|
3989 | !-- In case of non-flat topography, also vertical walls and corners need to be |
---|
3990 | !-- treated. Only single and double wall nodes are corrected. |
---|
3991 | !-- Triple and higher-multiple wall nodes are not corrected as it would be |
---|
3992 | !-- extremely complicated and the log law would not be valid anyway in such |
---|
3993 | !-- locations. |
---|
3994 | IF ( topography /= 'flat' ) THEN |
---|
3995 | IF ( var == 'v' .OR. var == 'w' ) THEN |
---|
3996 | DO i = nxl, nxr |
---|
3997 | DO k = kb(j,i), nzt_topo_nestbc |
---|
3998 | |
---|
3999 | ! |
---|
4000 | !-- Solid surface only on left/right side of the node |
---|
4001 | IF ( ( logc(2,k,i) /= 0 ) .AND. ( logc(1,k,i) == 0 ) ) THEN |
---|
4002 | |
---|
4003 | ! |
---|
4004 | !-- Direction of the wall-normal index is carried in as the |
---|
4005 | !-- sign of logc |
---|
4006 | iinc = SIGN( 1, logc(2,k,i) ) |
---|
4007 | i1 = ABS( logc(2,k,i) ) |
---|
4008 | DO icorr = 0, ncorr-1 |
---|
4009 | ico = i + iinc * icorr |
---|
4010 | f(k,j,ico) = logc_ratio(2,icorr,k,i) * f(k,j,i1) |
---|
4011 | ENDDO |
---|
4012 | ENDIF |
---|
4013 | ENDDO |
---|
4014 | ENDDO |
---|
4015 | ENDIF |
---|
4016 | |
---|
4017 | ! |
---|
4018 | !-- Solid surface on both below and on left/right side of the node |
---|
4019 | IF ( var == 'v' ) THEN |
---|
4020 | DO i = nxl, nxr |
---|
4021 | k = kb(j,i) + 1 |
---|
4022 | IF ( ( logc(2,k,i) /= 0 ) .AND. ( logc(1,k,i) /= 0 ) ) THEN |
---|
4023 | k1 = logc(1,k,i) |
---|
4024 | iinc = SIGN( 1, logc(2,k,i) ) |
---|
4025 | i1 = ABS( logc(2,k,i) ) |
---|
4026 | DO icorr = 0, ncorr-1 |
---|
4027 | ico = i + iinc * icorr |
---|
4028 | DO kcorr = 0, ncorr-1 |
---|
4029 | kco = k + kcorr |
---|
4030 | f(kco,i,ico) = 0.5_wp * ( logc_ratio(1,kcorr,k,i) * & |
---|
4031 | f(k1,j,i) & |
---|
4032 | + logc_ratio(2,icorr,k,i) * & |
---|
4033 | f(k,j,i1) ) |
---|
4034 | ENDDO |
---|
4035 | ENDDO |
---|
4036 | ENDIF |
---|
4037 | ENDDO |
---|
4038 | ENDIF |
---|
4039 | |
---|
4040 | ENDIF ! ( topography /= 'flat' ) |
---|
4041 | |
---|
4042 | ! |
---|
4043 | !-- Rescale if f is the TKE. |
---|
4044 | IF ( var == 'e') THEN |
---|
4045 | IF ( edge == 's' ) THEN |
---|
4046 | DO i = nxl, nxr + 1 |
---|
4047 | DO k = kb(j,i), nzt+1 |
---|
4048 | f(k,j,i) = tkefactor_s(k,i) * f(k,j,i) |
---|
4049 | ENDDO |
---|
4050 | ENDDO |
---|
4051 | ELSEIF ( edge == 'n' ) THEN |
---|
4052 | DO i = nxl, nxr + 1 |
---|
4053 | DO k = kb(j,i), nzt+1 |
---|
4054 | f(k,j,i) = tkefactor_n(k,i) * f(k,j,i) |
---|
4055 | ENDDO |
---|
4056 | ENDDO |
---|
4057 | ENDIF |
---|
4058 | ENDIF |
---|
4059 | |
---|
4060 | ! |
---|
4061 | !-- Store the boundary values also into the other redundant ghost node layers |
