1 | !> @file nesting_offl_mod.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: nesting_offl_mod.f90 4230 2019-09-11 13:58:14Z suehring $ |
---|
27 | ! Update mean chemistry profiles. These are also used for rayleigh damping. |
---|
28 | ! |
---|
29 | ! 4227 2019-09-10 18:04:34Z gronemeier |
---|
30 | ! implement new palm_date_time_mod |
---|
31 | ! |
---|
32 | ! - Data input moved into nesting_offl_mod |
---|
33 | ! - check rephrased |
---|
34 | ! - time variable is now relative to time_utc_init |
---|
35 | ! - Define module specific data type for offline nesting in nesting_offl_mod |
---|
36 | ! |
---|
37 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
38 | ! Corrected "Former revisions" section |
---|
39 | ! |
---|
40 | ! 4169 2019-08-19 13:54:35Z suehring |
---|
41 | ! Additional check added. |
---|
42 | ! |
---|
43 | ! 4168 2019-08-16 13:50:17Z suehring |
---|
44 | ! Replace function get_topography_top_index by topo_top_ind |
---|
45 | ! |
---|
46 | ! 4125 2019-07-29 13:31:44Z suehring |
---|
47 | ! In order to enable netcdf parallel access, allocate dummy arrays for the |
---|
48 | ! lateral boundary data on cores that actually do not belong to these |
---|
49 | ! boundaries. |
---|
50 | ! |
---|
51 | ! 4079 2019-07-09 18:04:41Z suehring |
---|
52 | ! - Set boundary condition for w at nzt+1 at the lateral boundaries, even |
---|
53 | ! though these won't enter the numerical solution. However, due to the mass |
---|
54 | ! conservation these values might some up to very large values which will |
---|
55 | ! occur in the run-control file |
---|
56 | ! - Bugfix in offline nesting of chemical species |
---|
57 | ! - Do not set Neumann conditions for TKE and passive scalar |
---|
58 | ! |
---|
59 | ! 4022 2019-06-12 11:52:39Z suehring |
---|
60 | ! Detection of boundary-layer depth in stable boundary layer on basis of |
---|
61 | ! boundary data improved |
---|
62 | ! Routine for boundary-layer depth calculation renamed and made public |
---|
63 | ! |
---|
64 | ! 3987 2019-05-22 09:52:13Z kanani |
---|
65 | ! Introduce alternative switch for debug output during timestepping |
---|
66 | ! |
---|
67 | ! 3964 2019-05-09 09:48:32Z suehring |
---|
68 | ! Ensure that veloctiy term in calculation of bulk Richardson number does not |
---|
69 | ! become zero |
---|
70 | ! |
---|
71 | ! 3937 2019-04-29 15:09:07Z suehring |
---|
72 | ! Set boundary conditon on upper-left and upper-south grid point for the u- and |
---|
73 | ! v-component, respectively. |
---|
74 | ! |
---|
75 | ! 3891 2019-04-12 17:52:01Z suehring |
---|
76 | ! Bugfix, do not overwrite lateral and top boundary data in case of restart |
---|
77 | ! runs. |
---|
78 | ! |
---|
79 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
80 | ! Changes related to global restructuring of location messages and introduction |
---|
81 | ! of additional debug messages |
---|
82 | ! |
---|
83 | ! |
---|
84 | ! Do local data exchange for chemistry variables only when boundary data is |
---|
85 | ! coming from dynamic file |
---|
86 | ! |
---|
87 | ! 3737 2019-02-12 16:57:06Z suehring |
---|
88 | ! Introduce mesoscale nesting for chemical species |
---|
89 | ! |
---|
90 | ! 3705 2019-01-29 19:56:39Z suehring |
---|
91 | ! Formatting adjustments |
---|
92 | ! |
---|
93 | ! 3704 2019-01-29 19:51:41Z suehring |
---|
94 | ! Check implemented for offline nesting in child domain |
---|
95 | ! |
---|
96 | ! Initial Revision: |
---|
97 | ! - separate offline nesting from large_scale_nudging_mod |
---|
98 | ! - revise offline nesting, adjust for usage of synthetic turbulence generator |
---|
99 | ! - adjust Rayleigh damping depending on the time-depending atmospheric |
---|
100 | ! conditions |
---|
101 | ! |
---|
102 | ! |
---|
103 | ! Description: |
---|
104 | ! ------------ |
---|
105 | !> Offline nesting in larger-scale models. Boundary conditions for the simulation |
---|
106 | !> are read from NetCDF file and are prescribed onto the respective arrays. |
---|
107 | !> Further, a mass-flux correction is performed to maintain the mass balance. |
---|
108 | !--------------------------------------------------------------------------------! |
---|
109 | MODULE nesting_offl_mod |
---|
110 | |
---|
111 | USE arrays_3d, & |
---|
112 | ONLY: dzw, & |
---|
113 | e, & |
---|
114 | diss, & |
---|
115 | pt, & |
---|
116 | pt_init, & |
---|
117 | q, & |
---|
118 | q_init, & |
---|
119 | rdf, & |
---|
120 | rdf_sc, & |
---|
121 | s, & |
---|
122 | u, & |
---|
123 | u_init, & |
---|
124 | ug, & |
---|
125 | v, & |
---|
126 | v_init, & |
---|
127 | vg, & |
---|
128 | w, & |
---|
129 | zu, & |
---|
130 | zw |
---|
131 | |
---|
132 | USE basic_constants_and_equations_mod, & |
---|
133 | ONLY: g, & |
---|
134 | pi |
---|
135 | |
---|
136 | USE chem_modules, & |
---|
137 | ONLY: chem_species |
---|
138 | |
---|
139 | USE control_parameters, & |
---|
140 | ONLY: air_chemistry, & |
---|
141 | bc_dirichlet_l, & |
---|
142 | bc_dirichlet_n, & |
---|
143 | bc_dirichlet_r, & |
---|
144 | bc_dirichlet_s, & |
---|
145 | coupling_char, & |
---|
146 | dt_3d, & |
---|
147 | dz, & |
---|
148 | constant_diffusion, & |
---|
149 | child_domain, & |
---|
150 | debug_output_timestep, & |
---|
151 | end_time, & |
---|
152 | humidity, & |
---|
153 | initializing_actions, & |
---|
154 | message_string, & |
---|
155 | nesting_offline, & |
---|
156 | neutral, & |
---|
157 | passive_scalar, & |
---|
158 | rans_mode, & |
---|
159 | rans_tke_e, & |
---|
160 | rayleigh_damping_factor, & |
---|
161 | rayleigh_damping_height, & |
---|
162 | spinup_time, & |
---|
163 | time_since_reference_point, & |
---|
164 | volume_flow |
---|
165 | |
---|
166 | USE cpulog, & |
---|
167 | ONLY: cpu_log, & |
---|
168 | log_point, & |
---|
169 | log_point_s |
---|
170 | |
---|
171 | USE grid_variables |
---|
172 | |
---|
173 | USE indices, & |
---|
174 | ONLY: nbgp, nx, nxl, nxlg, nxlu, nxr, nxrg, ny, nys, & |
---|
175 | nysv, nysg, nyn, nyng, nzb, nz, nzt, & |
---|
176 | topo_top_ind, & |
---|
177 | wall_flags_0 |
---|
178 | |
---|
179 | USE kinds |
---|
180 | |
---|
181 | USE netcdf_data_input_mod, & |
---|
182 | ONLY: check_existence, & |
---|
183 | close_input_file, & |
---|
184 | get_dimension_length, & |
---|
185 | get_variable, & |
---|
186 | get_variable_pr, & |
---|
187 | input_pids_dynamic, & |
---|
188 | inquire_num_variables, & |
---|
189 | inquire_variable_names, & |
---|
190 | input_file_dynamic, & |
---|
191 | num_var_pids, & |
---|
192 | open_read_file, & |
---|
193 | pids_id |
---|
194 | |
---|
195 | USE palm_date_time_mod, & |
