1 | MODULE pmc_interface |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: pmc_interface.f90 1784 2016-03-06 19:14:40Z raasch $ |
---|
27 | ! |
---|
28 | ! 1783 2016-03-06 18:36:17Z raasch |
---|
29 | ! calculation of nest top area simplified, |
---|
30 | ! interpolation and anterpolation moved to seperate wrapper subroutines |
---|
31 | ! |
---|
32 | ! 1781 2016-03-03 15:12:23Z raasch |
---|
33 | ! _p arrays are set zero within buildings too, t.._m arrays and respective |
---|
34 | ! settings within buildings completely removed |
---|
35 | ! |
---|
36 | ! 1779 2016-03-03 08:01:28Z raasch |
---|
37 | ! only the total number of PEs is given for the domains, npe_x and npe_y |
---|
38 | ! replaced by npe_total, two unused elements removed from array |
---|
39 | ! define_coarse_grid_real, |
---|
40 | ! array management changed from linked list to sequential loop |
---|
41 | ! |
---|
42 | ! 1766 2016-02-29 08:37:15Z raasch |
---|
43 | ! modifications to allow for using PALM's pointer version, |
---|
44 | ! +new routine pmci_set_swaplevel |
---|
45 | ! |
---|
46 | ! 1764 2016-02-28 12:45:19Z raasch |
---|
47 | ! +cpl_parent_id, |
---|
48 | ! cpp-statements for nesting replaced by __parallel statements, |
---|
49 | ! errors output with message-subroutine, |
---|
50 | ! index bugfixes in pmci_interp_tril_all, |
---|
51 | ! some adjustments to PALM style |
---|
52 | ! |
---|
53 | ! 1762 2016-02-25 12:31:13Z hellstea |
---|
54 | ! Initial revision by A. Hellsten |
---|
55 | ! |
---|
56 | ! Description: |
---|
57 | ! ------------ |
---|
58 | ! Domain nesting interface routines. The low-level inter-domain communication |
---|
59 | ! is conducted by the PMC-library routines. |
---|
60 | !------------------------------------------------------------------------------! |
---|
61 | |
---|
62 | #if defined( __nopointer ) |
---|
63 | USE arrays_3d, & |
---|
64 | ONLY: dzu, dzw, e, e_p, pt, pt_p, q, q_p, u, u_p, v, v_p, w, w_p, zu, & |
---|
65 | zw, z0 |
---|
66 | #else |
---|
67 | USE arrays_3d, & |
---|
68 | ONLY: dzu, dzw, e, e_p, e_1, e_2, pt, pt_p, pt_1, pt_2, q, q_p, q_1, & |
---|
69 | q_2, u, u_p, u_1, u_2, v, v_p, v_1, v_2, w, w_p, w_1, w_2, zu, & |
---|
70 | zw, z0 |
---|
71 | #endif |
---|
72 | |
---|
73 | USE control_parameters, & |
---|
74 | ONLY: coupling_char, dt_3d, dz, humidity, message_string, & |
---|
75 | nest_bound_l, nest_bound_r, nest_bound_s, nest_bound_n, & |
---|
76 | nest_domain, passive_scalar, simulated_time, topography, & |
---|
77 | volume_flow |
---|
78 | |
---|
79 | USE cpulog, & |
---|
80 | ONLY: cpu_log, log_point_s |
---|
81 | |
---|
82 | USE grid_variables, & |
---|
83 | ONLY: dx, dy |
---|
84 | |
---|
85 | USE indices, & |
---|
86 | ONLY: nbgp, nx, nxl, nxlg, nxlu, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
87 | nysv, nz, nzb, nzb_s_inner, nzb_u_inner, nzb_u_outer, & |
---|
88 | nzb_v_inner, nzb_v_outer, nzb_w_inner, nzb_w_outer, nzt |
---|
89 | |
---|
90 | USE kinds |
---|
91 | |
---|
92 | #if defined( __parallel ) |
---|
93 | #if defined( __lc ) |
---|
94 | USE MPI |
---|
95 | #else |
---|
96 | INCLUDE "mpif.h" |
---|
97 | #endif |
---|
98 | |
---|
99 | USE pegrid, & |
---|
100 | ONLY: collective_wait, comm1dx, comm1dy, comm2d, myid, myidx, myidy, & |
---|
101 | numprocs |
---|
102 | |
---|
103 | USE pmc_client, & |
---|
104 | ONLY: pmc_clientinit, pmc_c_clear_next_array_list, & |
---|
105 | pmc_c_getnextarray, pmc_c_get_2d_index_list, pmc_c_getbuffer, & |
---|
106 | pmc_c_putbuffer, pmc_c_setind_and_allocmem, & |
---|
107 | pmc_c_set_dataarray, pmc_set_dataarray_name |
---|
108 | |
---|
109 | USE pmc_general, & |
---|
110 | ONLY: da_namelen, pmc_max_modell, pmc_status_ok |
---|
111 | |
---|
112 | USE pmc_handle_communicator, & |
---|
113 | ONLY: pmc_get_local_model_info, pmc_init_model, pmc_is_rootmodel, & |
---|
114 | pmc_no_namelist_found, pmc_server_for_client |
---|
115 | |
---|
116 | USE pmc_mpi_wrapper, & |
---|
117 | ONLY: pmc_bcast, pmc_recv_from_client, pmc_recv_from_server, & |
---|
118 | pmc_send_to_client, pmc_send_to_server |
---|
119 | |
---|
120 | USE pmc_server, & |
---|
121 | ONLY: pmc_serverinit, pmc_s_clear_next_array_list, pmc_s_fillbuffer, & |
---|
122 | pmc_s_getdata_from_buffer, pmc_s_getnextarray, & |
---|
123 | pmc_s_setind_and_allocmem, pmc_s_set_active_data_array, & |
---|
124 | pmc_s_set_dataarray, pmc_s_set_2d_index_list |
---|
125 | |
---|
126 | #endif |
---|
127 | |
---|
128 | IMPLICIT NONE |
---|
129 | |
---|
130 | !-- TO_DO: a lot of lines (including comments) in this file exceed the 80 char |
---|
131 | !-- limit. Try to reduce as much as possible |
---|
132 | |
---|
133 | !-- TO_DO: are all of these variables following now really PUBLIC? |
---|
134 | !-- Klaus and I guess they are not |
---|
135 | PRIVATE !: Note that the default publicity is here set to private. |
---|
136 | |
---|
137 | ! |
---|
138 | !-- Constants |
---|
139 | INTEGER(iwp), PARAMETER, PUBLIC :: client_to_server = 2 !: |
---|
140 | INTEGER(iwp), PARAMETER, PUBLIC :: server_to_client = 1 !: |
---|
141 | |
---|
142 | ! |
---|
143 | !-- Coupler setup |
---|
144 | INTEGER(iwp), PUBLIC, SAVE :: cpl_id = 1 !: |
---|
145 | CHARACTER(LEN=32), PUBLIC, SAVE :: cpl_name !: |
---|
146 | INTEGER(iwp), PUBLIC, SAVE :: cpl_npe_total !: |
---|
147 | INTEGER(iwp), PUBLIC, SAVE :: cpl_parent_id !: |
---|
148 | |
---|
149 | ! |
---|
150 | !-- Control parameters, will be made input parameters later |
---|
151 | CHARACTER(LEN=7), PUBLIC, SAVE :: nesting_mode = 'two-way' !: steering parameter for one- or two-way nesting |
---|
152 | |
---|
153 | LOGICAL, PUBLIC, SAVE :: nested_run = .FALSE. !: general switch if nested run or not |
---|
154 | |
---|
155 | REAL(wp), PUBLIC, SAVE :: anterp_relax_length_l = -1.0_wp !: |
---|
156 | REAL(wp), PUBLIC, SAVE :: anterp_relax_length_r = -1.0_wp !: |
---|
157 | REAL(wp), PUBLIC, SAVE :: anterp_relax_length_s = -1.0_wp !: |
---|
158 | REAL(wp), PUBLIC, SAVE :: anterp_relax_length_n = -1.0_wp !: |
---|
159 | REAL(wp), PUBLIC, SAVE :: anterp_relax_length_t = -1.0_wp !: |
---|
160 | |
---|
161 | ! |
---|
162 | !-- Geometry |
---|
163 | REAL(wp), PUBLIC, SAVE :: area_t !: |
---|
164 | REAL(wp), SAVE, DIMENSION(:), ALLOCATABLE :: coord_x !: |
---|
165 | REAL(wp), SAVE, DIMENSION(:), ALLOCATABLE :: coord_y !: |
---|
166 | REAL(wp), PUBLIC, SAVE :: lower_left_coord_x !: |
---|
167 | REAL(wp), PUBLIC, SAVE :: lower_left_coord_y !: |
---|
168 | |
---|
169 | ! |
---|
170 | !-- Client coarse data arrays |
---|
171 | REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET, PUBLIC :: ec !: |
---|
172 | REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET, PUBLIC :: ptc !: |
---|
173 | REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET, PUBLIC :: uc !: |
---|
174 | REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET, PUBLIC :: vc !: |
---|
175 | REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET, PUBLIC :: wc !: |
---|
176 | REAL(wp), SAVE, DIMENSION(:,:,:), ALLOCATABLE, TARGET, PUBLIC :: qc !: |
---|
177 | |
---|
178 | INTEGER(iwp), DIMENSION(5) :: coarse_bound !: |
---|
179 | REAL(wp), PUBLIC, SAVE :: xexl !: |
---|
180 | REAL(wp), PUBLIC, SAVE :: xexr !: |
---|
181 | REAL(wp), PUBLIC, SAVE :: yexs !: |
---|
182 | REAL(wp), PUBLIC, SAVE :: yexn !: |
---|
183 | REAL(wp), PUBLIC, SAVE, DIMENSION(:,:), ALLOCATABLE :: tkefactor_l !: |
---|
184 | REAL(wp), PUBLIC, SAVE, DIMENSION(:,:), ALLOCATABLE :: tkefactor_n !: |
---|
185 | REAL(wp), PUBLIC, SAVE, DIMENSION(:,:), ALLOCATABLE :: tkefactor_r !: |
---|
186 | REAL(wp), PUBLIC, SAVE, DIMENSION(:,:), ALLOCATABLE :: tkefactor_s !: |
---|
187 | REAL(wp), PUBLIC, SAVE, DIMENSION(:,:), ALLOCATABLE :: tkefactor_t !: |
---|
188 | |
---|
189 | ! |
---|
190 | !-- Client interpolation coefficients and client-array indices to be precomputed and stored. |
---|
191 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: ico !: |
---|
192 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: icu !: |
---|
193 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: jco !: |
---|
194 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: jcv !: |
---|
195 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: kco !: |
---|
196 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: kcw !: |
---|
197 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r1xo !: |
---|
198 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r2xo !: |
---|
199 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r1xu !: |
---|
200 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r2xu !: |
---|
201 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r1yo !: |
---|
202 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r2yo !: |
---|
203 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r1yv !: |
---|
204 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r2yv !: |
---|
205 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r1zo !: |
---|
206 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r2zo !: |
---|
207 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r1zw !: |
---|
208 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: r2zw !: |
---|
209 | |
---|
210 | ! |
---|
211 | !-- Client index arrays and log-ratio arrays for the log-law near-wall corrections. |
---|
212 | !-- These are not truly 3-D arrays but multiply 2-D arrays. |
---|
213 | INTEGER(iwp), PUBLIC, SAVE :: ncorr !: ncorr is the 4th dimension of the log_ratio-arrays |
---|
214 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_u_l !: |
---|
215 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_u_n !: |
---|
216 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_u_r !: |
---|
217 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_u_s !: |
---|
218 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_v_l !: |
---|
219 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_v_n !: |
---|
220 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_v_r !: |
---|
221 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_v_s !: |
---|
222 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_w_l !: |
---|
223 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_w_n !: |
---|
224 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_w_r !: |
---|
225 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: logc_w_s !: |
---|
226 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_u_l !: |
---|
227 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_u_n !: |
---|
228 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_u_r !: |
---|
229 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_u_s !: |
---|
230 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_v_l !: |
---|
231 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_v_n !: |
---|
232 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_v_r !: |
---|
233 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_v_s !: |
---|
234 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_w_l !: |
---|
235 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_w_n !: |
---|
236 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_w_r !: |
---|
237 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:,:,:,:) :: logc_ratio_w_s !: |
---|
238 | |
---|
239 | ! |
---|
240 | !-- Upper bounds for k in anterpolation. |
---|
241 | INTEGER(iwp), PUBLIC, SAVE :: kceu !: |
---|
242 | INTEGER(iwp), PUBLIC, SAVE :: kcew !: |
---|
243 | |
---|
244 | ! |
---|
245 | !-- Upper bound for k in log-law correction in interpolation. |
---|
246 | INTEGER(iwp), PUBLIC, SAVE :: nzt_topo_nestbc_l !: |
---|
247 | INTEGER(iwp), PUBLIC, SAVE :: nzt_topo_nestbc_n !: |
---|
248 | INTEGER(iwp), PUBLIC, SAVE :: nzt_topo_nestbc_r !: |
---|
249 | INTEGER(iwp), PUBLIC, SAVE :: nzt_topo_nestbc_s !: |
---|
250 | |
---|
251 | ! |
---|
252 | !-- Number of ghost nodes in coarse-grid arrays for i and j in anterpolation. |
---|
253 | INTEGER(iwp), PUBLIC, SAVE :: nhll !: |
---|
254 | INTEGER(iwp), PUBLIC, SAVE :: nhlr !: |
---|
255 | INTEGER(iwp), PUBLIC, SAVE :: nhls !: |
---|
256 | INTEGER(iwp), PUBLIC, SAVE :: nhln !: |
---|
257 | |
---|
258 | ! |
---|
259 | !-- Spatial under-relaxation coefficients for anterpolation. |
---|
260 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: frax !: |
---|
261 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: fray !: |
---|
262 | REAL(wp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: fraz !: |
---|
263 | |
---|
264 | ! |
---|
265 | !-- Client-array indices to be precomputed and stored for anterpolation. |
---|
266 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: iflu !: |
---|
267 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: ifuu !: |
---|
268 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: iflo !: |
---|
269 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: ifuo !: |
---|
270 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: jflv !: |
---|
271 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: jfuv !: |
---|
272 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: jflo !: |
---|
273 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: jfuo !: |
---|
274 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: kflw !: |
---|
275 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: kfuw !: |
---|
276 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: kflo !: |
---|
277 | INTEGER(iwp), PUBLIC, SAVE, ALLOCATABLE, DIMENSION(:) :: kfuo !: |
---|
278 | |
---|
279 | ! |
---|
280 | !-- Module private variables. |
---|
281 | INTEGER(iwp), DIMENSION(3) :: define_coarse_grid_int !: |
---|
282 | REAL(wp), DIMENSION(7) :: define_coarse_grid_real !: |
---|
283 | |
---|
284 | TYPE coarsegrid_def |
---|
285 | INTEGER(iwp) :: nx |
---|
286 | INTEGER(iwp) :: ny |
---|
287 | INTEGER(iwp) :: nz |
---|
288 | REAL(wp) :: dx |
---|
289 | REAL(wp) :: dy |
---|
290 | REAL(wp) :: dz |
---|
291 | REAL(wp) :: lower_left_coord_x |
---|
292 | REAL(wp) :: lower_left_coord_y |
---|
293 | REAL(wp) :: xend |
---|
294 | REAL(wp) :: yend |
---|
295 | REAL(wp), DIMENSION(:), ALLOCATABLE :: coord_x |
---|
296 | REAL(wp), DIMENSION(:), ALLOCATABLE :: coord_y |
---|
297 | REAL(wp), DIMENSION(:), ALLOCATABLE :: dzu |
---|
298 | REAL(wp), DIMENSION(:), ALLOCATABLE :: dzw |
---|
299 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zu |
---|
300 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zw |
---|
301 | END TYPE coarsegrid_def |
---|
302 | |
---|
303 | TYPE(coarsegrid_def), SAVE :: cg !: |
---|
304 | |
---|
305 | |
---|
306 | INTERFACE pmci_client_datatrans |
---|
307 | MODULE PROCEDURE pmci_client_datatrans |
---|
308 | END INTERFACE |
---|
309 | |
---|
310 | INTERFACE pmci_client_initialize |
---|
311 | MODULE PROCEDURE pmci_client_initialize |
---|
312 | END INTERFACE |
---|
313 | |
---|
314 | INTERFACE pmci_client_synchronize |
---|
315 | MODULE PROCEDURE pmci_client_synchronize |
---|
316 | END INTERFACE |
---|
317 | |
---|
318 | INTERFACE pmci_ensure_nest_mass_conservation |
---|
319 | MODULE PROCEDURE pmci_ensure_nest_mass_conservation |
---|
320 | END INTERFACE |
---|
321 | |
---|
322 | INTERFACE pmci_init |
---|
323 | MODULE PROCEDURE pmci_init |
---|
324 | END INTERFACE |
---|
325 | |
---|
326 | INTERFACE pmci_modelconfiguration |
---|
327 | MODULE PROCEDURE pmci_modelconfiguration |
---|
328 | END INTERFACE |
---|
329 | |
---|
330 | INTERFACE pmci_server_initialize |
---|
331 | MODULE PROCEDURE pmci_server_initialize |
---|
332 | END INTERFACE |
---|
333 | |
---|
334 | INTERFACE pmci_server_synchronize |
---|
335 | MODULE PROCEDURE pmci_server_synchronize |
---|
336 | END INTERFACE |
---|
337 | |
---|
338 | INTERFACE pmci_set_swaplevel |
---|
339 | MODULE PROCEDURE pmci_set_swaplevel |
---|
340 | END INTERFACE pmci_set_swaplevel |
---|
341 | |
---|
342 | INTERFACE pmci_update_new |
---|
343 | MODULE PROCEDURE pmci_update_new |
---|
344 | END INTERFACE |
---|
345 | |
---|
346 | PUBLIC pmci_client_datatrans |
---|
347 | PUBLIC pmci_client_initialize |
---|
348 | PUBLIC pmci_client_synchronize |
---|
349 | PUBLIC pmci_ensure_nest_mass_conservation |
---|
350 | PUBLIC pmci_init |
---|
351 | PUBLIC pmci_modelconfiguration |
---|
352 | PUBLIC pmci_server_datatrans |
---|
353 | PUBLIC pmci_server_initialize |
---|
354 | PUBLIC pmci_server_synchronize |
---|
355 | PUBLIC pmci_set_swaplevel |
---|
356 | PUBLIC pmci_update_new |
---|
357 | |
---|
358 | |
---|
359 | CONTAINS |
---|
360 | |
---|
361 | |
---|
362 | SUBROUTINE pmci_init( world_comm ) |
---|
363 | |
---|
364 | IMPLICIT NONE |
---|
365 | |
---|
366 | INTEGER, INTENT(OUT) :: world_comm !: |
---|
367 | |
---|
368 | #if defined( __parallel ) |
---|
369 | |
---|
370 | INTEGER(iwp) :: ierr !: |
---|
371 | INTEGER(iwp) :: istat !: |
---|
372 | INTEGER(iwp) :: pmc_status !: |
---|
373 | |
---|
374 | |
---|
375 | CALL pmc_init_model( world_comm, nesting_mode, pmc_status ) |
---|
376 | |
---|
377 | IF ( pmc_status == pmc_no_namelist_found ) THEN |
---|
378 | ! |
---|
379 | !-- This is not a nested run |
---|
380 | world_comm = MPI_COMM_WORLD |
---|
381 | cpl_id = 1 |
---|
382 | cpl_name = "" |
---|
383 | |
---|
384 | RETURN |
---|
385 | |
---|
386 | ENDIF |
---|
387 | |
---|
388 | ! |
---|
389 | !-- Set the general steering switch which tells PALM that its a nested run |
---|
390 | nested_run = .TRUE. |
---|
391 | |
---|
392 | ! |
---|
393 | !-- Get some variables required by the pmc-interface (and in some cases in the |
---|
394 | !-- PALM code out of the pmci) out of the pmc-core |
---|
395 | CALL pmc_get_local_model_info( my_cpl_id = cpl_id, & |
---|
396 | my_cpl_parent_id = cpl_parent_id, & |
---|
397 | cpl_name = cpl_name, & |
---|
398 | npe_total = cpl_npe_total, & |
---|
399 | lower_left_x = lower_left_coord_x, & |
---|
400 | lower_left_y = lower_left_coord_y ) |
---|
401 | ! |
---|
402 | !-- Set the steering switch which tells the models that they are nested (of |
---|
403 | !-- course the root domain (cpl_id = 1 ) is not nested) |
---|
404 | IF ( cpl_id >= 2 ) THEN |
---|
405 | nest_domain = .TRUE. |
---|
406 | WRITE( coupling_char, '(A1,I2.2)') '_', cpl_id |
---|
407 | ENDIF |
---|
408 | |
---|
409 | ! |
---|
410 | !-- Message that communicators for nesting are initialized. |
---|
411 | !-- Attention: myid has been set at the end of pmc_init_model in order to |
---|
412 | !-- guarantee that only PE0 of the root domain does the output. |
---|
413 | CALL location_message( 'finished', .TRUE. ) |
---|
414 | ! |
---|
415 | !-- Reset myid to its default value |
---|
416 | myid = 0 |
---|
417 | #else |
---|
418 | ! |
---|
419 | !-- Nesting cannot be used in serial mode. cpl_id is set to root domain (1) |
---|
420 | !-- because no location messages would be generated otherwise. |
---|
421 | !-- world_comm is given a dummy value to avoid compiler warnings (INTENT(OUT) |
---|
422 | !-- should get an explicit value) |
---|
423 | cpl_id = 1 |
---|
424 | nested_run = .FALSE. |
---|
425 | world_comm = 1 |
---|
426 | #endif |
---|
427 | |
---|
428 | END SUBROUTINE pmci_init |
---|
429 | |
---|
430 | |
---|
431 | |
---|
432 | SUBROUTINE pmci_modelconfiguration |
---|
433 | |
---|
434 | IMPLICIT NONE |
---|
435 | |
---|
436 | CALL location_message( 'setup the nested model configuration', .FALSE. ) |
---|
437 | CALL pmci_setup_coordinates !: Compute absolute coordinates valid for all models |
---|
438 | CALL pmci_setup_client !: Initialize PMC Client (Must be called before pmc_setup_server) |
---|
439 | CALL pmci_setup_server !: Initialize PMC Server |
---|
440 | CALL location_message( 'finished', .TRUE. ) |
---|
441 | |
---|
442 | END SUBROUTINE pmci_modelconfiguration |
---|
443 | |
---|
444 | |
---|
445 | |
---|
446 | SUBROUTINE pmci_setup_server |
---|
447 | |
---|
448 | #if defined( __parallel ) |
---|
449 | IMPLICIT NONE |
---|
450 | |
---|
451 | INTEGER(iwp) :: client_id !: |
---|
452 | INTEGER(iwp) :: ierr !: |
---|
453 | INTEGER(iwp) :: i !: |
---|
454 | INTEGER(iwp) :: j !: |
---|
455 | INTEGER(iwp) :: k !: |
---|
456 | INTEGER(iwp) :: m !: |
---|
457 | INTEGER(iwp) :: nomatch !: |
---|
458 | INTEGER(iwp) :: nx_cl !: |
---|
459 | INTEGER(iwp) :: ny_cl !: |
---|
460 | INTEGER(iwp) :: nz_cl !: |
---|
461 | INTEGER(iwp), DIMENSION(5) :: val !: |
---|
462 | REAL(wp), DIMENSION(1) :: fval !: |
---|
463 | REAL(wp) :: dx_cl !: |
---|
464 | REAL(wp) :: dy_cl !: |
---|
465 | REAL(wp) :: xez !: |