---|
4062 | IF ( edge == 's' ) THEN |
---|
4063 | DO jbgp = -nbgp, jb |
---|
4064 | f(0:nzt+1,jbgp,nxlg:nxrg) = f(0:nzt+1,j,nxlg:nxrg) |
---|
4065 | ENDDO |
---|
4066 | ELSEIF ( edge == 'n' ) THEN |
---|
4067 | DO jbgp = jb, ny+nbgp |
---|
4068 | f(0:nzt+1,jbgp,nxlg:nxrg) = f(0:nzt+1,j,nxlg:nxrg) |
---|
4069 | ENDDO |
---|
4070 | ENDIF |
---|
4071 | |
---|
4072 | END SUBROUTINE pmci_interp_tril_sn |
---|
4073 | |
---|
4074 | |
---|
4075 | |
---|
4076 | SUBROUTINE pmci_interp_tril_t( f, fc, ic, jc, kc, r1x, r2x, r1y, r2y, r1z, & |
---|
4077 | r2z, var ) |
---|
4078 | |
---|
4079 | ! |
---|
4080 | !-- Interpolation of ghost-node values used as the child-domain boundary |
---|
4081 | !-- conditions. This subroutine handles the top boundary. |
---|
4082 | !-- This subroutine is based on trilinear interpolation. |
---|
4083 | |
---|
4084 | IMPLICIT NONE |
---|
4085 | |
---|
4086 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
4087 | INTENT(INOUT) :: f !: |
---|
4088 | REAL(wp), DIMENSION(0:cg%nz+1,jcs:jcn,icl:icr), & |
---|
4089 | INTENT(IN) :: fc !: |
---|
4090 | REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r1x !: |
---|
4091 | REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r2x !: |
---|
4092 | REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r1y !: |
---|
4093 | REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r2y !: |
---|
4094 | REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r1z !: |
---|
4095 | REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r2z !: |
---|
4096 | |
---|
4097 | INTEGER(iwp), DIMENSION(nxlg:nxrg), INTENT(IN) :: ic !: |
---|
4098 | INTEGER(iwp), DIMENSION(nysg:nyng), INTENT(IN) :: jc !: |
---|
4099 | INTEGER(iwp), DIMENSION(nzb:nzt+1), INTENT(IN) :: kc !: |
---|
4100 | |
---|
4101 | CHARACTER(LEN=1), INTENT(IN) :: var !: |
---|
4102 | |
---|
4103 | INTEGER(iwp) :: i !: |
---|
4104 | INTEGER(iwp) :: j !: |
---|
4105 | INTEGER(iwp) :: k !: |
---|
4106 | INTEGER(iwp) :: l !: |
---|
4107 | INTEGER(iwp) :: m !: |
---|
4108 | INTEGER(iwp) :: n !: |
---|
4109 | |
---|
4110 | REAL(wp) :: coarse_dx !: |
---|
4111 | REAL(wp) :: coarse_dy !: |
---|
4112 | REAL(wp) :: coarse_dz !: |
---|
4113 | REAL(wp) :: fk !: |
---|
4114 | REAL(wp) :: fkj !: |
---|
4115 | REAL(wp) :: fkjp !: |
---|
4116 | REAL(wp) :: fkpj !: |
---|
4117 | REAL(wp) :: fkpjp !: |
---|
4118 | REAL(wp) :: fkp !: |
---|
4119 | |
---|
4120 | |
---|
4121 | IF ( var == 'w' ) THEN |
---|
4122 | k = nzt |
---|
4123 | ELSE |
---|
4124 | k = nzt + 1 |
---|
4125 | ENDIF |
---|
4126 | |
---|
4127 | DO i = nxl-1, nxr+1 |
---|
4128 | DO j = nys-1, nyn+1 |
---|
4129 | l = ic(i) |
---|
