1 | !> @file plant_canopy_model.f90 |
---|
2 | !--------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
7 | ! either version 3 of the License, or (at your option) any later version. |
---|
8 | ! |
---|
9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
12 | ! |
---|
13 | ! You should have received a copy of the GNU General Public License along with |
---|
14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
15 | ! |
---|
16 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
17 | !--------------------------------------------------------------------------------! |
---|
18 | ! |
---|
19 | ! Current revisions: |
---|
20 | ! ----------------- |
---|
21 | ! |
---|
22 | ! |
---|
23 | ! Former revisions: |
---|
24 | ! ----------------- |
---|
25 | ! $Id: plant_canopy_model.f90 1683 2015-10-07 23:57:51Z maronga $ |
---|
26 | ! |
---|
27 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
28 | ! Code annotations made doxygen readable |
---|
29 | ! |
---|
30 | ! 1484 2014-10-21 10:53:05Z kanani |
---|
31 | ! Changes due to new module structure of the plant canopy model: |
---|
32 | ! module plant_canopy_model_mod now contains a subroutine for the |
---|
33 | ! initialization of the canopy model (init_plant_canopy), |
---|
34 | ! limitation of the canopy drag (previously accounted for by calculation of |
---|
35 | ! a limiting canopy timestep for the determination of the maximum LES timestep |
---|
36 | ! in subroutine timestep) is now realized by the calculation of pre-tendencies |
---|
37 | ! and preliminary velocities in subroutine plant_canopy_model, |
---|
38 | ! some redundant MPI communication removed in subroutine init_plant_canopy |
---|
39 | ! (was previously in init_3d_model), |
---|
40 | ! unnecessary 3d-arrays lad_u, lad_v, lad_w removed - lad information on the |
---|
41 | ! respective grid is now provided only by lad_s (e.g. in the calculation of |
---|
42 | ! the tendency terms or of cum_lai_hf), |
---|
43 | ! drag_coefficient, lai, leaf_surface_concentration, |
---|
44 | ! scalar_exchange_coefficient, sec and sls renamed to canopy_drag_coeff, |
---|
45 | ! cum_lai_hf, leaf_surface_conc, leaf_scalar_exch_coeff, lsec and lsc, |
---|
46 | ! respectively, |
---|
47 | ! unnecessary 3d-arrays cdc, lsc and lsec now defined as single-value constants, |
---|
48 | ! USE-statements and ONLY-lists modified accordingly |
---|
49 | ! |
---|
50 | ! 1340 2014-03-25 19:45:13Z kanani |
---|
51 | ! REAL constants defined as wp-kind |
---|
52 | ! |
---|
53 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
54 | ! ONLY-attribute added to USE-statements, |
---|
55 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
56 | ! kinds are defined in new module kinds, |
---|
57 | ! old module precision_kind is removed, |
---|
58 | ! revision history before 2012 removed, |
---|
59 | ! comment fields (!:) to be used for variable explanations added to |
---|
60 | ! all variable declaration statements |
---|
61 | ! |
---|
62 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
63 | ! code put under GPL (PALM 3.9) |
---|
64 | ! |
---|
65 | ! 138 2007-11-28 10:03:58Z letzel |
---|
66 | ! Initial revision |
---|
67 | ! |
---|
68 | ! Description: |
---|
69 | ! ------------ |
---|
70 | !> 1) Initialization of the canopy model, e.g. construction of leaf area density |
---|
71 | !> profile (subroutine init_plant_canopy). |
---|
72 | !> 2) Calculation of sinks and sources of momentum, heat and scalar concentration |
---|
73 | !> due to canopy elements (subroutine plant_canopy_model). |
---|
74 | !------------------------------------------------------------------------------! |
---|
75 | MODULE plant_canopy_model_mod |
---|
76 | |
---|
77 | USE arrays_3d, & |
---|
78 | ONLY: dzu, dzw, e, q, shf, tend, u, v, w, zu, zw |
---|
79 | |
---|
80 | USE indices, & |
---|
81 | ONLY: nbgp, nxl, nxlg, nxlu, nxr, nxrg, nyn, nyng, nys, nysg, nysv, & |
---|
82 | nz, nzb, nzb_s_inner, nzb_u_inner, nzb_v_inner, nzb_w_inner, nzt |
---|
83 | |
---|
84 | USE kinds |
---|
85 | |
---|
86 | |
---|
87 | IMPLICIT NONE |
---|
88 | |
---|
89 | |
---|
90 | CHARACTER (LEN=20) :: canopy_mode = 'block' !< canopy coverage |
---|
91 | |
---|
92 | INTEGER(iwp) :: pch_index = 0 !< plant canopy height/top index |
---|
93 | INTEGER(iwp) :: & |
---|
94 | lad_vertical_gradient_level_ind(10) = -9999 !< lad-profile levels (index) |
---|
95 | |
---|
96 | LOGICAL :: calc_beta_lad_profile = .FALSE. !< switch for calc. of lad from beta func. |
---|