---|
466 | REAL(wp) :: yez !: |
---|
467 | CHARACTER(len=32) :: mychannel |
---|
468 | CHARACTER(len=32) :: myname |
---|
469 | REAL(wp), DIMENSION(:), ALLOCATABLE :: cl_coord_x !: |
---|
470 | REAL(wp), DIMENSION(:), ALLOCATABLE :: cl_coord_y !: |
---|
471 | |
---|
472 | |
---|
473 | ! |
---|
474 | ! Initialize the PMC server |
---|
475 | CALL pmc_serverinit |
---|
476 | |
---|
477 | ! |
---|
478 | !-- Get coordinates from all clients |
---|
479 | DO m = 1, SIZE( pmc_server_for_client ) - 1 |
---|
480 | client_id = pmc_server_for_client(m) |
---|
481 | IF ( myid == 0 ) THEN |
---|
482 | |
---|
483 | CALL pmc_recv_from_client( client_id, val, size(val), 0, 123, ierr ) |
---|
484 | CALL pmc_recv_from_client( client_id, fval, size(fval), 0, 124, ierr ) |
---|
485 | |
---|
486 | nx_cl = val(1) |
---|
487 | ny_cl = val(2) |
---|
488 | dx_cl = val(4) |
---|
489 | dy_cl = val(5) |
---|
490 | |
---|
491 | nz_cl = nz |
---|
492 | |
---|
493 | ! |
---|
494 | !-- Find the highest client level in the coarse grid for the reduced z |
---|
495 | !-- transfer |
---|
496 | DO k = 1, nz |
---|
497 | IF ( zw(k) > fval(1) ) THEN |
---|
498 | nz_cl = k |
---|
499 | EXIT |
---|
500 | ENDIF |
---|
501 | ENDDO |
---|
502 | |
---|
503 | ! |
---|
504 | !-- Get absolute coordinates from the client |
---|
505 | ALLOCATE( cl_coord_x(-nbgp:nx_cl+nbgp) ) |
---|
506 | ALLOCATE( cl_coord_y(-nbgp:ny_cl+nbgp) ) |
---|
507 | |
---|
508 | CALL pmc_recv_from_client( client_id, cl_coord_x, SIZE( cl_coord_x ),& |
---|
509 | 0, 11, ierr ) |
---|
510 | CALL pmc_recv_from_client( client_id, cl_coord_y, SIZE( cl_coord_y ),& |
---|
511 | 0, 12, ierr ) |
---|
512 | WRITE ( 0, * ) 'receive from pmc Client ', client_id, nx_cl, ny_cl |
---|
513 | |
---|
514 | define_coarse_grid_real(1) = lower_left_coord_x |
---|
515 | define_coarse_grid_real(2) = lower_left_coord_y |
---|
516 | define_coarse_grid_real(3) = dx |
---|
517 | define_coarse_grid_real(4) = dy |
---|
518 | define_coarse_grid_real(5) = lower_left_coord_x + ( nx + 1 ) * dx |
---|
519 | define_coarse_grid_real(6) = lower_left_coord_y + ( ny + 1 ) * dy |
---|
520 | define_coarse_grid_real(7) = dz |
---|
521 | |
---|
522 | define_coarse_grid_int(1) = nx |
---|
523 | define_coarse_grid_int(2) = ny |
---|
524 | define_coarse_grid_int(3) = nz_cl |
---|
525 | |
---|
526 | ! |
---|
527 | !-- Check that the client domain is completely inside the server domain. |
---|
528 | nomatch = 0 |
---|
529 | xez = ( nbgp + 1 ) * dx |
---|
530 | yez = ( nbgp + 1 ) * dy |
---|
531 | IF ( cl_coord_x(0) < define_coarse_grid_real(1) + xez ) nomatch = 1 |
---|
532 | IF ( cl_coord_x(nx_cl + 1) > define_coarse_grid_real(5) - xez ) nomatch = 1 |
---|
533 | IF ( cl_coord_y(0) < define_coarse_grid_real(2) + yez ) nomatch = 1 |
---|
534 | IF ( cl_coord_y(ny_cl + 1) > define_coarse_grid_real(6) - yez ) nomatch = 1 |
---|
535 | |
---|
536 | DEALLOCATE( cl_coord_x ) |
---|
537 | DEALLOCATE( cl_coord_y ) |
---|
538 | |
---|
539 | ! |
---|
540 | !-- Send coarse grid information to client |
---|
541 | CALL pmc_send_to_client( client_id, Define_coarse_grid_real, & |
---|
542 | SIZE(define_coarse_grid_real), 0, & |
---|
543 | 21, ierr ) |
---|
544 | CALL pmc_send_to_client( client_id, Define_coarse_grid_int, 3, 0, & |
---|
545 | 22, ierr ) |
---|
546 | |
---|
547 | ! |
---|
548 | !-- Send local grid to client |
---|
549 | CALL pmc_send_to_client( client_id, coord_x, nx+1+2*nbgp, 0, 24, ierr ) |
---|
550 | CALL pmc_send_to_client( client_id, coord_y, ny+1+2*nbgp, 0, 25, ierr ) |
---|
551 | |
---|
552 | ! |
---|
553 | !-- Also send the dzu-, dzw-, zu- and zw-arrays here |
---|
554 | CALL pmc_send_to_client( client_id, dzu, nz_cl + 1, 0, 26, ierr ) |
---|
555 | CALL pmc_send_to_client( client_id, dzw, nz_cl + 1, 0, 27, ierr ) |
---|
556 | CALL pmc_send_to_client( client_id, zu, nz_cl + 2, 0, 28, ierr ) |
---|
557 | CALL pmc_send_to_client( client_id, zw, nz_cl + 2, 0, 29, ierr ) |
---|
558 | |
---|
559 | ENDIF |
---|
560 | |
---|
561 | CALL MPI_BCAST( nomatch, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
562 | IF ( nomatch /= 0 ) THEN |
---|
563 | WRITE ( message_string, * ) 'Error: nested client domain does ', & |
---|
564 | 'not fit into its server domain' |
---|
565 | CALL message( 'pmc_palm_setup_server', 'PA0XYZ', 1, 2, 0, 6, 0 ) |
---|
566 | ENDIF |
---|
567 | |
---|
568 | CALL MPI_BCAST( nz_cl, 1, MPI_INTEGER, 0, comm2d, ierr ) |
---|
569 | |
---|
570 | CALL pmci_create_index_list |
---|
571 | |
---|
572 | ! |
---|
573 | !-- Include couple arrays into server content |
---|
574 | CALL pmc_s_clear_next_array_list |
---|
575 | DO WHILE ( pmc_s_getnextarray( client_id, myname ) ) |
---|
576 | CALL pmci_set_array_pointer( myname, client_id = client_id, & |
---|
577 | nz_cl = nz_cl ) |
---|
578 | ENDDO |
---|
579 | CALL pmc_s_setind_and_allocmem( client_id ) |
---|
580 | ENDDO |
---|
581 | |
---|
582 | CONTAINS |
---|
583 | |
---|
584 | |
---|
585 | SUBROUTINE pmci_create_index_list |
---|
586 | |
---|
587 | IMPLICIT NONE |
---|
588 | |
---|
589 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: coarse_bound_all !: |
---|
590 | INTEGER(iwp) :: i !: |
---|
591 | INTEGER(iwp) :: ic !: |
---|
592 | INTEGER(iwp) :: ierr !: |
---|
593 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: index_list !: |
---|
594 | INTEGER(iwp) :: j !: |
---|
595 | INTEGER(iwp) :: k !: |
---|
596 | INTEGER(iwp) :: m !: |
---|
597 | INTEGER(iwp) :: n !: |
---|
598 | INTEGER(iwp) :: npx !: |
---|
599 | INTEGER(iwp) :: npy !: |
---|
600 | INTEGER(iwp) :: nrx !: |
---|
601 | INTEGER(iwp) :: nry !: |
---|
602 | INTEGER(iwp) :: px !: |
---|
603 | INTEGER(iwp) :: py !: |
---|
604 | INTEGER(iwp), DIMENSION(2) :: scoord !: |
---|
605 | INTEGER(iwp) :: server_pe !: |
---|
606 | INTEGER(iwp), DIMENSION(2) :: size_of_array !: |
---|
607 | |
---|
608 | |
---|
609 | IF ( myid == 0 ) THEN |
---|
610 | CALL pmc_recv_from_client( client_id, size_of_array, 2, 0, 40, ierr ) |
---|
611 | ALLOCATE( coarse_bound_all(size_of_array(1),size_of_array(2)) ) |
---|
612 | CALL pmc_recv_from_client( client_id, coarse_bound_all, & |
---|
613 | SIZE( coarse_bound_all ), 0, 41, ierr ) |
---|
614 | |
---|
615 | ! |
---|
616 | !-- Compute size of index_list. |
---|
617 | ic = 0 |
---|
618 | DO k = 1, size_of_array(2) |
---|
619 | DO j = coarse_bound_all(3,k), coarse_bound_all(4,k) |
---|
620 | DO i = coarse_bound_all(1,k), coarse_bound_all(2,k) |
---|
621 | ic = ic + 1 |
---|
622 | ENDDO |
---|
623 | ENDDO |
---|
624 | ENDDO |
---|
625 | |
---|
626 | ALLOCATE( index_list(6,ic) ) |
---|
627 | |
---|
628 | CALL MPI_COMM_SIZE( comm1dx, npx, ierr ) |
---|
629 | CALL MPI_COMM_SIZE( comm1dy, npy, ierr ) |
---|
630 | |
---|
631 | nrx = nxr - nxl + 1 ! +1 in index because FORTRAN indexing starts with 1, palm with 0 |
---|
632 | nry = nyn - nys + 1 |
---|
633 | ic = 0 |
---|
634 | DO k = 1, size_of_array(2) ! loop over all client PEs |
---|
635 | DO j = coarse_bound_all(3,k), coarse_bound_all(4,k) ! area in y required by actual client PE |
---|
636 | DO i = coarse_bound_all(1,k), coarse_bound_all(2,k) ! area in x required by actual client PE |
---|
637 | px = i / nrx |
---|
638 | py = j / nry |
---|
639 | scoord(1) = px |
---|
640 | scoord(2) = py |
---|
641 | CALL MPI_CART_RANK( comm2d, scoord, server_pe, ierr ) |
---|
642 | |
---|
643 | ic = ic + 1 |
---|
644 | index_list(1,ic) = i - ( px * nrx ) + 1 + nbgp ! First index in Server Array |
---|
645 | index_list(2,ic) = j - ( py * nry ) + 1 + nbgp ! Second index in Server Array |
---|
646 | index_list(3,ic) = i - coarse_bound_all(1,k) + 1 ! x Index client coarse grid |
---|
647 | index_list(4,ic) = j - coarse_bound_all(3,k) + 1 ! y Index client coarse grid |
---|
648 | index_list(5,ic) = k - 1 ! PE Number client |
---|
649 | index_list(6,ic) = server_pe ! PE Number server |
---|
650 | ENDDO |
---|
651 | ENDDO |
---|
652 | ENDDO |
---|
653 | CALL pmc_s_set_2d_index_list( client_id, index_list(:,1:ic) ) |
---|
654 | ELSE |
---|
655 | ALLOCATE( index_list(6,1) ) ! Dummy allocate |
---|
656 | CALL pmc_s_set_2d_index_list( client_id, index_list ) |
---|
657 | ENDIF |
---|
658 | |
---|
659 | DEALLOCATE(index_list) |
---|
660 | |
---|
661 | END SUBROUTINE pmci_create_index_list |
---|
662 | |
---|
663 | #endif |
---|
664 | END SUBROUTINE pmci_setup_server |
---|
665 | |
---|
666 | |
---|
667 | |
---|
668 | SUBROUTINE pmci_setup_client |
---|
669 | |
---|
670 | #if defined( __parallel ) |
---|
671 | IMPLICIT NONE |
---|
672 | |
---|
673 | CHARACTER(LEN=DA_Namelen) :: myname !: |
---|
674 | |
---|
675 | INTEGER(iwp) :: i !: |
---|
676 | INTEGER(iwp) :: ierr !: |
---|
677 | INTEGER(iwp) :: icl !: |
---|
678 | INTEGER(iwp) :: icr !: |
---|
679 | INTEGER(iwp) :: j !: |
---|
680 | INTEGER(iwp) :: jcn !: |
---|
681 | INTEGER(iwp) :: jcs !: |
---|
682 | INTEGER(iwp), DIMENSION(5) :: val !: |
---|
683 | |
---|
684 | REAL(wp), DIMENSION(1) :: fval !: |
---|
685 | REAL(wp) :: xcs !: |
---|
686 | REAL(wp) :: xce !: |
---|
687 | REAL(wp) :: ycs !: |
---|
688 | REAL(wp) :: yce !: |
---|
689 | |
---|
690 | |
---|
691 | !-- TO_DO: describe what is happening in this if-clause |
---|
692 | !-- Root Model does not have Server and is not a client |
---|
693 | IF ( .NOT. pmc_is_rootmodel() ) THEN |
---|
694 | CALL pmc_clientinit |
---|
695 | ! |
---|
696 | !-- Here and only here the arrays are defined, which actualy will be |
---|
697 | !-- exchanged between client and server. |
---|
698 | !-- Please check, if the arrays are in the list of possible exchange arrays |
---|
699 | !-- in subroutines: |
---|
700 | !-- pmci_set_array_pointer (for server arrays) |
---|
701 | !-- pmci_create_client_arrays (for client arrays) |
---|
702 | CALL pmc_set_dataarray_name( 'coarse', 'u' ,'fine', 'u', ierr ) |
---|
703 | CALL pmc_set_dataarray_name( 'coarse', 'v' ,'fine', 'v', ierr ) |
---|
704 | CALL pmc_set_dataarray_name( 'coarse', 'w' ,'fine', 'w', ierr ) |
---|
705 | CALL pmc_set_dataarray_name( 'coarse', 'e' ,'fine', 'e', ierr ) |
---|
706 | CALL pmc_set_dataarray_name( 'coarse', 'pt' ,'fine', 'pt', ierr ) |
---|
707 | IF ( humidity .OR. passive_scalar ) THEN |
---|
708 | CALL pmc_set_dataarray_name( 'coarse', 'q' ,'fine', 'q', ierr ) |
---|
709 | ENDIF |
---|
710 | |
---|
711 | ! |
---|
712 | !-- Update this list appropritely and also in create_client_arrays and in |
---|
713 | !-- pmci_set_array_pointer. |
---|
714 | !-- If a variable is removed, it only has to be removed from here. |
---|
715 | CALL pmc_set_dataarray_name( lastentry = .TRUE. ) |
---|
716 | |
---|
717 | ! |
---|
718 | !-- Send grid to server |
---|
719 | val(1) = nx |
---|
720 | val(2) = ny |
---|
721 | val(3) = nz |
---|
722 | val(4) = dx |
---|
723 | val(5) = dy |
---|
724 | fval(1) = zw(nzt+1) |
---|
725 | |
---|
726 | IF ( myid == 0 ) THEN |
---|
727 | CALL pmc_send_to_server( val, SIZE( val ), 0, 123, ierr ) |
---|
728 | CALL pmc_send_to_server( fval, SIZE( fval ), 0, 124, ierr ) |
---|
729 | CALL pmc_send_to_server( coord_x, nx + 1 + 2 * nbgp, 0, 11, ierr ) |
---|
730 | CALL pmc_send_to_server( coord_y, ny + 1 + 2 * nbgp, 0, 12, ierr ) |
---|
731 | |
---|
732 | ! |
---|
733 | !-- Receive Coarse grid information. |
---|
734 | CALL pmc_recv_from_server( define_coarse_grid_real, & |
---|
735 | SIZE(define_coarse_grid_real), 0, 21, ierr ) |
---|
736 | CALL pmc_recv_from_server( define_coarse_grid_int, 3, 0, 22, ierr ) |
---|
737 | |
---|
738 | ! |
---|
739 | !-- Receive also the dz-,zu- and zw-arrays here. |
---|
740 | !-- TO_DO: what is the meaning of above comment + remove write statements |
---|
741 | !-- and give this informations in header |
---|
742 | WRITE(0,*) 'Coarse grid from Server ' |
---|
743 | WRITE(0,*) 'startx_tot = ',define_coarse_grid_real(1) |
---|
744 | WRITE(0,*) 'starty_tot = ',define_coarse_grid_real(2) |
---|
745 | WRITE(0,*) 'endx_tot = ',define_coarse_grid_real(5) |
---|
746 | WRITE(0,*) 'endy_tot = ',define_coarse_grid_real(6) |
---|
747 | WRITE(0,*) 'dx = ',define_coarse_grid_real(3) |
---|
748 | WRITE(0,*) 'dy = ',define_coarse_grid_real(4) |
---|
749 | WRITE(0,*) 'dz = ',define_coarse_grid_real(7) |
---|
750 | WRITE(0,*) 'nx_coarse = ',define_coarse_grid_int(1) |
---|
751 | WRITE(0,*) 'ny_coarse = ',define_coarse_grid_int(2) |
---|
752 | WRITE(0,*) 'nz_coarse = ',define_coarse_grid_int(3) |
---|
753 | ENDIF |
---|
754 | |
---|
755 | CALL MPI_BCAST( define_coarse_grid_real, SIZE(define_coarse_grid_real), & |
---|
756 | MPI_REAL, 0, comm2d, ierr ) |
---|
757 | CALL MPI_BCAST( define_coarse_grid_int, 3, MPI_INTEGER, 0, comm2d, ierr ) |
---|
758 | |
---|
759 | cg%dx = define_coarse_grid_real(3) |
---|
760 | cg%dy = define_coarse_grid_real(4) |
---|
761 | cg%dz = define_coarse_grid_real(7) |
---|
762 | cg%nx = define_coarse_grid_int(1) |
---|
763 | cg%ny = define_coarse_grid_int(2) |
---|
764 | cg%nz = define_coarse_grid_int(3) |
---|
765 | |
---|
766 | ! |
---|
767 | !-- Get Server coordinates on coarse grid |
---|
768 | ALLOCATE( cg%coord_x(-nbgp:cg%nx+nbgp) ) |
---|
769 | ALLOCATE( cg%coord_y(-nbgp:cg%ny+nbgp) ) |
---|
770 | |
---|
771 | ALLOCATE( cg%dzu(1:cg%nz+1) ) |
---|
772 | ALLOCATE( cg%dzw(1:cg%nz+1) ) |
---|
773 | ALLOCATE( cg%zu(0:cg%nz+1) ) |
---|
774 | ALLOCATE( cg%zw(0:cg%nz+1) ) |
---|
775 | |
---|
776 | ! |
---|
777 | !-- Get coarse grid coordinates and vales of the z-direction from server |
---|
778 | IF ( myid == 0) THEN |
---|
779 | CALL pmc_recv_from_server( cg%coord_x, cg%nx + 1 + 2 * nbgp, 0, 24, & |
---|
780 | ierr ) |
---|
781 | CALL pmc_recv_from_server( cg%coord_y, cg%ny + 1 + 2 * nbgp, 0, 25, & |
---|
782 | ierr ) |
---|
783 | CALL pmc_recv_from_server( cg%dzu, cg%nz + 1, 0, 26, ierr ) |
---|
784 | CALL pmc_recv_from_server( cg%dzw, cg%nz + 1, 0, 27, ierr ) |
---|
785 | CALL pmc_recv_from_server( cg%zu, cg%nz + 2, 0, 28, ierr ) |
---|
786 | CALL pmc_recv_from_server( cg%zw, cg%nz + 2, 0, 29, ierr ) |
---|
787 | ENDIF |
---|
788 | |
---|
789 | ! |
---|
790 | !-- and broadcast this information |
---|
791 | CALL MPI_BCAST( cg%coord_x, cg%nx + 1 + 2 * nbgp, MPI_REAL, 0, comm2d, & |
---|
792 | ierr ) |
---|
793 | CALL MPI_BCAST( cg%coord_y, cg%ny + 1 + 2 * nbgp, MPI_REAL, 0, comm2d, & |
---|
794 | ierr ) |
---|
795 | CALL MPI_BCAST( cg%dzu, cg%nz + 1, MPI_REAL, 0, comm2d, ierr ) |
---|
796 | CALL MPI_BCAST( cg%dzw, cg%nz + 1, MPI_REAL, 0, comm2d, ierr ) |
---|
797 | CALL MPI_BCAST( cg%zu, cg%nz + 2, MPI_REAL, 0, comm2d, ierr ) |
---|
798 | CALL MPI_BCAST( cg%zw, cg%nz + 2, MPI_REAL, 0, comm2d, ierr ) |
---|
799 | |
---|
800 | CALL pmci_map_fine_to_coarse_grid |
---|
801 | CALL pmc_c_get_2d_index_list |
---|
802 | |
---|
803 | ! |
---|
804 | !-- Include couple arrays into client content. |
---|
805 | CALL pmc_c_clear_next_array_list |
---|
806 | DO WHILE ( pmc_c_getnextarray( myname ) ) |
---|
807 | !-- TO_DO: Klaus, why the c-arrays are still up to cg%nz?? |
---|
808 | CALL pmci_create_client_arrays ( myname, icl, icr, jcs, jcn, cg%nz ) |
---|
809 | ENDDO |
---|
810 | CALL pmc_c_setind_and_allocmem |
---|
811 | |
---|
812 | ! |
---|
813 | !-- Precompute interpolation coefficients and client-array indices |
---|
814 | CALL pmci_init_interp_tril |
---|
815 | |
---|
816 | ! |
---|
817 | !-- Precompute the log-law correction index- and ratio-arrays |
---|
818 | CALL pmci_init_loglaw_correction |
---|
819 | |
---|
820 | ! |
---|
821 | !-- Define the SGS-TKE scaling factor based on the grid-spacing ratio |
---|
822 | CALL pmci_init_tkefactor |
---|
823 | |
---|
824 | ! |
---|
825 | !-- Two-way coupling |
---|
826 | IF ( nesting_mode == 'two-way' ) THEN |
---|
827 | CALL pmci_init_anterp_tophat |
---|
828 | ENDIF |
---|
829 | |
---|
830 | ! |
---|
831 | !-- Finally, compute the total area of the top-boundary face of the domain. |
---|
832 | !-- This is needed in the pmc_ensure_nest_mass_conservation |
---|
833 | area_t = ( nx + 1 ) * (ny + 1 ) * dx * dy |
---|
834 | |
---|
835 | ENDIF |
---|
836 | |
---|
837 | CONTAINS |
---|
838 | |
---|
839 | |
---|
840 | SUBROUTINE pmci_map_fine_to_coarse_grid |
---|
841 | |
---|
842 | IMPLICIT NONE |
---|
843 | |
---|
844 | INTEGER(iwp), DIMENSION(5,numprocs) :: coarse_bound_all !: |
---|
845 | INTEGER(iwp), DIMENSION(2) :: size_of_array !: |
---|
846 | |
---|
847 | REAL(wp) :: coarse_dx !: |
---|
848 | REAL(wp) :: coarse_dy !: |
---|
849 | REAL(wp) :: loffset !: |
---|
850 | REAL(wp) :: noffset !: |
---|
851 | REAL(wp) :: roffset !: |
---|
852 | REAL(wp) :: soffset !: |
---|
853 | |
---|
854 | ! |
---|
855 | !-- Determine indices of interpolation/anterpolation area in coarse grid. |
---|
856 | coarse_dx = cg%dx |
---|
857 | coarse_dy = cg%dy |
---|
858 | |
---|
859 | loffset = MOD( coord_x(nxl), coarse_dx ) ! If the fine- and coarse grid nodes do not match. |
---|
860 | xexl = coarse_dx + loffset |
---|
861 | nhll = CEILING( xexl / coarse_dx ) ! This is needed in the anterpolation phase. |
---|
862 | xcs = coord_x(nxl) - xexl |
---|
863 | DO i = 0, cg%nx |
---|
864 | IF ( cg%coord_x(i) > xcs ) THEN |
---|
865 | icl = MAX( -1, i-1 ) |
---|
866 | EXIT |
---|
867 | ENDIF |
---|
868 | ENDDO |
---|
869 | |
---|
870 | roffset = MOD( coord_x(nxr + 1), coarse_dx ) ! If the fine- and coarse grid nodes do not match. |
---|
871 | xexr = coarse_dx + roffset |
---|
872 | nhlr = CEILING( xexr / coarse_dx ) ! This is needed in the anterpolation phase. |
---|
873 | xce = coord_x(nxr) + xexr |
---|
874 | DO i = cg%nx, 0 , -1 |
---|
875 | IF ( cg%coord_x(i) < xce ) THEN |
---|
876 | icr = MIN( cg%nx + 1, i + 1 ) |
---|
877 | EXIT |
---|
878 | ENDIF |
---|
879 | ENDDO |
---|
880 | |
---|
881 | soffset = MOD( coord_y(nys), coarse_dy ) ! If the fine- and coarse grid nodes do not match |
---|
882 | yexs = coarse_dy + soffset |
---|
883 | nhls = CEILING( yexs / coarse_dy ) ! This is needed in the anterpolation phase. |
---|
884 | ycs = coord_y(nys) - yexs |
---|
885 | DO j = 0, cg%ny |
---|
886 | IF ( cg%coord_y(j) > ycs ) THEN |
---|
887 | jcs = MAX( -nbgp, j - 1 ) |
---|
888 | EXIT |
---|
889 | ENDIF |
---|
890 | ENDDO |
---|
891 | |
---|
892 | noffset = MOD( coord_y(nyn + 1), coarse_dy ) ! If the fine- and coarse grid nodes do not match |
---|
893 | yexn = coarse_dy + noffset |
---|
894 | nhln = CEILING( yexn / coarse_dy ) ! This is needed in the anterpolation phase. |
---|
895 | yce = coord_y(nyn) + yexn |
---|
896 | DO j = cg%ny, 0, -1 |
---|
897 | IF ( cg%coord_y(j) < yce ) THEN |
---|
898 | jcn = MIN( cg%ny + nbgp, j + 1 ) |
---|
899 | EXIT |
---|
900 | ENDIF |
---|
901 | ENDDO |
---|
902 | |
---|
903 | coarse_bound(1) = icl |
---|
904 | coarse_bound(2) = icr |
---|
905 | coarse_bound(3) = jcs |
---|
906 | coarse_bound(4) = jcn |
---|
907 | coarse_bound(5) = myid |
---|
908 | ! |
---|
909 | !-- Note that MPI_Gather receives data from all processes in the rank order. |
---|
910 | CALL MPI_GATHER( coarse_bound, 5, MPI_INTEGER, coarse_bound_all, 5, & |
---|
911 | MPI_INTEGER, 0, comm2d, ierr ) |
---|
912 | |
---|
913 | IF ( myid == 0 ) THEN |
---|
914 | size_of_array(1) = SIZE( coarse_bound_all, 1 ) |
---|
915 | size_of_array(2) = SIZE( coarse_bound_all, 2 ) |
---|
916 | CALL pmc_send_to_server( size_of_array, 2, 0, 40, ierr ) |
---|
917 | CALL pmc_send_to_server( coarse_bound_all, SIZE( coarse_bound_all ), 0, 41, ierr ) |
---|
918 | ENDIF |
---|
919 | |
---|
920 | END SUBROUTINE pmci_map_fine_to_coarse_grid |
---|
921 | |
---|
922 | |
---|
923 | |
---|
924 | SUBROUTINE pmci_init_interp_tril |
---|
925 | |
---|
926 | ! |
---|
927 | !-- Precomputation of the interpolation coefficients and client-array indices |
---|
928 | !-- to be used by the interpolation routines interp_tril_lr, interp_tril_ns and |
---|
929 | !-- interp_tril_t. Constant dz is still assumed. |
---|
930 | ! |
---|
931 | !-- Antti Hellsten 3.3.2015. |
---|
932 | ! |
---|
933 | !-- Modified for variable dz, but not yet tested. |
---|
934 | !-- Antti Hellsten 27.3.2015. |
---|
935 | ! |
---|
936 | IMPLICIT NONE |
---|
937 | |
---|
938 | INTEGER(iwp) :: i !: |
---|
939 | INTEGER(iwp) :: i1 !: |
---|
940 | INTEGER(iwp) :: j !: |
---|
941 | INTEGER(iwp) :: j1 !: |
---|
942 | INTEGER(iwp) :: k !: |
---|
943 | INTEGER(iwp) :: kc !: |
---|
944 | |
---|
945 | REAL(wp) :: coarse_dx !: |
---|
946 | REAL(wp) :: coarse_dy !: |
---|
947 | REAL(wp) :: coarse_dz !: |
---|
948 | REAL(wp) :: xb !: |
---|
949 | REAL(wp) :: xcsu !: |
---|
950 | REAL(wp) :: xfso !: |
---|