4130 | m = jc(j) |
---|
4131 | n = kc(k) |
---|
4132 | fkj = r1x(i) * fc(n,m,l) + r2x(i) * fc(n,m,l+1) |
---|
4133 | fkjp = r1x(i) * fc(n,m+1,l) + r2x(i) * fc(n,m+1,l+1) |
---|
4134 | fkpj = r1x(i) * fc(n+1,m,l) + r2x(i) * fc(n+1,m,l+1) |
---|
4135 | fkpjp = r1x(i) * fc(n+1,m+1,l) + r2x(i) * fc(n+1,m+1,l+1) |
---|
4136 | fk = r1y(j) * fkj + r2y(j) * fkjp |
---|
4137 | fkp = r1y(j) * fkpj + r2y(j) * fkpjp |
---|
4138 | f(k,j,i) = r1z(k) * fk + r2z(k) * fkp |
---|
4139 | ENDDO |
---|
4140 | ENDDO |
---|
4141 | |
---|
4142 | ! |
---|
4143 | !-- Just fill up the second ghost-node layer for w. |
---|
4144 | IF ( var == 'w' ) THEN |
---|
4145 | f(nzt+1,:,:) = f(nzt,:,:) |
---|
4146 | ENDIF |
---|
4147 | |
---|
4148 | ! |
---|
4149 | !-- Rescale if f is the TKE. |
---|
4150 | !-- It is assumed that the bottom surface never reaches the top boundary of a |
---|
4151 | !-- nest domain. |
---|
4152 | IF ( var == 'e' ) THEN |
---|
4153 | DO i = nxl, nxr |
---|
4154 | DO j = nys, nyn |
---|
4155 | f(k,j,i) = tkefactor_t(j,i) * f(k,j,i) |
---|
4156 | ENDDO |
---|
4157 | ENDDO |
---|
4158 | ENDIF |
---|
4159 | |
---|
4160 | END SUBROUTINE pmci_interp_tril_t |
---|
4161 | |
---|
4162 | |
---|
4163 | |
---|
4164 | SUBROUTINE pmci_extrap_ifoutflow_lr( f, kb, edge, var ) |
---|
4165 | ! |
---|
4166 | !-- After the interpolation of ghost-node values for the child-domain |
---|
4167 | !-- boundary conditions, this subroutine checks if there is a local outflow |
---|
4168 | !-- through the boundary. In that case this subroutine overwrites the |
---|
4169 | !-- interpolated values by values extrapolated from the domain. This |
---|
4170 | !-- subroutine handles the left and right boundaries. However, this operation |
---|
4171 | !-- is only needed in case of one-way coupling. |
---|
4172 | |
---|
4173 | IMPLICIT NONE |
---|
4174 | |
---|
4175 | CHARACTER(LEN=1), INTENT(IN) :: edge !: |
---|
4176 | CHARACTER(LEN=1), INTENT(IN) :: var !: |
---|
4177 | |
---|
4178 | INTEGER(iwp) :: i !: |
---|
4179 | INTEGER(iwp) :: ib !: |
---|
4180 | INTEGER(iwp) :: ibgp !: |
---|
4181 | INTEGER(iwp) :: ied !: |
---|
4182 | INTEGER(iwp) :: j !: |
---|
4183 | INTEGER(iwp) :: k !: |
---|
4184 | |
---|
4185 | INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg), INTENT(IN) :: kb !: |
---|
4186 | |
---|
4187 | REAL(wp) :: outnor !: |
---|
4188 | REAL(wp) :: vdotnor !: |
---|
4189 | |
---|
4190 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(INOUT) :: f !: |
---|
4191 | |
---|
4192 | ! |
---|
4193 | !-- Check which edge is to be handled: left or right |
---|
4194 | IF ( edge == 'l' ) THEN |
---|
4195 | IF ( var == 'u' ) THEN |
---|
4196 | i = nxl |
---|
4197 | ib = nxl - 1 |