97 | LOGICAL :: plant_canopy = .FALSE. !< switch for use of canopy model |
---|
98 | |
---|
99 | REAL(wp) :: alpha_lad = 9999999.9_wp !< coefficient for lad calculation |
---|
100 | REAL(wp) :: beta_lad = 9999999.9_wp !< coefficient for lad calculation |
---|
101 | REAL(wp) :: canopy_drag_coeff = 0.0_wp !< canopy drag coefficient (parameter) |
---|
102 | REAL(wp) :: cdc = 0.0_wp !< canopy drag coeff. (abbreviation used in equations) |
---|
103 | REAL(wp) :: cthf = 0.0_wp !< canopy top heat flux |
---|
104 | REAL(wp) :: dt_plant_canopy = 0.0_wp !< timestep account. for canopy drag |
---|
105 | REAL(wp) :: lad_surface = 0.0_wp !< lad surface value |
---|
106 | REAL(wp) :: lai_beta = 0.0_wp !< leaf area index (lai) for lad calc. |
---|
107 | REAL(wp) :: & |
---|
108 | leaf_scalar_exch_coeff = 0.0_wp !< canopy scalar exchange coeff. |
---|
109 | REAL(wp) :: & |
---|
110 | leaf_surface_conc = 0.0_wp !< leaf surface concentration |
---|
111 | REAL(wp) :: lsec = 0.0_wp !< leaf scalar exchange coeff. |
---|
112 | REAL(wp) :: lsc = 0.0_wp !< leaf surface concentration |
---|
113 | |
---|
114 | REAL(wp) :: & |
---|
115 | lad_vertical_gradient(10) = 0.0_wp !< lad gradient |
---|
116 | REAL(wp) :: & |
---|
117 | lad_vertical_gradient_level(10) = -9999999.9_wp !< lad-prof. levels (in m) |
---|
118 | |
---|
119 | REAL(wp), DIMENSION(:), ALLOCATABLE :: lad !< leaf area density |
---|
120 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pre_lad !< preliminary lad |
---|
121 | |
---|
122 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
123 | canopy_heat_flux !< canopy heat flux |
---|
124 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: cum_lai_hf !< cumulative lai for heatflux calc. |
---|
125 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: lad_s !< lad on scalar-grid |
---|
126 | |
---|
127 | |
---|
128 | SAVE |
---|
129 | |
---|
130 | |
---|
131 | PRIVATE |
---|
132 | PUBLIC alpha_lad, beta_lad, calc_beta_lad_profile, canopy_drag_coeff, & |
---|
133 | canopy_mode, cdc, cthf, dt_plant_canopy, init_plant_canopy, lad, & |
---|
134 | lad_s, lad_surface, lad_vertical_gradient, & |
---|
135 | lad_vertical_gradient_level, lad_vertical_gradient_level_ind, & |
---|
136 | lai_beta, leaf_scalar_exch_coeff, leaf_surface_conc, lsc, lsec, & |
---|
137 | pch_index, plant_canopy, plant_canopy_model |
---|
138 | |
---|
139 | |
---|
140 | INTERFACE init_plant_canopy |
---|
141 | MODULE PROCEDURE init_plant_canopy |
---|
142 | END INTERFACE init_plant_canopy |
---|
143 | |
---|
144 | INTERFACE plant_canopy_model |
---|
145 | MODULE PROCEDURE plant_canopy_model |
---|
146 | MODULE PROCEDURE plant_canopy_model_ij |
---|
147 | END INTERFACE plant_canopy_model |
---|
148 | |
---|
149 | |
---|
150 | |
---|
151 | |
---|
152 | CONTAINS |
---|
153 | |
---|
154 | |
---|
155 | !------------------------------------------------------------------------------! |
---|
156 | ! Description: |
---|
157 | ! ------------ |
---|
158 | !> Initialization of the plant canopy model |
---|
159 | !------------------------------------------------------------------------------! |
---|
160 | SUBROUTINE init_plant_canopy |
---|
161 | |
---|
162 | |
---|
163 | USE control_parameters, & |
---|
164 | ONLY: dz, ocean, passive_scalar |
---|
165 | |
---|
166 | |
---|
167 | IMPLICIT NONE |
---|
168 | |
---|
169 | INTEGER(iwp) :: i !< running index |
---|
170 | INTEGER(iwp) :: j !< running index |
---|
171 | INTEGER(iwp) :: k !< running index |
---|
172 | |
---|
173 | REAL(wp) :: int_bpdf !< vertical integral for lad-profile construction |
---|
174 | REAL(wp) :: dzh !< vertical grid spacing in units of canopy height |
---|
175 | REAL(wp) :: gradient !< gradient for lad-profile construction |
---|
176 | REAL(wp) :: canopy_height !< canopy height for lad-profile construction |
---|
177 | |
---|
178 | ! |
---|
179 | !-- Allocate one-dimensional arrays for the computation of the |
---|
180 | !-- leaf area density (lad) profile |
---|
181 | ALLOCATE( lad(0:nz+1), pre_lad(0:nz+1) ) |
---|
182 | lad = 0.0_wp |
---|
183 | pre_lad = 0.0_wp |
---|
184 | |
---|
185 | ! |
---|
186 | !-- Compute the profile of leaf area density used in the plant |
---|
187 | !-- canopy model. The profile can either be constructed from |
---|
188 | !-- prescribed vertical gradients of the leaf area density or by |
---|
189 | !-- using a beta probability density function (see e.g. Markkanen et al., |
---|
190 | !-- 2003: Boundary-Layer Meteorology, 106, 437-459) |
---|
191 | IF ( .NOT. calc_beta_lad_profile ) THEN |
---|
192 | |