951 | REAL(wp) :: xcso !: |
---|
952 | REAL(wp) :: xfsu !: |
---|
953 | REAL(wp) :: yb !: |
---|
954 | REAL(wp) :: ycso !: |
---|
955 | REAL(wp) :: ycsv !: |
---|
956 | REAL(wp) :: yfso !: |
---|
957 | REAL(wp) :: yfsv !: |
---|
958 | REAL(wp) :: zcso !: |
---|
959 | REAL(wp) :: zcsw !: |
---|
960 | REAL(wp) :: zfso !: |
---|
961 | REAL(wp) :: zfsw !: |
---|
962 | |
---|
963 | |
---|
964 | coarse_dx = cg%dx |
---|
965 | coarse_dy = cg%dy |
---|
966 | coarse_dz = cg%dz |
---|
967 | xb = nxl * dx |
---|
968 | yb = nys * dy |
---|
969 | |
---|
970 | ALLOCATE( icu(nxlg:nxrg) ) |
---|
971 | ALLOCATE( ico(nxlg:nxrg) ) |
---|
972 | ALLOCATE( jcv(nysg:nyng) ) |
---|
973 | ALLOCATE( jco(nysg:nyng) ) |
---|
974 | ALLOCATE( kcw(nzb:nzt+1) ) |
---|
975 | ALLOCATE( kco(nzb:nzt+1) ) |
---|
976 | ALLOCATE( r1xu(nxlg:nxrg) ) |
---|
977 | ALLOCATE( r2xu(nxlg:nxrg) ) |
---|
978 | ALLOCATE( r1xo(nxlg:nxrg) ) |
---|
979 | ALLOCATE( r2xo(nxlg:nxrg) ) |
---|
980 | ALLOCATE( r1yv(nysg:nyng) ) |
---|
981 | ALLOCATE( r2yv(nysg:nyng) ) |
---|
982 | ALLOCATE( r1yo(nysg:nyng) ) |
---|
983 | ALLOCATE( r2yo(nysg:nyng) ) |
---|
984 | ALLOCATE( r1zw(nzb:nzt+1) ) |
---|
985 | ALLOCATE( r2zw(nzb:nzt+1) ) |
---|
986 | ALLOCATE( r1zo(nzb:nzt+1) ) |
---|
987 | ALLOCATE( r2zo(nzb:nzt+1) ) |
---|
988 | |
---|
989 | ! |
---|
990 | !-- Note that the node coordinates xfs... and xcs... are relative |
---|
991 | !-- to the lower-left-bottom corner of the fc-array, not the actual |
---|
992 | !-- client domain corner. |
---|
993 | DO i = nxlg, nxrg |
---|
994 | xfsu = coord_x(i) - ( lower_left_coord_x + xb - xexl ) |
---|
995 | xfso = coord_x(i) + 0.5_wp * dx - ( lower_left_coord_x + xb - xexl ) |
---|
996 | icu(i) = icl + FLOOR( xfsu / coarse_dx ) |
---|
997 | ico(i) = icl + FLOOR( ( xfso - 0.5_wp * coarse_dx ) / coarse_dx ) |
---|
998 | xcsu = ( icu(i) - icl ) * coarse_dx |
---|
999 | xcso = ( ico(i) - icl ) * coarse_dx + 0.5_wp * coarse_dx |
---|
1000 | r2xu(i) = ( xfsu - xcsu ) / coarse_dx |
---|
1001 | r2xo(i) = ( xfso - xcso ) / coarse_dx |
---|
1002 | r1xu(i) = 1.0_wp - r2xu(i) |
---|
1003 | r1xo(i) = 1.0_wp - r2xo(i) |
---|
1004 | ENDDO |
---|
1005 | |
---|
1006 | DO j = nysg, nyng |
---|
1007 | yfsv = coord_y(j) - ( lower_left_coord_y + yb - yexs ) |
---|
1008 | yfso = coord_y(j) + 0.5_wp * dy - ( lower_left_coord_y + yb - yexs ) |
---|
1009 | jcv(j) = jcs + FLOOR( yfsv/coarse_dy ) |
---|
1010 | jco(j) = jcs + FLOOR( ( yfso -0.5_wp * coarse_dy ) / coarse_dy ) |
---|
1011 | ycsv = ( jcv(j) - jcs ) * coarse_dy |
---|
1012 | ycso = ( jco(j) - jcs ) * coarse_dy + 0.5_wp * coarse_dy |
---|
1013 | r2yv(j) = ( yfsv - ycsv ) / coarse_dy |
---|
1014 | r2yo(j) = ( yfso - ycso ) / coarse_dy |
---|
1015 | r1yv(j) = 1.0_wp - r2yv(j) |
---|
1016 | r1yo(j) = 1.0_wp - r2yo(j) |
---|
1017 | ENDDO |
---|
1018 | |
---|
1019 | DO k = nzb, nzt + 1 |
---|
1020 | zfsw = zw(k) |
---|
1021 | zfso = zu(k) |
---|
1022 | |
---|
1023 | kc = 0 |
---|
1024 | DO WHILE ( cg%zw(kc) <= zfsw ) |
---|
1025 | kc = kc + 1 |
---|
1026 | ENDDO |
---|
1027 | kcw(k) = kc - 1 |
---|
1028 | |
---|
1029 | kc = 0 |
---|
1030 | DO WHILE ( cg%zu(kc) <= zfso ) |
---|
1031 | kc = kc + 1 |
---|
1032 | ENDDO |
---|
1033 | kco(k) = kc - 1 |
---|
1034 | |
---|
1035 | zcsw = cg%zw(kcw(k)) |
---|
1036 | zcso = cg%zu(kco(k)) |
---|
1037 | r2zw(k) = ( zfsw - zcsw ) / cg%dzw(kcw(k) + 1 ) |
---|
1038 | r2zo(k) = ( zfso - zcso ) / cg%dzu(kco(k) + 1 ) |
---|
1039 | r1zw(k) = 1.0_wp - r2zw(k) |
---|
1040 | r1zo(k) = 1.0_wp - r2zo(k) |
---|
1041 | ENDDO |
---|
1042 | |
---|
1043 | END SUBROUTINE pmci_init_interp_tril |
---|
1044 | |
---|
1045 | |
---|
1046 | |
---|
1047 | SUBROUTINE pmci_init_loglaw_correction |
---|
1048 | |
---|
1049 | ! |
---|
1050 | !-- Precomputation of the index and log-ratio arrays for the log-law corrections |
---|
1051 | !-- for near-wall nodes after the nest-BC interpolation. |
---|
1052 | !-- These are used by the interpolation routines interp_tril_lr and interp_tril_ns. |
---|
1053 | ! |
---|
1054 | !-- Antti Hellsten 30.12.2015. |
---|
1055 | ! |
---|
1056 | IMPLICIT NONE |
---|
1057 | INTEGER(iwp) :: direction !: Wall normal index: 1=k, 2=j, 3=i. |
---|
1058 | INTEGER(iwp) :: i !: |
---|
1059 | INTEGER(iwp) :: icorr !: |
---|
1060 | INTEGER(iwp) :: inc !: Wall outward-normal index increment -1 or 1, for direction=1, inc=1 always. |
---|
1061 | INTEGER(iwp) :: iw !: |
---|
1062 | INTEGER(iwp) :: j !: |
---|
1063 | INTEGER(iwp) :: jcorr !: |
---|
1064 | INTEGER(iwp) :: jw !: |
---|
1065 | INTEGER(iwp) :: k !: |
---|
1066 | INTEGER(iwp) :: kb !: |
---|
1067 | INTEGER(iwp) :: kcorr !: |
---|
1068 | INTEGER(iwp) :: lc !: |
---|
1069 | INTEGER(iwp) :: ni !: |
---|
1070 | INTEGER(iwp) :: nj !: |
---|
1071 | INTEGER(iwp) :: nk !: |
---|
1072 | INTEGER(iwp) :: nzt_topo_max !: |
---|
1073 | INTEGER(iwp) :: wall_index !: Index of the wall-node coordinate |
---|
1074 | |
---|
1075 | REAL(wp), ALLOCATABLE, DIMENSION(:) :: lcr !: |
---|
1076 | |
---|
1077 | ! |
---|
1078 | !-- First determine the maximum k-index needed for the near-wall corrections. |
---|
1079 | !-- This maximum is individual for each boundary to minimize the storage requirements |
---|
1080 | !-- and to minimize the corresponding loop k-range in the interpolation routines. |
---|
1081 | nzt_topo_nestbc_l = nzb |
---|
1082 | IF ( nest_bound_l ) THEN |
---|
1083 | DO i = nxl - 1, nxl |
---|
1084 | DO j = nys, nyn |
---|
1085 | nzt_topo_nestbc_l = MAX( nzt_topo_nestbc_l, nzb_u_inner(j,i), & |
---|
1086 | nzb_v_inner(j,i), nzb_w_inner(j,i) ) |
---|
1087 | ENDDO |
---|
1088 | ENDDO |
---|
1089 | nzt_topo_nestbc_l = nzt_topo_nestbc_l + 1 |
---|
1090 | ENDIF |
---|
1091 | |
---|
1092 | nzt_topo_nestbc_r = nzb |
---|
1093 | IF ( nest_bound_r ) THEN |
---|
1094 | i = nxr + 1 |
---|
1095 | DO j = nys, nyn |
---|
1096 | nzt_topo_nestbc_r = MAX( nzt_topo_nestbc_r, nzb_u_inner(j,i), & |
---|
1097 | nzb_v_inner(j,i), nzb_w_inner(j,i) ) |
---|
1098 | ENDDO |
---|
1099 | nzt_topo_nestbc_r = nzt_topo_nestbc_r + 1 |
---|
1100 | ENDIF |
---|
1101 | |
---|
1102 | nzt_topo_nestbc_s = nzb |
---|
1103 | IF ( nest_bound_s ) THEN |
---|
1104 | DO j = nys - 1, nys |
---|
1105 | DO i = nxl, nxr |
---|
1106 | nzt_topo_nestbc_s = MAX( nzt_topo_nestbc_s, nzb_u_inner(j,i), & |
---|
1107 | nzb_v_inner(j,i), nzb_w_inner(j,i) ) |
---|
1108 | ENDDO |
---|
1109 | ENDDO |
---|
1110 | nzt_topo_nestbc_s = nzt_topo_nestbc_s + 1 |
---|
1111 | ENDIF |
---|
1112 | |
---|
1113 | nzt_topo_nestbc_n = nzb |
---|
1114 | IF ( nest_bound_n ) THEN |
---|
1115 | j = nyn + 1 |
---|
1116 | DO i = nxl, nxr |
---|
1117 | nzt_topo_nestbc_n = MAX( nzt_topo_nestbc_n, nzb_u_inner(j,i), & |
---|
1118 | nzb_v_inner(j,i), nzb_w_inner(j,i) ) |
---|
1119 | ENDDO |
---|
1120 | nzt_topo_nestbc_n = nzt_topo_nestbc_n + 1 |
---|
1121 | ENDIF |
---|
1122 | |
---|
1123 | ! |
---|
1124 | !-- Then determine the maximum number of near-wall nodes per wall point based |
---|
1125 | !-- on the grid-spacing ratios. |
---|
1126 | nzt_topo_max = MAX( nzt_topo_nestbc_l, nzt_topo_nestbc_r, & |
---|
1127 | nzt_topo_nestbc_s, nzt_topo_nestbc_n ) |
---|
1128 | |
---|
1129 | ! |
---|
1130 | !-- Note that the outer division must be integer division. |
---|
1131 | ni = CEILING( cg%dx / dx ) / 2 |
---|
1132 | nj = CEILING( cg%dy / dy ) / 2 |
---|
1133 | nk = 1 |
---|
1134 | DO k = 1, nzt_topo_max |
---|
1135 | nk = MAX( nk, CEILING( cg%dzu(k) / dzu(k) ) ) |
---|
1136 | ENDDO |
---|
1137 | nk = nk / 2 ! Note that this must be integer division. |
---|
1138 | ncorr = MAX( ni, nj, nk ) |
---|
1139 | |
---|
1140 | ALLOCATE( lcr(0:ncorr - 1) ) |
---|
1141 | lcr = 1.0_wp |
---|
1142 | |
---|
1143 | ! |
---|
1144 | !-- First horizontal walls |
---|
1145 | !-- Left boundary |
---|
1146 | IF ( nest_bound_l ) THEN |
---|
1147 | ALLOCATE( logc_u_l(nzb:nzt_topo_nestbc_l, nys:nyn, 1:2) ) |
---|
1148 | ALLOCATE( logc_v_l(nzb:nzt_topo_nestbc_l, nys:nyn, 1:2) ) |
---|
1149 | ALLOCATE( logc_ratio_u_l(nzb:nzt_topo_nestbc_l, nys:nyn, 1:2, 0:ncorr-1) ) |
---|
1150 | ALLOCATE( logc_ratio_v_l(nzb:nzt_topo_nestbc_l, nys:nyn, 1:2, 0:ncorr-1) ) |
---|
1151 | logc_u_l = 0 |
---|
1152 | logc_v_l = 0 |
---|
1153 | logc_ratio_u_l = 1.0_wp |
---|
1154 | logc_ratio_v_l = 1.0_wp |
---|
1155 | direction = 1 |
---|
1156 | inc = 1 |
---|
1157 | |
---|
1158 | DO j = nys, nyn |
---|
1159 | ! |
---|
1160 | !-- Left boundary for u |
---|
1161 | i = 0 |
---|
1162 | kb = nzb_u_inner(j,i) |
---|
1163 | k = kb + 1 |
---|
1164 | wall_index = kb |
---|
1165 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, & |
---|
1166 | wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1167 | logc_u_l(k,j,1) = lc |
---|
1168 | logc_ratio_u_l(k,j,1,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1169 | lcr(0:ncorr-1) = 1.0_wp |
---|
1170 | |
---|
1171 | ! |
---|
1172 | !-- Left boundary for v |
---|
1173 | i = -1 |
---|
1174 | kb = nzb_v_inner(j,i) |
---|
1175 | k = kb + 1 |
---|
1176 | wall_index = kb |
---|
1177 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, & |
---|
1178 | wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1179 | logc_v_l(k,j,1) = lc |
---|
1180 | logc_ratio_v_l(k,j,1,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1181 | lcr(0:ncorr-1) = 1.0_wp |
---|
1182 | |
---|
1183 | ENDDO |
---|
1184 | ENDIF |
---|
1185 | |
---|
1186 | ! |
---|
1187 | !-- Right boundary |
---|
1188 | IF ( nest_bound_r ) THEN |
---|
1189 | ALLOCATE( logc_u_r(nzb:nzt_topo_nestbc_r,nys:nyn,1:2) ) |
---|
1190 | ALLOCATE( logc_v_r(nzb:nzt_topo_nestbc_r,nys:nyn,1:2) ) |
---|
1191 | ALLOCATE( logc_ratio_u_r(nzb:nzt_topo_nestbc_r,nys:nyn,1:2,0:ncorr-1) ) |
---|
1192 | ALLOCATE( logc_ratio_v_r(nzb:nzt_topo_nestbc_r,nys:nyn,1:2,0:ncorr-1) ) |
---|
1193 | logc_u_r = 0 |
---|
1194 | logc_v_r = 0 |
---|
1195 | logc_ratio_u_r = 1.0_wp |
---|
1196 | logc_ratio_v_r = 1.0_wp |
---|
1197 | direction = 1 |
---|
1198 | inc = 1 |
---|
1199 | DO j = nys, nyn |
---|
1200 | ! |
---|
1201 | !-- Right boundary for u. |
---|
1202 | i = nxr + 1 |
---|
1203 | kb = nzb_u_inner(j,i) |
---|
1204 | k = kb + 1 |
---|
1205 | wall_index = kb |
---|
1206 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, & |
---|
1207 | wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1208 | logc_u_r(k,j,1) = lc |
---|
1209 | logc_ratio_u_r(k,j,1,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1210 | lcr(0:ncorr-1) = 1.0_wp |
---|
1211 | |
---|
1212 | ! |
---|
1213 | !-- Right boundary for v. |
---|
1214 | i = nxr + 1 |
---|
1215 | kb = nzb_v_inner(j,i) |
---|
1216 | k = kb + 1 |
---|
1217 | wall_index = kb |
---|
1218 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, & |
---|
1219 | wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1220 | logc_v_r(k,j,1) = lc |
---|
1221 | logc_ratio_v_r(k,j,1,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1222 | lcr(0:ncorr-1) = 1.0_wp |
---|
1223 | |
---|
1224 | ENDDO |
---|
1225 | ENDIF |
---|
1226 | |
---|
1227 | ! |
---|
1228 | !-- South boundary |
---|
1229 | IF ( nest_bound_s ) THEN |
---|
1230 | ALLOCATE( logc_u_s(nzb:nzt_topo_nestbc_s,nxl:nxr,1:2) ) |
---|
1231 | ALLOCATE( logc_v_s(nzb:nzt_topo_nestbc_s,nxl:nxr,1:2) ) |
---|
1232 | ALLOCATE( logc_ratio_u_s(nzb:nzt_topo_nestbc_s,nxl:nxr,1:2,0:ncorr-1) ) |
---|
1233 | ALLOCATE( logc_ratio_v_s(nzb:nzt_topo_nestbc_s,nxl:nxr,1:2,0:ncorr-1) ) |
---|
1234 | logc_u_s = 0 |
---|
1235 | logc_v_s = 0 |
---|
1236 | logc_ratio_u_s = 1.0_wp |
---|
1237 | logc_ratio_v_s = 1.0_wp |
---|
1238 | direction = 1 |
---|
1239 | inc = 1 |
---|
1240 | DO i = nxl, nxr |
---|
1241 | ! |
---|
1242 | !-- South boundary for u. |
---|
1243 | j = -1 |
---|
1244 | kb = nzb_u_inner(j,i) |
---|
1245 | k = kb + 1 |
---|
1246 | wall_index = kb |
---|
1247 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, & |
---|
1248 | wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1249 | logc_u_s(k,i,1) = lc |
---|
1250 | logc_ratio_u_s(k,i,1,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1251 | lcr(0:ncorr-1) = 1.0_wp |
---|
1252 | |
---|
1253 | ! |
---|
1254 | !-- South boundary for v |
---|
1255 | j = 0 |
---|
1256 | kb = nzb_v_inner(j,i) |
---|
1257 | k = kb + 1 |
---|
1258 | wall_index = kb |
---|
1259 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, & |
---|
1260 | wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1261 | logc_v_s(k,i,1) = lc |
---|
1262 | logc_ratio_v_s(k,i,1,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1263 | lcr(0:ncorr-1) = 1.0_wp |
---|
1264 | ENDDO |
---|
1265 | ENDIF |
---|
1266 | |
---|
1267 | ! |
---|
1268 | !-- North boundary |
---|
1269 | IF ( nest_bound_n ) THEN |
---|
1270 | ALLOCATE( logc_u_n(nzb:nzt_topo_nestbc_n,nxl:nxr,1:2) ) |
---|
1271 | ALLOCATE( logc_v_n(nzb:nzt_topo_nestbc_n,nxl:nxr,1:2) ) |
---|
1272 | ALLOCATE( logc_ratio_u_n(nzb:nzt_topo_nestbc_n,nxl:nxr,1:2,0:ncorr-1) ) |
---|
1273 | ALLOCATE( logc_ratio_v_n(nzb:nzt_topo_nestbc_n,nxl:nxr,1:2,0:ncorr-1) ) |
---|
1274 | logc_u_n = 0 |
---|
1275 | logc_v_n = 0 |
---|
1276 | logc_ratio_u_n = 1.0_wp |
---|
1277 | logc_ratio_v_n = 1.0_wp |
---|
1278 | direction = 1 |
---|
1279 | inc = 1 |
---|
1280 | DO i = nxl, nxr |
---|
1281 | ! |
---|
1282 | !-- North boundary for u. |
---|
1283 | j = nyn + 1 |
---|
1284 | kb = nzb_u_inner(j,i) |
---|
1285 | k = kb + 1 |
---|
1286 | wall_index = kb |
---|
1287 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, & |
---|
1288 | wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1289 | logc_u_n(k,i,1) = lc |
---|
1290 | logc_ratio_u_n(k,i,1,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1291 | lcr(0:ncorr-1) = 1.0_wp |
---|
1292 | |
---|
1293 | ! |
---|
1294 | !-- North boundary for v. |
---|
1295 | j = nyn + 1 |
---|
1296 | kb = nzb_v_inner(j,i) |
---|
1297 | k = kb + 1 |
---|
1298 | wall_index = kb |
---|
1299 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, & |
---|
1300 | wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1301 | logc_v_n(k,i,1) = lc |
---|
1302 | logc_ratio_v_n(k,i,1,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1303 | lcr(0:ncorr-1) = 1.0_wp |
---|
1304 | |
---|
1305 | ENDDO |
---|
1306 | ENDIF |
---|
1307 | |
---|
1308 | ! |
---|
1309 | !-- Then vertical walls and corners if necessary. |
---|
1310 | IF ( topography /= 'flat' ) THEN |
---|
1311 | kb = 0 ! kb is not used when direction > 1 |
---|
1312 | ! |
---|
1313 | !-- Left boundary |
---|
1314 | IF ( nest_bound_l ) THEN |
---|
1315 | ALLOCATE( logc_w_l(nzb:nzt_topo_nestbc_l,nys:nyn,1:2) ) |
---|
1316 | ALLOCATE( logc_ratio_w_l(nzb:nzt_topo_nestbc_l,nys:nyn,1:2,0:ncorr-1) ) |
---|
1317 | logc_w_l = 0 |
---|
1318 | logc_ratio_w_l = 1.0_wp |
---|
1319 | direction = 2 |
---|
1320 | DO j = nys, nyn |
---|
1321 | DO k = nzb, nzt_topo_nestbc_l |
---|
1322 | |
---|
1323 | ! |
---|
1324 | !-- Wall for u on the south side, but not on the north side. |
---|
1325 | i = 0 |
---|
1326 | IF ( ( nzb_u_outer(j,i) > nzb_u_outer(j+1,i) ) .AND. & |
---|
1327 | ( nzb_u_outer(j,i) == nzb_u_outer(j-1,i) ) ) THEN |
---|
1328 | inc = 1 |
---|
1329 | wall_index = j |
---|
1330 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1331 | |
---|
1332 | ! |
---|
1333 | !-- The direction of the wall-normal index is stored as the sign of the logc-element. |
---|
1334 | logc_u_l(k,j,2) = inc * lc |
---|
1335 | logc_ratio_u_l(k,j,2,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1336 | lcr(0:ncorr-1) = 1.0_wp |
---|
1337 | ENDIF |
---|
1338 | |
---|
1339 | ! |
---|
1340 | !-- Wall for u on the north side, but not on the south side. |
---|
1341 | i = 0 |
---|
1342 | IF ( ( nzb_u_outer(j,i) > nzb_u_outer(j-1,i) ) .AND. & |
---|
1343 | ( nzb_u_outer(j,i) == nzb_u_outer(j+1,i) ) ) THEN |
---|
1344 | inc = -1 |
---|
1345 | wall_index = j + 1 |
---|
1346 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1347 | |
---|
1348 | ! |
---|
1349 | !-- The direction of the wall-normal index is stored as the sign of the logc-element. |
---|
1350 | logc_u_l(k,j,2) = inc * lc |
---|
1351 | logc_ratio_u_l(k,j,2,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1352 | lcr(0:ncorr-1) = 1.0_wp |
---|
1353 | ENDIF |
---|
1354 | |
---|
1355 | ! |
---|
1356 | !-- Wall for w on the south side, but not on the north side. |
---|
1357 | i = -1 |
---|
1358 | IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j+1,i) ) .AND. & |
---|
1359 | ( nzb_w_outer(j,i) == nzb_w_outer(j-1,i) ) ) THEN |
---|
1360 | inc = 1 |
---|
1361 | wall_index = j |
---|
1362 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1363 | |
---|
1364 | ! |
---|
1365 | !-- The direction of the wall-normal index is stored as the sign of the logc-element. |
---|
1366 | logc_w_l(k,j,2) = inc * lc |
---|
1367 | logc_ratio_w_l(k,j,2,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1368 | lcr(0:ncorr-1) = 1.0_wp |
---|
1369 | ENDIF |
---|
1370 | |
---|
1371 | ! |
---|
1372 | !-- Wall for w on the north side, but not on the south side. |
---|
1373 | i = -1 |
---|
1374 | IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j-1,i) ) .AND. & |
---|
1375 | ( nzb_w_outer(j,i) == nzb_w_outer(j+1,i) ) ) THEN |
---|
1376 | inc = -1 |
---|
1377 | wall_index = j+1 |
---|
1378 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1379 | |
---|
1380 | ! |
---|
1381 | !-- The direction of the wall-normal index is stored as the sign of the logc-element. |
---|
1382 | logc_w_l(k,j,2) = inc * lc |
---|
1383 | logc_ratio_w_l(k,j,2,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1384 | lcr(0:ncorr-1) = 1.0_wp |
---|
1385 | ENDIF |
---|
1386 | ENDDO |
---|
1387 | ENDDO |
---|
1388 | ENDIF ! IF ( nest_bound_l ) |
---|
1389 | |
---|
1390 | ! |
---|
1391 | !-- Right boundary. |
---|
1392 | IF ( nest_bound_r ) THEN |
---|
1393 | ALLOCATE( logc_w_r(nzb:nzt_topo_nestbc_r,nys:nyn,1:2) ) |
---|
1394 | ALLOCATE( logc_ratio_w_r(nzb:nzt_topo_nestbc_r,nys:nyn,1:2,0:ncorr-1) ) |
---|
1395 | logc_w_r = 0 |
---|
1396 | logc_ratio_w_r = 1.0_wp |
---|
1397 | direction = 2 |
---|
1398 | i = nxr + 1 |
---|
1399 | DO j = nys, nyn |
---|
1400 | DO k = nzb, nzt_topo_nestbc_r |
---|
1401 | |
---|
1402 | ! |
---|
1403 | !-- Wall for u on the south side, but not on the north side. |
---|
1404 | IF ( ( nzb_u_outer(j,i) > nzb_u_outer(j+1,i) ) .AND. & |
---|
1405 | ( nzb_u_outer(j,i) == nzb_u_outer(j-1,i) ) ) THEN |
---|
1406 | inc = 1 |
---|
1407 | wall_index = j |
---|
1408 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1409 | |
---|
1410 | ! |
---|
1411 | !-- The direction of the wall-normal index is stored as the sign of the logc-element. |
---|
1412 | logc_u_r(k,j,2) = inc * lc |
---|
1413 | logc_ratio_u_r(k,j,2,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1414 | lcr(0:ncorr-1) = 1.0_wp |
---|
1415 | ENDIF |
---|
1416 | |
---|
1417 | ! |
---|
1418 | !-- Wall for u on the north side, but not on the south side. |
---|
1419 | IF ( ( nzb_u_outer(j,i) > nzb_u_outer(j-1,i) ) .AND. & |
---|
1420 | ( nzb_u_outer(j,i) == nzb_u_outer(j+1,i) ) ) THEN |
---|
1421 | inc = -1 |
---|
1422 | wall_index = j+1 |
---|
1423 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1424 | |
---|
1425 | ! |
---|
1426 | !-- The direction of the wall-normal index is stored as the sign of the logc-element. |
---|
1427 | logc_u_r(k,j,2) = inc * lc |
---|
1428 | logc_ratio_u_r(k,j,2,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1429 | lcr(0:ncorr-1) = 1.0_wp |
---|
1430 | ENDIF |
---|
1431 | |
---|
1432 | ! |
---|
1433 | !-- Wall for w on the south side, but not on the north side. |
---|
1434 | IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j+1,i) ) .AND. & |
---|
1435 | ( nzb_w_outer(j,i) == nzb_w_outer(j-1,i) ) ) THEN |
---|
1436 | inc = 1 |
---|
1437 | wall_index = j |
---|
1438 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1439 | |
---|
1440 | ! |
---|
1441 | !-- The direction of the wall-normal index is stored as the sign of the logc-element. |
---|
1442 | logc_w_r(k,j,2) = inc * lc |
---|
1443 | logc_ratio_w_r(k,j,2,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1444 | lcr(0:ncorr-1) = 1.0_wp |
---|
1445 | ENDIF |
---|
1446 | ! |
---|
1447 | !-- Wall for w on the north side, but not on the south side. |
---|
1448 | IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j-1,i) ) .AND. & |
---|
1449 | ( nzb_w_outer(j,i) == nzb_w_outer(j+1,i) ) ) THEN |
---|
1450 | inc = -1 |
---|
1451 | wall_index = j+1 |
---|