---|
4198 | ied = nxl + 1 |
---|
4199 | ELSE |
---|
4200 | i = nxl - 1 |
---|
4201 | ib = nxl - 2 |
---|
4202 | ied = nxl |
---|
4203 | ENDIF |
---|
4204 | outnor = -1.0_wp |
---|
4205 | ELSEIF ( edge == 'r' ) THEN |
---|
4206 | i = nxr + 1 |
---|
4207 | ib = nxr + 2 |
---|
4208 | ied = nxr |
---|
4209 | outnor = 1.0_wp |
---|
4210 | ENDIF |
---|
4211 | |
---|
4212 | DO j = nys, nyn+1 |
---|
4213 | DO k = kb(j,i), nzt+1 |
---|
4214 | vdotnor = outnor * u(k,j,ied) |
---|
4215 | ! |
---|
4216 | !-- Local outflow |
---|
4217 | IF ( vdotnor > 0.0_wp ) THEN |
---|
4218 | f(k,j,i) = f(k,j,ied) |
---|
4219 | ENDIF |
---|
4220 | ENDDO |
---|
4221 | IF ( (var == 'u' ) .OR. (var == 'v' ) .OR. (var == 'w') ) THEN |
---|
4222 | f(kb(j,i),j,i) = 0.0_wp |
---|
4223 | ENDIF |
---|
4224 | ENDDO |
---|
4225 | |
---|
4226 | ! |
---|
4227 | !-- Store the boundary values also into the redundant ghost node layers. |
---|
4228 | IF ( edge == 'l' ) THEN |
---|
4229 | DO ibgp = -nbgp, ib |
---|
4230 | f(0:nzt+1,nysg:nyng,ibgp) = f(0:nzt+1,nysg:nyng,i) |
---|
4231 | ENDDO |
---|
4232 | ELSEIF ( edge == 'r' ) THEN |
---|
4233 | DO ibgp = ib, nx+nbgp |
---|
4234 | f(0:nzt+1,nysg:nyng,ibgp) = f(0:nzt+1,nysg:nyng,i) |
---|
4235 | ENDDO |
---|
4236 | ENDIF |
---|
4237 | |
---|
4238 | END SUBROUTINE pmci_extrap_ifoutflow_lr |
---|
4239 | |
---|
4240 | |
---|
4241 | |
---|
4242 | SUBROUTINE pmci_extrap_ifoutflow_sn( f, kb, edge, var ) |
---|
4243 | ! |
---|
4244 | !-- After the interpolation of ghost-node values for the child-domain |
---|
4245 | !-- boundary conditions, this subroutine checks if there is a local outflow |
---|
4246 | !-- through the boundary. In that case this subroutine overwrites the |
---|
4247 | !-- interpolated values by values extrapolated from the domain. This |
---|
4248 | !-- subroutine handles the south and north boundaries. |
---|
4249 | |
---|
4250 | IMPLICIT NONE |
---|
4251 | |
---|
4252 | CHARACTER(LEN=1), INTENT(IN) :: edge !: |
---|
4253 | CHARACTER(LEN=1), INTENT(IN) :: var !: |
---|
4254 | |
---|
4255 | INTEGER(iwp) :: i !: |
---|
4256 | INTEGER(iwp) :: j !: |
---|
4257 | INTEGER(iwp) :: jb !: |
---|
4258 | INTEGER(iwp) :: jbgp !: |
---|
4259 | INTEGER(iwp) :: jed !: |
---|
4260 | INTEGER(iwp) :: k !: |
---|
4261 | |
---|
4262 | INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg), INTENT(IN) :: kb !: |
---|
4263 | |
---|
4264 | REAL(wp) :: outnor !: |
---|
4265 | REAL(wp) :: vdotnor !: |
---|
4266 | |
---|
4267 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(INOUT) :: f !: |
---|
4268 | |
---|
4269 | ! |
---|
4270 | !-- Check which edge is to be handled: left or right |
---|
4271 | IF ( edge == 's' ) THEN |