---|
193 | ! |
---|
194 | !-- Use vertical gradients for lad-profile construction |
---|
195 | i = 1 |
---|
196 | gradient = 0.0_wp |
---|
197 | |
---|
198 | IF ( .NOT. ocean ) THEN |
---|
199 | |
---|
200 | lad(0) = lad_surface |
---|
201 | lad_vertical_gradient_level_ind(1) = 0 |
---|
202 | |
---|
203 | DO k = 1, pch_index |
---|
204 | IF ( i < 11 ) THEN |
---|
205 | IF ( lad_vertical_gradient_level(i) < zu(k) .AND. & |
---|
206 | lad_vertical_gradient_level(i) >= 0.0_wp ) THEN |
---|
207 | gradient = lad_vertical_gradient(i) |
---|
208 | lad_vertical_gradient_level_ind(i) = k - 1 |
---|
209 | i = i + 1 |
---|
210 | ENDIF |
---|
211 | ENDIF |
---|
212 | IF ( gradient /= 0.0_wp ) THEN |
---|
213 | IF ( k /= 1 ) THEN |
---|
214 | lad(k) = lad(k-1) + dzu(k) * gradient |
---|
215 | ELSE |
---|
216 | lad(k) = lad_surface + dzu(k) * gradient |
---|
217 | ENDIF |
---|
218 | ELSE |
---|
219 | lad(k) = lad(k-1) |
---|
220 | ENDIF |
---|
221 | ENDDO |
---|
222 | |
---|
223 | ENDIF |
---|
224 | |
---|
225 | ! |
---|
226 | !-- In case of no given leaf area density gradients, choose a vanishing |
---|
227 | !-- gradient. This information is used for the HEADER and the RUN_CONTROL |
---|
228 | !-- file. |
---|
229 | IF ( lad_vertical_gradient_level(1) == -9999999.9_wp ) THEN |
---|
230 | lad_vertical_gradient_level(1) = 0.0_wp |
---|
231 | ENDIF |
---|
232 | |
---|
233 | ELSE |
---|
234 | |
---|
235 | ! |
---|
236 | !-- Use beta function for lad-profile construction |
---|
237 | int_bpdf = 0.0_wp |
---|
238 | canopy_height = pch_index * dz |
---|
239 | |
---|
240 | DO k = nzb, pch_index |
---|
241 | int_bpdf = int_bpdf + & |
---|
242 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) * & |
---|
243 | ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( beta_lad-1.0_wp ) ) * & |
---|
244 | ( ( zw(k+1)-zw(k) ) / canopy_height ) ) |
---|
245 | ENDDO |
---|
246 | |
---|
247 | ! |
---|
248 | !-- Preliminary lad profile (defined on w-grid) |
---|
249 | DO k = nzb, pch_index |
---|
250 | pre_lad(k) = lai_beta * & |
---|
251 | ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) * & |
---|
252 | ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( beta_lad-1.0_wp ) ) / & |
---|
253 | int_bpdf & |
---|
254 | ) / canopy_height |
---|
255 | ENDDO |
---|
256 | |
---|
257 | ! |
---|
258 | !-- Final lad profile (defined on scalar-grid level, since most prognostic |
---|
259 | !-- quantities are defined there, hence, less interpolation is required |
---|
260 | !-- when calculating the canopy tendencies) |
---|
261 | lad(0) = pre_lad(0) |
---|
262 | DO k = nzb+1, pch_index |
---|
263 | lad(k) = 0.5 * ( pre_lad(k-1) + pre_lad(k) ) |
---|
264 | ENDDO |
---|
265 | |
---|
266 | ENDIF |
---|
267 | |
---|
268 | ! |
---|
269 | !-- Allocate 3D-array for the leaf area density (lad_s). In case of a |
---|
270 | !-- prescribed canopy-top heat flux (cthf), allocate 3D-arrays for |
---|
271 | !-- the cumulative leaf area index (cum_lai_hf) and the canopy heat flux. |
---|
272 | ALLOCATE( lad_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
273 | |
---|
274 | IF ( cthf /= 0.0_wp ) THEN |
---|
275 | ALLOCATE( cum_lai_hf(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
276 | canopy_heat_flux(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
277 | ENDIF |
---|
278 | |
---|
279 | ! |
---|
280 | !-- Initialize canopy parameters cdc (canopy drag coefficient), |
---|
281 | !-- lsec (leaf scalar exchange coefficient), lsc (leaf surface concentration) |
---|
282 | !-- with the prescribed values |
---|
283 | cdc = canopy_drag_coeff |
---|
284 | lsec = leaf_scalar_exch_coeff |
---|
285 | lsc = leaf_surface_conc |
---|
286 | |
---|
287 | ! |
---|
288 | !-- Initialization of the canopy coverage in the model domain: |
---|
289 | !-- Setting the parameter canopy_mode = 'block' initializes a canopy, which |
---|
290 | !-- fully covers the domain surface |
---|
291 | SELECT CASE ( TRIM( canopy_mode ) ) |
---|
292 | |
---|
293 | CASE( 'block' ) |
---|
294 | |
---|
295 | DO i = nxlg, nxrg |
---|
296 | DO j = nysg, nyng |
---|
297 | lad_s(:,j,i) = lad(:) |
---|
298 | ENDDO |
---|
299 | ENDDO |
---|
300 | |
---|
301 | CASE DEFAULT |
---|
302 | |
---|
303 | ! |
---|
304 | !-- The DEFAULT case is reached either if the parameter |
---|
305 | !-- canopy mode contains a wrong character string or if the |
---|
306 | !-- user has coded a special case in the user interface. |
---|
307 | !-- There, the subroutine user_init_plant_canopy checks |
---|