1452 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, j, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1453 | |
---|
1454 | ! |
---|
1455 | !-- The direction of the wall-normal index is stored as the sign of the logc-element. |
---|
1456 | logc_w_r(k,j,2) = inc * lc |
---|
1457 | logc_ratio_w_r(k,j,2,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1458 | lcr(0:ncorr-1) = 1.0_wp |
---|
1459 | ENDIF |
---|
1460 | ENDDO |
---|
1461 | ENDDO |
---|
1462 | ENDIF ! IF ( nest_bound_r ) |
---|
1463 | |
---|
1464 | ! |
---|
1465 | !-- South boundary. |
---|
1466 | IF ( nest_bound_s ) THEN |
---|
1467 | ALLOCATE( logc_w_s(nzb:nzt_topo_nestbc_s, nxl:nxr, 1:2) ) |
---|
1468 | ALLOCATE( logc_ratio_w_s(nzb:nzt_topo_nestbc_s, nxl:nxr, 1:2, 0:ncorr-1) ) |
---|
1469 | logc_w_s = 0 |
---|
1470 | logc_ratio_w_s = 1.0_wp |
---|
1471 | direction = 3 |
---|
1472 | DO i = nxl, nxr |
---|
1473 | DO k = nzb, nzt_topo_nestbc_s |
---|
1474 | |
---|
1475 | ! |
---|
1476 | !-- Wall for v on the left side, but not on the right side. |
---|
1477 | j = 0 |
---|
1478 | IF ( ( nzb_v_outer(j,i) > nzb_v_outer(j,i+1) ) .AND. & |
---|
1479 | ( nzb_v_outer(j,i) == nzb_v_outer(j,i-1) ) ) THEN |
---|
1480 | inc = 1 |
---|
1481 | wall_index = i |
---|
1482 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1483 | |
---|
1484 | ! |
---|
1485 | !-- The direction of the wall-normal index is stored as the sign of the logc-element. |
---|
1486 | logc_v_s(k,i,2) = inc * lc |
---|
1487 | logc_ratio_v_s(k,i,2,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1488 | lcr(0:ncorr-1) = 1.0_wp |
---|
1489 | ENDIF |
---|
1490 | ! |
---|
1491 | !-- Wall for v on the right side, but not on the left side. |
---|
1492 | j = 0 |
---|
1493 | IF ( ( nzb_v_outer(j,i) > nzb_v_outer(j,i-1) ) .AND. & |
---|
1494 | ( nzb_v_outer(j,i) == nzb_v_outer(j,i+1) ) ) THEN |
---|
1495 | inc = -1 |
---|
1496 | wall_index = i+1 |
---|
1497 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1498 | |
---|
1499 | ! |
---|
1500 | !-- The direction of the wall-normal index is stored as the sign of the logc-element. |
---|
1501 | logc_v_s(k,i,2) = inc * lc |
---|
1502 | logc_ratio_v_s(k,i,2,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1503 | lcr(0:ncorr-1) = 1.0_wp |
---|
1504 | ENDIF |
---|
1505 | |
---|
1506 | ! |
---|
1507 | !-- Wall for w on the left side, but not on the right side. |
---|
1508 | j = -1 |
---|
1509 | IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j,i+1) ) .AND. & |
---|
1510 | ( nzb_w_outer(j,i) == nzb_w_outer(j,i-1) ) ) THEN |
---|
1511 | inc = 1 |
---|
1512 | wall_index = i |
---|
1513 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1514 | |
---|
1515 | ! |
---|
1516 | !-- The direction of the wall-normal index is stored as the sign of the logc-element. |
---|
1517 | logc_w_s(k,i,2) = inc * lc |
---|
1518 | logc_ratio_w_s(k,i,2,0:ncorr - 1) = lcr(0:ncorr-1) |
---|
1519 | lcr(0:ncorr-1) = 1.0_wp |
---|
1520 | ENDIF |
---|
1521 | |
---|
1522 | ! |
---|
1523 | !-- Wall for w on the right side, but not on the left side. |
---|
1524 | j = -1 |
---|
1525 | IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j,i-1) ) .AND. & |
---|
1526 | ( nzb_w_outer(j,i) == nzb_w_outer(j,i+1) ) ) THEN |
---|
1527 | inc = -1 |
---|
1528 | wall_index = i+1 |
---|
1529 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1530 | |
---|
1531 | ! |
---|
1532 | !-- The direction of the wall-normal index is stored as the sign of the logc-element. |
---|
1533 | logc_w_s(k,i,2) = inc * lc |
---|
1534 | logc_ratio_w_s(k,i,2,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1535 | lcr(0:ncorr-1) = 1.0_wp |
---|
1536 | ENDIF |
---|
1537 | ENDDO |
---|
1538 | ENDDO |
---|
1539 | ENDIF ! IF (nest_bound_s ) |
---|
1540 | |
---|
1541 | ! |
---|
1542 | !-- North boundary. |
---|
1543 | IF ( nest_bound_n ) THEN |
---|
1544 | ALLOCATE( logc_w_n(nzb:nzt_topo_nestbc_n, nxl:nxr, 1:2) ) |
---|
1545 | ALLOCATE( logc_ratio_w_n(nzb:nzt_topo_nestbc_n, nxl:nxr, 1:2, 0:ncorr-1) ) |
---|
1546 | logc_w_n = 0 |
---|
1547 | logc_ratio_w_n = 1.0_wp |
---|
1548 | direction = 3 |
---|
1549 | j = nyn + 1 |
---|
1550 | DO i = nxl, nxr |
---|
1551 | DO k = nzb, nzt_topo_nestbc_n |
---|
1552 | |
---|
1553 | ! |
---|
1554 | !-- Wall for v on the left side, but not on the right side. |
---|
1555 | IF ( ( nzb_v_outer(j,i) > nzb_v_outer(j,i+1) ) .AND. & |
---|
1556 | ( nzb_v_outer(j,i) == nzb_v_outer(j,i-1) ) ) THEN |
---|
1557 | inc = 1 |
---|
1558 | wall_index = i |
---|
1559 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1560 | |
---|
1561 | ! |
---|
1562 | !-- The direction of the wall-normal index is stored as the sign of the logc-element. |
---|
1563 | logc_v_n(k,i,2) = inc * lc |
---|
1564 | logc_ratio_v_n(k,i,2,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1565 | lcr(0:ncorr-1) = 1.0_wp |
---|
1566 | ENDIF |
---|
1567 | |
---|
1568 | ! |
---|
1569 | !-- Wall for v on the right side, but not on the left side. |
---|
1570 | IF ( ( nzb_v_outer(j,i) > nzb_v_outer(j,i-1) ) .AND. & |
---|
1571 | ( nzb_v_outer(j,i) == nzb_v_outer(j,i+1) ) ) THEN |
---|
1572 | inc = -1 |
---|
1573 | wall_index = i + 1 |
---|
1574 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1575 | |
---|
1576 | ! |
---|
1577 | !-- The direction of the wall-normal index is stored as the sign of the logc-element. |
---|
1578 | logc_v_n(k,i,2) = inc * lc |
---|
1579 | logc_ratio_v_n(k,i,2,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1580 | lcr(0:ncorr-1) = 1.0_wp |
---|
1581 | ENDIF |
---|
1582 | |
---|
1583 | ! |
---|
1584 | !-- Wall for w on the left side, but not on the right side. |
---|
1585 | IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j,i+1) ) .AND. & |
---|
1586 | ( nzb_w_outer(j,i) == nzb_w_outer(j,i-1) ) ) THEN |
---|
1587 | inc = 1 |
---|
1588 | wall_index = i |
---|
1589 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1590 | |
---|
1591 | ! |
---|
1592 | !-- The direction of the wall-normal index is stored as the sign of the logc-element. |
---|
1593 | logc_w_n(k,i,2) = inc * lc |
---|
1594 | logc_ratio_w_n(k,i,2,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1595 | lcr(0:ncorr-1) = 1.0_wp |
---|
1596 | ENDIF |
---|
1597 | |
---|
1598 | ! |
---|
1599 | !-- Wall for w on the right side, but not on the left side. |
---|
1600 | IF ( ( nzb_w_outer(j,i) > nzb_w_outer(j,i-1) ) .AND. & |
---|
1601 | ( nzb_w_outer(j,i) == nzb_w_outer(j,i+1) ) ) THEN |
---|
1602 | inc = -1 |
---|
1603 | wall_index = i+1 |
---|
1604 | CALL pmci_define_loglaw_correction_parameters( lc, lcr, k, i, inc, wall_index, z0(j,i), kb, direction, ncorr ) |
---|
1605 | |
---|
1606 | ! |
---|
1607 | !-- The direction of the wall-normal index is stored as the sign of the logc-element. |
---|
1608 | logc_w_n(k,i,2) = inc * lc |
---|
1609 | logc_ratio_w_n(k,i,2,0:ncorr-1) = lcr(0:ncorr-1) |
---|
1610 | lcr(0:ncorr-1) = 1.0_wp |
---|
1611 | ENDIF |
---|
1612 | ENDDO |
---|
1613 | ENDDO |
---|
1614 | ENDIF ! IF ( nest_bound_n ) |
---|
1615 | ENDIF ! IF ( topography /= 'flat' ) |
---|
1616 | |
---|
1617 | END SUBROUTINE pmci_init_loglaw_correction |
---|
1618 | |
---|
1619 | |
---|
1620 | |
---|
1621 | SUBROUTINE pmci_define_loglaw_correction_parameters( lc, lcr, k, ij, inc, wall_index, z0_l, kb, direction, ncorr ) |
---|
1622 | IMPLICIT NONE |
---|
1623 | INTEGER(iwp), INTENT(IN) :: direction !: |
---|
1624 | INTEGER(iwp), INTENT(IN) :: ij !: |
---|
1625 | INTEGER(iwp), INTENT(IN) :: inc !: |
---|
1626 | INTEGER(iwp), INTENT(IN) :: k !: |
---|
1627 | INTEGER(iwp), INTENT(IN) :: kb !: |
---|
1628 | INTEGER(iwp), INTENT(OUT) :: lc !: |
---|
1629 | INTEGER(iwp), INTENT(IN) :: ncorr !: |
---|
1630 | INTEGER(iwp), INTENT(IN) :: wall_index !: |
---|
1631 | REAL(wp), DIMENSION(0:ncorr-1), INTENT(OUT) :: lcr !: |
---|
1632 | REAL(wp), INTENT(IN) :: z0_l !: |
---|
1633 | |
---|
1634 | INTEGER(iwp) :: alcorr !: |
---|
1635 | INTEGER(iwp) :: corr_index !: |
---|
1636 | INTEGER(iwp) :: lcorr !: |
---|
1637 | REAL(wp) :: logvelc1 !: |
---|
1638 | LOGICAL :: more !: |
---|
1639 | |
---|
1640 | |
---|
1641 | SELECT CASE ( direction ) |
---|
1642 | |
---|
1643 | CASE (1) ! k |
---|
1644 | more = .TRUE. |
---|
1645 | lcorr = 0 |
---|
1646 | DO WHILE ( more .AND. lcorr <= ncorr - 1 ) |
---|
1647 | corr_index = k + lcorr |
---|
1648 | IF ( lcorr == 0 ) THEN |
---|
1649 | CALL pmci_find_logc_pivot_k( lc, logvelc1, z0_l, kb ) |
---|
1650 | ENDIF |
---|
1651 | |
---|
1652 | IF ( corr_index < lc ) THEN |
---|
1653 | lcr(lcorr) = LOG( ( zu(k) - zw(kb) ) / z0_l ) / logvelc1 |
---|
1654 | more = .TRUE. |
---|
1655 | ELSE |
---|
1656 | lcr(lcorr) = 1.0 |
---|
1657 | more = .FALSE. |
---|
1658 | ENDIF |
---|
1659 | lcorr = lcorr + 1 |
---|
1660 | ENDDO |
---|
1661 | |
---|
1662 | CASE (2) ! j |
---|
1663 | more = .TRUE. |
---|
1664 | lcorr = 0 |
---|
1665 | alcorr = 0 |
---|
1666 | DO WHILE ( more .AND. alcorr <= ncorr - 1 ) |
---|
1667 | corr_index = ij + lcorr ! In this case (direction = 2) ij is j |
---|
1668 | IF ( lcorr == 0 ) THEN |
---|
1669 | CALL pmci_find_logc_pivot_j( lc, logvelc1, ij, wall_index, z0_l, inc ) |
---|
1670 | ENDIF |
---|
1671 | |
---|
1672 | ! |
---|
1673 | !-- The role of inc here is to make the comparison operation "<" valid in both directions. |
---|
1674 | IF ( inc * corr_index < inc * lc ) THEN |
---|
1675 | lcr(alcorr) = LOG( ABS( coord_y(corr_index) + 0.5_wp * dy & |
---|
1676 | - coord_y(wall_index) ) / z0_l ) / logvelc1 |
---|
1677 | more = .TRUE. |
---|
1678 | ELSE |
---|
1679 | lcr(alcorr) = 1.0_wp |
---|
1680 | more = .FALSE. |
---|
1681 | ENDIF |
---|
1682 | lcorr = lcorr + inc |
---|
1683 | alcorr = ABS( lcorr ) |
---|
1684 | ENDDO |
---|
1685 | |
---|
1686 | CASE (3) ! i |
---|
1687 | more = .TRUE. |
---|
1688 | lcorr = 0 |
---|
1689 | alcorr = 0 |
---|
1690 | DO WHILE ( more .AND. alcorr <= ncorr - 1 ) |
---|
1691 | corr_index = ij + lcorr ! In this case (direction = 3) ij is i |
---|
1692 | IF ( lcorr == 0 ) THEN |
---|
1693 | CALL pmci_find_logc_pivot_i( lc, logvelc1, ij, wall_index, z0_l, inc ) |
---|
1694 | ENDIF |
---|
1695 | |
---|
1696 | ! |
---|
1697 | !-- The role of inc here is to make the comparison operation "<" valid in both directions. |
---|
1698 | IF ( inc * corr_index < inc * lc ) THEN |
---|
1699 | lcr(alcorr) = LOG( ABS( coord_x(corr_index) + 0.5_wp * dx & |
---|
1700 | - coord_x(wall_index) ) / z0_l ) / logvelc1 |
---|
1701 | more = .TRUE. |
---|
1702 | ELSE |
---|
1703 | lcr(alcorr) = 1.0_wp |
---|
1704 | more = .FALSE. |
---|
1705 | ENDIF |
---|
1706 | lcorr = lcorr + inc |
---|
1707 | alcorr = ABS( lcorr ) |
---|
1708 | ENDDO |
---|
1709 | |
---|
1710 | END SELECT |
---|
1711 | |
---|
1712 | END SUBROUTINE pmci_define_loglaw_correction_parameters |
---|
1713 | |
---|
1714 | |
---|
1715 | |
---|
1716 | SUBROUTINE pmci_find_logc_pivot_k( lc, logzc1, z0_l, kb ) |
---|
1717 | |
---|
1718 | ! |
---|
1719 | !-- Finds the pivot node and te log-law factor for near-wall nodes for |
---|
1720 | !-- which the wall-parallel velocity components will be log-law corrected |
---|
1721 | !-- after interpolation. This subroutine is only for horizontal walls. |
---|
1722 | ! |
---|
1723 | !-- Antti Hellsten 30.12.2015 |
---|
1724 | IMPLICIT NONE |
---|
1725 | REAL(wp),INTENT(OUT) :: logzc1 !: |
---|
1726 | REAL(wp), INTENT(IN) :: z0_l !: |
---|
1727 | INTEGER(iwp), INTENT(IN) :: kb !: |
---|
1728 | INTEGER(iwp), INTENT(OUT) :: lc !: |
---|
1729 | |
---|
1730 | REAL(wp) :: zuc1 !: |
---|
1731 | INTEGER(iwp) :: kbc !: |
---|
1732 | INTEGER(iwp) :: k1 !: |
---|
1733 | |
---|
1734 | |
---|
1735 | kbc = nzb + 1 |
---|
1736 | DO WHILE ( cg%zu(kbc) < zu(kb) ) ! kbc is the first coarse-grid point above the surface. |
---|
1737 | kbc = kbc + 1 |
---|
1738 | ENDDO |
---|
1739 | zuc1 = cg%zu(kbc) |
---|
1740 | k1 = kb + 1 |
---|
1741 | DO WHILE ( zu(k1) < zuc1 ) ! Important: must be <, not <= |
---|
1742 | k1 = k1 + 1 |
---|
1743 | ENDDO |
---|
1744 | logzc1 = LOG( (zu(k1) - zw(kb) ) / z0_l ) |
---|
1745 | lc = k1 |
---|
1746 | |
---|
1747 | END SUBROUTINE pmci_find_logc_pivot_k |
---|
1748 | |
---|
1749 | |
---|
1750 | |
---|
1751 | SUBROUTINE pmci_find_logc_pivot_j( lc, logyc1, j, jw, z0_l, inc ) |
---|
1752 | |
---|
1753 | ! |
---|
1754 | !-- Finds the pivot node and te log-law factor for near-wall nodes for |
---|
1755 | !-- which the wall-parallel velocity components will be log-law corrected |
---|
1756 | !-- after interpolation. This subroutine is only for vertical walls on |
---|
1757 | !-- south/north sides of the node. |
---|
1758 | ! |
---|
1759 | !-- Antti Hellsten 5.1.2016 |
---|
1760 | IMPLICIT NONE |
---|
1761 | REAL(wp), INTENT(IN) :: z0_l !: |
---|
1762 | INTEGER(iwp), INTENT(IN) :: inc !: increment must be 1 or -1. |
---|
1763 | INTEGER(iwp), INTENT(IN) :: j !: |
---|
1764 | INTEGER(iwp), INTENT(IN) :: jw !: |
---|
1765 | INTEGER(iwp), INTENT(OUT) :: lc !: |
---|
1766 | |
---|
1767 | REAL(wp) :: logyc1 !: |
---|
1768 | REAL(wp) :: yc1 !: |
---|
1769 | INTEGER(iwp) :: j1 !: |
---|
1770 | |
---|
1771 | ! |
---|
1772 | !-- yc1 is the y-coordinate of the first coarse-grid u- and w-nodes out from the wall. |
---|
1773 | yc1 = coord_y(jw) + 0.5_wp * inc * cg%dy |
---|
1774 | |
---|
1775 | ! |
---|
1776 | !-- j1 is the first fine-grid index futher away from the wall than yc1. |
---|
1777 | j1 = j |
---|
1778 | DO WHILE ( inc * ( coord_y(j1) + 0.5_wp * dy ) < inc * yc1 ) ! Important: must be <, not <= |
---|
1779 | j1 = j1 + inc |
---|
1780 | ENDDO |
---|
1781 | |
---|
1782 | logyc1 = LOG( ABS( coord_y(j1) + 0.5_wp * dy - coord_y(jw) ) / z0_l ) |
---|
1783 | lc = j1 |
---|
1784 | |
---|
1785 | END SUBROUTINE pmci_find_logc_pivot_j |
---|
1786 | |
---|
1787 | |
---|
1788 | |
---|
1789 | SUBROUTINE pmci_find_logc_pivot_i( lc, logxc1, i, iw, z0_l, inc ) |
---|
1790 | |
---|
1791 | ! |
---|
1792 | !-- Finds the pivot node and the log-law factor for near-wall nodes for |
---|
1793 | !-- which the wall-parallel velocity components will be log-law corrected |
---|
1794 | !-- after interpolation. This subroutine is only for vertical walls on |
---|
1795 | !-- south/north sides of the node. |
---|
1796 | ! |
---|
1797 | !-- Antti Hellsten 8.1.2016 |
---|
1798 | |
---|
1799 | IMPLICIT NONE |
---|
1800 | REAL(wp), INTENT(IN) :: z0_l !: |
---|
1801 | INTEGER(iwp), INTENT(IN) :: i !: |
---|
1802 | INTEGER(iwp), INTENT(IN) :: inc !: increment must be 1 or -1. |
---|
1803 | INTEGER(iwp), INTENT(IN) :: iw !: |
---|
1804 | INTEGER(iwp), INTENT(OUT) :: lc !: |
---|
1805 | |
---|
1806 | REAL(wp) :: logxc1 !: |
---|
1807 | REAL(wp) :: xc1 !: |
---|
1808 | INTEGER(iwp) :: i1 !: |
---|
1809 | |
---|
1810 | ! |
---|
1811 | !-- xc1 is the x-coordinate of the first coarse-grid v- and w-nodes out from the wall. |
---|
1812 | xc1 = coord_x(iw) + 0.5_wp *inc * cg%dx |
---|
1813 | |
---|
1814 | ! |
---|
1815 | !-- i1 is the first fine-grid index futher away from the wall than xc1. |
---|
1816 | i1 = i |
---|
1817 | DO WHILE ( inc * ( coord_x(i1) + 0.5_wp *dx ) < inc *xc1 ) ! Important: must be <, not <= |
---|
1818 | i1 = i1 + inc |
---|
1819 | ENDDO |
---|
1820 | |
---|
1821 | logxc1 = LOG( ABS( coord_x(i1) + 0.5_wp*dx - coord_x(iw) ) / z0_l ) |
---|
1822 | lc = i1 |
---|
1823 | |
---|
1824 | END SUBROUTINE pmci_find_logc_pivot_i |
---|
1825 | |
---|
1826 | |
---|
1827 | |
---|
1828 | SUBROUTINE pmci_init_anterp_tophat |
---|
1829 | ! |
---|
1830 | !-- Precomputation of the client-array indices for |
---|
1831 | !-- corresponding coarse-grid array index and the |
---|
1832 | !-- Under-relaxation coefficients to be used by anterp_tophat. |
---|
1833 | ! |
---|
1834 | !-- Antti Hellsten 9.10.2015. |
---|
1835 | IMPLICIT NONE |
---|
1836 | INTEGER(iwp) :: i !: |
---|
1837 | INTEGER(iwp) :: istart !: |
---|
1838 | INTEGER(iwp) :: j !: |
---|
1839 | INTEGER(iwp) :: jstart !: |
---|
1840 | INTEGER(iwp) :: k !: |
---|
1841 | INTEGER(iwp) :: kstart !: |
---|
1842 | INTEGER(iwp) :: l !: |
---|
1843 | INTEGER(iwp) :: m !: |
---|
1844 | INTEGER(iwp) :: n !: |
---|
1845 | REAL(wp) :: xi !: |
---|
1846 | REAL(wp) :: eta !: |
---|
1847 | REAL(wp) :: zeta !: |
---|
1848 | |
---|
1849 | ! |
---|
1850 | !-- Default values: |
---|
1851 | IF ( anterp_relax_length_l < 0.0_wp ) THEN |
---|
1852 | anterp_relax_length_l = 0.1_wp * ( nx + 1 ) * dx |
---|
1853 | ENDIF |
---|
1854 | IF ( anterp_relax_length_r < 0.0_wp ) THEN |
---|
1855 | anterp_relax_length_r = 0.1_wp * ( nx + 1 ) * dx |
---|
1856 | ENDIF |
---|
1857 | IF ( anterp_relax_length_s < 0.0_wp ) THEN |
---|
1858 | anterp_relax_length_s = 0.1_wp * ( ny + 1 ) * dy |
---|
1859 | ENDIF |
---|
1860 | IF ( anterp_relax_length_n < 0.0_wp ) THEN |
---|
1861 | anterp_relax_length_n = 0.1_wp * ( ny + 1 ) * dy |
---|
1862 | ENDIF |
---|
1863 | IF ( anterp_relax_length_t < 0.0_wp ) THEN |
---|
1864 | anterp_relax_length_t = 0.1_wp * zu(nzt) |
---|
1865 | ENDIF |
---|
1866 | |
---|
1867 | ! |
---|
1868 | !-- First determine kceu and kcew that are the coarse-grid upper bounds for index k. |
---|
1869 | n = 0 |
---|
1870 | DO WHILE ( cg%zu(n) < zu(nzt) ) |
---|
1871 | n = n + 1 |
---|
1872 | ENDDO |
---|
1873 | kceu = n - 1 |
---|
1874 | |
---|
1875 | n = 0 |
---|
1876 | DO WHILE ( cg%zw(n) < zw(nzt-1) ) |
---|
1877 | n = n + 1 |
---|
1878 | ENDDO |
---|
1879 | kcew = n - 1 |
---|
1880 | |
---|
1881 | ALLOCATE( iflu(icl:icr) ) |
---|
1882 | ALLOCATE( iflo(icl:icr) ) |
---|
1883 | ALLOCATE( ifuu(icl:icr) ) |
---|
1884 | ALLOCATE( ifuo(icl:icr) ) |
---|
1885 | ALLOCATE( jflv(jcs:jcn) ) |
---|
1886 | ALLOCATE( jflo(jcs:jcn) ) |
---|
1887 | ALLOCATE( jfuv(jcs:jcn) ) |
---|
1888 | ALLOCATE( jfuo(jcs:jcn) ) |
---|
1889 | ALLOCATE( kflw(0:kcew) ) |
---|
1890 | ALLOCATE( kflo(0:kceu) ) |
---|
1891 | ALLOCATE( kfuw(0:kcew) ) |
---|
1892 | ALLOCATE( kfuo(0:kceu) ) |
---|
1893 | |
---|
1894 | ! |
---|
1895 | !-- i-indices of u for each l-index value. |
---|
1896 | istart = nxlg |
---|
1897 | DO l = icl, icr |
---|
1898 | i = istart |
---|
1899 | DO WHILE ( ( coord_x(i) < cg%coord_x(l) - 0.5_wp * cg%dx ) .AND. ( i < nxrg ) ) |
---|
1900 | i = i + 1 |
---|
1901 | ENDDO |
---|
1902 | iflu(l) = MIN( MAX( i, nxlg ), nxrg ) |
---|
1903 | DO WHILE ( ( coord_x(i) < cg%coord_x(l) + 0.5_wp * cg%dx ) .AND. ( i < nxrg ) ) |
---|
1904 | i = i + 1 |
---|
1905 | ENDDO |
---|
1906 | ifuu(l) = MIN( MAX( i, nxlg ), nxrg ) |
---|
1907 | istart = iflu(l) |
---|
1908 | ENDDO |
---|
1909 | |
---|
1910 | ! |
---|
1911 | !-- i-indices of others for each l-index value. |
---|
1912 | istart = nxlg |
---|
1913 | DO l = icl, icr |
---|
1914 | i = istart |
---|
1915 | DO WHILE ( ( coord_x(i) + 0.5_wp * dx < cg%coord_x(l) ) .AND. ( i < nxrg ) ) |
---|
1916 | i = i + 1 |
---|
1917 | ENDDO |
---|
1918 | iflo(l) = MIN( MAX( i, nxlg ), nxrg ) |
---|
1919 | DO WHILE ( ( coord_x(i) + 0.5_wp * dx < cg%coord_x(l) + cg%dx ) .AND. ( i < nxrg ) ) |
---|
1920 | i = i + 1 |
---|
1921 | ENDDO |
---|
1922 | ifuo(l) = MIN(MAX(i,nxlg),nxrg) |
---|
1923 | istart = iflo(l) |
---|
1924 | ENDDO |
---|
1925 | |
---|
1926 | ! |
---|
1927 | !-- j-indices of v for each m-index value. |
---|
1928 | jstart = nysg |
---|
1929 | DO m = jcs, jcn |
---|
1930 | j = jstart |
---|
1931 | DO WHILE ( ( coord_y(j) < cg%coord_y(m) - 0.5_wp * cg%dy ) .AND. ( j < nyng ) ) |
---|
1932 | j = j + 1 |
---|
1933 | ENDDO |
---|
1934 | jflv(m) = MIN( MAX( j, nysg ), nyng ) |
---|
1935 | DO WHILE ( ( coord_y(j) < cg%coord_y(m) + 0.5_wp * cg%dy ) .AND. ( j < nyng ) ) |
---|
1936 | j = j + 1 |
---|
1937 | ENDDO |
---|
1938 | jfuv(m) = MIN( MAX( j, nysg ), nyng ) |
---|
1939 | jstart = jflv(m) |
---|
1940 | ENDDO |
---|
1941 | |
---|
1942 | ! |
---|
1943 | !-- j-indices of others for each m-index value. |
---|
1944 | jstart = nysg |
---|
1945 | DO m = jcs, jcn |
---|
1946 | j = jstart |
---|
1947 | DO WHILE ( ( coord_y(j) + 0.5_wp * dy < cg%coord_y(m) ) .AND. ( j < nyng ) ) |
---|
1948 | j = j + 1 |
---|
1949 | ENDDO |
---|
1950 | jflo(m) = MIN( MAX( j, nysg ), nyng ) |
---|
1951 | DO WHILE ( ( coord_y(j) + 0.5_wp * dy < cg%coord_y(m) + cg%dy ) .AND. ( j < nyng ) ) |
---|
1952 | j = j + 1 |
---|
1953 | ENDDO |
---|
1954 | jfuo(m) = MIN( MAX( j, nysg ), nyng ) |
---|
1955 | jstart = jflv(m) |
---|
1956 | ENDDO |
---|
1957 | |
---|
1958 | ! |
---|
1959 | !-- k-indices of w for each n-index value. |
---|
1960 | kstart = 0 |
---|
1961 | kflw(0) = 0 |
---|
1962 | kfuw(0) = 0 |
---|
1963 | DO n = 1, kcew |
---|