---|
4272 | IF ( var == 'v' ) THEN |
---|
4273 | j = nys |
---|
4274 | jb = nys - 1 |
---|
4275 | jed = nys + 1 |
---|
4276 | ELSE |
---|
4277 | j = nys - 1 |
---|
4278 | jb = nys - 2 |
---|
4279 | jed = nys |
---|
4280 | ENDIF |
---|
4281 | outnor = -1.0_wp |
---|
4282 | ELSEIF ( edge == 'n' ) THEN |
---|
4283 | j = nyn + 1 |
---|
4284 | jb = nyn + 2 |
---|
4285 | jed = nyn |
---|
4286 | outnor = 1.0_wp |
---|
4287 | ENDIF |
---|
4288 | |
---|
4289 | DO i = nxl, nxr+1 |
---|
4290 | DO k = kb(j,i), nzt+1 |
---|
4291 | vdotnor = outnor * v(k,jed,i) |
---|
4292 | ! |
---|
4293 | !-- Local outflow |
---|
4294 | IF ( vdotnor > 0.0_wp ) THEN |
---|
4295 | f(k,j,i) = f(k,jed,i) |
---|
4296 | ENDIF |
---|
4297 | ENDDO |
---|
4298 | IF ( (var == 'u' ) .OR. (var == 'v' ) .OR. (var == 'w') ) THEN |
---|
4299 | f(kb(j,i),j,i) = 0.0_wp |
---|
4300 | ENDIF |
---|
4301 | ENDDO |
---|
4302 | |
---|
4303 | ! |
---|
4304 | !-- Store the boundary values also into the redundant ghost node layers. |
---|
4305 | IF ( edge == 's' ) THEN |
---|
4306 | DO jbgp = -nbgp, jb |
---|
4307 | f(0:nzt+1,jbgp,nxlg:nxrg) = f(0:nzt+1,j,nxlg:nxrg) |
---|
4308 | ENDDO |
---|
4309 | ELSEIF ( edge == 'n' ) THEN |
---|
4310 | DO jbgp = jb, ny+nbgp |
---|
4311 | f(0:nzt+1,jbgp,nxlg:nxrg) = f(0:nzt+1,j,nxlg:nxrg) |
---|
4312 | ENDDO |
---|
4313 | ENDIF |
---|
4314 | |
---|
4315 | END SUBROUTINE pmci_extrap_ifoutflow_sn |
---|
4316 | |
---|
4317 | |
---|
4318 | |
---|
4319 | SUBROUTINE pmci_extrap_ifoutflow_t( f, var ) |
---|
4320 | ! |
---|
4321 | !-- Interpolation of ghost-node values used as the child-domain boundary |
---|
4322 | !-- conditions. This subroutine handles the top boundary. It is based on |
---|
4323 | !-- trilinear interpolation. |
---|
4324 | |
---|
4325 | IMPLICIT NONE |
---|
4326 | |
---|
4327 | CHARACTER(LEN=1), INTENT(IN) :: var !: |
---|
4328 | |
---|
4329 | INTEGER(iwp) :: i !: |
---|
4330 | INTEGER(iwp) :: j !: |
---|
4331 | INTEGER(iwp) :: k !: |
---|
4332 | INTEGER(iwp) :: ked !: |
---|
4333 | |
---|
4334 | REAL(wp) :: vdotnor !: |
---|
4335 | |
---|
4336 | REAL(wp), DIMENSION(nzb:nzt+1,nys-nbgp:nyn+nbgp,nxl-nbgp:nxr+nbgp), & |
---|
4337 | INTENT(INOUT) :: f !: |
---|
4338 | |
---|
4339 | |
---|
4340 | IF ( var == 'w' ) THEN |
---|
4341 | k = nzt |
---|
4342 | ked = nzt - 1 |
---|
4343 | ELSE |
---|
4344 | k = nzt + 1 |
---|
4345 | ked = nzt |
---|
4346 | ENDIF |
---|
4347 | |
---|
4348 | DO i = nxl, nxr |
---|
4349 | DO j = nys, nyn |
---|
4350 | vdotnor = w(ked,j,i) |
---|
4351 | ! |
---|
4352 | !-- Local outflow |
---|
4353 | IF ( vdotnor > 0.0_wp ) THEN |
---|
4354 | f(k,j,i) = f(ked,j,i) |
---|
4355 | ENDIF |
---|
4356 | ENDDO |
---|