---|
196 | ONLY: get_date_time |
---|
197 | |
---|
198 | USE pegrid |
---|
199 | |
---|
200 | IMPLICIT NONE |
---|
201 | |
---|
202 | ! |
---|
203 | !-- Define data type for nesting in larger-scale models like COSMO. |
---|
204 | !-- Data type comprises u, v, w, pt, and q at lateral and top boundaries. |
---|
205 | TYPE nest_offl_type |
---|
206 | |
---|
207 | CHARACTER(LEN=16) :: char_l = 'ls_forcing_left_' !< leading substring for variables at left boundary |
---|
208 | CHARACTER(LEN=17) :: char_n = 'ls_forcing_north_' !< leading substring for variables at north boundary |
---|
209 | CHARACTER(LEN=17) :: char_r = 'ls_forcing_right_' !< leading substring for variables at right boundary |
---|
210 | CHARACTER(LEN=17) :: char_s = 'ls_forcing_south_' !< leading substring for variables at south boundary |
---|
211 | CHARACTER(LEN=15) :: char_t = 'ls_forcing_top_' !< leading substring for variables at top boundary |
---|
212 | |
---|
213 | CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names !< list of variable in dynamic input file |
---|
214 | CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names_chem_l !< names of mesoscale nested chemistry variables at left boundary |
---|
215 | CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names_chem_n !< names of mesoscale nested chemistry variables at north boundary |
---|
216 | CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names_chem_r !< names of mesoscale nested chemistry variables at right boundary |
---|
217 | CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names_chem_s !< names of mesoscale nested chemistry variables at south boundary |
---|
218 | CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names_chem_t !< names of mesoscale nested chemistry variables at top boundary |
---|
219 | |
---|
220 | INTEGER(iwp) :: nt !< number of time levels in dynamic input file |
---|
221 | INTEGER(iwp) :: nzu !< number of vertical levels on scalar grid in dynamic input file |
---|
222 | INTEGER(iwp) :: nzw !< number of vertical levels on w grid in dynamic input file |
---|
223 | INTEGER(iwp) :: tind !< time index for reference time in mesoscale-offline nesting |
---|
224 | INTEGER(iwp) :: tind_p !< time index for following time in mesoscale-offline nesting |
---|
225 | |
---|
226 | LOGICAL :: init = .FALSE. !< flag indicating that offline nesting is already initialized |
---|
227 | |
---|
228 | LOGICAL, DIMENSION(:), ALLOCATABLE :: chem_from_file_l !< flags inidicating whether left boundary data for chemistry is in dynamic input file |
---|
229 | LOGICAL, DIMENSION(:), ALLOCATABLE :: chem_from_file_n !< flags inidicating whether north boundary data for chemistry is in dynamic input file |
---|
230 | LOGICAL, DIMENSION(:), ALLOCATABLE :: chem_from_file_r !< flags inidicating whether right boundary data for chemistry is in dynamic input file |
---|
231 | LOGICAL, DIMENSION(:), ALLOCATABLE :: chem_from_file_s !< flags inidicating whether south boundary data for chemistry is in dynamic input file |
---|
232 | LOGICAL, DIMENSION(:), ALLOCATABLE :: chem_from_file_t !< flags inidicating whether top boundary data for chemistry is in dynamic input file |
---|
233 | |
---|
234 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surface_pressure !< time dependent surface pressure |
---|
235 | REAL(wp), DIMENSION(:), ALLOCATABLE :: time !< time levels in dynamic input file |
---|
236 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zu_atmos !< vertical levels at scalar grid in dynamic input file |
---|
237 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zw_atmos !< vertical levels at w grid in dynamic input file |
---|
238 | |
---|
239 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ug !< domain-averaged geostrophic component |
---|
240 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vg !< domain-averaged geostrophic component |
---|
241 | |
---|
242 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_left !< u-component at left boundary |
---|
243 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_left !< v-component at left boundary |
---|
244 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_left !< w-component at left boundary |
---|
245 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_left !< mixing ratio at left boundary |
---|
246 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_left !< potentital temperautre at left boundary |
---|
247 | |
---|
248 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_north !< u-component at north boundary |
---|
249 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_north !< v-component at north boundary |
---|
250 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_north !< w-component at north boundary |
---|
251 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_north !< mixing ratio at north boundary |
---|
252 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_north !< potentital temperautre at north boundary |
---|
253 | |
---|
254 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_right !< u-component at right boundary |
---|
255 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_right !< v-component at right boundary |
---|
256 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_right !< w-component at right boundary |
---|
257 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_right !< mixing ratio at right boundary |
---|
258 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_right !< potentital temperautre at right boundary |
---|
259 | |
---|
260 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_south !< u-component at south boundary |
---|
261 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_south !< v-component at south boundary |
---|
262 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_south !< w-component at south boundary |
---|
263 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_south !< mixing ratio at south boundary |
---|
264 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_south !< potentital temperautre at south boundary |
---|
265 | |
---|
266 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_top !< u-component at top boundary |
---|
267 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_top !< v-component at top boundary |
---|
268 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_top !< w-component at top boundary |
---|
269 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_top !< mixing ratio at top boundary |
---|
270 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_top !< potentital temperautre at top boundary |