1964 | k = kstart |
---|
1965 | DO WHILE ( ( zw(k) < cg%zw(n) - 0.5_wp * cg%dzw(n) ) .AND. ( k < nzt ) ) |
---|
1966 | k = k + 1 |
---|
1967 | ENDDO |
---|
1968 | kflw(n) = MIN( MAX( k, 1 ), nzt + 1 ) |
---|
1969 | DO WHILE ( ( zw(k) < cg%zw(n) + 0.5_wp * cg%dzw(n+1) ) .AND. ( k < nzt ) ) |
---|
1970 | k = k + 1 |
---|
1971 | ENDDO |
---|
1972 | kfuw(n) = MIN( MAX( k, 1 ), nzt + 1 ) |
---|
1973 | kstart = kflw(n) |
---|
1974 | ENDDO |
---|
1975 | |
---|
1976 | ! |
---|
1977 | !-- k-indices of others for each n-index value. |
---|
1978 | kstart = 0 |
---|
1979 | kflo(0) = 0 |
---|
1980 | kfuo(0) = 0 |
---|
1981 | DO n = 1, kceu |
---|
1982 | k = kstart |
---|
1983 | DO WHILE ( ( zu(k) < cg%zu(n) - 0.5_wp * cg%dzu(n) ) .AND. ( k < nzt ) ) |
---|
1984 | k = k + 1 |
---|
1985 | ENDDO |
---|
1986 | kflo(n) = MIN( MAX( k, 1 ), nzt + 1 ) |
---|
1987 | DO WHILE ( ( zu(k) < cg%zu(n) + 0.5_wp * cg%dzu(n+1) ) .AND. ( k < nzt ) ) |
---|
1988 | k = k + 1 |
---|
1989 | ENDDO |
---|
1990 | kfuo(n) = MIN( MAX( k-1, 1 ), nzt + 1 ) |
---|
1991 | kstart = kflo(n) |
---|
1992 | ENDDO |
---|
1993 | |
---|
1994 | ! |
---|
1995 | !-- Spatial under-relaxation coefficients |
---|
1996 | ALLOCATE( frax(icl:icr) ) |
---|
1997 | DO l = icl, icr |
---|
1998 | IF ( nest_bound_l ) THEN |
---|
1999 | xi = ( ( cg%coord_x(l) - lower_left_coord_x ) / anterp_relax_length_l )**4 |
---|
2000 | ELSEIF ( nest_bound_r ) THEN |
---|
2001 | xi = ( ( lower_left_coord_x + ( nx + 1 ) * dx - cg%coord_x(l) ) / anterp_relax_length_r )**4 |
---|
2002 | ELSE |
---|
2003 | xi = 999999.9_wp |
---|
2004 | ENDIF |
---|
2005 | frax(l) = xi / ( 1.0_wp + xi ) |
---|
2006 | ENDDO |
---|
2007 | |
---|
2008 | ALLOCATE( fray(jcs:jcn) ) |
---|
2009 | DO m = jcs, jcn |
---|
2010 | IF ( nest_bound_s ) THEN |
---|
2011 | eta = ( ( cg%coord_y(m) - lower_left_coord_y ) / anterp_relax_length_s )**4 |
---|
2012 | ELSEIF ( nest_bound_n ) THEN |
---|
2013 | eta = ( (lower_left_coord_y + ( ny + 1 ) * dy - cg%coord_y(m)) / anterp_relax_length_n )**4 |
---|
2014 | ELSE |
---|
2015 | eta = 999999.9_wp |
---|
2016 | ENDIF |
---|
2017 | fray(m) = eta / ( 1.0_wp + eta ) |
---|
2018 | ENDDO |
---|
2019 | |
---|
2020 | ALLOCATE( fraz(0:kceu) ) |
---|
2021 | DO n = 0, kceu |
---|
2022 | zeta = ( ( zu(nzt) - cg%zu(n) ) / anterp_relax_length_t )**4 |
---|
2023 | fraz(n) = zeta / ( 1.0_wp + zeta ) |
---|
2024 | ENDDO |
---|
2025 | |
---|
2026 | END SUBROUTINE pmci_init_anterp_tophat |
---|
2027 | |
---|
2028 | |
---|
2029 | |
---|
2030 | SUBROUTINE pmci_init_tkefactor |
---|
2031 | |
---|
2032 | ! |
---|
2033 | !-- Computes the scaling factor for the SGS TKE from coarse grid to be used |
---|
2034 | !-- as BC for the fine grid. Based on the Kolmogorov energy spectrum |
---|
2035 | !-- for the inertial subrange and assumption of sharp cut-off of the resolved |
---|
2036 | !-- energy spectrum. Near the surface, the reduction of TKE is made |
---|
2037 | !-- smaller than further away from the surface. |
---|
2038 | ! |
---|
2039 | ! Antti Hellsten 4.3.2015 |
---|
2040 | ! |
---|
2041 | !-- Extended for non-flat topography and variable dz. |
---|
2042 | ! |
---|
2043 | ! Antti Hellsten 26.3.2015 |
---|
2044 | ! |
---|
2045 | !-- The current near-wall adaptation can be replaced by a new one which |
---|
2046 | !-- uses a step function [0,1] based on the logc-arrays. AH 30.12.2015 |
---|
2047 | IMPLICIT NONE |
---|
2048 | REAL(wp), PARAMETER :: cfw = 0.2_wp !: |
---|
2049 | REAL(wp), PARAMETER :: c_tkef = 0.6_wp !: |
---|
2050 | REAL(wp) :: fw !: |
---|
2051 | REAL(wp), PARAMETER :: fw0 = 0.9_wp !: |
---|
2052 | REAL(wp) :: glsf !: |
---|
2053 | REAL(wp) :: glsc !: |
---|
2054 | REAL(wp) :: height !: |
---|
2055 | REAL(wp), PARAMETER :: p13 = 1.0_wp/3.0_wp !: |
---|
2056 | REAL(wp), PARAMETER :: p23 = 2.0_wp/3.0_wp !: |
---|
2057 | INTEGER(iwp) :: k !: |
---|
2058 | INTEGER(iwp) :: kc !: |
---|
2059 | |
---|
2060 | |
---|
2061 | IF ( nest_bound_l ) THEN |
---|
2062 | ALLOCATE( tkefactor_l(nzb:nzt+1,nysg:nyng) ) |
---|
2063 | tkefactor_l = 0.0_wp |
---|
2064 | i = nxl - 1 |
---|
2065 | DO j = nysg, nyng |
---|
2066 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
2067 | kc = kco(k+1) |
---|
2068 | glsf = ( dx * dy * dzu(k) )**p13 |
---|
2069 | glsc = ( cg%dx * cg%dy *cg%dzu(kc) )**p13 |
---|
2070 | height = zu(k) - zu(nzb_s_inner(j,i)) |
---|
2071 | fw = EXP( -cfw * height / glsf ) |
---|
2072 | tkefactor_l(k,j) = c_tkef * ( fw0 * fw + ( 1.0_wp - fw ) * ( glsf / glsc )**p23 ) |
---|
2073 | ENDDO |
---|
2074 | tkefactor_l(nzb_s_inner(j,i),j) = c_tkef * fw0 |
---|
2075 | ENDDO |
---|
2076 | ENDIF |
---|
2077 | |
---|
2078 | IF ( nest_bound_r ) THEN |
---|
2079 | ALLOCATE( tkefactor_r(nzb:nzt+1,nysg:nyng) ) |
---|
2080 | tkefactor_r = 0.0_wp |
---|
2081 | i = nxr + 1 |
---|
2082 | DO j = nysg, nyng |
---|
2083 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
2084 | kc = kco(k+1) |
---|
2085 | glsf = ( dx * dy * dzu(k) )**p13 |
---|
2086 | glsc = ( cg%dx * cg%dy * cg%dzu(kc) )**p13 |
---|
2087 | height = zu(k) - zu(nzb_s_inner(j,i)) |
---|
2088 | fw = EXP( -cfw * height / glsf ) |
---|
2089 | tkefactor_r(k,j) = c_tkef * (fw0 * fw + ( 1.0_wp - fw ) * ( glsf / glsc )**p23 ) |
---|
2090 | ENDDO |
---|
2091 | tkefactor_r(nzb_s_inner(j,i),j) = c_tkef * fw0 |
---|
2092 | ENDDO |
---|
2093 | ENDIF |
---|
2094 | |
---|
2095 | IF ( nest_bound_s ) THEN |
---|
2096 | ALLOCATE( tkefactor_s(nzb:nzt+1,nxlg:nxrg) ) |
---|
2097 | tkefactor_s = 0.0_wp |
---|
2098 | j = nys - 1 |
---|
2099 | DO i = nxlg, nxrg |
---|
2100 | DO k = nzb_s_inner(j,i) + 1, nzt |
---|
2101 | kc = kco(k+1) |
---|
2102 | glsf = ( dx * dy * dzu(k) )**p13 |
---|
2103 | glsc = ( cg%dx * cg%dy * cg%dzu(kc) ) ** p13 |
---|
2104 | height = zu(k) - zu(nzb_s_inner(j,i)) |
---|
2105 | fw = EXP( -cfw*height / glsf ) |
---|
2106 | tkefactor_s(k,i) = c_tkef * ( fw0 * fw + ( 1.0_wp - fw ) * ( glsf / glsc )**p23 ) |
---|
2107 | ENDDO |
---|
2108 | tkefactor_s(nzb_s_inner(j,i),i) = c_tkef * fw0 |
---|
2109 | ENDDO |
---|
2110 | ENDIF |
---|
2111 | |
---|
2112 | IF ( nest_bound_n ) THEN |
---|
2113 | ALLOCATE( tkefactor_n(nzb:nzt+1,nxlg:nxrg) ) |
---|
2114 | tkefactor_n = 0.0_wp |
---|
2115 | j = nyn + 1 |
---|
2116 | DO i = nxlg, nxrg |
---|
2117 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2118 | kc = kco(k+1) |
---|
2119 | glsf = ( dx * dy * dzu(k) )**p13 |
---|
2120 | glsc = ( cg%dx * cg%dy * cg%dzu(kc) )**p13 |
---|
2121 | height = zu(k) - zu(nzb_s_inner(j,i)) |
---|
2122 | fw = EXP( -cfw * height / glsf ) |
---|
2123 | tkefactor_n(k,i) = c_tkef * ( fw0 * fw + ( 1.0_wp - fw ) * ( glsf / glsc )**p23 ) |
---|
2124 | ENDDO |
---|
2125 | tkefactor_n(nzb_s_inner(j,i),i) = c_tkef * fw0 |
---|
2126 | ENDDO |
---|
2127 | ENDIF |
---|
2128 | |
---|
2129 | ALLOCATE( tkefactor_t(nysg:nyng,nxlg:nxrg) ) |
---|
2130 | k = nzt |
---|
2131 | DO i = nxlg, nxrg |
---|
2132 | DO j = nysg, nyng |
---|
2133 | kc = kco(k+1) |
---|
2134 | glsf = ( dx * dy * dzu(k) )**p13 |
---|
2135 | glsc = ( cg%dx * cg%dy * cg%dzu(kc) )**p13 |
---|
2136 | height = zu(k) - zu(nzb_s_inner(j,i)) |
---|
2137 | fw = EXP( -cfw * height / glsf ) |
---|
2138 | tkefactor_t(j,i) = c_tkef * ( fw0 * fw + ( 1.0_wp - fw ) * ( glsf / glsc )**p23 ) |
---|
2139 | ENDDO |
---|
2140 | ENDDO |
---|
2141 | |
---|
2142 | END SUBROUTINE pmci_init_tkefactor |
---|
2143 | |
---|
2144 | #endif |
---|
2145 | END SUBROUTINE pmci_setup_client |
---|
2146 | |
---|
2147 | |
---|
2148 | |
---|
2149 | SUBROUTINE pmci_setup_coordinates |
---|
2150 | |
---|
2151 | #if defined( __parallel ) |
---|
2152 | IMPLICIT NONE |
---|
2153 | |
---|
2154 | INTEGER(iwp) :: i !: |
---|
2155 | INTEGER(iwp) :: j !: |
---|
2156 | |
---|
2157 | ! |
---|
2158 | !-- Create coordinate arrays. |
---|
2159 | ALLOCATE( coord_x(-nbgp:nx+nbgp) ) |
---|
2160 | ALLOCATE( coord_y(-nbgp:ny+nbgp) ) |
---|
2161 | |
---|
2162 | DO i = -nbgp, nx + nbgp |
---|
2163 | coord_x(i) = lower_left_coord_x + i * dx |
---|
2164 | ENDDO |
---|
2165 | |
---|
2166 | DO j = -nbgp, ny + nbgp |
---|
2167 | coord_y(j) = lower_left_coord_y + j * dy |
---|
2168 | ENDDO |
---|
2169 | |
---|
2170 | #endif |
---|
2171 | END SUBROUTINE pmci_setup_coordinates |
---|
2172 | |
---|
2173 | |
---|
2174 | |
---|
2175 | SUBROUTINE pmci_server_synchronize |
---|
2176 | |
---|
2177 | #if defined( __parallel ) |
---|
2178 | ! |
---|
2179 | !-- Unify the time steps for each model and synchronize. |
---|
2180 | !-- This is based on the assumption that the native time step |
---|
2181 | !-- (original dt_3d) of any server is always larger than the smallest |
---|
2182 | !-- native time step of it s clients. |
---|
2183 | IMPLICIT NONE |
---|
2184 | INTEGER(iwp) :: client_id !: |
---|
2185 | REAL(wp), DIMENSION(1) :: dtc !: |
---|
2186 | REAL(wp), DIMENSION(1) :: dtl !: |
---|
2187 | INTEGER(iwp) :: ierr !: |
---|
2188 | INTEGER(iwp) :: m !: |
---|
2189 | |
---|
2190 | ! |
---|
2191 | !-- First find the smallest native time step of all the clients of the current server. |
---|
2192 | dtl(1) = 999999.9_wp |
---|
2193 | DO m = 1, SIZE( PMC_Server_for_Client ) - 1 |
---|
2194 | client_id = PMC_Server_for_Client(m) |
---|
2195 | IF ( myid == 0 ) THEN |
---|
2196 | CALL pmc_recv_from_client( client_id, dtc, SIZE( dtc ), 0, 101, ierr ) |
---|
2197 | dtl(1) = MIN( dtl(1), dtc(1) ) |
---|
2198 | dt_3d = dtl(1) |
---|
2199 | ENDIF |
---|
2200 | ENDDO |
---|
2201 | |
---|
2202 | ! |
---|
2203 | !-- Broadcast the unified time step to all server processes. |
---|
2204 | CALL MPI_BCAST( dt_3d, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
2205 | |
---|
2206 | ! |
---|
2207 | !-- Send the new time step to all the clients of the current server. |
---|
2208 | DO m = 1, SIZE( PMC_Server_for_Client ) - 1 |
---|
2209 | client_id = PMC_Server_for_Client(m) |
---|
2210 | IF ( myid == 0 ) THEN |
---|
2211 | CALL pmc_send_to_client( client_id, dtl, SIZE( dtl ), 0, 102, ierr ) |
---|
2212 | ENDIF |
---|
2213 | ENDDO |
---|
2214 | |
---|
2215 | #endif |
---|
2216 | END SUBROUTINE pmci_server_synchronize |
---|
2217 | |
---|
2218 | |
---|
2219 | |
---|
2220 | SUBROUTINE pmci_client_synchronize |
---|
2221 | |
---|
2222 | #if defined( __parallel ) |
---|
2223 | ! |
---|
2224 | !-- Unify the time steps for each model and synchronize. |
---|
2225 | !-- This is based on the assumption that the native time step |
---|
2226 | !-- (original dt_3d) of any server is always larger than the smallest |
---|
2227 | !-- native time step of it s clients. |
---|
2228 | |
---|
2229 | IMPLICIT NONE |
---|
2230 | REAL(wp), DIMENSION(1) :: dtl !: |
---|
2231 | REAL(wp), DIMENSION(1) :: dts !: |
---|
2232 | INTEGER(iwp) :: ierr !: |
---|
2233 | |
---|
2234 | |
---|
2235 | dtl(1) = dt_3d |
---|
2236 | IF ( cpl_id > 1 ) THEN ! Root id is never a client |
---|
2237 | IF ( myid==0 ) THEN |
---|
2238 | CALL pmc_send_to_server( dtl, SIZE( dtl ), 0, 101, ierr ) |
---|
2239 | CALL pmc_recv_from_server( dts, SIZE( dts ), 0, 102, ierr ) |
---|
2240 | dt_3d = dts(1) |
---|
2241 | ENDIF |
---|
2242 | |
---|
2243 | ! |
---|
2244 | !-- Broadcast the unified time step to all server processes. |
---|
2245 | CALL MPI_BCAST( dt_3d, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
2246 | ENDIF |
---|
2247 | |
---|
2248 | #endif |
---|
2249 | END SUBROUTINE pmci_client_synchronize |
---|
2250 | |
---|
2251 | |
---|
2252 | |
---|
2253 | SUBROUTINE pmci_set_swaplevel( swaplevel ) |
---|
2254 | |
---|
2255 | IMPLICIT NONE |
---|
2256 | |
---|
2257 | INTEGER(iwp),INTENT(IN) :: swaplevel !: swaplevel (1 or 2) of PALM's timestep |
---|
2258 | |
---|
2259 | INTEGER(iwp) :: client_id !: |
---|
2260 | INTEGER(iwp) :: m !: |
---|
2261 | |
---|
2262 | ! |
---|
2263 | !-- After each timestep, alternately set buffer one or buffer two active |
---|
2264 | DO m = 1, SIZE( pmc_server_for_client )-1 |
---|
2265 | client_id = pmc_server_for_client(m) |
---|
2266 | CALL pmc_s_set_active_data_array( client_id, swaplevel ) |
---|
2267 | ENDDO |
---|
2268 | |
---|
2269 | END SUBROUTINE pmci_set_swaplevel |
---|
2270 | |
---|
2271 | |
---|
2272 | |
---|
2273 | SUBROUTINE pmci_server_datatrans( direction ) |
---|
2274 | |
---|
2275 | IMPLICIT NONE |
---|
2276 | |
---|
2277 | INTEGER(iwp),INTENT(IN) :: direction !: |
---|
2278 | |
---|
2279 | #if defined( __parallel ) |
---|
2280 | INTEGER(iwp) :: client_id !: |
---|
2281 | INTEGER(iwp) :: i !: |
---|
2282 | INTEGER(iwp) :: j !: |
---|
2283 | INTEGER(iwp) :: ierr !: |
---|
2284 | INTEGER(iwp) :: m !: |
---|
2285 | REAL(wp) :: waittime !: |
---|
2286 | REAL(wp), DIMENSION(1) :: dtc !: |
---|
2287 | REAL(wp), DIMENSION(1) :: dtl !: |
---|
2288 | |
---|
2289 | ! |
---|
2290 | !-- First find the smallest native time step of all the clients of the current server. |
---|
2291 | dtl(1) = 999999.9_wp |
---|
2292 | DO m = 1, SIZE( PMC_Server_for_Client ) - 1 |
---|
2293 | client_id = PMC_Server_for_Client(m) |
---|
2294 | IF ( myid==0 ) THEN |
---|
2295 | CALL pmc_recv_from_client( client_id, dtc, SIZE( dtc ), 0, 101, ierr ) |
---|
2296 | dtl(1) = MIN( dtl(1), dtc(1) ) |
---|
2297 | dt_3d = dtl(1) |
---|
2298 | ENDIF |
---|
2299 | ENDDO |
---|
2300 | |
---|
2301 | ! |
---|
2302 | !-- Broadcast the unified time step to all server processes. |
---|
2303 | CALL MPI_BCAST( dt_3d, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
2304 | |
---|
2305 | DO m = 1, SIZE( PMC_Server_for_Client ) - 1 |
---|
2306 | client_id = PMC_Server_for_Client(m) |
---|
2307 | CALL cpu_log( log_point_s(70), 'PMC model sync', 'start' ) |
---|
2308 | |
---|
2309 | ! |
---|
2310 | !-- Send the new time step to all the clients of the current server. |
---|
2311 | IF ( myid == 0 ) THEN |
---|
2312 | CALL pmc_send_to_client( client_id, dtl, SIZE( dtl ), 0, 102, ierr ) |
---|
2313 | ENDIF |
---|
2314 | CALL cpu_log( log_point_s(70), 'PMC model sync', 'stop' ) |
---|
2315 | |
---|
2316 | IF ( direction == server_to_client ) THEN |
---|
2317 | CALL cpu_log( log_point_s(71), 'PMC Server Send', 'start' ) |
---|
2318 | CALL pmc_s_fillbuffer( client_id, waittime=waittime ) |
---|
2319 | CALL cpu_log( log_point_s(71), 'PMC Server Send', 'stop' ) |
---|
2320 | ELSE ! Communication from client to server. |
---|
2321 | CALL cpu_log( log_point_s(72), 'PMC Server Recv', 'start' ) |
---|
2322 | client_id = pmc_server_for_client(m) |
---|
2323 | CALL pmc_s_getdata_from_buffer( client_id ) |
---|
2324 | CALL cpu_log( log_point_s(72), 'PMC Server Recv', 'stop' ) |
---|
2325 | |
---|
2326 | ! |
---|
2327 | !-- The anterpolated data is now available in u etc. |
---|
2328 | IF ( topography /= 'flat' ) THEN |
---|
2329 | |
---|
2330 | ! |
---|
2331 | !-- Inside buildings/topography reset velocities and TKE back to zero. |
---|
2332 | !-- Other scalars (pt, q, s, km, kh, p, sa, ...) are ignored at present, |
---|
2333 | !-- maybe revise later. |
---|
2334 | DO i = nxlg, nxrg |
---|
2335 | DO j = nysg, nyng |
---|
2336 | u(nzb:nzb_u_inner(j,i),j,i) = 0.0_wp |
---|
2337 | v(nzb:nzb_v_inner(j,i),j,i) = 0.0_wp |
---|
2338 | w(nzb:nzb_w_inner(j,i),j,i) = 0.0_wp |
---|
2339 | e(nzb:nzb_w_inner(j,i),j,i) = 0.0_wp |
---|
2340 | ENDDO |
---|
2341 | ENDDO |
---|
2342 | ENDIF |
---|
2343 | ENDIF |
---|
2344 | ENDDO |
---|
2345 | |
---|
2346 | #endif |
---|
2347 | END SUBROUTINE pmci_server_datatrans |
---|
2348 | |
---|
2349 | |
---|
2350 | |
---|
2351 | SUBROUTINE pmci_client_datatrans( direction ) |
---|
2352 | |
---|
2353 | IMPLICIT NONE |
---|
2354 | |
---|
2355 | INTEGER(iwp), INTENT(IN) :: direction !: |
---|
2356 | |
---|
2357 | #if defined( __parallel ) |
---|
2358 | INTEGER(iwp) :: ierr !: |
---|
2359 | INTEGER(iwp) :: icl !: |
---|
2360 | INTEGER(iwp) :: icr !: |
---|
2361 | INTEGER(iwp) :: jcs !: |
---|
2362 | INTEGER(iwp) :: jcn !: |
---|
2363 | |
---|
2364 | REAL(wp), DIMENSION(1) :: dtl !: |
---|
2365 | REAL(wp), DIMENSION(1) :: dts !: |
---|
2366 | REAL(wp) :: waittime !: |
---|
2367 | |
---|
2368 | |
---|
2369 | dtl = dt_3d |
---|
2370 | IF ( cpl_id > 1 ) THEN ! Root id is never a client |
---|
2371 | CALL cpu_log( log_point_s(70), 'PMC model sync', 'start' ) |
---|
2372 | IF ( myid==0 ) THEN |
---|
2373 | CALL pmc_send_to_server( dtl, SIZE( dtl ), 0, 101, ierr ) |
---|
2374 | CALL pmc_recv_from_server( dts, SIZE( dts ), 0, 102, ierr ) |
---|
2375 | dt_3d = dts(1) |
---|
2376 | ENDIF |
---|
2377 | |
---|
2378 | ! |
---|
2379 | !-- Broadcast the unified time step to all server processes. |
---|
2380 | CALL MPI_BCAST( dt_3d, 1, MPI_REAL, 0, comm2d, ierr ) |
---|
2381 | CALL cpu_log( log_point_s(70), 'PMC model sync', 'stop' ) |
---|
2382 | |
---|
2383 | ! |
---|
2384 | !-- Client domain boundaries in the server indice space. |
---|
2385 | icl = coarse_bound(1) |
---|
2386 | icr = coarse_bound(2) |
---|
2387 | jcs = coarse_bound(3) |
---|
2388 | jcn = coarse_bound(4) |
---|
2389 | |
---|
2390 | IF ( direction == server_to_client ) THEN |
---|
2391 | CALL cpu_log( log_point_s(73), 'PMC Client Recv', 'start' ) |
---|
2392 | CALL pmc_c_getbuffer( WaitTime = WaitTime ) |
---|
2393 | CALL cpu_log( log_point_s(73), 'PMC Client Recv', 'stop' ) |
---|
2394 | |
---|
2395 | CALL pmci_interpolation |
---|
2396 | |
---|
2397 | ELSE ! IF ( direction == server_to_client ) |
---|
2398 | |
---|
2399 | CALL pmci_anterpolation |
---|
2400 | |
---|
2401 | CALL cpu_log( log_point_s(74), 'PMC Client Send', 'start' ) |
---|
2402 | CALL pmc_c_putbuffer( WaitTime = WaitTime ) |
---|
2403 | CALL cpu_log( log_point_s(74), 'PMC Client Send', 'stop' ) |
---|
2404 | ENDIF |
---|
2405 | ENDIF |
---|
2406 | |
---|
2407 | CONTAINS |
---|
2408 | |
---|
2409 | |
---|
2410 | SUBROUTINE pmci_interpolation |
---|
2411 | |
---|
2412 | ! |
---|
2413 | !-- A wrapper routine for all interpolation and extrapolation actions. |
---|
2414 | IMPLICIT NONE |
---|
2415 | |
---|
2416 | ! |
---|
2417 | !-- Add IF-condition here: IF not vertical nesting |
---|
2418 | IF ( nest_bound_l ) THEN ! Left border pe |
---|
2419 | CALL pmci_interp_tril_lr( u, uc, icu, jco, kco, r1xu, r2xu, r1yo, r2yo, r1zo, r2zo, & |
---|
2420 | nzb_u_inner, logc_u_l, logc_ratio_u_l, nzt_topo_nestbc_l, 'l', 'u' ) |
---|
2421 | CALL pmci_interp_tril_lr( v, vc, ico, jcv, kco, r1xo, r2xo, r1yv, r2yv, r1zo, r2zo, & |
---|
2422 | nzb_v_inner, logc_v_l, logc_ratio_v_l, nzt_topo_nestbc_l, 'l', 'v' ) |
---|
2423 | CALL pmci_interp_tril_lr( w, wc, ico, jco, kcw, r1xo, r2xo, r1yo, r2yo, r1zw, r2zw, & |
---|
2424 | nzb_w_inner, logc_w_l, logc_ratio_w_l, nzt_topo_nestbc_l, 'l', 'w' ) |
---|
2425 | CALL pmci_interp_tril_lr( e, ec, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & |
---|
2426 | nzb_s_inner, logc_u_l, logc_ratio_u_l, nzt_topo_nestbc_l, 'l', 'e' ) |
---|
2427 | CALL pmci_interp_tril_lr( pt, ptc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & |
---|
2428 | nzb_s_inner, logc_u_l, logc_ratio_u_l, nzt_topo_nestbc_l, 'l', 's' ) |
---|
2429 | IF ( humidity .OR. passive_scalar ) THEN |
---|
2430 | CALL pmci_interp_tril_lr( q, qc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & |
---|
2431 | nzb_s_inner, logc_u_l, logc_ratio_u_l, nzt_topo_nestbc_l, 'l', 's' ) |
---|
2432 | ENDIF |
---|
2433 | IF ( nesting_mode == 'one-way' ) THEN |
---|
2434 | CALL pmci_extrap_ifoutflow_lr( u, nzb_u_inner, 'l', 'u' ) |
---|
2435 | CALL pmci_extrap_ifoutflow_lr( v, nzb_v_inner, 'l', 'v' ) |
---|
2436 | CALL pmci_extrap_ifoutflow_lr( w, nzb_w_inner, 'l', 'w' ) |
---|
2437 | CALL pmci_extrap_ifoutflow_lr( e, nzb_s_inner, 'l', 'e' ) |
---|
2438 | CALL pmci_extrap_ifoutflow_lr( pt,nzb_s_inner, 'l', 's' ) |
---|
2439 | IF ( humidity .OR. passive_scalar ) THEN |
---|
2440 | CALL pmci_extrap_ifoutflow_lr( q, nzb_s_inner, 'l', 's' ) |
---|
2441 | ENDIF |
---|
2442 | ENDIF |
---|
2443 | ENDIF |
---|
2444 | IF ( nest_bound_r ) THEN ! Right border pe |
---|
2445 | CALL pmci_interp_tril_lr( u, uc, icu, jco, kco, r1xu, r2xu, r1yo, r2yo, r1zo, r2zo, & |
---|
2446 | nzb_u_inner, logc_u_r, logc_ratio_u_r, nzt_topo_nestbc_r, 'r', 'u' ) |
---|
2447 | CALL pmci_interp_tril_lr( v, vc, ico, jcv, kco, r1xo, r2xo, r1yv, r2yv, r1zo, r2zo, & |
---|
2448 | nzb_v_inner, logc_v_r, logc_ratio_v_r, nzt_topo_nestbc_r, 'r', 'v' ) |
---|
2449 | CALL pmci_interp_tril_lr( w, wc, ico, jco, kcw, r1xo, r2xo, r1yo, r2yo, r1zw, r2zw, & |
---|
2450 | nzb_w_inner, logc_w_r, logc_ratio_w_r, nzt_topo_nestbc_r, 'r', 'w' ) |
---|
2451 | CALL pmci_interp_tril_lr( e, ec, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & |
---|
2452 | nzb_s_inner, logc_u_r, logc_ratio_u_r, nzt_topo_nestbc_r, 'r', 'e' ) |
---|
2453 | CALL pmci_interp_tril_lr( pt, ptc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & |
---|
2454 | nzb_s_inner, logc_u_r, logc_ratio_u_r, nzt_topo_nestbc_r, 'r', 's' ) |
---|
2455 | IF ( humidity .OR. passive_scalar ) THEN |
---|
2456 | CALL pmci_interp_tril_lr( q, qc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & |
---|
2457 | nzb_s_inner, logc_u_r, logc_ratio_u_r, nzt_topo_nestbc_r, 'r', 's' ) |
---|
2458 | ENDIF |
---|
2459 | IF ( nesting_mode == 'one-way' ) THEN |
---|
2460 | CALL pmci_extrap_ifoutflow_lr( u, nzb_u_inner, 'r', 'u' ) |
---|
2461 | CALL pmci_extrap_ifoutflow_lr( v, nzb_v_inner, 'r', 'v' ) |
---|
2462 | CALL pmci_extrap_ifoutflow_lr( w, nzb_w_inner, 'r', 'w' ) |
---|
2463 | CALL pmci_extrap_ifoutflow_lr( e, nzb_s_inner, 'r', 'e' ) |
---|
2464 | CALL pmci_extrap_ifoutflow_lr( pt,nzb_s_inner, 'r', 's' ) |
---|
2465 | IF ( humidity .OR. passive_scalar ) THEN |
---|
2466 | CALL pmci_extrap_ifoutflow_lr( q, nzb_s_inner, 'r', 's' ) |
---|
2467 | ENDIF |
---|
2468 | ENDIF |
---|
2469 | ENDIF |
---|
2470 | IF ( nest_bound_s ) THEN ! South border pe |
---|
2471 | CALL pmci_interp_tril_sn( u, uc, icu, jco, kco, r1xu, r2xu, r1yo, r2yo, r1zo, r2zo, & |
---|
2472 | nzb_u_inner, logc_u_s, logc_ratio_u_s, nzt_topo_nestbc_s, 's', 'u' ) |
---|
2473 | CALL pmci_interp_tril_sn( v, vc, ico, jcv, kco, r1xo, r2xo, r1yv, r2yv, r1zo, r2zo, & |
---|
2474 | nzb_v_inner, logc_v_s, logc_ratio_v_s, nzt_topo_nestbc_s, 's', 'v' ) |
---|
2475 | CALL pmci_interp_tril_sn( w, wc, ico, jco, kcw, r1xo, r2xo, r1yo, r2yo, r1zw, r2zw, & |
---|
2476 | nzb_w_inner, logc_w_s, logc_ratio_w_s, nzt_topo_nestbc_s, 's', 'w' ) |
---|
2477 | CALL pmci_interp_tril_sn( e, ec, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & |
---|
2478 | nzb_s_inner, logc_u_s, logc_ratio_u_s, nzt_topo_nestbc_s, 's', 'e' ) |
---|
2479 | CALL pmci_interp_tril_sn( pt, ptc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & |
---|
2480 | nzb_s_inner, logc_u_s, logc_ratio_u_s, nzt_topo_nestbc_s, 's', 's' ) |
---|
2481 | IF ( humidity .OR. passive_scalar ) THEN |
---|
2482 | CALL pmci_interp_tril_sn( q, qc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & |
---|
2483 | nzb_s_inner, logc_u_s, logc_ratio_u_s, nzt_topo_nestbc_s, 's', 's' ) |
---|
2484 | ENDIF |
---|
2485 | IF ( nesting_mode == 'one-way' ) THEN |
---|
2486 | CALL pmci_extrap_ifoutflow_sn( u, nzb_u_inner, 's', 'u' ) |
---|
2487 | CALL pmci_extrap_ifoutflow_sn( v, nzb_v_inner, 's', 'v' ) |
---|
2488 | CALL pmci_extrap_ifoutflow_sn( w, nzb_w_inner, 's', 'w' ) |
---|
2489 | CALL pmci_extrap_ifoutflow_sn( e, nzb_s_inner, 's', 'e' ) |
---|
2490 | CALL pmci_extrap_ifoutflow_sn( pt,nzb_s_inner, 's', 's' ) |
---|
2491 | IF ( humidity .OR. passive_scalar ) THEN |
---|
2492 | CALL pmci_extrap_ifoutflow_sn( q, nzb_s_inner, 's', 's' ) |
---|
2493 | ENDIF |
---|
2494 | ENDIF |
---|
2495 | ENDIF |
---|
2496 | IF ( nest_bound_n ) THEN ! North border pe |
---|
2497 | CALL pmci_interp_tril_sn( u, uc, icu, jco, kco, r1xu, r2xu, r1yo, r2yo, r1zo, r2zo, & |
---|
2498 | nzb_u_inner, logc_u_n, logc_ratio_u_n, nzt_topo_nestbc_n, 'n', 'u' ) |
---|
2499 | CALL pmci_interp_tril_sn( v, vc, ico, jcv, kco, r1xo, r2xo, r1yv, r2yv, r1zo, r2zo, & |
---|
2500 | nzb_v_inner, logc_v_n, logc_ratio_v_n, nzt_topo_nestbc_n, 'n', 'v' ) |
---|
2501 | CALL pmci_interp_tril_sn( w, wc, ico, jco, kcw, r1xo, r2xo, r1yo, r2yo, r1zw, r2zw, & |
---|
2502 | nzb_w_inner, logc_w_n, logc_ratio_w_n, nzt_topo_nestbc_n, 'n', 'w' ) |
---|
2503 | CALL pmci_interp_tril_sn( e, ec, ico,jco,kco,r1xo,r2xo,r1yo,r2yo,r1zo,r2zo, & |
---|
2504 | nzb_s_inner, logc_u_n, logc_ratio_u_n, nzt_topo_nestbc_n, 'n', 'e' ) |
---|
2505 | CALL pmci_interp_tril_sn( pt, ptc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, & |
---|
2506 | nzb_s_inner, logc_u_n, logc_ratio_u_n, nzt_topo_nestbc_n, 'n', 's' ) |
---|
2507 | IF ( humidity .OR. passive_scalar ) THEN |
---|
2508 | CALL pmci_interp_tril_sn( q, qc, ico,jco,kco,r1xo,r2xo,r1yo,r2yo,r1zo,r2zo, & |
---|
2509 | nzb_s_inner, logc_u_n, logc_ratio_u_n, nzt_topo_nestbc_n, 'n', 's' ) |
---|
2510 | ENDIF |
---|
2511 | IF ( nesting_mode == 'one-way' ) THEN |
---|
2512 | CALL pmci_extrap_ifoutflow_sn( u, nzb_u_inner, 'n', 'u' ) |
---|
2513 | CALL pmci_extrap_ifoutflow_sn( v, nzb_v_inner, 'n', 'v' ) |
---|
2514 | CALL pmci_extrap_ifoutflow_sn( w, nzb_w_inner, 'n', 'w' ) |
---|
2515 | CALL pmci_extrap_ifoutflow_sn( e, nzb_s_inner, 'n', 'e' ) |
---|
2516 | CALL pmci_extrap_ifoutflow_sn( pt,nzb_s_inner, 'n', 's' ) |
---|
2517 | IF ( humidity .OR. passive_scalar ) THEN |
---|
2518 | CALL pmci_extrap_ifoutflow_sn( q, nzb_s_inner, 'n', 's' ) |
---|
2519 | ENDIF |
---|
2520 | ENDIF |
---|
2521 | ENDIF |
---|
2522 | |
---|
2523 | ! |
---|
2524 | !-- All PEs are top-border PEs |
---|
2525 | CALL pmci_interp_tril_t( u, uc, icu, jco, kco, r1xu, r2xu, r1yo, r2yo, r1zo, r2zo, 'u' ) |
---|
2526 | CALL pmci_interp_tril_t( v, vc, ico, jcv, kco, r1xo, r2xo, r1yv, r2yv, r1zo, r2zo, 'v' ) |
---|
2527 | CALL pmci_interp_tril_t( w, wc, ico, jco, kcw, r1xo, r2xo, r1yo, r2yo, r1zw, r2zw, 'w' ) |
---|
2528 | CALL pmci_interp_tril_t( e, ec, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, 'e' ) |
---|
2529 | CALL pmci_interp_tril_t( pt, ptc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, 's' ) |
---|
2530 | IF ( humidity .OR. passive_scalar ) THEN |
---|
2531 | CALL pmci_interp_tril_t( q, qc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, 's' ) |
---|
2532 | ENDIF |
---|
2533 | IF ( nesting_mode == 'one-way' ) THEN |
---|
2534 | CALL pmci_extrap_ifoutflow_t( u, 'u' ) |
---|
2535 | CALL pmci_extrap_ifoutflow_t( v, 'v' ) |
---|
2536 | CALL pmci_extrap_ifoutflow_t( w, 'w' ) |
---|
2537 | CALL pmci_extrap_ifoutflow_t( e, 'e' ) |
---|
2538 | CALL pmci_extrap_ifoutflow_t( pt, 's' ) |
---|
2539 | IF ( humidity .OR. passive_scalar ) THEN |
---|
2540 | CALL pmci_extrap_ifoutflow_t( q, 's' ) |
---|
2541 | ENDIF |
---|
2542 | ENDIF |
---|
2543 | END SUBROUTINE pmci_interpolation |
---|
2544 | |
---|
2545 | |
---|
2546 | |
---|
2547 | SUBROUTINE pmci_anterpolation |
---|
2548 | |
---|
2549 | ! |
---|
2550 | !-- A wrapper routine for all anterpolation actions. |
---|
2551 | IMPLICIT NONE |
---|
2552 | |
---|
2553 | CALL pmci_anterp_tophat( u, uc, kceu, iflu, ifuu, jflo, jfuo, kflo, kfuo, nzb_u_inner, 'u' ) |
---|
2554 | CALL pmci_anterp_tophat( v, vc, kceu, iflo, ifuo, jflv, jfuv, kflo, kfuo, nzb_v_inner, 'v' ) |
---|
2555 | CALL pmci_anterp_tophat( w, wc, kcew, iflo, ifuo, jflo, jfuo, kflw, kfuw, nzb_w_inner, 'w' ) |
---|
2556 | CALL pmci_anterp_tophat( pt, ptc, kceu, iflo, ifuo, jflo, jfuo, kflo, kfuo, nzb_s_inner, 's' ) |
---|
2557 | IF ( humidity .OR. passive_scalar ) THEN |
---|
2558 | CALL pmci_anterp_tophat( q, qc, kceu, iflo, ifuo, jflo, jfuo, kflo, kfuo, nzb_s_inner, 's' ) |
---|
2559 | ENDIF |
---|
2560 | |
---|
2561 | END SUBROUTINE pmci_anterpolation |
---|
2562 | |
---|
2563 | |
---|
2564 | |
---|
2565 | SUBROUTINE pmci_interp_tril_lr( f, fc, ic, jc, kc, r1x, r2x, r1y, r2y, r1z, r2z, kb, logc, logc_ratio, & |
---|
2566 | nzt_topo_nestbc, edge, var ) |
---|
2567 | |
---|
2568 | ! |
---|
2569 | !-- Interpolation of ghost-node values used as the client-domain boundary |
---|
2570 | !-- conditions. This subroutine handles the left and right boundaries. |
---|
2571 | !-- This subroutine is based on trilinear interpolation. |
---|
2572 | !-- Constant dz is still assumed. |
---|
2573 | ! |
---|
2574 | !-- Antti Hellsten 22.2.2015. |
---|
2575 | ! |
---|
2576 | !-- Rewritten so that all the coefficients and client-array indices are |
---|
2577 | !-- precomputed in the initialization phase by pmci_init_interp_tril. |
---|
2578 | ! |
---|
2579 | ! Antti Hellsten 3.3.2015. |
---|
2580 | ! |
---|
2581 | !-- Constant dz no more assumed. |
---|
2582 | ! Antti Hellsten 23.3.2015. |
---|
2583 | ! |
---|
2584 | !-- Adapted for non-flat topography. However, the near-wall velocities |
---|
2585 | !-- are log-corrected only over horizontal surfaces, not yet near vertical |
---|
2586 | !-- walls. |
---|
2587 | !-- Antti Hellsten 26.3.2015. |
---|
2588 | ! |
---|
2589 | !-- Indexing in the principal direction (i) is changed. Now, the nest-boundary |
---|
2590 | !-- values are interpolated only into the first ghost-node layers on each later |
---|
2591 | !-- boundary. These values are then simply copied to the second ghost-node layer. |
---|
2592 | ! |
---|
2593 | !-- Antti Hellsten 6.10.2015. |
---|
2594 | IMPLICIT NONE |
---|
2595 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(INOUT) :: f !: |
---|
2596 | REAL(wp), DIMENSION(0:cg%nz+1,jcs:jcn,icl:icr), INTENT(IN) :: fc !: |
---|
2597 | REAL(wp), DIMENSION(nzb:nzt_topo_nestbc,nys:nyn,1:2,0:ncorr-1), INTENT(IN) :: logc_ratio !: |
---|
2598 | REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r1x !: |
---|
2599 | REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r2x !: |
---|
2600 | REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r1y !: |
---|
2601 | REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r2y !: |
---|
2602 | REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r1z !: |
---|
2603 | REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r2z !: |
---|
2604 | |
---|
2605 | INTEGER(iwp), DIMENSION(nxlg:nxrg), INTENT(IN) :: ic !: |
---|
2606 | INTEGER(iwp), DIMENSION(nysg:nyng), INTENT(IN) :: jc !: |
---|
2607 | INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg), INTENT(IN) :: kb !: |
---|
2608 | INTEGER(iwp), DIMENSION(nzb:nzt+1), INTENT(IN) :: kc !: |
---|
2609 | INTEGER(iwp), DIMENSION(nzb:nzt_topo_nestbc,nys:nyn,1:2), INTENT(IN) :: logc !: |
---|
2610 | INTEGER(iwp) :: nzt_topo_nestbc !: |
---|
2611 | |
---|
2612 | CHARACTER(LEN=1),INTENT(IN) :: edge !: |
---|
2613 | CHARACTER(LEN=1),INTENT(IN) :: var !: |
---|
2614 | |
---|
2615 | INTEGER(iwp) :: i !: |
---|
2616 | INTEGER(iwp) :: ib !: |
---|
2617 | INTEGER(iwp) :: iw !: |
---|
2618 | INTEGER(iwp) :: j !: |
---|
2619 | INTEGER(iwp) :: jco !: |
---|
2620 | INTEGER(iwp) :: jcorr !: |
---|
2621 | INTEGER(iwp) :: jinc !: |
---|
2622 | INTEGER(iwp) :: jw !: |
---|
2623 | INTEGER(iwp) :: j1 !: |
---|
2624 | INTEGER(iwp) :: k !: |
---|
2625 | INTEGER(iwp) :: kco !: |
---|
2626 | INTEGER(iwp) :: kcorr !: |
---|
2627 | INTEGER(iwp) :: k1 !: |
---|
2628 | INTEGER(iwp) :: l !: |
---|
2629 | INTEGER(iwp) :: m !: |
---|
2630 | INTEGER(iwp) :: n !: |
---|
2631 | INTEGER(iwp) :: kbc !: |
---|
2632 | |
---|
2633 | REAL(wp) :: coarse_dx !: |
---|
2634 | REAL(wp) :: coarse_dy !: |
---|
2635 | REAL(wp) :: coarse_dz !: |
---|
2636 | REAL(wp) :: fkj !: |
---|
2637 | REAL(wp) :: fkjp !: |
---|
2638 | REAL(wp) :: fkpj !: |
---|
2639 | REAL(wp) :: fkpjp !: |
---|
2640 | REAL(wp) :: fk !: |
---|
2641 | REAL(wp) :: fkp !: |
---|
2642 | |
---|
2643 | ! |
---|
2644 | !-- Check which edge is to be handled: left or right. Note the assumption that the same PE never |
---|
2645 | !-- holds both left and right nest boundaries. Should this be changed? |
---|
2646 | IF ( edge == 'l' ) THEN |
---|
2647 | IF ( var == 'u' ) THEN ! For u, nxl is a ghost node, but not for the other variables. |
---|
2648 | i = nxl |
---|
2649 | ib = nxl - 1 |
---|
2650 | ELSE |
---|
2651 | i = nxl - 1 |
---|
2652 | ib = nxl - 2 |
---|
2653 | ENDIF |
---|
2654 | ELSEIF ( edge == 'r' ) THEN |
---|
2655 | i = nxr + 1 |
---|
2656 | ib = nxr + 2 |
---|
2657 | ENDIF |
---|
2658 | |
---|
2659 | DO j = nys, nyn + 1 |
---|
2660 | DO k = kb(j,i), nzt + 1 |
---|
2661 | l = ic(i) |
---|
2662 | m = jc(j) |
---|
2663 | n = kc(k) |
---|
2664 | fkj = r1x(i) * fc(n,m,l) + r2x(i) * fc(n,m,l+1) |
---|
2665 | fkjp = r1x(i) * fc(n,m+1,l) + r2x(i) * fc(n,m+1,l+1) |
---|
2666 | fkpj = r1x(i) * fc(n+1,m,l) + r2x(i) * fc(n+1,m,l+1) |
---|
2667 | fkpjp = r1x(i) * fc(n+1,m+1,l) + r2x(i) * fc(n+1,m+1,l+1) |
---|
2668 | fk = r1y(j) * fkj + r2y(j) * fkjp |
---|
2669 | fkp = r1y(j) * fkpj + r2y(j) * fkpjp |
---|
2670 | f(k,j,i) = r1z(k) * fk + r2z(k) * fkp |
---|
2671 | ENDDO |
---|
2672 | ENDDO |
---|
2673 | |
---|
2674 | ! |
---|
2675 | !-- Generalized log-law-correction algorithm. |
---|
2676 | !-- Doubly two-dimensional index arrays logc(:,:,1:2) and log-ratio arrays |
---|
2677 | !-- logc_ratio(:,:,1:2,0:ncorr-1) have been precomputed in subroutine pmci_init_loglaw_correction. |
---|
2678 | ! |
---|
2679 | !-- Solid surface below the node |
---|
2680 | IF ( var == 'u' .OR. var == 'v' ) THEN |
---|
2681 | DO j = nys, nyn |
---|
2682 | k = kb(j,i) + 1 |
---|
2683 | IF ( ( logc(k,j,1) /= 0 ) .AND. ( logc(k,j,2) == 0 ) ) THEN |
---|
2684 | k1 = logc(k,j,1) |
---|
2685 | DO kcorr=0,ncorr - 1 |
---|
2686 | kco = k + kcorr |
---|
2687 | f(kco,j,i) = logc_ratio(k,j,1,kcorr) * f(k1,j,i) |
---|
2688 | ENDDO |
---|
2689 | ENDIF |
---|
2690 | ENDDO |
---|
2691 | ENDIF |
---|
2692 | |
---|
2693 | ! |
---|
2694 | !-- In case of non-flat topography, also vertical walls and corners need to be treated. |
---|
2695 | !-- Only single and double wall nodes are corrected. Triple and higher-multiple wall nodes |
---|
2696 | !-- are not corrected as the log law would not be valid anyway in such locations. |
---|
2697 | IF ( topography /= 'flat' ) THEN |
---|
2698 | IF ( var == 'u' .OR. var == 'w' ) THEN |
---|
2699 | |
---|
2700 | ! |
---|
2701 | !-- Solid surface only on south/north side of the node |
---|
2702 | DO j = nys, nyn |
---|
2703 | DO k = kb(j,i) + 1, nzt_topo_nestbc |
---|
2704 | IF ( ( logc(k,j,2) /= 0 ) .AND. ( logc(k,j,1) == 0 ) ) THEN |
---|
2705 | |
---|
2706 | ! |
---|
2707 | !-- Direction of the wall-normal index is carried in as the sign of logc. |
---|
2708 | jinc = SIGN( 1, logc(k,j,2) ) |
---|
2709 | j1 = ABS( logc(k,j,2) ) |
---|
2710 | DO jcorr=0, ncorr - 1 |
---|
2711 | jco = j + jinc * jcorr |
---|
2712 | f(k,jco,i) = logc_ratio(k,j,2,jcorr) * f(k,j1,i) |
---|
2713 | ENDDO |
---|
2714 | ENDIF |
---|
2715 | ENDDO |
---|
2716 | ENDDO |
---|
2717 | ENDIF |
---|
2718 | |
---|
2719 | ! |
---|
2720 | !-- Solid surface on both below and on south/north side of the node |
---|
2721 | IF ( var == 'u' ) THEN |
---|
2722 | DO j = nys, nyn |
---|
2723 | k = kb(j,i) + 1 |
---|
2724 | IF ( ( logc(k,j,2) /= 0 ) .AND. ( logc(k,j,1) /= 0 ) ) THEN |
---|
2725 | k1 = logc(k,j,1) |
---|
2726 | jinc = SIGN( 1, logc(k,j,2) ) |
---|
2727 | j1 = ABS( logc(k,j,2) ) |
---|
2728 | DO jcorr = 0, ncorr - 1 |
---|
2729 | jco = j + jinc * jcorr |
---|
2730 | DO kcorr = 0, ncorr - 1 |
---|
2731 | kco = k + kcorr |
---|
2732 | f(kco,jco,i) = 0.5_wp * ( logc_ratio(k,j,1,kcorr) * f(k1,j,i) & |
---|
2733 | + logc_ratio(k,j,2,jcorr) * f(k,j1,i) ) |
---|
2734 | ENDDO |
---|
2735 | ENDDO |
---|
2736 | ENDIF |
---|
2737 | ENDDO |
---|
2738 | ENDIF |
---|
2739 | |
---|
2740 | ENDIF ! ( topography /= 'flat' ) |
---|
2741 | |
---|
2742 | ! |
---|
2743 | !-- Rescale if f is the TKE. |
---|
2744 | IF ( var == 'e') THEN |
---|
2745 | IF ( edge == 'l' ) THEN |
---|
2746 | DO j = nys, nyn + 1 |
---|
2747 | DO k = kb(j,i), nzt + 1 |
---|
2748 | f(k,j,i) = tkefactor_l(k,j) * f(k,j,i) |
---|
2749 | ENDDO |
---|
2750 | ENDDO |
---|
2751 | ELSEIF ( edge == 'r' ) THEN |
---|
2752 | DO j = nys, nyn + 1 |
---|
2753 | DO k = kb(j,i), nzt + 1 |
---|
2754 | f(k,j,i) = tkefactor_r(k,j) * f(k,j,i) |
---|
2755 | ENDDO |
---|
2756 | ENDDO |
---|
2757 | ENDIF |
---|
2758 | ENDIF |
---|
2759 | |
---|
2760 | ! |
---|
2761 | !-- Store the boundary values also into the second ghost node layer. |
---|
2762 | f(0:nzt+1,nys:nyn+1,ib) = f(0:nzt+1,nys:nyn+1,i) |
---|
2763 | |
---|
2764 | END SUBROUTINE pmci_interp_tril_lr |
---|
2765 | |
---|
2766 | |
---|
2767 | |
---|
2768 | SUBROUTINE pmci_interp_tril_sn( f, fc, ic, jc, kc, r1x, r2x, r1y, r2y, r1z, r2z, kb, logc, logc_ratio, & |
---|
2769 | nzt_topo_nestbc, edge, var ) |
---|
2770 | |
---|
2771 | ! |
---|
2772 | !-- Interpolation of ghost-node values used as the client-domain boundary |
---|
2773 | !-- conditions. This subroutine handles the south and north boundaries. |
---|
2774 | !-- This subroutine is based on trilinear interpolation. |
---|
2775 | !-- Constant dz is still assumed. |
---|
2776 | ! |
---|
2777 | !-- Antti Hellsten 22.2.2015. |
---|
2778 | ! |
---|
2779 | !-- Rewritten so that all the coefficients and client-array indices are |
---|
2780 | !-- precomputed in the initialization phase by pmci_init_interp_tril. |
---|
2781 | ! |
---|
2782 | !-- Antti Hellsten 3.3.2015. |
---|
2783 | ! |
---|
2784 | !-- Constant dz no more assumed. |
---|
2785 | !-- Antti Hellsten 23.3.2015. |
---|
2786 | ! |
---|
2787 | !-- Adapted for non-flat topography. However, the near-wall velocities |
---|
2788 | !-- are log-corrected only over horifontal surfaces, not yet near vertical |
---|
2789 | !-- walls. |
---|
2790 | !-- Antti Hellsten 26.3.2015. |
---|
2791 | ! |
---|
2792 | !-- Indexing in the principal direction (j) is changed. Now, the nest-boundary |
---|
2793 | !-- values are interpolated only into the first ghost-node layers on each later |
---|
2794 | !-- boundary. These values are then simply copied to the second ghost-node layer. |
---|
2795 | ! |
---|
2796 | !-- Antti Hellsten 6.10.2015. |
---|
2797 | IMPLICIT NONE |
---|
2798 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(INOUT) :: f !: |
---|
2799 | REAL(wp), DIMENSION(0:cg%nz+1,jcs:jcn,icl:icr), INTENT(IN) :: fc !: |
---|
2800 | REAL(wp), DIMENSION(nzb:nzt_topo_nestbc,nxl:nxr,1:2,0:ncorr-1), INTENT(IN) :: logc_ratio !: |
---|
2801 | REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r1x !: |
---|
2802 | REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r2x !: |
---|
2803 | REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r1y !: |
---|
2804 | REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r2y !: |
---|
2805 | REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r1z !: |
---|
2806 | REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r2z !: |
---|
2807 | |
---|
2808 | INTEGER(iwp), DIMENSION(nxlg:nxrg), INTENT(IN) :: ic !: |
---|
2809 | INTEGER(iwp), DIMENSION(nysg:nyng), INTENT(IN) :: jc !: |
---|
2810 | INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg), INTENT(IN) :: kb !: |
---|
2811 | INTEGER(iwp), DIMENSION(nzb:nzt+1), INTENT(IN) :: kc !: |
---|
2812 | INTEGER(iwp), DIMENSION(nzb:nzt_topo_nestbc,nxl:nxr,1:2), INTENT(IN) :: logc !: |
---|
2813 | INTEGER(iwp) :: nzt_topo_nestbc !: |
---|
2814 | |
---|
2815 | CHARACTER(LEN=1), INTENT(IN) :: edge !: |
---|
2816 | CHARACTER(LEN=1), INTENT(IN) :: var !: |
---|
2817 | |
---|
2818 | INTEGER(iwp) :: i !: |
---|
2819 | INTEGER(iwp) :: iinc !: |
---|
2820 | INTEGER(iwp) :: icorr !: |
---|
2821 | INTEGER(iwp) :: ico !: |
---|
2822 | INTEGER(iwp) :: i1 !: |
---|
2823 | INTEGER(iwp) :: j !: |
---|
2824 | INTEGER(iwp) :: jb !: |
---|
2825 | INTEGER(iwp) :: k !: |
---|
2826 | INTEGER(iwp) :: kcorr !: |
---|
2827 | INTEGER(iwp) :: kco !: |
---|
2828 | INTEGER(iwp) :: k1 !: |
---|
2829 | INTEGER(iwp) :: l !: |
---|
2830 | INTEGER(iwp) :: m !: |
---|
2831 | INTEGER(iwp) :: n !: |
---|
2832 | |
---|
2833 | REAL(wp) :: coarse_dx !: |
---|
2834 | REAL(wp) :: coarse_dy !: |
---|
2835 | REAL(wp) :: coarse_dz !: |
---|
2836 | REAL(wp) :: fk !: |
---|
2837 | REAL(wp) :: fkj !: |
---|
2838 | REAL(wp) :: fkjp !: |
---|
2839 | REAL(wp) :: fkpj !: |
---|
2840 | REAL(wp) :: fkpjp !: |
---|
2841 | REAL(wp) :: fkp !: |
---|
2842 | |
---|
2843 | ! |
---|
2844 | !-- Check which edge is to be handled: south or north. Note the assumption that the same PE never |
---|
2845 | !-- holds both south and north nest boundaries. Should this be changed? |
---|
2846 | IF ( edge == 's' ) THEN |
---|
2847 | IF ( var == 'v' ) THEN ! For v, nys is a ghost node, but not for the other variables. |
---|
2848 | j = nys |
---|
2849 | jb = nys - 1 |
---|
2850 | ELSE |
---|
2851 | j = nys - 1 |
---|
2852 | jb = nys - 2 |
---|
2853 | ENDIF |
---|
2854 | ELSEIF ( edge == 'n' ) THEN |
---|
2855 | j = nyn + 1 |
---|
2856 | jb = nyn + 2 |
---|
2857 | ENDIF |
---|
2858 | |
---|
2859 | DO i = nxl, nxr + 1 |
---|
2860 | DO k = kb(j,i), nzt + 1 |
---|
2861 | l = ic(i) |
---|
2862 | m = jc(j) |
---|
2863 | n = kc(k) |
---|
2864 | fkj = r1x(i) * fc(n,m,l) + r2x(i) * fc(n,m,l+1) |
---|
2865 | fkjp = r1x(i) * fc(n,m+1,l) + r2x(i) * fc(n,m+1,l+1) |
---|