308 | !-- which of these two conditions applies. |
---|
309 | CALL user_init_plant_canopy |
---|
310 | |
---|
311 | END SELECT |
---|
312 | |
---|
313 | ! |
---|
314 | !-- Initialization of the canopy heat source distribution |
---|
315 | IF ( cthf /= 0.0_wp ) THEN |
---|
316 | ! |
---|
317 | !-- Piecewise calculation of the leaf area index by vertical |
---|
318 | !-- integration of the leaf area density |
---|
319 | cum_lai_hf(:,:,:) = 0.0_wp |
---|
320 | DO i = nxlg, nxrg |
---|
321 | DO j = nysg, nyng |
---|
322 | DO k = pch_index-1, 0, -1 |
---|
323 | IF ( k == pch_index-1 ) THEN |
---|
324 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
325 | ( 0.5_wp * lad_s(k+1,j,i) * & |
---|
326 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
327 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
328 | lad_s(k,j,i) ) + & |
---|
329 | lad_s(k+1,j,i) ) * & |
---|
330 | ( zu(k+1) - zw(k) ) ) |
---|
331 | ELSE |
---|
332 | cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & |
---|
333 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+2,j,i) + & |
---|
334 | lad_s(k+1,j,i) ) + & |
---|
335 | lad_s(k+1,j,i) ) * & |
---|
336 | ( zw(k+1) - zu(k+1) ) ) + & |
---|
337 | ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & |
---|
338 | lad_s(k,j,i) ) + & |
---|
339 | lad_s(k+1,j,i) ) * & |
---|
340 | ( zu(k+1) - zw(k) ) ) |
---|
341 | ENDIF |
---|
342 | ENDDO |
---|
343 | ENDDO |
---|
344 | ENDDO |
---|
345 | |
---|
346 | ! |
---|
347 | !-- Calculation of the upward kinematic vertical heat flux within the |
---|
348 | !-- canopy |
---|
349 | DO i = nxlg, nxrg |
---|
350 | DO j = nysg, nyng |
---|
351 | DO k = 0, pch_index |
---|
352 | canopy_heat_flux(k,j,i) = cthf * & |
---|
353 | exp( -0.6_wp * cum_lai_hf(k,j,i) ) |
---|
354 | ENDDO |
---|
355 | ENDDO |
---|
356 | ENDDO |
---|
357 | |
---|
358 | ! |
---|
359 | !-- The surface heat flux is set to the surface value of the calculated |
---|
360 | !-- in-canopy heat flux distribution |
---|
361 | shf(:,:) = canopy_heat_flux(0,:,:) |
---|
362 | |
---|
363 | ENDIF |
---|
364 | |
---|
365 | |
---|
366 | |
---|
367 | END SUBROUTINE init_plant_canopy |
---|
368 | |
---|
369 | |
---|
370 | |
---|
371 | !------------------------------------------------------------------------------! |
---|
372 | ! Description: |
---|
373 | ! ------------ |
---|
374 | !> Calculation of the tendency terms, accounting for the effect of the plant |
---|
375 | !> canopy on momentum and scalar quantities. |
---|
376 | !> |
---|
377 | !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 |
---|
378 | !> (defined on scalar grid), as initialized in subroutine init_plant_canopy. |
---|
379 | !> The lad on the w-grid is vertically interpolated from the surrounding |
---|
380 | !> lad_s. The upper boundary of the canopy is defined on the w-grid at |
---|
381 | !> k = pch_index. Here, the lad is zero. |
---|
382 | !> |
---|
383 | !> The canopy drag must be limited (previously accounted for by calculation of |
---|
384 | !> a limiting canopy timestep for the determination of the maximum LES timestep |
---|
385 | !> in subroutine timestep), since it is physically impossible that the canopy |
---|
386 | !> drag alone can locally change the sign of a velocity component. This |
---|
387 | !> limitation is realized by calculating preliminary tendencies and velocities. |
---|
388 | !> It is subsequently checked if the preliminary new velocity has a different |
---|
389 | !> sign than the current velocity. If so, the tendency is limited in a way that |
---|
390 | !> the velocity can at maximum be reduced to zero by the canopy drag. |
---|
391 | !> |
---|
392 | !> |
---|
393 | !> Call for all grid points |
---|
394 | !------------------------------------------------------------------------------! |
---|
395 | SUBROUTINE plant_canopy_model( component ) |
---|
396 | |
---|
397 | |
---|
398 | USE control_parameters, & |
---|
399 | ONLY: dt_3d, message_string |
---|
400 | |
---|
401 | USE kinds |
---|
402 | |
---|
403 | IMPLICIT NONE |
---|
404 | |
---|
405 | INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) |
---|
406 | INTEGER(iwp) :: i !< running index |
---|
407 | INTEGER(iwp) :: j !< running index |
---|
408 | INTEGER(iwp) :: k !< running index |
---|
409 | |
---|
410 | REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) |
---|
411 | REAL(wp) :: lad_local !< local lad value |
---|
412 | REAL(wp) :: pre_tend !< preliminary tendency |
---|
413 | REAL(wp) :: pre_u !< preliminary u-value |
---|