---|
271 | |
---|
272 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: chem_left !< chemical species at left boundary |
---|
273 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: chem_north !< chemical species at left boundary |
---|
274 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: chem_right !< chemical species at left boundary |
---|
275 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: chem_south !< chemical species at left boundary |
---|
276 | REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: chem_top !< chemical species at left boundary |
---|
277 | |
---|
278 | END TYPE nest_offl_type |
---|
279 | |
---|
280 | REAL(wp) :: fac_dt !< interpolation factor |
---|
281 | REAL(wp) :: time_utc_init !< time in seconds-of-day of origin_date_time |
---|
282 | REAL(wp) :: zi_ribulk = 0.0_wp !< boundary-layer depth according to bulk Richardson criterion, i.e. the height where Ri_bulk exceeds the critical |
---|
283 | !< bulk Richardson number of 0.2 |
---|
284 | |
---|
285 | TYPE(nest_offl_type) :: nest_offl !< data structure for data input at lateral and top boundaries (provided by Inifor) |
---|
286 | |
---|
287 | SAVE |
---|
288 | PRIVATE |
---|
289 | ! |
---|
290 | !-- Public subroutines |
---|
291 | PUBLIC nesting_offl_bc, & |
---|
292 | nesting_offl_calc_zi, & |
---|
293 | nesting_offl_check_parameters, & |
---|
294 | nesting_offl_geostrophic_wind, & |
---|
295 | nesting_offl_header, & |
---|
296 | nesting_offl_init, & |
---|
297 | nesting_offl_input, & |
---|
298 | nesting_offl_interpolation_factor, & |
---|
299 | nesting_offl_mass_conservation, & |
---|
300 | nesting_offl_parin |
---|
301 | ! |
---|
302 | !-- Public variables |
---|
303 | PUBLIC zi_ribulk |
---|
304 | |
---|
305 | INTERFACE nesting_offl_bc |
---|
306 | MODULE PROCEDURE nesting_offl_bc |
---|
307 | END INTERFACE nesting_offl_bc |
---|
308 | |
---|
309 | INTERFACE nesting_offl_calc_zi |
---|
310 | MODULE PROCEDURE nesting_offl_calc_zi |
---|
311 | END INTERFACE nesting_offl_calc_zi |
---|
312 | |
---|
313 | INTERFACE nesting_offl_check_parameters |
---|
314 | MODULE PROCEDURE nesting_offl_check_parameters |
---|
315 | END INTERFACE nesting_offl_check_parameters |
---|
316 | |
---|
317 | INTERFACE nesting_offl_geostrophic_wind |
---|
318 | MODULE PROCEDURE nesting_offl_geostrophic_wind |
---|
319 | END INTERFACE nesting_offl_geostrophic_wind |
---|
320 | |
---|
321 | INTERFACE nesting_offl_header |
---|
322 | MODULE PROCEDURE nesting_offl_header |
---|
323 | END INTERFACE nesting_offl_header |
---|
324 | |
---|
325 | INTERFACE nesting_offl_init |
---|
326 | MODULE PROCEDURE nesting_offl_init |
---|
327 | END INTERFACE nesting_offl_init |
---|
328 | |
---|
329 | INTERFACE nesting_offl_input |
---|
330 | MODULE PROCEDURE nesting_offl_input |
---|
331 | END INTERFACE nesting_offl_input |
---|
332 | |
---|
333 | INTERFACE nesting_offl_interpolation_factor |
---|
334 | MODULE PROCEDURE nesting_offl_interpolation_factor |
---|
335 | END INTERFACE nesting_offl_interpolation_factor |
---|
336 | |
---|
337 | INTERFACE nesting_offl_mass_conservation |
---|
338 | MODULE PROCEDURE nesting_offl_mass_conservation |
---|
339 | END INTERFACE nesting_offl_mass_conservation |
---|
340 | |
---|
341 | INTERFACE nesting_offl_parin |
---|
342 | MODULE PROCEDURE nesting_offl_parin |
---|
343 | END INTERFACE nesting_offl_parin |
---|
344 | |
---|
345 | CONTAINS |
---|
346 | |
---|
347 | !------------------------------------------------------------------------------! |
---|
348 | ! Description: |
---|
349 | ! ------------ |
---|
350 | !> Reads data at lateral and top boundaries derived from larger-scale model. |
---|
351 | !------------------------------------------------------------------------------! |
---|
352 | SUBROUTINE nesting_offl_input |
---|
353 | |
---|
354 | INTEGER(iwp) :: n !< running index for chemistry variables |
---|
355 | INTEGER(iwp) :: t !< running index time dimension |
---|
356 | |
---|
357 | ! |
---|
358 | !-- Initialize INIFOR forcing in first call. |
---|
359 | IF ( .NOT. nest_offl%init ) THEN |
---|
360 | #if defined ( __netcdf ) |
---|
361 | ! |
---|
362 | !-- Open file in read-only mode |
---|
363 | CALL open_read_file( TRIM( input_file_dynamic ) // & |
---|
364 | TRIM( coupling_char ), pids_id ) |
---|
365 | ! |
---|
366 | !-- At first, inquire all variable names. |
---|
367 | CALL inquire_num_variables( pids_id, num_var_pids ) |
---|
368 | ! |
---|
369 | !-- Allocate memory to store variable names. |
---|
370 | ALLOCATE( nest_offl%var_names(1:num_var_pids) ) |
---|
371 | CALL inquire_variable_names( pids_id, nest_offl%var_names ) |
---|
372 | ! |
---|
373 | !-- Read time dimension, allocate memory and finally read time array |
---|
374 | CALL get_dimension_length( pids_id, nest_offl%nt, 'time' ) |
---|
375 | |
---|
376 | IF ( check_existence( nest_offl%var_names, 'time' ) ) THEN |
---|
377 | ALLOCATE( nest_offl%time(0:nest_offl%nt-1) ) |
---|
378 | CALL get_variable( pids_id, 'time', nest_offl%time ) |
---|
379 | ENDIF |
---|
380 | ! |
---|
381 | !-- Read vertical dimension of scalar und w grid |
---|
382 | CALL get_dimension_length( pids_id, nest_offl%nzu, 'z' ) |
---|
383 | CALL get_dimension_length( pids_id, nest_offl%nzw, 'zw' ) |
---|
384 | |
---|
385 | IF ( check_existence( nest_offl%var_names, 'z' ) ) THEN |
---|
386 | ALLOCATE( nest_offl%zu_atmos(1:nest_offl%nzu) ) |
---|
387 | CALL get_variable( pids_id, 'z', nest_offl%zu_atmos ) |
---|
388 | ENDIF |
---|
389 | IF ( check_existence( nest_offl%var_names, 'zw' ) ) THEN |
---|
390 | ALLOCATE( nest_offl%zw_atmos(1:nest_offl%nzw) ) |
---|
391 | CALL get_variable( pids_id, 'zw', nest_offl%zw_atmos ) |
---|
392 | ENDIF |
---|
393 | ! |
---|
394 | !-- Read surface pressure |
---|
395 | IF ( check_existence( nest_offl%var_names, & |
---|
396 | 'surface_forcing_surface_pressure' ) ) THEN |
---|
397 | ALLOCATE( nest_offl%surface_pressure(0:nest_offl%nt-1) ) |
---|
398 | CALL get_variable( pids_id, & |
---|
399 | 'surface_forcing_surface_pressure', & |
---|
400 | nest_offl%surface_pressure ) |
---|
401 | ENDIF |
---|
402 | ! |
---|
403 | !-- Close input file |
---|
404 | CALL close_input_file( pids_id ) |
---|
405 | #endif |
---|
406 | ENDIF |
---|
407 | ! |
---|
408 | !-- Check if dynamic driver data input is required. |
---|
409 | IF ( nest_offl%time(nest_offl%tind_p) <= & |
---|
410 | MAX( time_since_reference_point, 0.0_wp) + time_utc_init .OR. & |
---|
411 | .NOT. nest_offl%init ) THEN |
---|
412 | CONTINUE |
---|
413 | ! |