4357 | ENDDO |
---|
4358 | |
---|
4359 | ! |
---|
4360 | !-- Just fill up the second ghost-node layer for w |
---|
4361 | IF ( var == 'w' ) THEN |
---|
4362 | f(nzt+1,:,:) = f(nzt,:,:) |
---|
4363 | ENDIF |
---|
4364 | |
---|
4365 | END SUBROUTINE pmci_extrap_ifoutflow_t |
---|
4366 | |
---|
4367 | |
---|
4368 | |
---|
4369 | SUBROUTINE pmci_anterp_tophat( f, fc, kct, ifl, ifu, jfl, jfu, kfl, kfu, & |
---|
4370 | ijfc, var ) |
---|
4371 | ! |
---|
4372 | !-- Anterpolation of internal-node values to be used as the parent-domain |
---|
4373 | !-- values. This subroutine is based on the first-order numerical |
---|
4374 | !-- integration of the fine-grid values contained within the coarse-grid |
---|
4375 | !-- cell. |
---|
4376 | |
---|
4377 | IMPLICIT NONE |
---|
4378 | |
---|
4379 | CHARACTER(LEN=1), INTENT(IN) :: var !: |
---|
4380 | |
---|
4381 | INTEGER(iwp) :: i !: Fine-grid index |
---|
4382 | INTEGER(iwp) :: ii !: Coarse-grid index |
---|
4383 | INTEGER(iwp) :: iclp !: |
---|
4384 | INTEGER(iwp) :: icrm !: |
---|
4385 | INTEGER(iwp) :: j !: Fine-grid index |
---|
4386 | INTEGER(iwp) :: jj !: Coarse-grid index |
---|
4387 | INTEGER(iwp) :: jcnm !: |
---|
4388 | INTEGER(iwp) :: jcsp !: |
---|
4389 | INTEGER(iwp) :: k !: Fine-grid index |
---|
4390 | INTEGER(iwp) :: kk !: Coarse-grid index |
---|
4391 | INTEGER(iwp) :: kcb !: |
---|
4392 | INTEGER(iwp) :: nfc !: |
---|
4393 | |
---|
4394 | INTEGER(iwp), INTENT(IN) :: kct !: |
---|
4395 | |
---|
4396 | INTEGER(iwp), DIMENSION(icl:icr), INTENT(IN) :: ifl !: |
---|
4397 | INTEGER(iwp), DIMENSION(icl:icr), INTENT(IN) :: ifu !: |
---|
4398 | INTEGER(iwp), DIMENSION(jcs:jcn), INTENT(IN) :: jfl !: |
---|
4399 | INTEGER(iwp), DIMENSION(jcs:jcn), INTENT(IN) :: jfu !: |
---|
4400 | INTEGER(iwp), DIMENSION(0:kct), INTENT(IN) :: kfl !: |
---|
4401 | INTEGER(iwp), DIMENSION(0:kct), INTENT(IN) :: kfu !: |
---|
4402 | |
---|
4403 | INTEGER(iwp), DIMENSION(jcs:jcn,icl:icr), INTENT(IN) :: ijfc !: |
---|
4404 | |
---|
4405 | REAL(wp) :: cellsum !: |
---|
4406 | REAL(wp) :: f1f !: |
---|
4407 | REAL(wp) :: fra !: |
---|
4408 | |
---|
4409 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(IN) :: f !: |
---|
4410 | REAL(wp), DIMENSION(0:cg%nz+1,jcs:jcn,icl:icr), INTENT(INOUT) :: fc !: |
---|
4411 | |
---|
4412 | |
---|
4413 | ! |
---|
4414 | !-- Initialize the index bounds for anterpolation |
---|
4415 | iclp = icl |
---|
4416 | icrm = icr |
---|
4417 | jcsp = jcs |
---|
4418 | jcnm = jcn |
---|
4419 | |
---|
4420 | ! |
---|
4421 | !-- Define the index bounds iclp, icrm, jcsp and jcnm. |
---|
4422 | !-- Note that kcb is simply zero and kct enters here as a parameter and it is |
---|