414 | REAL(wp) :: pre_v !< preliminary v-value |
---|
415 | REAL(wp) :: pre_w !< preliminary w-value |
---|
416 | |
---|
417 | |
---|
418 | ddt_3d = 1.0_wp / dt_3d |
---|
419 | |
---|
420 | ! |
---|
421 | !-- Compute drag for the three velocity components and the SGS-TKE: |
---|
422 | SELECT CASE ( component ) |
---|
423 | |
---|
424 | ! |
---|
425 | !-- u-component |
---|
426 | CASE ( 1 ) |
---|
427 | DO i = nxlu, nxr |
---|
428 | DO j = nys, nyn |
---|
429 | DO k = nzb_u_inner(j,i)+1, pch_index |
---|
430 | |
---|
431 | ! |
---|
432 | !-- In order to create sharp boundaries of the plant canopy, |
---|
433 | !-- the lad on the u-grid at index (k,j,i) is equal to |
---|
434 | !-- lad_s(k,j,i), rather than being interpolated from the |
---|
435 | !-- surrounding lad_s, because this would yield smaller lad |
---|
436 | !-- at the canopy boundaries than inside of the canopy. |
---|
437 | !-- For the same reason, the lad at the rightmost(i+1)canopy |
---|
438 | !-- boundary on the u-grid equals lad_s(k,j,i). |
---|
439 | lad_local = lad_s(k,j,i) |
---|
440 | IF ( lad_local == 0.0_wp .AND. & |
---|
441 | lad_s(k,j,i-1) > 0.0_wp ) THEN |
---|
442 | lad_local = lad_s(k,j,i-1) |
---|
443 | ENDIF |
---|
444 | |
---|
445 | pre_tend = 0.0_wp |
---|
446 | pre_u = 0.0_wp |
---|
447 | ! |
---|
448 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
449 | pre_tend = - cdc * & |
---|
450 | lad_local * & |
---|
451 | SQRT( u(k,j,i)**2 + & |
---|
452 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
453 | v(k,j,i) + & |
---|
454 | v(k,j+1,i) + & |
---|
455 | v(k,j+1,i-1) ) & |
---|
456 | )**2 + & |
---|
457 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
458 | w(k-1,j,i) + & |
---|
459 | w(k,j,i-1) + & |
---|
460 | w(k,j,i) ) & |
---|
461 | )**2 & |
---|
462 | ) * & |
---|
463 | u(k,j,i) |
---|
464 | |
---|
465 | ! |
---|
466 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
467 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
468 | ! |
---|
469 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
470 | !-- and in case the signs are different, limit the tendency |
---|
471 | IF ( SIGN(pre_u,u(k,j,i)) /= pre_u ) THEN |
---|
472 | pre_tend = - u(k,j,i) * ddt_3d |
---|
473 | ELSE |
---|
474 | pre_tend = pre_tend |
---|
475 | ENDIF |
---|
476 | ! |
---|
477 | !-- Calculate final tendency |
---|
478 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
479 | |
---|
480 | ENDDO |
---|
481 | ENDDO |
---|
482 | ENDDO |
---|
483 | |
---|
484 | ! |
---|
485 | !-- v-component |
---|
486 | CASE ( 2 ) |
---|
487 | DO i = nxl, nxr |
---|
488 | DO j = nysv, nyn |
---|
489 | DO k = nzb_v_inner(j,i)+1, pch_index |
---|
490 | |
---|
491 | ! |
---|
492 | !-- In order to create sharp boundaries of the plant canopy, |
---|
493 | !-- the lad on the v-grid at index (k,j,i) is equal to |
---|
494 | !-- lad_s(k,j,i), rather than being interpolated from the |
---|
495 | !-- surrounding lad_s, because this would yield smaller lad |
---|
496 | !-- at the canopy boundaries than inside of the canopy. |
---|
497 | !-- For the same reason, the lad at the northmost(j+1) canopy |
---|
498 | !-- boundary on the v-grid equals lad_s(k,j,i). |
---|
499 | lad_local = lad_s(k,j,i) |
---|
500 | IF ( lad_local == 0.0_wp .AND. & |
---|
501 | lad_s(k,j-1,i) > 0.0_wp ) THEN |
---|
502 | lad_local = lad_s(k,j-1,i) |
---|
503 | ENDIF |
---|
504 | |
---|
505 | pre_tend = 0.0_wp |
---|
506 | pre_v = 0.0_wp |
---|
507 | ! |
---|
508 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
509 | pre_tend = - cdc * & |
---|
510 | lad_local * & |
---|
511 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
512 | u(k,j-1,i+1) + & |
---|
513 | u(k,j,i) + & |
---|
514 | u(k,j,i+1) ) & |
---|
515 | )**2 + & |
---|
516 | v(k,j,i)**2 + & |
---|
517 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
518 | w(k-1,j,i) + & |
---|
519 | w(k,j-1,i) + & |
---|
520 | w(k,j,i) ) & |
---|
521 | )**2 & |
---|
522 | ) * & |
---|
523 | v(k,j,i) |
---|
524 | |
---|
525 | ! |
---|
526 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
527 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
528 | ! |
---|
529 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
530 | !-- and in case the signs are different, limit the tendency |
---|
531 | IF ( SIGN(pre_v,v(k,j,i)) /= pre_v ) THEN |
---|
532 | pre_tend = - v(k,j,i) * ddt_3d |
---|
533 | ELSE |
---|
534 | pre_tend = pre_tend |
---|
535 | ENDIF |
---|
536 | ! |
---|
537 | !-- Calculate final tendency |
---|
538 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