---|
414 | !-- Return otherwise |
---|
415 | ELSE |
---|
416 | RETURN |
---|
417 | ENDIF |
---|
418 | ! |
---|
419 | !-- CPU measurement |
---|
420 | CALL cpu_log( log_point_s(86), 'NetCDF input forcing', 'start' ) |
---|
421 | |
---|
422 | ! |
---|
423 | !-- Obtain time index for current point in time. Note, the time coordinate |
---|
424 | !-- in the input file is relative to time_utc_init. Since time_since_... |
---|
425 | !-- is negativ when spinup is used, use MAX function to obtain correct |
---|
426 | !-- time at the beginning. |
---|
427 | nest_offl%tind = MINLOC( ABS( nest_offl%time - ( & |
---|
428 | time_utc_init + & |
---|
429 | MAX( time_since_reference_point, 0.0_wp) )& |
---|
430 | ), DIM = 1 ) - 1 |
---|
431 | nest_offl%tind_p = nest_offl%tind + 1 |
---|
432 | ! |
---|
433 | !-- Open file in read-only mode |
---|
434 | #if defined ( __netcdf ) |
---|
435 | CALL open_read_file( TRIM( input_file_dynamic ) // & |
---|
436 | TRIM( coupling_char ), pids_id ) |
---|
437 | ! |
---|
438 | !-- Read geostrophic wind components |
---|
439 | DO t = nest_offl%tind, nest_offl%tind_p |
---|
440 | CALL get_variable_pr( pids_id, 'ls_forcing_ug', t+1, & |
---|
441 | nest_offl%ug(t-nest_offl%tind,nzb+1:nzt) ) |
---|
442 | CALL get_variable_pr( pids_id, 'ls_forcing_vg', t+1, & |
---|
443 | nest_offl%vg(t-nest_offl%tind,nzb+1:nzt) ) |
---|
444 | ENDDO |
---|
445 | ! |
---|
446 | !-- Read data at lateral and top boundaries. Please note, at left and |
---|
447 | !-- right domain boundary, yz-layers are read for u, v, w, pt and q. |
---|
448 | !-- For the v-component, the data starts at nysv, while for the other |
---|
449 | !-- quantities the data starts at nys. This is equivalent at the north |
---|
450 | !-- and south domain boundary for the u-component. |
---|
451 | !-- Note, lateral data is also accessed by parallel IO, which is the reason |
---|
452 | !-- why different arguments are passed depending on the boundary control |
---|
453 | !-- flags. Cores that do not belong to the respective boundary just make |
---|
454 | !-- a dummy read with count = 0, just in order to participate the collective |
---|
455 | !-- operation. |
---|
456 | !-- Read data for western boundary |
---|
457 | CALL get_variable( pids_id, 'ls_forcing_left_u', & |
---|
458 | nest_offl%u_left, & ! array to be read |
---|
459 | MERGE( nys+1, 1, bc_dirichlet_l), & ! start index y direction |
---|
460 | MERGE( nzb+1, 1, bc_dirichlet_l), & ! start index z direction |
---|
461 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_l), & ! start index time dimension |
---|
462 | MERGE( nyn-nys+1, 0, bc_dirichlet_l), & ! number of elements along y |
---|
463 | MERGE( nest_offl%nzu, 0, bc_dirichlet_l), & ! number of elements alogn z |
---|
464 | MERGE( 2, 0, bc_dirichlet_l), & ! number of time steps (2 or 0) |
---|
465 | .TRUE. ) ! parallel IO when compiled accordingly |
---|
466 | |
---|
467 | CALL get_variable( pids_id, 'ls_forcing_left_v', & |
---|
468 | nest_offl%v_left, & |
---|
469 | MERGE( nysv, 1, bc_dirichlet_l), & |
---|
470 | MERGE( nzb+1, 1, bc_dirichlet_l), & |
---|
471 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_l), & |
---|
472 | MERGE( nyn-nysv+1, 0, bc_dirichlet_l), & |
---|
473 | MERGE( nest_offl%nzu, 0, bc_dirichlet_l), & |
---|
474 | MERGE( 2, 0, bc_dirichlet_l), & |
---|
475 | .TRUE. ) |
---|
476 | |
---|
477 | CALL get_variable( pids_id, 'ls_forcing_left_w', & |
---|
478 | nest_offl%w_left, & |
---|
479 | MERGE( nys+1, 1, bc_dirichlet_l), & |
---|
480 | MERGE( nzb+1, 1, bc_dirichlet_l), & |
---|
481 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_l), & |
---|
482 | MERGE( nyn-nys+1, 0, bc_dirichlet_l), & |
---|
483 | MERGE( nest_offl%nzw, 0, bc_dirichlet_l), & |
---|
484 | MERGE( 2, 0, bc_dirichlet_l), & |
---|
485 | .TRUE. ) |
---|
486 | |
---|
487 | IF ( .NOT. neutral ) THEN |
---|
488 | CALL get_variable( pids_id, 'ls_forcing_left_pt', & |
---|
489 | nest_offl%pt_left, & |
---|
490 | MERGE( nys+1, 1, bc_dirichlet_l), & |
---|
491 | MERGE( nzb+1, 1, bc_dirichlet_l), & |
---|
492 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_l), & |
---|
493 | MERGE( nyn-nys+1, 0, bc_dirichlet_l), & |
---|
494 | MERGE( nest_offl%nzu, 0, bc_dirichlet_l), & |
---|
495 | MERGE( 2, 0, bc_dirichlet_l), & |
---|
496 | .TRUE. ) |
---|
497 | ENDIF |
---|
498 | |
---|
499 | IF ( humidity ) THEN |
---|
500 | CALL get_variable( pids_id, 'ls_forcing_left_qv', & |
---|
501 | nest_offl%q_left, & |
---|
502 | MERGE( nys+1, 1, bc_dirichlet_l), & |
---|
503 | MERGE( nzb+1, 1, bc_dirichlet_l), & |
---|
504 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_l), & |
---|
505 | MERGE( nyn-nys+1, 0, bc_dirichlet_l), & |
---|
506 | MERGE( nest_offl%nzu, 0, bc_dirichlet_l), & |
---|
507 | MERGE( 2, 0, bc_dirichlet_l), & |
---|
508 | .TRUE. ) |
---|
509 | ENDIF |
---|
510 | |
---|
511 | IF ( air_chemistry ) THEN |
---|
512 | DO n = 1, UBOUND(nest_offl%var_names_chem_l, 1) |
---|
513 | IF ( check_existence( nest_offl%var_names, & |
---|
514 | nest_offl%var_names_chem_l(n) ) ) THEN |
---|
515 | CALL get_variable( pids_id, & |
---|
516 | TRIM( nest_offl%var_names_chem_l(n) ), & |
---|
517 | nest_offl%chem_left(:,:,:,n), & |
---|
518 | MERGE( nys+1, 1, bc_dirichlet_l), & |
---|
519 | MERGE( nzb+1, 1, bc_dirichlet_l), & |
---|
520 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_l), & |
---|
521 | MERGE( nyn-nys+1, 0, bc_dirichlet_l), & |
---|
522 | MERGE( nest_offl%nzu, 0, bc_dirichlet_l), & |
---|
523 | MERGE( 2, 0, bc_dirichlet_l), & |
---|
524 | .TRUE. ) |
---|
525 | nest_offl%chem_from_file_l(n) = .TRUE. |
---|
526 | ENDIF |
---|
527 | ENDDO |
---|
528 | ENDIF |
---|
529 | ! |
---|
530 | !-- Read data for eastern boundary |
---|
531 | CALL get_variable( pids_id, 'ls_forcing_right_u', & |
---|
532 | nest_offl%u_right, & |
---|
533 | MERGE( nys+1, 1, bc_dirichlet_r), & |
---|
534 | MERGE( nzb+1, 1, bc_dirichlet_r), & |
---|
535 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_r), & |
---|
536 | MERGE( nyn-nys+1, 0, bc_dirichlet_r), & |
---|
537 | MERGE( nest_offl%nzu, 0, bc_dirichlet_r), & |
---|
538 | MERGE( 2, 0, bc_dirichlet_r), & |
---|
539 | .TRUE. ) |
---|
540 | |
---|
541 | CALL get_variable( pids_id, 'ls_forcing_right_v', & |
---|
542 | nest_offl%v_right, & |
---|
543 | MERGE( nysv, 1, bc_dirichlet_r), & |
---|
544 | MERGE( nzb+1, 1, bc_dirichlet_r), & |
---|
545 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_r), & |
---|
546 | MERGE( nyn-nysv+1, 0, bc_dirichlet_r), & |
---|
547 | MERGE( nest_offl%nzu, 0, bc_dirichlet_r), & |
---|