2866 | fkpj = r1x(i) * fc(n+1,m,l) + r2x(i) * fc(n+1,m,l+1) |
---|
2867 | fkpjp = r1x(i) * fc(n+1,m+1,l) + r2x(i) * fc(n+1,m+1,l+1) |
---|
2868 | fk = r1y(j) * fkj + r2y(j) * fkjp |
---|
2869 | fkp = r1y(j) * fkpj + r2y(j) * fkpjp |
---|
2870 | f(k,j,i) = r1z(k) * fk + r2z(k) * fkp |
---|
2871 | ENDDO |
---|
2872 | ENDDO |
---|
2873 | |
---|
2874 | ! |
---|
2875 | !-- Generalized log-law-correction algorithm. |
---|
2876 | !-- Multiply two-dimensional index arrays logc(:,:,1:2) and log-ratio arrays |
---|
2877 | !-- logc_ratio(:,:,1:2,0:ncorr-1) have been precomputed in subroutine pmci_init_loglaw_correction. |
---|
2878 | ! |
---|
2879 | !-- Solid surface below the node |
---|
2880 | IF ( var == 'u' .OR. var == 'v' ) THEN |
---|
2881 | DO i = nxl, nxr |
---|
2882 | k = kb(j,i) + 1 |
---|
2883 | IF ( ( logc(k,i,1) /= 0 ) .AND. ( logc(k,i,2) == 0 ) ) THEN |
---|
2884 | k1 = logc(k,i,1) |
---|
2885 | DO kcorr = 0, ncorr - 1 |
---|
2886 | kco = k + kcorr |
---|
2887 | f(kco,j,i) = logc_ratio(k,i,1,kcorr) * f(k1,j,i) |
---|
2888 | ENDDO |
---|
2889 | ENDIF |
---|
2890 | ENDDO |
---|
2891 | ENDIF |
---|
2892 | |
---|
2893 | ! |
---|
2894 | !-- In case of non-flat topography, also vertical walls and corners need to be treated. |
---|
2895 | !-- Only single and double wall nodes are corrected. |
---|
2896 | !-- Triple and higher-multiple wall nodes are not corrected as it would be extremely complicated |
---|
2897 | !-- and the log law would not be valid anyway in such locations. |
---|
2898 | IF ( topography /= 'flat' ) THEN |
---|
2899 | IF ( var == 'v' .OR. var == 'w' ) THEN |
---|
2900 | DO i = nxl, nxr |
---|
2901 | DO k = kb(j,i), nzt_topo_nestbc |
---|
2902 | |
---|
2903 | ! |
---|
2904 | !-- Solid surface only on left/right side of the node |
---|
2905 | IF ( ( logc(k,i,2) /= 0 ) .AND. ( logc(k,i,1) == 0 ) ) THEN |
---|
2906 | |
---|
2907 | ! |
---|
2908 | !-- Direction of the wall-normal index is carried in as the sign of logc. |
---|
2909 | iinc = SIGN( 1, logc(k,i,2) ) |
---|
2910 | i1 = ABS( logc(k,i,2) ) |
---|
2911 | DO icorr = 0, ncorr - 1 |
---|
2912 | ico = i + iinc * icorr |
---|
2913 | f(k,j,ico) = logc_ratio(k,i,2,icorr) * f(k,j,i1) |
---|
2914 | ENDDO |
---|
2915 | ENDIF |
---|
2916 | ENDDO |
---|
2917 | ENDDO |
---|
2918 | ENDIF |
---|
2919 | |
---|
2920 | ! |
---|
2921 | !-- Solid surface on both below and on left/right side of the node |
---|
2922 | IF ( var == 'v' ) THEN |
---|
2923 | DO i = nxl, nxr |
---|
2924 | k = kb(j,i) + 1 |
---|
2925 | IF ( ( logc(k,i,2) /= 0 ) .AND. ( logc(k,i,1) /= 0 ) ) THEN |
---|
2926 | k1 = logc(k,i,1) |
---|
2927 | iinc = SIGN( 1, logc(k,i,2) ) |
---|
2928 | i1 = ABS( logc(k,i,2) ) |
---|
2929 | DO icorr = 0, ncorr - 1 |
---|
2930 | ico = i + iinc * icorr |
---|
2931 | DO kcorr = 0, ncorr - 1 |
---|
2932 | kco = k + kcorr |
---|
2933 | f(kco,i,ico) = 0.5_wp * ( logc_ratio(k,i,1,kcorr) * f(k1,j,i) & |
---|
2934 | + logc_ratio(k,i,2,icorr) * f(k,j,i1) ) |
---|
2935 | ENDDO |
---|
2936 | ENDDO |
---|
2937 | ENDIF |
---|
2938 | ENDDO |
---|
2939 | ENDIF |
---|
2940 | |
---|
2941 | ENDIF ! ( topography /= 'flat' ) |
---|
2942 | |
---|
2943 | ! |
---|
2944 | !-- Rescale if f is the TKE. |
---|
2945 | IF ( var == 'e') THEN |
---|
2946 | IF ( edge == 's' ) THEN |
---|
2947 | DO i = nxl, nxr + 1 |
---|
2948 | DO k = kb(j,i), nzt + 1 |
---|
2949 | f(k,j,i) = tkefactor_s(k,i) * f(k,j,i) |
---|
2950 | ENDDO |
---|
2951 | ENDDO |
---|
2952 | ELSEIF ( edge == 'n' ) THEN |
---|
2953 | DO i = nxl, nxr + 1 |
---|
2954 | DO k = kb(j,i), nzt + 1 |
---|
2955 | f(k,j,i) = tkefactor_n(k,i) * f(k,j,i) |
---|
2956 | ENDDO |
---|
2957 | ENDDO |
---|
2958 | ENDIF |
---|
2959 | ENDIF |
---|
2960 | |
---|
2961 | ! |
---|
2962 | !-- Store the boundary values also into the second ghost node layer. |
---|
2963 | f(0:nzt+1,jb,nxl:nxr+1) = f(0:nzt+1,j,nxl:nxr+1) |
---|
2964 | |
---|
2965 | END SUBROUTINE pmci_interp_tril_sn |
---|
2966 | |
---|
2967 | |
---|
2968 | |
---|
2969 | SUBROUTINE pmci_interp_tril_t( f, fc, ic, jc, kc, r1x, r2x, r1y, r2y, r1z, r2z, var ) |
---|
2970 | |
---|
2971 | ! |
---|
2972 | !-- Interpolation of ghost-node values used as the client-domain boundary |
---|
2973 | !-- conditions. This subroutine handles the top boundary. |
---|
2974 | !-- This subroutine is based on trilinear interpolation. |
---|
2975 | !-- Constant dz is still assumed. |
---|
2976 | ! |
---|
2977 | !-- Antti Hellsten 23.2.2015. |
---|
2978 | ! |
---|
2979 | ! |
---|
2980 | !-- Rewritten so that all the coefficients and client-array indices are |
---|
2981 | !-- precomputed in the initialization phase by pmci_init_interp_tril. |
---|
2982 | ! |
---|
2983 | !-- Antti Hellsten 3.3.2015. |
---|
2984 | ! |
---|
2985 | !-- Constant dz no more assumed. |
---|
2986 | !-- Antti Hellsten 23.3.2015. |
---|
2987 | ! |
---|
2988 | !-- Indexing in the principal direction (k) is changed. Now, the nest-boundary |
---|
2989 | !-- values are interpolated only into the first ghost-node layer. Actually there is |
---|
2990 | !-- only one ghost-node layer in the k-direction. |
---|
2991 | ! |
---|
2992 | !-- Antti Hellsten 6.10.2015. |
---|
2993 | ! |
---|
2994 | IMPLICIT NONE |
---|
2995 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(INOUT) :: f !: |
---|
2996 | REAL(wp), DIMENSION(0:cg%nz+1,jcs:jcn,icl:icr), INTENT(IN) :: fc !: |
---|
2997 | REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r1x !: |
---|
2998 | REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r2x !: |
---|
2999 | REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r1y !: |
---|
3000 | REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r2y !: |
---|
3001 | REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r1z !: |
---|
3002 | REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r2z !: |
---|
3003 | |
---|
3004 | INTEGER(iwp), DIMENSION(nxlg:nxrg), INTENT(IN) :: ic !: |
---|
3005 | INTEGER(iwp), DIMENSION(nysg:nyng), INTENT(IN) :: jc !: |
---|
3006 | INTEGER(iwp), DIMENSION(nzb:nzt+1), INTENT(IN) :: kc !: |
---|
3007 | |
---|
3008 | CHARACTER(LEN=1), INTENT(IN) :: var !: |
---|
3009 | |
---|
3010 | INTEGER(iwp) :: i !: |
---|
3011 | INTEGER(iwp) :: j !: |
---|
3012 | INTEGER(iwp) :: k !: |
---|
3013 | INTEGER(iwp) :: l !: |
---|
3014 | INTEGER(iwp) :: m !: |
---|
3015 | INTEGER(iwp) :: n !: |
---|
3016 | |
---|
3017 | REAL(wp) :: coarse_dx !: |
---|
3018 | REAL(wp) :: coarse_dy !: |
---|
3019 | REAL(wp) :: coarse_dz !: |
---|
3020 | REAL(wp) :: fk !: |
---|
3021 | REAL(wp) :: fkj !: |
---|
3022 | REAL(wp) :: fkjp !: |
---|
3023 | REAL(wp) :: fkpj !: |
---|
3024 | REAL(wp) :: fkpjp !: |
---|
3025 | REAL(wp) :: fkp !: |
---|
3026 | |
---|
3027 | |
---|
3028 | IF ( var == 'w' ) THEN |
---|
3029 | k = nzt |
---|
3030 | ELSE |
---|
3031 | k = nzt + 1 |
---|
3032 | ENDIF |
---|
3033 | |
---|
3034 | DO i = nxl - 1, nxr + 1 |
---|
3035 | DO j = nys - 1, nyn + 1 |
---|
3036 | l = ic(i) |
---|
3037 | m = jc(j) |
---|
3038 | n = kc(k) |
---|
3039 | fkj = r1x(i) * fc(n,m,l) + r2x(i) * fc(n,m,l+1) |
---|
3040 | fkjp = r1x(i) * fc(n,m+1,l) + r2x(i) * fc(n,m+1,l+1) |
---|
3041 | fkpj = r1x(i) * fc(n+1,m,l) + r2x(i) * fc(n+1,m,l+1) |
---|
3042 | fkpjp = r1x(i) * fc(n+1,m+1,l) + r2x(i) * fc(n+1,m+1,l+1) |
---|
3043 | fk = r1y(j) * fkj + r2y(j) * fkjp |
---|
3044 | fkp = r1y(j) * fkpj + r2y(j) * fkpjp |
---|
3045 | f(k,j,i) = r1z(k) * fk + r2z(k) * fkp |
---|
3046 | ENDDO |
---|
3047 | ENDDO |
---|
3048 | |
---|
3049 | ! |
---|
3050 | !-- Just fill up the second ghost-node layer for w. |
---|
3051 | IF ( var == 'w' ) THEN |
---|
3052 | f(nzt+1,:,:) = f(nzt,:,:) |
---|
3053 | ENDIF |
---|
3054 | |
---|
3055 | ! |
---|
3056 | !-- Rescale if f is the TKE. |
---|
3057 | !-- It is assumed that the bottom surface never reaches the top |
---|
3058 | !--- boundary of a nest domain. |
---|
3059 | IF ( var == 'e') THEN |
---|
3060 | DO i = nxl, nxr |
---|
3061 | DO j = nys, nyn |
---|
3062 | f(k,j,i) = tkefactor_t(j,i) * f(k,j,i) |
---|
3063 | ENDDO |
---|
3064 | ENDDO |
---|
3065 | ENDIF |
---|
3066 | |
---|
3067 | END SUBROUTINE pmci_interp_tril_t |
---|
3068 | |
---|
3069 | |
---|
3070 | |
---|
3071 | SUBROUTINE pmci_extrap_ifoutflow_lr( f, kb, edge, var ) |
---|
3072 | |
---|
3073 | ! |
---|
3074 | !-- After the interpolation of ghost-node values for the client-domain boundary |
---|
3075 | !-- conditions, this subroutine checks if there is a local outflow through the |
---|
3076 | !-- boundary. In that case this subroutine overwrites the interpolated values |
---|
3077 | !-- by values extrapolated from the domain. This subroutine handles the left and |
---|
3078 | !-- right boundaries. |
---|
3079 | !-- However, this operation is only needed in case of one-way coupling. |
---|
3080 | ! |
---|
3081 | !-- Antti Hellsten 9.3.2015. |
---|
3082 | ! |
---|
3083 | !-- Indexing in the principal direction (i) is changed. Now, the nest-boundary |
---|
3084 | !-- values are interpolated only into the first ghost-node layers on each later |
---|
3085 | !-- boundary. These values are then simply copied to the second ghost-node layer. |
---|
3086 | ! |
---|
3087 | !-- Antti Hellsten 6.10.2015. |
---|
3088 | ! |
---|
3089 | IMPLICIT NONE |
---|
3090 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(INOUT) :: f !: |
---|
3091 | INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg), INTENT(IN) :: kb !: |
---|
3092 | |
---|
3093 | CHARACTER(LEN=1),INTENT(IN) :: edge !: |
---|
3094 | CHARACTER(LEN=1),INTENT(IN) :: var !: |
---|
3095 | |
---|
3096 | INTEGER(iwp) :: i !: |
---|
3097 | INTEGER(iwp) :: ib !: |
---|
3098 | INTEGER(iwp) :: ied !: |
---|
3099 | INTEGER(iwp) :: j !: |
---|
3100 | INTEGER(iwp) :: k !: |
---|
3101 | |
---|
3102 | REAL(wp) :: outnor !: |
---|
3103 | REAL(wp) :: vdotnor !: |
---|
3104 | |
---|
3105 | ! |
---|
3106 | !-- Check which edge is to be handled: left or right. |
---|
3107 | IF ( edge == 'l' ) THEN |
---|
3108 | IF ( var == 'u' ) THEN |
---|
3109 | i = nxl |
---|
3110 | ib = nxl - 1 |
---|
3111 | ied = nxl + 1 |
---|
3112 | ELSE |
---|
3113 | i = nxl - 1 |
---|
3114 | ib = nxl - 2 |
---|
3115 | ied = nxl |
---|
3116 | ENDIF |
---|
3117 | outnor = -1.0_wp |
---|
3118 | ELSEIF ( edge == 'r' ) THEN |
---|
3119 | i = nxr + 1 |
---|
3120 | ib = nxr + 2 |
---|
3121 | ied = nxr |
---|
3122 | outnor = 1.0_wp |
---|
3123 | ENDIF |
---|
3124 | |
---|
3125 | DO j = nys, nyn + 1 |
---|
3126 | DO k = kb(j,i), nzt +1 |
---|
3127 | vdotnor = outnor * u(k,j,ied) |
---|
3128 | IF ( vdotnor > 0.0_wp ) THEN ! Local outflow. |
---|
3129 | f(k,j,i) = f(k,j,ied) |
---|
3130 | ENDIF |
---|
3131 | ENDDO |
---|
3132 | IF ( (var == 'u' ) .OR. (var == 'v' ) .OR. (var == 'w') ) THEN |
---|
3133 | f(kb(j,i),j,i) = 0.0_wp |
---|
3134 | ENDIF |
---|
3135 | ENDDO |
---|
3136 | |
---|
3137 | ! |
---|
3138 | !-- Store the updated boundary values also into the second ghost node layer. |
---|
3139 | f(0:nzt,nys:nyn+1,ib) = f(0:nzt,nys:nyn+1,i) |
---|
3140 | |
---|
3141 | END SUBROUTINE pmci_extrap_ifoutflow_lr |
---|
3142 | |
---|
3143 | |
---|
3144 | |
---|
3145 | SUBROUTINE pmci_extrap_ifoutflow_sn( f, kb, edge, var ) |
---|
3146 | ! |
---|
3147 | !-- After the interpolation of ghost-node values for the client-domain boundary |
---|
3148 | !-- conditions, this subroutine checks if there is a local outflow through the |
---|
3149 | !-- boundary. In that case this subroutine overwrites the interpolated values |
---|
3150 | !-- by values extrapolated from the domain. This subroutine handles the south and |
---|
3151 | !-- north boundaries. |
---|
3152 | ! |
---|
3153 | !-- Antti Hellsten 9.3.2015. |
---|
3154 | ! |
---|
3155 | !-- Indexing in the principal direction (j) is changed. Now, the nest-boundary |
---|
3156 | !-- values are interpolated only into the first ghost-node layers on each later |
---|
3157 | !-- boundary. These values are then simply copied to the second ghost-node layer. |
---|
3158 | ! |
---|
3159 | !-- Antti Hellsten 6.10.2015. |
---|
3160 | |
---|
3161 | IMPLICIT NONE |
---|
3162 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(INOUT) :: f !: |
---|
3163 | INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg), INTENT(IN) :: kb !: |
---|
3164 | CHARACTER(LEN=1), INTENT(IN) :: edge !: |
---|
3165 | CHARACTER(LEN=1), INTENT(IN) :: var !: |
---|
3166 | |
---|
3167 | INTEGER(iwp) :: i !: |
---|
3168 | INTEGER(iwp) :: j !: |
---|
3169 | INTEGER(iwp) :: jb !: |
---|
3170 | INTEGER(iwp) :: jed !: |
---|
3171 | INTEGER(iwp) :: k !: |
---|
3172 | REAL(wp) :: outnor !: |
---|
3173 | REAL(wp) :: vdotnor !: |
---|
3174 | |
---|
3175 | ! |
---|
3176 | !-- Check which edge is to be handled: left or right. |
---|
3177 | IF ( edge == 's' ) THEN |
---|
3178 | IF ( var == 'v' ) THEN |
---|
3179 | j = nys |
---|
3180 | jb = nys - 1 |
---|
3181 | jed = nys + 1 |
---|
3182 | ELSE |
---|
3183 | j = nys - 1 |
---|
3184 | jb = nys - 2 |
---|
3185 | jed = nys |
---|
3186 | ENDIF |
---|
3187 | outnor = -1.0_wp |
---|
3188 | ELSEIF ( edge == 'n' ) THEN |
---|
3189 | j = nyn + 1 |
---|
3190 | jb = nyn + 2 |
---|
3191 | jed = nyn |
---|
3192 | outnor = 1.0_wp |
---|
3193 | ENDIF |
---|
3194 | |
---|
3195 | DO i = nxl, nxr + 1 |
---|
3196 | DO k = kb(j,i), nzt + 1 |
---|
3197 | vdotnor = outnor * v(k,jed,i) |
---|
3198 | IF ( vdotnor > 0.0_wp ) THEN ! Local outflow. |
---|
3199 | f(k,j,i) = f(k,jed,i) |
---|
3200 | ENDIF |
---|
3201 | ENDDO |
---|
3202 | IF ( (var == 'u' ) .OR. (var == 'v' ) .OR. (var == 'w') ) THEN |
---|
3203 | f(kb(j,i),j,i) = 0.0_wp |
---|
3204 | ENDIF |
---|
3205 | ENDDO |
---|
3206 | |
---|
3207 | ! |
---|
3208 | !-- Store the updated boundary values also into the second ghost node layer. |
---|
3209 | f(0:nzt,jb,nxl:nxr+1) = f(0:nzt,j,nxl:nxr+1) |
---|
3210 | |
---|
3211 | END SUBROUTINE pmci_extrap_ifoutflow_sn |
---|
3212 | |
---|
3213 | |
---|
3214 | |
---|
3215 | SUBROUTINE pmci_extrap_ifoutflow_t( f, var ) |
---|
3216 | |
---|
3217 | ! |
---|
3218 | !-- Interpolation of ghost-node values used as the client-domain boundary |
---|
3219 | !-- conditions. This subroutine handles the top boundary. |
---|
3220 | !-- This subroutine is based on trilinear interpolation. |
---|
3221 | ! |
---|
3222 | !-- Antti Hellsten 23.2.2015. |
---|
3223 | ! |
---|
3224 | ! |
---|
3225 | !-- Rewritten so that all the coefficients and client-array indices are |
---|
3226 | !-- precomputed in the initialization phase by init_interp_tril. |
---|
3227 | ! |
---|
3228 | !-- Antti Hellsten 3.3.2015. |
---|
3229 | ! |
---|
3230 | !-- Indexing in the principal direction (k) is changed. Now, the nest-boundary |
---|
3231 | !-- values are extrapolated only into the first ghost-node layer. Actually there is |
---|
3232 | !-- only one ghost-node layer in the k-direction. |
---|
3233 | ! |
---|
3234 | !-- Antti Hellsten 6.10.2015. |
---|
3235 | IMPLICIT NONE |
---|
3236 | REAL(wp), DIMENSION(nzb:nzt+1,nys-nbgp:nyn+nbgp,nxl-nbgp:nxr+nbgp), INTENT(INOUT) :: f !: |
---|
3237 | CHARACTER(LEN=1), INTENT(IN) :: var !: |
---|
3238 | |
---|
3239 | INTEGER(iwp) :: i !: |
---|
3240 | INTEGER(iwp) :: j !: |
---|
3241 | INTEGER(iwp) :: k !: |
---|
3242 | INTEGER(iwp) :: ked !: |
---|
3243 | REAL(wp) :: vdotnor !: |
---|
3244 | |
---|
3245 | |
---|
3246 | IF ( var == 'w' ) THEN |
---|
3247 | k = nzt |
---|
3248 | ked = nzt - 1 |
---|
3249 | ELSE |
---|
3250 | k = nzt + 1 |
---|
3251 | ked = nzt |
---|
3252 | ENDIF |
---|
3253 | |
---|
3254 | DO i = nxl, nxr |
---|
3255 | DO j = nys, nyn |
---|
3256 | vdotnor = w(ked,j,i) |
---|
3257 | IF ( vdotnor > 0.0_wp ) THEN !: Local outflow. |
---|
3258 | f(k,j,i) = f(ked,j,i) |
---|
3259 | ENDIF |
---|
3260 | ENDDO |
---|
3261 | ENDDO |
---|
3262 | |
---|
3263 | ! |
---|
3264 | !-- Just fill up the second ghost-node layer for w. |
---|
3265 | IF ( var == 'w' ) THEN |
---|
3266 | f(nzt+1,:,:) = f(nzt,:,:) |
---|
3267 | ENDIF |
---|
3268 | |
---|
3269 | END SUBROUTINE pmci_extrap_ifoutflow_t |
---|
3270 | |
---|
3271 | |
---|
3272 | |
---|
3273 | SUBROUTINE pmci_anterp_tophat( f, fc, kce, ifl, ifu, jfl, jfu, kfl, kfu, kb, var ) |
---|
3274 | ! |
---|
3275 | !-- Anterpolation of internal-node values to be used as the server-domain |
---|
3276 | !-- values. This subroutine is based on the first-order numerical |
---|
3277 | !-- integration of the fine-grid values contained within the coarse-grid |
---|
3278 | !-- cell. |
---|
3279 | ! |
---|
3280 | !-- Antti Hellsten 16.9.2015. |
---|
3281 | ! |
---|
3282 | IMPLICIT NONE |
---|
3283 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(IN) :: f !: |
---|
3284 | REAL(wp), DIMENSION(0:cg%nz+1,jcs:jcn,icl:icr), INTENT(INOUT) :: fc !: |
---|
3285 | INTEGER(iwp), DIMENSION(icl:icr), INTENT(IN) :: ifl !: |
---|
3286 | INTEGER(iwp), DIMENSION(icl:icr), INTENT(IN) :: ifu !: |
---|
3287 | INTEGER(iwp), DIMENSION(jcs:jcn), INTENT(IN) :: jfl !: |
---|
3288 | INTEGER(iwp), DIMENSION(jcs:jcn), INTENT(IN) :: jfu !: |
---|
3289 | INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg), INTENT(IN) :: kb !: may be unnecessary |
---|
3290 | INTEGER(iwp), INTENT(IN) :: kce !: |
---|
3291 | INTEGER(iwp), DIMENSION(0:kce), INTENT(IN) :: kfl !: |
---|
3292 | INTEGER(iwp), DIMENSION(0:kce), INTENT(IN) :: kfu !: |
---|
3293 | CHARACTER(LEN=1), INTENT(IN) :: var !: |
---|
3294 | |
---|
3295 | INTEGER(iwp) :: i !: |
---|
3296 | INTEGER(iwp) :: icb !: |
---|
3297 | INTEGER(iwp) :: ice !: |
---|
3298 | INTEGER(iwp) :: ifc !: |
---|
3299 | INTEGER(iwp) :: ijfc !: |
---|
3300 | INTEGER(iwp) :: j !: |
---|
3301 | INTEGER(iwp) :: jcb !: |
---|
3302 | INTEGER(iwp) :: jce !: |
---|
3303 | INTEGER(iwp) :: k !: |
---|
3304 | INTEGER(iwp) :: kcb !: |
---|
3305 | INTEGER(iwp) :: l !: |
---|
3306 | INTEGER(iwp) :: m !: |
---|
3307 | INTEGER(iwp) :: n !: |
---|
3308 | INTEGER(iwp) :: nfc !: |
---|
3309 | REAL(wp) :: cellsum !: |
---|
3310 | REAL(wp) :: f1f !: |
---|
3311 | REAL(wp) :: fra !: |
---|
3312 | |
---|
3313 | |
---|
3314 | icb = icl |
---|
3315 | ice = icr |
---|
3316 | jcb = jcs |
---|
3317 | jce = jcn |
---|
3318 | |
---|
3319 | ! |
---|
3320 | !-- Define the index bounds icb, ice, jcb and jce. |
---|
3321 | !-- Note that kcb is simply zero and kce enters here as a parameter and it is |
---|
3322 | !-- determined in init_anterp_tophat |
---|
3323 | IF ( nest_bound_l ) THEN |
---|
3324 | IF ( var == 'u' ) THEN |
---|
3325 | icb = icl + nhll + 1 |
---|
3326 | ELSE |
---|
3327 | icb = icl + nhll |
---|
3328 | ENDIF |
---|
3329 | ENDIF |
---|
3330 | IF ( nest_bound_r ) THEN |
---|
3331 | ice = icr - nhlr |
---|
3332 | ENDIF |
---|
3333 | |
---|
3334 | IF ( nest_bound_s ) THEN |
---|
3335 | IF ( var == 'v' ) THEN |
---|
3336 | jcb = jcs + nhls + 1 |
---|
3337 | ELSE |
---|
3338 | jcb = jcs + nhls |
---|
3339 | ENDIF |
---|
3340 | ENDIF |
---|
3341 | IF ( nest_bound_n ) THEN |
---|
3342 | jce = jcn - nhln |
---|
3343 | ENDIF |
---|
3344 | kcb = 0 |
---|
3345 | |
---|
3346 | ! |
---|
3347 | !-- Note that l,m, and n are coarse-grid indices and i,j, and k are fine-grid indices. |
---|
3348 | DO l = icb, ice |
---|
3349 | ifc = ifu(l) - ifl(l) + 1 |
---|
3350 | DO m = jcb, jce |
---|
3351 | ijfc = ifc * ( jfu(m) - jfl(m) +1 ) |
---|
3352 | |
---|
3353 | ! |
---|
3354 | !-- How to deal with the lower bound of k in case of non-flat topography? |
---|
3355 | !kcb = MIN( kb(jfl(m),ifl(l)), kb(jfu(m),ifl(l)), kb(jfl(m),ifu(l)), kb(jfu(m),ifu(l)) ) ! Something wrong with this. |
---|
3356 | DO n = kcb, kce |
---|
3357 | nfc = ijfc * ( kfu(n) - kfl(n) + 1 ) |
---|
3358 | cellsum = 0.0 |
---|
3359 | DO i = ifl(l), ifu(l) |
---|
3360 | DO j = jfl(m), jfu(m) |
---|
3361 | DO k = kfl(n), kfu(n) |
---|
3362 | cellsum = cellsum + f(k,j,i) |
---|
3363 | ENDDO |
---|
3364 | ENDDO |
---|
3365 | ENDDO |
---|
3366 | |
---|
3367 | ! |
---|
3368 | !-- Spatial under-relaxation. |
---|
3369 | fra = frax(l) * fray(m) * fraz(n) |
---|
3370 | !-- TO_DO: why not KIND=wp ? |
---|
3371 | fc(n,m,l) = ( 1.0_wp - fra ) * fc(n,m,l) + fra * cellsum / REAL( nfc, KIND=KIND(cellsum) ) |
---|
3372 | ENDDO |
---|
3373 | ENDDO |
---|
3374 | ENDDO |
---|
3375 | |
---|
3376 | END SUBROUTINE pmci_anterp_tophat |
---|
3377 | |
---|
3378 | #endif |
---|
3379 | END SUBROUTINE pmci_client_datatrans |
---|
3380 | |
---|
3381 | |
---|
3382 | |
---|
3383 | SUBROUTINE pmci_update_new |
---|
3384 | |
---|
3385 | #if defined( __parallel ) |
---|
3386 | ! |