539 | |
---|
540 | ENDDO |
---|
541 | ENDDO |
---|
542 | ENDDO |
---|
543 | |
---|
544 | ! |
---|
545 | !-- w-component |
---|
546 | CASE ( 3 ) |
---|
547 | DO i = nxl, nxr |
---|
548 | DO j = nys, nyn |
---|
549 | DO k = nzb_w_inner(j,i)+1, pch_index-1 |
---|
550 | |
---|
551 | pre_tend = 0.0_wp |
---|
552 | pre_w = 0.0_wp |
---|
553 | ! |
---|
554 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
555 | pre_tend = - cdc * & |
---|
556 | (0.5_wp * & |
---|
557 | ( lad_s(k+1,j,i) + lad_s(k,j,i) )) * & |
---|
558 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
559 | u(k,j,i+1) + & |
---|
560 | u(k+1,j,i) + & |
---|
561 | u(k+1,j,i+1) ) & |
---|
562 | )**2 + & |
---|
563 | ( 0.25_wp * ( v(k,j,i) + & |
---|
564 | v(k,j+1,i) + & |
---|
565 | v(k+1,j,i) + & |
---|
566 | v(k+1,j+1,i) ) & |
---|
567 | )**2 + & |
---|
568 | w(k,j,i)**2 & |
---|
569 | ) * & |
---|
570 | w(k,j,i) |
---|
571 | ! |
---|
572 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
573 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
574 | ! |
---|
575 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
576 | !-- and in case the signs are different, limit the tendency |
---|
577 | IF ( SIGN(pre_w,w(k,j,i)) /= pre_w ) THEN |
---|
578 | pre_tend = - w(k,j,i) * ddt_3d |
---|
579 | ELSE |
---|
580 | pre_tend = pre_tend |
---|
581 | ENDIF |
---|
582 | ! |
---|
583 | !-- Calculate final tendency |
---|
584 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
585 | |
---|
586 | ENDDO |
---|
587 | ENDDO |
---|
588 | ENDDO |
---|
589 | |
---|
590 | ! |
---|
591 | !-- potential temperature |
---|
592 | CASE ( 4 ) |
---|
593 | DO i = nxl, nxr |
---|
594 | DO j = nys, nyn |
---|
595 | DO k = nzb_s_inner(j,i)+1, pch_index |
---|
596 | tend(k,j,i) = tend(k,j,i) + & |
---|
597 | ( canopy_heat_flux(k,j,i) - & |
---|
598 | canopy_heat_flux(k-1,j,i) ) / dzw(k) |
---|
599 | ENDDO |
---|
600 | ENDDO |
---|
601 | ENDDO |
---|
602 | |
---|
603 | ! |
---|
604 | !-- scalar concentration |
---|
605 | CASE ( 5 ) |
---|
606 | DO i = nxl, nxr |
---|
607 | DO j = nys, nyn |
---|
608 | DO k = nzb_s_inner(j,i)+1, pch_index |
---|
609 | tend(k,j,i) = tend(k,j,i) - & |
---|
610 | lsec * & |
---|
611 | lad_s(k,j,i) * & |
---|
612 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
613 | u(k,j,i+1) ) & |
---|
614 | )**2 + & |
---|
615 | ( 0.5_wp * ( v(k,j,i) + & |
---|
616 | v(k,j+1,i) ) & |
---|
617 | )**2 + & |
---|
618 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
619 | w(k,j,i) ) & |
---|
620 | )**2 & |
---|
621 | ) * & |
---|
622 | ( q(k,j,i) - lsc ) |
---|
623 | ENDDO |
---|
624 | ENDDO |
---|
625 | ENDDO |
---|
626 | |
---|
627 | ! |
---|
628 | !-- sgs-tke |
---|
629 | CASE ( 6 ) |
---|
630 | DO i = nxl, nxr |
---|
631 | DO j = nys, nyn |
---|
632 | DO k = nzb_s_inner(j,i)+1, pch_index |
---|
633 | tend(k,j,i) = tend(k,j,i) - & |
---|
634 | 2.0_wp * cdc * & |
---|
635 | lad_s(k,j,i) * & |
---|
636 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
637 | u(k,j,i+1) ) & |
---|
638 | )**2 + & |
---|
639 | ( 0.5_wp * ( v(k,j,i) + & |
---|
640 | v(k,j+1,i) ) & |
---|
641 | )**2 + & |
---|
642 | ( 0.5_wp * ( w(k,j,i) + & |
---|
643 | w(k+1,j,i) ) & |
---|
644 | )**2 & |
---|
645 | ) * & |
---|
646 | e(k,j,i) |
---|
647 | ENDDO |
---|
648 | ENDDO |
---|
649 | ENDDO |
---|
650 | |
---|
651 | |
---|
652 | CASE DEFAULT |
---|
653 | |
---|
654 | WRITE( message_string, * ) 'wrong component: ', component |
---|
655 | CALL message( 'plant_canopy_model', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
656 | |
---|
657 | END SELECT |
---|
658 | |
---|
659 | END SUBROUTINE plant_canopy_model |
---|
660 | |
---|
661 | |
---|
662 | !------------------------------------------------------------------------------! |
---|
663 | ! Description: |
---|
664 | ! ------------ |
---|
665 | !> Calculation of the tendency terms, accounting for the effect of the plant |
---|
666 | !> canopy on momentum and scalar quantities. |
---|
667 | !> |
---|
668 | !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 |
---|
669 | !> (defined on scalar grid), as initialized in subroutine init_plant_canopy. |
---|
670 | !> The lad on the w-grid is vertically interpolated from the surrounding |
---|
671 | !> lad_s. The upper boundary of the canopy is defined on the w-grid at |
---|
672 | !> k = pch_index. Here, the lad is zero. |
---|
673 | !> |
---|
674 | !> The canopy drag must be limited (previously accounted for by calculation of |
---|