548 | MERGE( 2, 0, bc_dirichlet_r), & |
---|
549 | .TRUE. ) |
---|
550 | |
---|
551 | CALL get_variable( pids_id, 'ls_forcing_right_w', & |
---|
552 | nest_offl%w_right, & |
---|
553 | MERGE( nys+1, 1, bc_dirichlet_r), & |
---|
554 | MERGE( nzb+1, 1, bc_dirichlet_r), & |
---|
555 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_r), & |
---|
556 | MERGE( nyn-nys+1, 0, bc_dirichlet_r), & |
---|
557 | MERGE( nest_offl%nzw, 0, bc_dirichlet_r), & |
---|
558 | MERGE( 2, 0, bc_dirichlet_r), & |
---|
559 | .TRUE. ) |
---|
560 | |
---|
561 | IF ( .NOT. neutral ) THEN |
---|
562 | CALL get_variable( pids_id, 'ls_forcing_right_pt', & |
---|
563 | nest_offl%pt_right, & |
---|
564 | MERGE( nys+1, 1, bc_dirichlet_r), & |
---|
565 | MERGE( nzb+1, 1, bc_dirichlet_r), & |
---|
566 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_r), & |
---|
567 | MERGE( nyn-nys+1, 0, bc_dirichlet_r), & |
---|
568 | MERGE( nest_offl%nzu, 0, bc_dirichlet_r), & |
---|
569 | MERGE( 2, 0, bc_dirichlet_r), & |
---|
570 | .TRUE. ) |
---|
571 | ENDIF |
---|
572 | |
---|
573 | IF ( humidity ) THEN |
---|
574 | CALL get_variable( pids_id, 'ls_forcing_right_qv', & |
---|
575 | nest_offl%q_right, & |
---|
576 | MERGE( nys+1, 1, bc_dirichlet_r), & |
---|
577 | MERGE( nzb+1, 1, bc_dirichlet_r), & |
---|
578 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_r), & |
---|
579 | MERGE( nyn-nys+1, 0, bc_dirichlet_r), & |
---|
580 | MERGE( nest_offl%nzu, 0, bc_dirichlet_r), & |
---|
581 | MERGE( 2, 0, bc_dirichlet_r), & |
---|
582 | .TRUE. ) |
---|
583 | ENDIF |
---|
584 | |
---|
585 | IF ( air_chemistry ) THEN |
---|
586 | DO n = 1, UBOUND(nest_offl%var_names_chem_r, 1) |
---|
587 | IF ( check_existence( nest_offl%var_names, & |
---|
588 | nest_offl%var_names_chem_r(n) ) ) THEN |
---|
589 | CALL get_variable( pids_id, & |
---|
590 | TRIM( nest_offl%var_names_chem_r(n) ), & |
---|
591 | nest_offl%chem_right(:,:,:,n), & |
---|
592 | MERGE( nys+1, 1, bc_dirichlet_r), & |
---|
593 | MERGE( nzb+1, 1, bc_dirichlet_r), & |
---|
594 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_r), & |
---|
595 | MERGE( nyn-nys+1, 0, bc_dirichlet_r), & |
---|
596 | MERGE( nest_offl%nzu, 0, bc_dirichlet_r), & |
---|
597 | MERGE( 2, 0, bc_dirichlet_r), & |
---|
598 | .TRUE. ) |
---|
599 | nest_offl%chem_from_file_r(n) = .TRUE. |
---|
600 | ENDIF |
---|
601 | ENDDO |
---|
602 | ENDIF |
---|
603 | ! |
---|
604 | !-- Read data for northern boundary |
---|
605 | CALL get_variable( pids_id, 'ls_forcing_north_u', & ! array to be read |
---|
606 | nest_offl%u_north, & ! start index x direction |
---|
607 | MERGE( nxlu, 1, bc_dirichlet_n ), & ! start index z direction |
---|
608 | MERGE( nzb+1, 1, bc_dirichlet_n ), & ! start index time dimension |
---|
609 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_n ), & ! number of elements along x |
---|
610 | MERGE( nxr-nxlu+1, 0, bc_dirichlet_n ), & ! number of elements alogn z |
---|
611 | MERGE( nest_offl%nzu, 0, bc_dirichlet_n ), & ! number of time steps (2 or 0) |
---|
612 | MERGE( 2, 0, bc_dirichlet_n ), & ! parallel IO when compiled accordingly |
---|
613 | .TRUE. ) |
---|
614 | |
---|
615 | CALL get_variable( pids_id, 'ls_forcing_north_v', & ! array to be read |
---|
616 | nest_offl%v_north, & ! start index x direction |
---|
617 | MERGE( nxl+1, 1, bc_dirichlet_n ), & ! start index z direction |
---|
618 | MERGE( nzb+1, 1, bc_dirichlet_n ), & ! start index time dimension |
---|
619 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_n ), & ! number of elements along x |
---|
620 | MERGE( nxr-nxl+1, 0, bc_dirichlet_n ), & ! number of elements alogn z |
---|
621 | MERGE( nest_offl%nzu, 0, bc_dirichlet_n ), & ! number of time steps (2 or 0) |
---|
622 | MERGE( 2, 0, bc_dirichlet_n ), & ! parallel IO when compiled accordingly |
---|
623 | .TRUE. ) |
---|
624 | |
---|
625 | CALL get_variable( pids_id, 'ls_forcing_north_w', & ! array to be read |
---|
626 | nest_offl%w_north, & ! start index x direction |
---|
627 | MERGE( nxl+1, 1, bc_dirichlet_n ), & ! start index z direction |
---|
628 | MERGE( nzb+1, 1, bc_dirichlet_n ), & ! start index time dimension |
---|
629 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_n ), & ! number of elements along x |
---|
630 | MERGE( nxr-nxl+1, 0, bc_dirichlet_n ), & ! number of elements alogn z |
---|
631 | MERGE( nest_offl%nzw, 0, bc_dirichlet_n ), & ! number of time steps (2 or 0) |
---|
632 | MERGE( 2, 0, bc_dirichlet_n ), & ! parallel IO when compiled accordingly |
---|
633 | .TRUE. ) |
---|
634 | |
---|
635 | IF ( .NOT. neutral ) THEN |
---|
636 | CALL get_variable( pids_id, 'ls_forcing_north_pt', & ! array to be read |
---|
637 | nest_offl%pt_north, & ! start index x direction |
---|
638 | MERGE( nxl+1, 1, bc_dirichlet_n ), & ! start index z direction |
---|
639 | MERGE( nzb+1, 1, bc_dirichlet_n ), & ! start index time dimension |
---|
640 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_n ), & ! number of elements along x |
---|
641 | MERGE( nxr-nxl+1, 0, bc_dirichlet_n ), & ! number of elements alogn z |
---|
642 | MERGE( nest_offl%nzu, 0, bc_dirichlet_n ), & ! number of time steps (2 or 0) |
---|
643 | MERGE( 2, 0, bc_dirichlet_n ), & ! parallel IO when compiled accordingly |
---|
644 | .TRUE. ) |
---|
645 | ENDIF |
---|
646 | IF ( humidity ) THEN |
---|
647 | CALL get_variable( pids_id, 'ls_forcing_north_qv', & ! array to be read |
---|
648 | nest_offl%q_north, & ! start index x direction |
---|
649 | MERGE( nxl+1, 1, bc_dirichlet_n ), & ! start index z direction |
---|
650 | MERGE( nzb+1, 1, bc_dirichlet_n ), & ! start index time dimension |
---|
651 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_n ), & ! number of elements along x |
---|
652 | MERGE( nxr-nxl+1, 0, bc_dirichlet_n ), & ! number of elements alogn z |
---|
653 | MERGE( nest_offl%nzu, 0, bc_dirichlet_n ), & ! number of time steps (2 or 0) |
---|
654 | MERGE( 2, 0, bc_dirichlet_n ), & ! parallel IO when compiled accordingly |
---|
655 | .TRUE. ) |
---|
656 | ENDIF |
---|
657 | |
---|
658 | IF ( air_chemistry ) THEN |
---|
659 | DO n = 1, UBOUND(nest_offl%var_names_chem_n, 1) |
---|
660 | IF ( check_existence( nest_offl%var_names, & |
---|
661 | nest_offl%var_names_chem_n(n) ) ) THEN |
---|
662 | CALL get_variable( pids_id, & |
---|
663 | TRIM( nest_offl%var_names_chem_n(n) ), & |
---|
664 | nest_offl%chem_north(:,:,:,n), & |
---|
665 | MERGE( nxl+1, 1, bc_dirichlet_n ), & |
---|
666 | MERGE( nzb+1, 1, bc_dirichlet_n ), & |
---|
667 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_n ), & |
---|