4423 | !-- determined in pmci_init_anterp_tophat |
---|
4424 | |
---|
4425 | IF ( nesting_mode == 'vertical' ) THEN |
---|
4426 | IF ( nest_bound_l ) THEN |
---|
4427 | iclp = icl + nhll |
---|
4428 | ENDIF |
---|
4429 | IF ( nest_bound_r ) THEN |
---|
4430 | icrm = icr - nhlr |
---|
4431 | ENDIF |
---|
4432 | IF ( nest_bound_s ) THEN |
---|
4433 | jcsp = jcs + nhls |
---|
4434 | ENDIF |
---|
4435 | IF ( nest_bound_n ) THEN |
---|
4436 | jcnm = jcn - nhln |
---|
4437 | ENDIF |
---|
4438 | ELSE |
---|
4439 | IF ( nest_bound_l ) THEN |
---|
4440 | IF ( var == 'u' ) THEN |
---|
4441 | iclp = icl + nhll + 1 |
---|
4442 | ELSE |
---|
4443 | iclp = icl + nhll |
---|
4444 | ENDIF |
---|
4445 | ENDIF |
---|
4446 | IF ( nest_bound_r ) THEN |
---|
4447 | icrm = icr - nhlr |
---|
4448 | ENDIF |
---|
4449 | |
---|
4450 | IF ( nest_bound_s ) THEN |
---|
4451 | IF ( var == 'v' ) THEN |
---|
4452 | jcsp = jcs + nhls + 1 |
---|
4453 | ELSE |
---|
4454 | jcsp = jcs + nhls |
---|
4455 | ENDIF |
---|
4456 | ENDIF |
---|
4457 | IF ( nest_bound_n ) THEN |
---|
4458 | jcnm = jcn - nhln |
---|
4459 | ENDIF |
---|
4460 | kcb = 0 |
---|
4461 | ENDIF |
---|
4462 | |
---|
4463 | ! |
---|
4464 | !-- Note that ii, jj, and kk are coarse-grid indices and i,j, and k |
---|
4465 | !-- are fine-grid indices. |
---|
4466 | DO ii = iclp, icrm |
---|
4467 | DO jj = jcsp, jcnm |
---|
4468 | ! |
---|
4469 | !-- For simplicity anterpolate within buildings too |
---|
4470 | DO kk = kcb, kct |
---|
4471 | ! |
---|
4472 | !-- ijfc is precomputed in pmci_init_anterp_tophat |
---|
4473 | nfc = ijfc(jj,ii) * ( kfu(kk) - kfl(kk) + 1 ) |
---|
4474 | cellsum = 0.0_wp |
---|
4475 | DO i = ifl(ii), ifu(ii) |
---|
4476 | DO j = jfl(jj), jfu(jj) |
---|
4477 | DO k = kfl(kk), kfu(kk) |
---|
4478 | cellsum = cellsum + f(k,j,i) |
---|
4479 | ENDDO |
---|
4480 | ENDDO |
---|
4481 | ENDDO |
---|
4482 | ! |
---|
4483 | !-- Spatial under-relaxation. |
---|
4484 | fra = frax(ii) * fray(jj) * fraz(kk) |
---|
4485 | ! |
---|
4486 | !-- Block out the fine-grid corner patches from the anterpolation |
---|
4487 | IF ( ( ifl(ii) < nxl ) .OR. ( ifu(ii) > nxr ) ) THEN |
---|
4488 | IF ( ( jfl(jj) < nys ) .OR. ( jfu(jj) > nyn ) ) THEN |
---|
4489 | fra = 0.0_wp |
---|
4490 | ENDIF |
---|
4491 | ENDIF |
---|
4492 | |
---|
4493 | fc(kk,jj,ii) = ( 1.0_wp - fra ) * fc(kk,jj,ii) + & |
---|
4494 | fra * cellsum / REAL( nfc, KIND = wp ) |
---|
4495 | |
---|
4496 | ENDDO |
---|
4497 | ENDDO |
---|
4498 | ENDDO |
---|
4499 | |
---|
4500 | END SUBROUTINE pmci_anterp_tophat |
---|
4501 | |
---|
4502 | #endif |
---|
4503 | END SUBROUTINE pmci_child_datatrans |
---|
4504 | |
---|
4505 | END MODULE pmc_interface |
---|