675 | !> a limiting canopy timestep for the determination of the maximum LES timestep |
---|
676 | !> in subroutine timestep), since it is physically impossible that the canopy |
---|
677 | !> drag alone can locally change the sign of a velocity component. This |
---|
678 | !> limitation is realized by calculating preliminary tendencies and velocities. |
---|
679 | !> It is subsequently checked if the preliminary new velocity has a different |
---|
680 | !> sign than the current velocity. If so, the tendency is limited in a way that |
---|
681 | !> the velocity can at maximum be reduced to zero by the canopy drag. |
---|
682 | !> |
---|
683 | !> |
---|
684 | !> Call for grid point i,j |
---|
685 | !------------------------------------------------------------------------------! |
---|
686 | SUBROUTINE plant_canopy_model_ij( i, j, component ) |
---|
687 | |
---|
688 | |
---|
689 | USE control_parameters, & |
---|
690 | ONLY: dt_3d, message_string |
---|
691 | |
---|
692 | USE kinds |
---|
693 | |
---|
694 | IMPLICIT NONE |
---|
695 | |
---|
696 | INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) |
---|
697 | INTEGER(iwp) :: i !< running index |
---|
698 | INTEGER(iwp) :: j !< running index |
---|
699 | INTEGER(iwp) :: k !< running index |
---|
700 | |
---|
701 | REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) |
---|
702 | REAL(wp) :: lad_local !< local lad value |
---|
703 | REAL(wp) :: pre_tend !< preliminary tendency |
---|
704 | REAL(wp) :: pre_u !< preliminary u-value |
---|
705 | REAL(wp) :: pre_v !< preliminary v-value |
---|
706 | REAL(wp) :: pre_w !< preliminary w-value |
---|
707 | |
---|
708 | |
---|
709 | ddt_3d = 1.0_wp / dt_3d |
---|
710 | |
---|
711 | ! |
---|
712 | !-- Compute drag for the three velocity components and the SGS-TKE |
---|
713 | SELECT CASE ( component ) |
---|
714 | |
---|
715 | ! |
---|
716 | !-- u-component |
---|
717 | CASE ( 1 ) |
---|
718 | DO k = nzb_u_inner(j,i)+1, pch_index |
---|
719 | |
---|
720 | ! |
---|
721 | !-- In order to create sharp boundaries of the plant canopy, |
---|
722 | !-- the lad on the u-grid at index (k,j,i) is equal to lad_s(k,j,i), |
---|
723 | !-- rather than being interpolated from the surrounding lad_s, |
---|
724 | !-- because this would yield smaller lad at the canopy boundaries |
---|
725 | !-- than inside of the canopy. |
---|
726 | !-- For the same reason, the lad at the rightmost(i+1)canopy |
---|
727 | !-- boundary on the u-grid equals lad_s(k,j,i). |
---|
728 | lad_local = lad_s(k,j,i) |
---|
729 | IF ( lad_local == 0.0_wp .AND. & |
---|
730 | lad_s(k,j,i-1) > 0.0_wp ) THEN |
---|
731 | lad_local = lad_s(k,j,i-1) |
---|
732 | ENDIF |
---|
733 | |
---|
734 | pre_tend = 0.0_wp |
---|
735 | pre_u = 0.0_wp |
---|
736 | ! |
---|
737 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
738 | pre_tend = - cdc * & |
---|
739 | lad_local * & |
---|
740 | SQRT( u(k,j,i)**2 + & |
---|
741 | ( 0.25_wp * ( v(k,j,i-1) + & |
---|
742 | v(k,j,i) + & |
---|
743 | v(k,j+1,i) + & |
---|
744 | v(k,j+1,i-1) ) & |
---|
745 | )**2 + & |
---|
746 | ( 0.25_wp * ( w(k-1,j,i-1) + & |
---|
747 | w(k-1,j,i) + & |
---|
748 | w(k,j,i-1) + & |
---|
749 | w(k,j,i) ) & |
---|
750 | )**2 & |
---|
751 | ) * & |
---|
752 | u(k,j,i) |
---|
753 | |
---|
754 | ! |
---|
755 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
756 | pre_u = u(k,j,i) + dt_3d * pre_tend |
---|
757 | ! |
---|
758 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
759 | !-- and in case the signs are different, limit the tendency |
---|
760 | IF ( SIGN(pre_u,u(k,j,i)) /= pre_u ) THEN |
---|
761 | pre_tend = - u(k,j,i) * ddt_3d |
---|
762 | ELSE |
---|
763 | pre_tend = pre_tend |
---|
764 | ENDIF |
---|
765 | ! |
---|
766 | !-- Calculate final tendency |
---|
767 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
768 | ENDDO |
---|
769 | |
---|
770 | |
---|
771 | ! |
---|
772 | !-- v-component |
---|
773 | CASE ( 2 ) |
---|
774 | DO k = nzb_v_inner(j,i)+1, pch_index |
---|
775 | |
---|
776 | ! |
---|
777 | !-- In order to create sharp boundaries of the plant canopy, |
---|
778 | !-- the lad on the v-grid at index (k,j,i) is equal to lad_s(k,j,i), |
---|
779 | !-- rather than being interpolated from the surrounding lad_s, |
---|
780 | !-- because this would yield smaller lad at the canopy boundaries |
---|
781 | !-- than inside of the canopy. |
---|
782 | !-- For the same reason, the lad at the northmost(j+1)canopy |
---|
783 | !-- boundary on the v-grid equals lad_s(k,j,i). |
---|
784 | lad_local = lad_s(k,j,i) |
---|