668 | MERGE( nxr-nxl+1, 0, bc_dirichlet_n ), & |
---|
669 | MERGE( nest_offl%nzu, 0, bc_dirichlet_n ), & |
---|
670 | MERGE( 2, 0, bc_dirichlet_n ), & |
---|
671 | .TRUE. ) |
---|
672 | nest_offl%chem_from_file_n(n) = .TRUE. |
---|
673 | ENDIF |
---|
674 | ENDDO |
---|
675 | ENDIF |
---|
676 | ! |
---|
677 | !-- Read data for southern boundary |
---|
678 | CALL get_variable( pids_id, 'ls_forcing_south_u', & ! array to be read |
---|
679 | nest_offl%u_south, & ! start index x direction |
---|
680 | MERGE( nxlu, 1, bc_dirichlet_s ), & ! start index z direction |
---|
681 | MERGE( nzb+1, 1, bc_dirichlet_s ), & ! start index time dimension |
---|
682 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_s ), & ! number of elements along x |
---|
683 | MERGE( nxr-nxlu+1, 0, bc_dirichlet_s ), & ! number of elements alogn z |
---|
684 | MERGE( nest_offl%nzu, 0, bc_dirichlet_s ), & ! number of time steps (2 or 0) |
---|
685 | MERGE( 2, 0, bc_dirichlet_s ), & ! parallel IO when compiled accordingly |
---|
686 | .TRUE. ) |
---|
687 | |
---|
688 | CALL get_variable( pids_id, 'ls_forcing_south_v', & ! array to be read |
---|
689 | nest_offl%v_south, & ! start index x direction |
---|
690 | MERGE( nxl+1, 1, bc_dirichlet_s ), & ! start index z direction |
---|
691 | MERGE( nzb+1, 1, bc_dirichlet_s ), & ! start index time dimension |
---|
692 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_s ), & ! number of elements along x |
---|
693 | MERGE( nxr-nxl+1, 0, bc_dirichlet_s ), & ! number of elements alogn z |
---|
694 | MERGE( nest_offl%nzu, 0, bc_dirichlet_s ), & ! number of time steps (2 or 0) |
---|
695 | MERGE( 2, 0, bc_dirichlet_s ), & ! parallel IO when compiled accordingly |
---|
696 | .TRUE. ) |
---|
697 | |
---|
698 | CALL get_variable( pids_id, 'ls_forcing_south_w', & ! array to be read |
---|
699 | nest_offl%w_south, & ! start index x direction |
---|
700 | MERGE( nxl+1, 1, bc_dirichlet_s ), & ! start index z direction |
---|
701 | MERGE( nzb+1, 1, bc_dirichlet_s ), & ! start index time dimension |
---|
702 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_s ), & ! number of elements along x |
---|
703 | MERGE( nxr-nxl+1, 0, bc_dirichlet_s ), & ! number of elements alogn z |
---|
704 | MERGE( nest_offl%nzw, 0, bc_dirichlet_s ), & ! number of time steps (2 or 0) |
---|
705 | MERGE( 2, 0, bc_dirichlet_s ), & ! parallel IO when compiled accordingly |
---|
706 | .TRUE. ) |
---|
707 | |
---|
708 | IF ( .NOT. neutral ) THEN |
---|
709 | CALL get_variable( pids_id, 'ls_forcing_south_pt', & ! array to be read |
---|
710 | nest_offl%pt_south, & ! start index x direction |
---|
711 | MERGE( nxl+1, 1, bc_dirichlet_s ), & ! start index z direction |
---|
712 | MERGE( nzb+1, 1, bc_dirichlet_s ), & ! start index time dimension |
---|
713 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_s ), & ! number of elements along x |
---|
714 | MERGE( nxr-nxl+1, 0, bc_dirichlet_s ), & ! number of elements alogn z |
---|
715 | MERGE( nest_offl%nzu, 0, bc_dirichlet_s ), & ! number of time steps (2 or 0) |
---|
716 | MERGE( 2, 0, bc_dirichlet_s ), & ! parallel IO when compiled accordingly |
---|
717 | .TRUE. ) |
---|
718 | ENDIF |
---|
719 | IF ( humidity ) THEN |
---|
720 | CALL get_variable( pids_id, 'ls_forcing_south_qv', & ! array to be read |
---|
721 | nest_offl%q_south, & ! start index x direction |
---|
722 | MERGE( nxl+1, 1, bc_dirichlet_s ), & ! start index z direction |
---|
723 | MERGE( nzb+1, 1, bc_dirichlet_s ), & ! start index time dimension |
---|
724 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_s ), & ! number of elements along x |
---|
725 | MERGE( nxr-nxl+1, 0, bc_dirichlet_s ), & ! number of elements alogn z |
---|
726 | MERGE( nest_offl%nzu, 0, bc_dirichlet_s ), & ! number of time steps (2 or 0) |
---|
727 | MERGE( 2, 0, bc_dirichlet_s ), & ! parallel IO when compiled accordingly |
---|
728 | .TRUE. ) |
---|
729 | ENDIF |
---|
730 | |
---|
731 | IF ( air_chemistry ) THEN |
---|
732 | DO n = 1, UBOUND(nest_offl%var_names_chem_s, 1) |
---|
733 | IF ( check_existence( nest_offl%var_names, & |
---|
734 | nest_offl%var_names_chem_s(n) ) ) THEN |
---|
735 | CALL get_variable( pids_id, & |
---|
736 | TRIM( nest_offl%var_names_chem_s(n) ), & |
---|
737 | nest_offl%chem_south(:,:,:,n), & |
---|
738 | MERGE( nxl+1, 1, bc_dirichlet_s ), & |
---|
739 | MERGE( nzb+1, 1, bc_dirichlet_s ), & |
---|
740 | MERGE( nest_offl%tind+1, 1, bc_dirichlet_s ), & |
---|
741 | MERGE( nxr-nxl+1, 0, bc_dirichlet_s ), & |
---|
742 | MERGE( nest_offl%nzu, 0, bc_dirichlet_s ), & |
---|
743 | MERGE( 2, 0, bc_dirichlet_s ), & |
---|
744 | .TRUE. ) |
---|
745 | nest_offl%chem_from_file_s(n) = .TRUE. |
---|
746 | ENDIF |
---|
747 | ENDDO |
---|
748 | ENDIF |
---|
749 | ! |
---|
750 | !-- Top boundary |
---|
751 | CALL get_variable( pids_id, 'ls_forcing_top_u', & |
---|
752 | nest_offl%u_top(0:1,nys:nyn,nxlu:nxr), & |
---|
753 | nxlu, nys+1, nest_offl%tind+1, & |
---|
754 | nxr-nxlu+1, nyn-nys+1, 2, .TRUE. ) |
---|
755 | |
---|
756 | CALL get_variable( pids_id, 'ls_forcing_top_v', & |
---|
757 | nest_offl%v_top(0:1,nysv:nyn,nxl:nxr), & |
---|
758 | nxl+1, nysv, nest_offl%tind+1, & |
---|
759 | nxr-nxl+1, nyn-nysv+1, 2, .TRUE. ) |
---|
760 | |
---|
761 | CALL get_variable( pids_id, 'ls_forcing_top_w', & |
---|
762 | nest_offl%w_top(0:1,nys:nyn,nxl:nxr), & |
---|
763 | nxl+1, nys+1, nest_offl%tind+1, & |
---|
764 | nxr-nxl+1, nyn-nys+1, 2, .TRUE. ) |
---|
765 | |
---|
766 | IF ( .NOT. neutral ) THEN |
---|
767 | CALL get_variable( pids_id, 'ls_forcing_top_pt', & |
---|
768 | nest_offl%pt_top(0:1,nys:nyn,nxl:nxr), & |
---|
769 | nxl+1, nys+1, nest_offl%tind+1, & |
---|
770 | nxr-nxl+1, nyn-nys+1, 2, .TRUE. ) |
---|
771 | ENDIF |
---|
772 | IF ( humidity ) THEN |
---|
773 | CALL get_variable( pids_id, 'ls_forcing_top_qv', & |
---|
774 | nest_offl%q_top(0:1,nys:nyn,nxl:nxr), & |
---|
775 | nxl+1, nys+1, nest_offl%tind+1, & |
---|
776 | nxr-nxl+1, nyn-nys+1, 2, .TRUE. ) |
---|
777 | ENDIF |
---|
778 | |
---|
779 | IF ( air_chemistry ) THEN |
---|
780 | DO n = 1, UBOUND(nest_offl%var_names_chem_t, 1) |
---|
781 | IF ( check_existence( nest_offl%var_names, & |
---|
782 | nest_offl%var_names_chem_t(n) ) ) THEN |
---|
783 | CALL get_variable( pids_id, & |
---|
784 | TRIM( nest_offl%var_names_chem_t(n) ), & |
---|
785 | nest_offl%chem_top(0:1,nys:nyn,nxl:nxr,n), & |
---|
786 | nxl+1, nys+1, nest_offl%tind+1, & |
---|
787 | nxr-nxl+1, nyn-nys+1, 2, .TRUE. ) |
---|
788 | nest_offl%chem_from_file_t(n) = .TRUE. |
---|
789 | ENDIF |
---|
790 | ENDDO |
---|
791 | ENDIF |