---|
3387 | !-- Copy the interpolated/anterpolated boundary values to the _p |
---|
3388 | !-- arrays, too, to make sure the interpolated/anterpolated boundary |
---|
3389 | !-- values are carried over from one RK inner step to another. |
---|
3390 | !-- So far works only with the cpp-switch __nopointer. |
---|
3391 | ! |
---|
3392 | !-- Antti Hellsten 8.3.2015 |
---|
3393 | ! |
---|
3394 | |
---|
3395 | !-- Just debugging |
---|
3396 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
3397 | |
---|
3398 | u_p = u |
---|
3399 | v_p = v |
---|
3400 | w_p = w |
---|
3401 | e_p = e |
---|
3402 | pt_p = pt |
---|
3403 | IF ( humidity .OR. passive_scalar ) THEN |
---|
3404 | q_p = q |
---|
3405 | ENDIF |
---|
3406 | |
---|
3407 | ! |
---|
3408 | !-- TO_DO: Find out later if nesting would work without __nopointer. |
---|
3409 | #endif |
---|
3410 | |
---|
3411 | END SUBROUTINE pmci_update_new |
---|
3412 | |
---|
3413 | |
---|
3414 | |
---|
3415 | SUBROUTINE pmci_set_array_pointer( name, client_id, nz_cl ) |
---|
3416 | |
---|
3417 | IMPLICIT NONE |
---|
3418 | |
---|
3419 | INTEGER, INTENT(IN) :: client_id !: |
---|
3420 | INTEGER, INTENT(IN) :: nz_cl !: |
---|
3421 | CHARACTER(LEN=*), INTENT(IN) :: name !: |
---|
3422 | |
---|
3423 | #if defined( __parallel ) |
---|
3424 | REAL(wp), POINTER, DIMENSION(:,:) :: p_2d !: |
---|
3425 | REAL(wp), POINTER, DIMENSION(:,:) :: p_2d_sec !: |
---|
3426 | REAL(wp), POINTER, DIMENSION(:,:,:) :: p_3d !: |
---|
3427 | REAL(wp), POINTER, DIMENSION(:,:,:) :: p_3d_sec !: |
---|
3428 | INTEGER(iwp) :: ierr !: |
---|
3429 | INTEGER(iwp) :: istat !: |
---|
3430 | |
---|
3431 | |
---|
3432 | NULLIFY( p_3d ) |
---|
3433 | NULLIFY( p_2d ) |
---|
3434 | |
---|
3435 | ! |
---|
3436 | !-- List of array names, which can be coupled |
---|
3437 | !-- In case of 3D please change also the second array for the pointer version |
---|
3438 | IF ( TRIM(name) == "u" ) p_3d => u |
---|
3439 | IF ( TRIM(name) == "v" ) p_3d => v |
---|
3440 | IF ( TRIM(name) == "w" ) p_3d => w |
---|
3441 | IF ( TRIM(name) == "e" ) p_3d => e |
---|
3442 | IF ( TRIM(name) == "pt" ) p_3d => pt |
---|
3443 | IF ( TRIM(name) == "q" ) p_3d => q |
---|
3444 | ! |
---|
3445 | !-- This is just an example for a 2D array, not active for coupling |
---|
3446 | !-- Please note, that z0 has to be declared as TARGET array in modules.f90 |
---|
3447 | ! IF ( TRIM(name) == "z0" ) p_2d => z0 |
---|
3448 | |
---|
3449 | #if defined( __nopointer ) |
---|
3450 | IF ( ASSOCIATED( p_3d ) ) THEN |
---|
3451 | CALL pmc_s_set_dataarray( client_id, p_3d, nz_cl, nz ) |
---|
3452 | ELSEIF ( ASSOCIATED( p_2d ) ) THEN |
---|
3453 | CALL pmc_s_set_dataarray( client_id, p_2d ) |
---|
3454 | ELSE |
---|
3455 | ! |
---|
3456 | !-- Give only one message for the root domain |
---|
3457 | IF ( myid == 0 .AND. cpl_id == 1 ) THEN |
---|
3458 | |
---|
3459 | message_string = 'pointer for array "' // TRIM( name ) // & |
---|
3460 | '" can''t be associated' |
---|
3461 | CALL message( 'pmci_set_array_pointer', 'PA0117', 3, 2, 0, 6, 0 ) |
---|
3462 | ELSE |
---|
3463 | ! |
---|
3464 | !-- Avoid others to continue |
---|
3465 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
3466 | ENDIF |
---|
3467 | ENDIF |
---|
3468 | #else |
---|
3469 | !-- TO_DO: Why aren't the other pointers (p_3d) not set to u_1, v_1, etc.?? |
---|
3470 | IF ( TRIM(name) == "u" ) p_3d_sec => u_2 |
---|
3471 | IF ( TRIM(name) == "v" ) p_3d_sec => v_2 |
---|
3472 | IF ( TRIM(name) == "w" ) p_3d_sec => w_2 |
---|
3473 | IF ( TRIM(name) == "e" ) p_3d_sec => e_2 |
---|
3474 | IF ( TRIM(name) == "pt" ) p_3d_sec => pt_2 |
---|
3475 | IF ( TRIM(name) == "q" ) p_3d_sec => q_2 |
---|
3476 | |
---|
3477 | IF ( ASSOCIATED( p_3d ) ) THEN |
---|
3478 | CALL pmc_s_set_dataarray( client_id, p_3d, nz_cl, nz, & |
---|
3479 | array_2 = p_3d_sec ) |
---|
3480 | ELSEIF ( ASSOCIATED( p_2d ) ) THEN |
---|
3481 | CALL pmc_s_set_dataarray( client_id, p_2d ) |
---|
3482 | ELSE |
---|
3483 | ! |
---|
3484 | !-- Give only one message for the root domain |
---|
3485 | IF ( myid == 0 .AND. cpl_id == 1 ) THEN |
---|
3486 | |
---|
3487 | message_string = 'pointer for array "' // TRIM( name ) // & |
---|
3488 | '" can''t be associated' |
---|
3489 | CALL message( 'pmci_set_array_pointer', 'PA0117', 3, 2, 0, 6, 0 ) |
---|
3490 | ELSE |
---|
3491 | ! |
---|
3492 | !-- Avoid others to continue |
---|
3493 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
3494 | ENDIF |
---|
3495 | |
---|
3496 | ENDIF |
---|
3497 | #endif |
---|
3498 | |
---|
3499 | #endif |
---|
3500 | END SUBROUTINE pmci_set_array_pointer |
---|
3501 | |
---|
3502 | |
---|
3503 | |
---|
3504 | SUBROUTINE pmci_create_client_arrays( name, is, ie, js, je, nzc ) |
---|
3505 | |
---|
3506 | IMPLICIT NONE |
---|
3507 | |
---|
3508 | INTEGER(iwp), INTENT(IN) :: ie !: |
---|
3509 | INTEGER(iwp), INTENT(IN) :: is !: |
---|
3510 | INTEGER(iwp), INTENT(IN) :: je !: |
---|
3511 | INTEGER(iwp), INTENT(IN) :: js !: |
---|
3512 | INTEGER(iwp), INTENT(IN) :: nzc !: Note that nzc is cg%nz |
---|
3513 | CHARACTER(LEN=*), INTENT(IN) :: name !: |
---|
3514 | |
---|
3515 | #if defined( __parallel ) |
---|
3516 | REAL(wp), POINTER,DIMENSION(:,:) :: p_2d !: |
---|
3517 | REAL(wp), POINTER,DIMENSION(:,:,:) :: p_3d !: |
---|
3518 | INTEGER(iwp) :: ierr !: |
---|
3519 | INTEGER(iwp) :: istat !: |
---|
3520 | |
---|
3521 | |
---|
3522 | NULLIFY( p_3d ) |
---|
3523 | NULLIFY( p_2d ) |
---|
3524 | |
---|
3525 | ! |
---|
3526 | !-- List of array names, which can be coupled. |
---|
3527 | !-- AH: Note that the k-range of the *c arrays is changed from 1:nz to 0:nz+1. |
---|
3528 | IF ( TRIM( name ) == "u" ) THEN |
---|
3529 | IF ( .NOT. ALLOCATED( uc ) ) ALLOCATE( uc(0:nzc+1, js:je, is:ie) ) |
---|
3530 | p_3d => uc |
---|
3531 | ELSEIF ( TRIM( name ) == "v" ) THEN |
---|
3532 | IF ( .NOT. ALLOCATED( vc ) ) ALLOCATE( vc(0:nzc+1, js:je, is:ie) ) |
---|
3533 | p_3d => vc |
---|
3534 | ELSEIF ( TRIM( name ) == "w" ) THEN |
---|
3535 | IF ( .NOT. ALLOCATED( wc ) ) ALLOCATE( wc(0:nzc+1, js:je, is:ie) ) |
---|
3536 | p_3d => wc |
---|
3537 | ELSEIF ( TRIM( name ) == "e" ) THEN |
---|
3538 | IF ( .NOT. ALLOCATED( ec ) ) ALLOCATE( ec(0:nzc+1, js:je, is:ie) ) |
---|
3539 | p_3d => ec |
---|
3540 | ELSEIF ( TRIM( name ) == "pt") THEN |
---|
3541 | IF ( .NOT. ALLOCATED( ptc ) ) ALLOCATE( ptc(0:nzc+1, js:je, is:ie) ) |
---|
3542 | p_3d => ptc |
---|
3543 | ELSEIF ( TRIM( name ) == "q") THEN |
---|
3544 | IF ( .NOT. ALLOCATED( qc ) ) ALLOCATE( qc(0:nzc+1, js:je, is:ie) ) |
---|
3545 | p_3d => qc |
---|
3546 | !ELSEIF (trim(name) == "z0") then |
---|
3547 | !IF (.not.allocated(z0c)) allocate(z0c(js:je, is:ie)) |
---|
3548 | !p_2d => z0c |
---|
3549 | ENDIF |
---|
3550 | |
---|
3551 | IF ( ASSOCIATED( p_3d ) ) THEN |
---|
3552 | CALL pmc_c_set_dataarray( p_3d ) |
---|
3553 | ELSEIF ( ASSOCIATED( p_2d ) ) THEN |
---|
3554 | CALL pmc_c_set_dataarray( p_2d ) |
---|
3555 | ELSE |
---|
3556 | ! |
---|
3557 | !-- Give only one message for the first client domain |
---|
3558 | IF ( myid == 0 .AND. cpl_id == 2 ) THEN |
---|
3559 | |
---|
3560 | message_string = 'pointer for array "' // TRIM( name ) // & |
---|
3561 | '" can''t be associated' |
---|
3562 | CALL message( 'pmci_create_client_arrays', 'PA0170', 3, 2, 0, 6, 0 ) |
---|
3563 | ELSE |
---|
3564 | ! |
---|
3565 | !-- Avoid others to continue |
---|
3566 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
3567 | ENDIF |
---|
3568 | ENDIF |
---|
3569 | |
---|
3570 | #endif |
---|
3571 | END SUBROUTINE pmci_create_client_arrays |
---|
3572 | |
---|
3573 | |
---|
3574 | |
---|
3575 | SUBROUTINE pmci_server_initialize |
---|
3576 | |
---|
3577 | #if defined( __parallel ) |
---|
3578 | IMPLICIT NONE |
---|
3579 | |
---|
3580 | INTEGER(iwp) :: client_id !: |
---|
3581 | INTEGER(iwp) :: m !: |
---|
3582 | REAL(wp) :: waittime !: |
---|
3583 | |
---|
3584 | |
---|
3585 | DO m = 1, SIZE( pmc_server_for_client ) - 1 |
---|
3586 | client_id = pmc_server_for_client(m) |
---|
3587 | CALL pmc_s_fillbuffer( client_id, waittime=waittime ) |
---|
3588 | ENDDO |
---|
3589 | |
---|
3590 | #endif |
---|
3591 | END SUBROUTINE pmci_server_initialize |
---|
3592 | |
---|
3593 | |
---|
3594 | |
---|
3595 | SUBROUTINE pmci_client_initialize |
---|
3596 | |
---|
3597 | #if defined( __parallel ) |
---|
3598 | IMPLICIT NONE |
---|
3599 | |
---|
3600 | INTEGER(iwp) :: i !: |
---|
3601 | INTEGER(iwp) :: icl !: |
---|
3602 | INTEGER(iwp) :: icr !: |
---|
3603 | INTEGER(iwp) :: j !: |
---|
3604 | INTEGER(iwp) :: jcn !: |
---|
3605 | INTEGER(iwp) :: jcs !: |
---|
3606 | REAL(wp) :: waittime !: |
---|
3607 | |
---|
3608 | |
---|
3609 | IF ( cpl_id > 1 ) THEN ! Root id is never a client |
---|
3610 | |
---|
3611 | ! |
---|
3612 | !-- Client domain boundaries in the server indice space. |
---|
3613 | icl = coarse_bound(1) |
---|
3614 | icr = coarse_bound(2) |
---|
3615 | jcs = coarse_bound(3) |
---|
3616 | jcn = coarse_bound(4) |
---|
3617 | |
---|
3618 | ! |
---|
3619 | !-- Get data from server |
---|
3620 | CALL pmc_c_getbuffer( waittime = waittime ) |
---|
3621 | |
---|
3622 | ! |
---|
3623 | !-- The interpolation. |
---|
3624 | CALL pmci_interp_tril_all ( u, uc, icu, jco, kco, r1xu, r2xu, r1yo, r2yo, r1zo, r2zo, nzb_u_inner, 'u' ) |
---|
3625 | CALL pmci_interp_tril_all ( v, vc, ico, jcv, kco, r1xo, r2xo, r1yv, r2yv, r1zo, r2zo, nzb_v_inner, 'v' ) |
---|
3626 | CALL pmci_interp_tril_all ( w, wc, ico, jco, kcw, r1xo, r2xo, r1yo, r2yo, r1zw, r2zw, nzb_w_inner, 'w' ) |
---|
3627 | CALL pmci_interp_tril_all ( e, ec, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, nzb_s_inner, 'e' ) |
---|
3628 | CALL pmci_interp_tril_all ( pt, ptc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, nzb_s_inner, 's' ) |
---|
3629 | IF ( humidity .OR. passive_scalar ) THEN |
---|
3630 | CALL pmci_interp_tril_all ( q, qc, ico, jco, kco, r1xo, r2xo, r1yo, r2yo, r1zo, r2zo, nzb_s_inner, 's' ) |
---|
3631 | ENDIF |
---|
3632 | |
---|
3633 | IF ( topography /= 'flat' ) THEN |
---|
3634 | |
---|
3635 | ! |
---|
3636 | !-- Inside buildings set velocities and TKE back to zero. |
---|
3637 | !-- Other scalars (pt, q, s, km, kh, p, sa, ...) are ignored at present, |
---|
3638 | !-- maybe revise later. |
---|
3639 | DO i = nxlg, nxrg |
---|
3640 | DO j = nysg, nyng |
---|
3641 | u(nzb:nzb_u_inner(j,i),j,i) = 0.0_wp |
---|
3642 | v(nzb:nzb_v_inner(j,i),j,i) = 0.0_wp |
---|
3643 | w(nzb:nzb_w_inner(j,i),j,i) = 0.0_wp |
---|
3644 | e(nzb:nzb_s_inner(j,i),j,i) = 0.0_wp |
---|
3645 | u_p(nzb:nzb_u_inner(j,i),j,i) = 0.0_wp |
---|
3646 | v_p(nzb:nzb_v_inner(j,i),j,i) = 0.0_wp |
---|
3647 | w_p(nzb:nzb_w_inner(j,i),j,i) = 0.0_wp |
---|
3648 | e_p(nzb:nzb_s_inner(j,i),j,i) = 0.0_wp |
---|
3649 | ENDDO |
---|
3650 | ENDDO |
---|
3651 | ENDIF |
---|
3652 | ENDIF |
---|
3653 | |
---|
3654 | |
---|
3655 | CONTAINS |
---|
3656 | |
---|
3657 | |
---|
3658 | SUBROUTINE pmci_interp_tril_all( f, fc, ic, jc, kc, r1x, r2x, r1y, r2y, r1z, r2z, kb, var ) |
---|
3659 | |
---|
3660 | ! |
---|
3661 | !-- Interpolation of the internal values for the client-domain initialization. |
---|
3662 | !-- This subroutine is based on trilinear interpolation. |
---|
3663 | !-- Coding based on interp_tril_lr/sn/t |
---|
3664 | ! |
---|
3665 | !-- Antti Hellsten 20.10.2015. |
---|
3666 | IMPLICIT NONE |
---|
3667 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(INOUT) :: f !: |
---|
3668 | REAL(wp), DIMENSION(0:cg%nz+1,jcs:jcn,icl:icr), INTENT(IN) :: fc !: |
---|
3669 | REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r1x !: |
---|
3670 | REAL(wp), DIMENSION(nxlg:nxrg), INTENT(IN) :: r2x !: |
---|
3671 | REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r1y !: |
---|
3672 | REAL(wp), DIMENSION(nysg:nyng), INTENT(IN) :: r2y !: |
---|
3673 | REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r1z !: |
---|
3674 | REAL(wp), DIMENSION(nzb:nzt+1), INTENT(IN) :: r2z !: |
---|
3675 | INTEGER(iwp), DIMENSION(nxlg:nxrg), INTENT(IN) :: ic !: |
---|
3676 | INTEGER(iwp), DIMENSION(nysg:nyng), INTENT(IN) :: jc !: |
---|
3677 | INTEGER(iwp), DIMENSION(nzb:nzt+1), INTENT(IN) :: kc !: |
---|
3678 | INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg), INTENT(IN) :: kb !: |
---|
3679 | CHARACTER(LEN=1), INTENT(IN) :: var !: |
---|
3680 | |
---|
3681 | INTEGER(iwp) :: i !: |
---|
3682 | INTEGER(iwp) :: ib !: |
---|
3683 | INTEGER(iwp) :: ie !: |
---|
3684 | INTEGER(iwp) :: j !: |
---|
3685 | INTEGER(iwp) :: jb !: |
---|
3686 | INTEGER(iwp) :: je !: |
---|
3687 | INTEGER(iwp) :: k !: |
---|
3688 | INTEGER(iwp) :: k1 !: |
---|
3689 | INTEGER(iwp) :: kbc !: |
---|
3690 | INTEGER(iwp) :: l !: |
---|
3691 | INTEGER(iwp) :: m !: |
---|
3692 | INTEGER(iwp) :: n !: |
---|
3693 | REAL(wp) :: fk !: |
---|
3694 | REAL(wp) :: fkj !: |
---|
3695 | REAL(wp) :: fkjp !: |
---|
3696 | REAL(wp) :: fkp !: |
---|
3697 | REAL(wp) :: fkpj !: |
---|
3698 | REAL(wp) :: fkpjp !: |
---|
3699 | REAL(wp) :: logratio !: |
---|
3700 | REAL(wp) :: logzuc1 !: |
---|
3701 | REAL(wp) :: zuc1 !: |
---|
3702 | |
---|
3703 | |
---|
3704 | ib = nxl |
---|
3705 | ie = nxr |
---|
3706 | jb = nys |
---|
3707 | je = nyn |
---|
3708 | IF ( nest_bound_l ) THEN |
---|
3709 | ib = nxl - 1 |
---|
3710 | IF ( var == 'u' ) THEN ! For u, nxl is a ghost node, but not for the other variables. |
---|
3711 | ib = nxl |
---|
3712 | ENDIF |
---|
3713 | ENDIF |
---|
3714 | IF ( nest_bound_s ) THEN |
---|
3715 | jb = nys - 1 |
---|
3716 | IF ( var == 'v' ) THEN ! For v, nys is a ghost node, but not for the other variables. |
---|
3717 | jb = nys |
---|
3718 | ENDIF |
---|
3719 | ENDIF |
---|
3720 | IF ( nest_bound_r ) THEN |
---|
3721 | ie = nxr + 1 |
---|
3722 | ENDIF |
---|
3723 | IF ( nest_bound_n ) THEN |
---|
3724 | je = nyn + 1 |
---|
3725 | ENDIF |
---|
3726 | |
---|
3727 | ! |
---|
3728 | !-- Trilinear interpolation. |
---|
3729 | DO i = ib, ie |
---|
3730 | DO j = jb, je |
---|
3731 | DO k = kb(j,i), nzt + 1 |
---|
3732 | l = ic(i) |
---|
3733 | m = jc(j) |
---|
3734 | n = kc(k) |
---|
3735 | fkj = r1x(i) * fc(n,m,l) + r2x(i) * fc(n,m,l+1) |
---|
3736 | fkjp = r1x(i) * fc(n,m+1,l) + r2x(i) * fc(n,m+1,l+1) |
---|
3737 | fkpj = r1x(i) * fc(n+1,m,l) + r2x(i) * fc(n+1,m,l+1) |
---|
3738 | fkpjp = r1x(i) * fc(n+1,m+1,l) + r2x(i) * fc(n+1,m+1,l+1) |
---|
3739 | fk = r1y(j) * fkj + r2y(j) * fkjp |
---|
3740 | fkp = r1y(j) * fkpj + r2y(j) * fkpjp |
---|
3741 | f(k,j,i) = r1z(k) * fk + r2z(k) * fkp |
---|
3742 | ENDDO |
---|
3743 | ENDDO |
---|
3744 | ENDDO |
---|
3745 | |
---|
3746 | ! |
---|
3747 | !-- Correct the interpolated values of u and v in near-wall nodes, i.e. in |
---|
3748 | !-- the nodes below the coarse-grid nodes with k=1. The corrction is only made |
---|
3749 | !-- over horizontal wall surfaces in this phase. For the nest boundary conditions, |
---|
3750 | !-- a corresponding corrections is made for all vertical walls, too. |
---|
3751 | IF ( var == 'u' .OR. var == 'v' ) THEN |
---|
3752 | DO i = ib, nxr |
---|
3753 | DO j = jb, nyn |
---|
3754 | kbc = 1 |
---|
3755 | DO WHILE ( cg%zu(kbc) < zu(kb(j,i)) ) ! kbc is the first coarse-grid point above the surface. |
---|
3756 | kbc = kbc + 1 |
---|
3757 | ENDDO |
---|
3758 | zuc1 = cg%zu(kbc) |
---|
3759 | k1 = kb(j,i) + 1 |
---|
3760 | DO WHILE ( zu(k1) < zuc1 ) |
---|
3761 | k1 = k1 + 1 |
---|
3762 | ENDDO |
---|
3763 | logzuc1 = LOG( ( zu(k1) - zu(kb(j,i)) ) / z0(j,i) ) |
---|
3764 | |
---|
3765 | k = kb(j,i) + 1 |
---|
3766 | DO WHILE ( zu(k) < zuc1 ) |
---|
3767 | logratio = ( LOG( ( zu(k) - zu(kb(j,i)) ) / z0(j,i)) ) / logzuc1 |
---|
3768 | f(k,j,i) = logratio * f(k1,j,i) |
---|
3769 | k = k + 1 |
---|
3770 | ENDDO |
---|
3771 | f(kb(j,i),j,i) = 0.0_wp |
---|
3772 | ENDDO |
---|
3773 | ENDDO |
---|
3774 | ELSEIF ( var == 'w' ) THEN |
---|
3775 | DO i = ib, nxr |
---|
3776 | DO j = jb, nyn |
---|
3777 | f(kb(j,i),j,i) = 0.0_wp |
---|
3778 | ENDDO |
---|
3779 | ENDDO |
---|
3780 | ENDIF |
---|
3781 | |
---|
3782 | END SUBROUTINE pmci_interp_tril_all |
---|
3783 | |
---|
3784 | #endif |
---|
3785 | END SUBROUTINE pmci_client_initialize |
---|
3786 | |
---|
3787 | |
---|
3788 | |
---|
3789 | SUBROUTINE pmci_ensure_nest_mass_conservation |
---|
3790 | |
---|
3791 | #if defined( __parallel ) |
---|
3792 | ! |
---|
3793 | !-- Adjust the volume-flow rate through the top boundary |
---|
3794 | !-- so that the net volume flow through all boundaries |
---|
3795 | !-- of the current nest domain becomes zero. |
---|
3796 | IMPLICIT NONE |
---|
3797 | |
---|
3798 | INTEGER(iwp) :: i !: |
---|
3799 | INTEGER(iwp) :: ierr !: |
---|
3800 | INTEGER(iwp) :: j !: |
---|
3801 | INTEGER(iwp) :: k !: |
---|
3802 | REAL(wp) :: dxdy !: |
---|
3803 | REAL(wp) :: innor !: |
---|
3804 | REAL(wp), DIMENSION(1:3) :: volume_flow_l !: |
---|
3805 | REAL(wp) :: w_lt !: |
---|
3806 | |
---|
3807 | ! |
---|
3808 | !-- Sum up the volume flow through the left/right boundaries. |
---|
3809 | volume_flow(1) = 0.0_wp |
---|
3810 | volume_flow_l(1) = 0.0_wp |
---|
3811 | |
---|
3812 | IF ( nest_bound_l ) THEN |
---|
3813 | i = 0 |
---|
3814 | innor = dy |
---|
3815 | DO j = nys, nyn |
---|
3816 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
3817 | volume_flow_l(1) = volume_flow_l(1) + innor * u(k,j,i) * dzw(k) |
---|
3818 | ENDDO |
---|
3819 | ENDDO |
---|
3820 | ENDIF |
---|
3821 | |
---|
3822 | IF ( nest_bound_r ) THEN |
---|
3823 | i = nx + 1 |
---|
3824 | innor = -dy |
---|
3825 | DO j = nys, nyn |
---|
3826 | DO k = nzb_u_inner(j,i) + 1, nzt |
---|
3827 | volume_flow_l(1) = volume_flow_l(1) + innor * u(k,j,i) * dzw(k) |
---|
3828 | ENDDO |
---|
3829 | ENDDO |
---|
3830 | ENDIF |
---|
3831 | |
---|
3832 | #if defined( __parallel ) |
---|
3833 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
3834 | CALL MPI_ALLREDUCE( volume_flow_l(1), volume_flow(1), 1, MPI_REAL, & |
---|
3835 | MPI_SUM, comm2d, ierr ) |
---|
3836 | #else |
---|
3837 | volume_flow(1) = volume_flow_l(1) |
---|
3838 | #endif |
---|
3839 | |
---|
3840 | ! |
---|
3841 | !-- Sum up the volume flow through the south/north boundaries. |
---|
3842 | volume_flow(2) = 0.0_wp |
---|
3843 | volume_flow_l(2) = 0.0_wp |
---|
3844 | |
---|
3845 | IF ( nest_bound_s ) THEN |
---|
3846 | j = 0 |
---|
3847 | innor = dx |
---|
3848 | DO i = nxl, nxr |
---|
3849 | DO k = nzb_v_inner(j,i) + 1, nzt |
---|
3850 | volume_flow_l(2) = volume_flow_l(2) + innor * v(k,j,i) * dzw(k) |
---|
3851 | ENDDO |
---|
3852 | ENDDO |
---|
3853 | ENDIF |
---|
3854 | |
---|
3855 | IF ( nest_bound_n ) THEN |
---|
3856 | j = ny + 1 |
---|
3857 | innor = -dx |
---|
3858 | DO i = nxl, nxr |
---|
3859 | DO k = nzb_v_inner(j,i)+1, nzt |
---|
3860 | volume_flow_l(2) = volume_flow_l(2) + innor * v(k,j,i) * dzw(k) |
---|
3861 | ENDDO |
---|
3862 | ENDDO |
---|
3863 | ENDIF |
---|
3864 | |
---|
3865 | #if defined( __parallel ) |
---|
3866 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
3867 | CALL MPI_ALLREDUCE( volume_flow_l(2), volume_flow(2), 1, MPI_REAL, & |
---|
3868 | MPI_SUM, comm2d, ierr ) |
---|
3869 | #else |
---|
3870 | volume_flow(2) = volume_flow_l(2) |
---|
3871 | #endif |
---|
3872 | |
---|
3873 | ! |
---|
3874 | !-- Sum up the volume flow through the top boundary. |
---|
3875 | volume_flow(3) = 0.0_wp |
---|
3876 | volume_flow_l(3) = 0.0_wp |
---|
3877 | dxdy = dx * dy |
---|
3878 | k = nzt |
---|
3879 | DO i = nxl, nxr |
---|
3880 | DO j = nys, nyn |
---|
3881 | volume_flow_l(3) = volume_flow_l(3) - w(k,j,i) * dxdy |
---|
3882 | ENDDO |
---|
3883 | ENDDO |
---|
3884 | |
---|
3885 | #if defined( __parallel ) |
---|
3886 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
3887 | CALL MPI_ALLREDUCE( volume_flow_l(3), volume_flow(3), 1, MPI_REAL, & |
---|
3888 | MPI_SUM, comm2d, ierr ) |
---|
3889 | #else |
---|
3890 | volume_flow(3) = volume_flow_l(3) |
---|
3891 | #endif |
---|
3892 | |
---|
3893 | ! |
---|
3894 | !-- Correct the top-boundary value of w. |
---|
3895 | w_lt = (volume_flow(1) + volume_flow(2) + volume_flow(3)) / area_t |
---|
3896 | DO i = nxl, nxr |
---|
3897 | DO j = nys, nyn |
---|
3898 | DO k = nzt, nzt + 1 |
---|
3899 | w(k,j,i) = w(k,j,i) + w_lt |
---|
3900 | ENDDO |
---|
3901 | ENDDO |
---|
3902 | ENDDO |
---|
3903 | |
---|
3904 | #endif |
---|
3905 | END SUBROUTINE pmci_ensure_nest_mass_conservation |
---|
3906 | |
---|
3907 | END MODULE pmc_interface |
---|