785 | IF ( lad_local == 0.0_wp .AND. & |
---|
786 | lad_s(k,j-1,i) > 0.0_wp ) THEN |
---|
787 | lad_local = lad_s(k,j-1,i) |
---|
788 | ENDIF |
---|
789 | |
---|
790 | pre_tend = 0.0_wp |
---|
791 | pre_v = 0.0_wp |
---|
792 | ! |
---|
793 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
794 | pre_tend = - cdc * & |
---|
795 | lad_local * & |
---|
796 | SQRT( ( 0.25_wp * ( u(k,j-1,i) + & |
---|
797 | u(k,j-1,i+1) + & |
---|
798 | u(k,j,i) + & |
---|
799 | u(k,j,i+1) ) & |
---|
800 | )**2 + & |
---|
801 | v(k,j,i)**2 + & |
---|
802 | ( 0.25_wp * ( w(k-1,j-1,i) + & |
---|
803 | w(k-1,j,i) + & |
---|
804 | w(k,j-1,i) + & |
---|
805 | w(k,j,i) ) & |
---|
806 | )**2 & |
---|
807 | ) * & |
---|
808 | v(k,j,i) |
---|
809 | |
---|
810 | ! |
---|
811 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
812 | pre_v = v(k,j,i) + dt_3d * pre_tend |
---|
813 | ! |
---|
814 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
815 | !-- and in case the signs are different, limit the tendency |
---|
816 | IF ( SIGN(pre_v,v(k,j,i)) /= pre_v ) THEN |
---|
817 | pre_tend = - v(k,j,i) * ddt_3d |
---|
818 | ELSE |
---|
819 | pre_tend = pre_tend |
---|
820 | ENDIF |
---|
821 | ! |
---|
822 | !-- Calculate final tendency |
---|
823 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
824 | ENDDO |
---|
825 | |
---|
826 | |
---|
827 | ! |
---|
828 | !-- w-component |
---|
829 | CASE ( 3 ) |
---|
830 | DO k = nzb_w_inner(j,i)+1, pch_index-1 |
---|
831 | |
---|
832 | pre_tend = 0.0_wp |
---|
833 | pre_w = 0.0_wp |
---|
834 | ! |
---|
835 | !-- Calculate preliminary value (pre_tend) of the tendency |
---|
836 | pre_tend = - cdc * & |
---|
837 | (0.5_wp * & |
---|
838 | ( lad_s(k+1,j,i) + lad_s(k,j,i) )) * & |
---|
839 | SQRT( ( 0.25_wp * ( u(k,j,i) + & |
---|
840 | u(k,j,i+1) + & |
---|
841 | u(k+1,j,i) + & |
---|
842 | u(k+1,j,i+1) ) & |
---|
843 | )**2 + & |
---|
844 | ( 0.25_wp * ( v(k,j,i) + & |
---|
845 | v(k,j+1,i) + & |
---|
846 | v(k+1,j,i) + & |
---|
847 | v(k+1,j+1,i) ) & |
---|
848 | )**2 + & |
---|
849 | w(k,j,i)**2 & |
---|
850 | ) * & |
---|
851 | w(k,j,i) |
---|
852 | ! |
---|
853 | !-- Calculate preliminary new velocity, based on pre_tend |
---|
854 | pre_w = w(k,j,i) + dt_3d * pre_tend |
---|
855 | ! |
---|
856 | !-- Compare sign of old velocity and new preliminary velocity, |
---|
857 | !-- and in case the signs are different, limit the tendency |
---|
858 | IF ( SIGN(pre_w,w(k,j,i)) /= pre_w ) THEN |
---|
859 | pre_tend = - w(k,j,i) * ddt_3d |
---|
860 | ELSE |
---|
861 | pre_tend = pre_tend |
---|
862 | ENDIF |
---|
863 | ! |
---|
864 | !-- Calculate final tendency |
---|
865 | tend(k,j,i) = tend(k,j,i) + pre_tend |
---|
866 | ENDDO |
---|
867 | |
---|
868 | ! |
---|
869 | !-- potential temperature |
---|
870 | CASE ( 4 ) |
---|
871 | DO k = nzb_s_inner(j,i)+1, pch_index |
---|
872 | tend(k,j,i) = tend(k,j,i) + & |
---|
873 | ( canopy_heat_flux(k,j,i) - & |
---|
874 | canopy_heat_flux(k-1,j,i) ) / dzw(k) |
---|
875 | ENDDO |
---|
876 | |
---|
877 | |
---|
878 | ! |
---|
879 | !-- scalar concentration |
---|
880 | CASE ( 5 ) |
---|
881 | DO k = nzb_s_inner(j,i)+1, pch_index |
---|
882 | tend(k,j,i) = tend(k,j,i) - & |
---|
883 | lsec * & |
---|
884 | lad_s(k,j,i) * & |
---|
885 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
886 | u(k,j,i+1) ) & |
---|
887 | )**2 + & |
---|
888 | ( 0.5_wp * ( v(k,j,i) + & |
---|
889 | v(k,j+1,i) ) & |
---|
890 | )**2 + & |
---|
891 | ( 0.5_wp * ( w(k-1,j,i) + & |
---|
892 | w(k,j,i) ) & |
---|
893 | )**2 & |
---|
894 | ) * & |
---|
895 | ( q(k,j,i) - lsc ) |
---|
896 | ENDDO |
---|
897 | |
---|
898 | ! |
---|
899 | !-- sgs-tke |
---|
900 | CASE ( 6 ) |
---|
901 | DO k = nzb_s_inner(j,i)+1, pch_index |
---|
902 | tend(k,j,i) = tend(k,j,i) - & |
---|
903 | 2.0_wp * cdc * & |
---|
904 | lad_s(k,j,i) * & |
---|
905 | SQRT( ( 0.5_wp * ( u(k,j,i) + & |
---|
906 | u(k,j,i+1) ) & |
---|
907 | )**2 + & |
---|
908 | ( 0.5_wp * ( v(k,j,i) + & |
---|
909 | v(k,j+1,i) ) & |
---|
910 | )**2 + & |
---|
911 | ( 0.5_wp * ( w(k,j,i) + & |
---|
912 | w(k+1,j,i) ) & |
---|
913 | )**2 & |
---|
914 | ) * & |
---|
915 | e(k,j,i) |
---|
916 | ENDDO |
---|
917 | |
---|
918 | CASE DEFAULT |
---|
919 | |
---|
920 | WRITE( message_string, * ) 'wrong component: ', component |
---|
921 | CALL message( 'plant_canopy_model', 'PA0279', 1, 2, 0, 6, 0 ) |
---|
922 | |
---|
923 | END SELECT |
---|
924 | |
---|
925 | END SUBROUTINE plant_canopy_model_ij |
---|
926 | |
---|
927 | END MODULE plant_canopy_model_mod |
---|