---|
792 | |
---|
793 | ! |
---|
794 | !-- Close input file |
---|
795 | CALL close_input_file( pids_id ) |
---|
796 | #endif |
---|
797 | ! |
---|
798 | !-- Set control flag to indicate that boundary data has been initially |
---|
799 | !-- input. |
---|
800 | nest_offl%init = .TRUE. |
---|
801 | ! |
---|
802 | !-- End of CPU measurement |
---|
803 | CALL cpu_log( log_point_s(86), 'NetCDF input forcing', 'stop' ) |
---|
804 | |
---|
805 | END SUBROUTINE nesting_offl_input |
---|
806 | |
---|
807 | |
---|
808 | !------------------------------------------------------------------------------! |
---|
809 | ! Description: |
---|
810 | ! ------------ |
---|
811 | !> In this subroutine a constant mass within the model domain is guaranteed. |
---|
812 | !> Larger-scale models may be based on a compressible equation system, which is |
---|
813 | !> not consistent with PALMs incompressible equation system. In order to avoid |
---|
814 | !> a decrease or increase of mass during the simulation, non-divergent flow |
---|
815 | !> through the lateral and top boundaries is compensated by the vertical wind |
---|
816 | !> component at the top boundary. |
---|
817 | !------------------------------------------------------------------------------! |
---|
818 | SUBROUTINE nesting_offl_mass_conservation |
---|
819 | |
---|
820 | INTEGER(iwp) :: i !< grid index in x-direction |
---|
821 | INTEGER(iwp) :: j !< grid index in y-direction |
---|
822 | INTEGER(iwp) :: k !< grid index in z-direction |
---|
823 | |
---|
824 | REAL(wp) :: d_area_t !< inverse of the total area of the horizontal model domain |
---|
825 | REAL(wp) :: w_correct !< vertical velocity increment required to compensate non-divergent flow through the boundaries |
---|
826 | REAL(wp), DIMENSION(1:3) :: volume_flow_l !< local volume flow |
---|
827 | |
---|
828 | |
---|
829 | IF ( debug_output_timestep ) CALL debug_message( 'nesting_offl_mass_conservation', 'start' ) |
---|
830 | |
---|
831 | CALL cpu_log( log_point(58), 'offline nesting', 'start' ) |
---|
832 | |
---|
833 | volume_flow = 0.0_wp |
---|
834 | volume_flow_l = 0.0_wp |
---|
835 | |
---|
836 | d_area_t = 1.0_wp / ( ( nx + 1 ) * dx * ( ny + 1 ) * dy ) |
---|
837 | |
---|
838 | IF ( bc_dirichlet_l ) THEN |
---|
839 | i = nxl |
---|
840 | DO j = nys, nyn |
---|
841 | DO k = nzb+1, nzt |
---|
842 | volume_flow_l(1) = volume_flow_l(1) + u(k,j,i) * dzw(k) * dy & |
---|
843 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
844 | BTEST( wall_flags_0(k,j,i), 1 ) ) |
---|
845 | ENDDO |
---|
846 | ENDDO |
---|
847 | ENDIF |
---|
848 | IF ( bc_dirichlet_r ) THEN |
---|
849 | i = nxr+1 |
---|
850 | DO j = nys, nyn |
---|
851 | DO k = nzb+1, nzt |
---|
852 | volume_flow_l(1) = volume_flow_l(1) - u(k,j,i) * dzw(k) * dy & |
---|
853 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
854 | BTEST( wall_flags_0(k,j,i), 1 ) ) |
---|
855 | ENDDO |
---|
856 | ENDDO |
---|
857 | ENDIF |
---|
858 | IF ( bc_dirichlet_s ) THEN |
---|
859 | j = nys |
---|
860 | DO i = nxl, nxr |
---|
861 | DO k = nzb+1, nzt |
---|
862 | volume_flow_l(2) = volume_flow_l(2) + v(k,j,i) * dzw(k) * dx & |
---|
863 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
864 | BTEST( wall_flags_0(k,j,i), 2 ) ) |
---|
865 | ENDDO |
---|
866 | ENDDO |
---|
867 | ENDIF |
---|
868 | IF ( bc_dirichlet_n ) THEN |
---|
869 | j = nyn+1 |
---|
870 | DO i = nxl, nxr |
---|
871 | DO k = nzb+1, nzt |
---|
872 | volume_flow_l(2) = volume_flow_l(2) - v(k,j,i) * dzw(k) * dx & |
---|
873 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
874 | BTEST( wall_flags_0(k,j,i), 2 ) ) |
---|
875 | ENDDO |
---|
876 | ENDDO |
---|
877 | ENDIF |
---|
878 | ! |
---|
879 | !-- Top boundary |
---|
880 | k = nzt |
---|
881 | DO i = nxl, nxr |
---|
882 | DO j = nys, nyn |
---|
883 | volume_flow_l(3) = volume_flow_l(3) - w(k,j,i) * dx * dy |
---|
884 | ENDDO |
---|
885 | ENDDO |
---|
886 | |
---|
887 | #if defined( __parallel ) |
---|
888 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
889 | CALL MPI_ALLREDUCE( volume_flow_l, volume_flow, 3, MPI_REAL, MPI_SUM, & |
---|
890 | comm2d, ierr ) |
---|
891 | #else |
---|
892 | volume_flow = volume_flow_l |
---|
893 | #endif |
---|
894 | |
---|
895 | w_correct = SUM( volume_flow ) * d_area_t |
---|
896 | |
---|
897 | DO i = nxl, nxr |
---|
898 | DO j = nys, nyn |
---|
899 | DO k = nzt, nzt + 1 |
---|
900 | w(k,j,i) = w(k,j,i) + w_correct |
---|
901 | ENDDO |
---|
902 | ENDDO |
---|
903 | ENDDO |
---|
904 | |
---|
905 | CALL cpu_log( log_point(58), 'offline nesting', 'stop' ) |
---|
906 | |
---|
907 | IF ( debug_output_timestep ) CALL debug_message( 'nesting_offl_mass_conservation', 'end' ) |
---|
908 | |
---|
909 | END SUBROUTINE nesting_offl_mass_conservation |
---|
910 | |
---|
911 | |
---|
912 | !------------------------------------------------------------------------------! |
---|
913 | ! Description: |
---|
914 | ! ------------ |
---|
915 | !> Set the lateral and top boundary conditions in case the PALM domain is |
---|
916 | !> nested offline in a mesoscale model. Further, average boundary data and |
---|
917 | !> determine mean profiles, further used for correct damping in the sponge |
---|
918 | !> layer. |
---|
919 | !------------------------------------------------------------------------------! |
---|
920 | SUBROUTINE nesting_offl_bc |
---|
921 | |
---|
922 | INTEGER(iwp) :: i !< running index x-direction |
---|
923 | INTEGER(iwp) :: j !< running index y-direction |
---|
924 | INTEGER(iwp) :: k !< running index z-direction |
---|
925 | INTEGER(iwp) :: n !< running index for chemical species |
---|
926 | |
---|
927 | REAL(wp), DIMENSION(nzb:nzt+1) :: pt_ref !< reference profile for potential temperature |
---|
928 | REAL(wp), DIMENSION(nzb:nzt+1) :: pt_ref_l !< reference profile for potential temperature on subdomain |
---|
929 | REAL(wp), DIMENSION(nzb:nzt+1) :: q_ref !< reference profile for mixing ratio |
---|
930 | REAL(wp), DIMENSION(nzb:nzt+1) :: q_ref_l !< reference profile for mixing ratio on subdomain |
---|
931 | REAL(wp), DIMENSION(nzb:nzt+1) :: u_ref !< reference profile for u-component |
---|
932 | REAL(wp), DIMENSION(nzb:nzt+1) :: u_ref_l !< reference profile for u-component on subdomain |
---|
933 | REAL(wp), DIMENSION(nzb:nzt+1) :: v_ref !< reference profile for v-component |
---|
934 | REAL(wp), DIMENSION(nzb:nzt+1) :: v_ref_l !< reference profile for v-component on subdomain |
---|
935 | |
---|
936 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ref_chem !< reference profile for chemical species |
---|
937 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ref_chem_l !< reference profile for chemical species on subdomain |
---|
938 | |
---|
939 | IF ( debug_output_timestep ) CALL debug_message( 'nesting_offl_bc', 'start' ) |
---|
940 | |
---|
941 | CALL cpu_log( log_point(58), 'offline nesting', 'start' ) |
---|
942 | ! |
---|
943 | !-- Initialize mean profiles, derived from boundary data, to zero |
---|
944 | pt_ref = 0.0_wp |
---|
945 | q_ref = 0.0_wp |
---|
946 | u_ref = 0.0_wp |
---|
947 | v_ref = 0.0_wp |
---|
948 | |
---|
949 | pt_ref_l = 0.0_wp |
---|
950 | q_ref_l = 0.0_wp |
---|
951 | u_ref_l = 0.0_wp |
---|
952 | v_ref_l = 0.0_wp |
---|
953 | ! |
---|
954 | !-- If required, allocate temporary arrays to compute chemistry mean profiles |
---|
955 | IF ( air_chemistry ) THEN |
---|
956 | ALLOCATE( ref_chem(nzb:nzt+1,1:UBOUND( chem_species, 1 ) ) ) |
---|
957 | ALLOCATE( ref_chem_l(nzb:nzt+1,1:UBOUND( chem_species, 1 ) ) ) |
---|
958 | ref_chem = 0.0_wp |
---|
959 | ref_chem_l = 0.0_wp |
---|
960 | ENDIF |
---|
961 | ! |
---|
962 | !-- Set boundary conditions of u-, v-, w-component, as well as q, and pt. |
---|
963 | !-- Note, boundary values at the left boundary: i=-1 (v,w,pt,q) and |
---|
964 | !-- i=0 (u), at the right boundary: i=nxr+1 (all), at the south boundary: |
---|
965 | !-- j=-1 (u,w,pt,q) and j=0 (v), at the north boundary: j=nyn+1 (all). |
---|
966 | !-- Please note, at the left (for u) and south (for v) boundary, values |
---|
967 | !-- for u and v are set also at i/j=-1, since these values are used in |
---|
968 | !-- boundary_conditions() to restore prognostic values. |
---|
969 | !-- Further, sum up data to calculate mean profiles from boundary data, |
---|
970 | !-- used for Rayleigh damping. |
---|
971 | IF ( bc_dirichlet_l ) THEN |
---|
972 | |
---|
973 | DO j = nys, nyn |
---|
974 | DO k = nzb+1, nzt |
---|
975 | u(k,j,0) = interpolate_in_time( nest_offl%u_left(0,k,j), & |
---|
976 | nest_offl%u_left(1,k,j), & |
---|
977 | fac_dt ) * & |
---|
978 | MERGE( 1.0_wp, 0.0_wp, & |
---|
979 | BTEST( wall_flags_0(k,j,0), 1 ) ) |
---|
980 | u(k,j,-1) = u(k,j,0) |
---|
981 | ENDDO |
---|
982 | u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,j,0) |
---|
983 | ENDDO |
---|
984 | |
---|
985 | DO j = nys, nyn |
---|
986 | DO k = nzb+1, nzt-1 |
---|
987 | w(k,j,-1) = interpolate_in_time( nest_offl%w_left(0,k,j), & |
---|
988 | nest_offl%w_left(1,k,j), & |
---|
989 | fac_dt ) * & |
---|
990 | MERGE( 1.0_wp, 0.0_wp, & |
---|
991 | BTEST( wall_flags_0(k,j,-1), 3 ) ) |
---|
992 | ENDDO |
---|
993 | w(nzt,j,-1) = w(nzt-1,j,-1) |
---|
994 | ENDDO |
---|
995 | |
---|
996 | DO j = nysv, nyn |
---|
997 | DO k = nzb+1, nzt |
---|
998 | v(k,j,-1) = interpolate_in_time( nest_offl%v_left(0,k,j), & |
---|
999 | nest_offl%v_left(1,k,j), & |
---|
1000 | fac_dt ) * & |
---|
1001 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1002 | BTEST( wall_flags_0(k,j,-1), 2 ) ) |
---|
1003 | ENDDO |
---|
1004 | v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,j,-1) |
---|
1005 | ENDDO |
---|
1006 | |
---|
1007 | IF ( .NOT. neutral ) THEN |
---|
1008 | DO j = nys, nyn |
---|
1009 | DO k = nzb+1, nzt |
---|
1010 | pt(k,j,-1) = interpolate_in_time( nest_offl%pt_left(0,k,j), & |
---|
1011 | nest_offl%pt_left(1,k,j), & |
---|
1012 | fac_dt ) |
---|
1013 | |
---|
1014 | ENDDO |
---|
1015 | pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,j,-1) |
---|
1016 | ENDDO |
---|
1017 | ENDIF |
---|
1018 | |
---|
1019 | IF ( humidity ) THEN |
---|
1020 | DO j = nys, nyn |
---|
1021 | DO k = nzb+1, nzt |
---|
1022 | q(k,j,-1) = interpolate_in_time( nest_offl%q_left(0,k,j), & |
---|
1023 | nest_offl%q_left(1,k,j), & |
---|
1024 | fac_dt ) |
---|
1025 | |
---|
1026 | ENDDO |
---|
1027 | q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,j,-1) |
---|
1028 | ENDDO |
---|
1029 | ENDIF |
---|
1030 | |
---|
1031 | IF ( air_chemistry ) THEN |
---|
1032 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
1033 | IF ( nest_offl%chem_from_file_l(n) ) THEN |
---|
1034 | DO j = nys, nyn |
---|
1035 | DO k = nzb+1, nzt |
---|
1036 | chem_species(n)%conc(k,j,-1) = interpolate_in_time( & |
---|
1037 | nest_offl%chem_left(0,k,j,n),& |
---|
1038 | nest_offl%chem_left(1,k,j,n),& |
---|
1039 | fac_dt ) |
---|
1040 | ENDDO |
---|
1041 | ref_chem_l(nzb+1:nzt,n) = ref_chem_l(nzb+1:nzt,n) & |
---|
1042 | + chem_species(n)%conc(nzb+1:nzt,j,-1) |
---|
1043 | ENDDO |
---|
1044 | ENDIF |
---|
1045 | ENDDO |
---|
1046 | ENDIF |
---|
1047 | |
---|
1048 | ENDIF |
---|
1049 | |
---|
1050 | IF ( bc_dirichlet_r ) THEN |
---|
1051 | |
---|
1052 | DO j = nys, nyn |
---|
1053 | DO k = nzb+1, nzt |
---|
1054 | u(k,j,nxr+1) = interpolate_in_time( nest_offl%u_right(0,k,j), & |
---|
1055 | nest_offl%u_right(1,k,j), & |
---|
1056 | fac_dt ) * & |
---|
1057 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1058 | BTEST( wall_flags_0(k,j,nxr+1), 1 ) ) |
---|
1059 | ENDDO |
---|
1060 | u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,j,nxr+1) |
---|
1061 | ENDDO |
---|
1062 | DO j = nys, nyn |
---|
1063 | DO k = nzb+1, nzt-1 |
---|
1064 | w(k,j,nxr+1) = interpolate_in_time( nest_offl%w_right(0,k,j), & |
---|
1065 | nest_offl%w_right(1,k,j), & |
---|
1066 | fac_dt ) * & |
---|
1067 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1068 | BTEST( wall_flags_0(k,j,nxr+1), 3 ) ) |
---|
1069 | ENDDO |
---|
1070 | w(nzt,j,nxr+1) = w(nzt-1,j,nxr+1) |
---|
1071 | ENDDO |
---|
1072 | |
---|
1073 | DO j = nysv, nyn |
---|
1074 | DO k = nzb+1, nzt |
---|
1075 | v(k,j,nxr+1) = interpolate_in_time( nest_offl%v_right(0,k,j), & |
---|
1076 | nest_offl%v_right(1,k,j), & |
---|
1077 | fac_dt ) * & |
---|
1078 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1079 | BTEST( wall_flags_0(k,j,nxr+1), 2 ) ) |
---|
1080 | ENDDO |
---|
1081 | v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,j,nxr+1) |
---|
1082 | ENDDO |
---|
1083 | |
---|
1084 | IF ( .NOT. neutral ) THEN |
---|
1085 | DO j = nys, nyn |
---|
1086 | DO k = nzb+1, nzt |
---|
1087 | pt(k,j,nxr+1) = interpolate_in_time( & |
---|
1088 | nest_offl%pt_right(0,k,j), & |
---|
1089 | nest_offl%pt_right(1,k,j), & |
---|
1090 | fac_dt ) |
---|
1091 | ENDDO |
---|
1092 | pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,j,nxr+1) |
---|
1093 | ENDDO |
---|
1094 | ENDIF |
---|
1095 | |
---|
1096 | IF ( humidity ) THEN |
---|
1097 | DO j = nys, nyn |
---|
1098 | DO k = nzb+1, nzt |
---|
1099 | q(k,j,nxr+1) = interpolate_in_time( & |
---|
1100 | nest_offl%q_right(0,k,j), & |
---|
1101 | nest_offl%q_right(1,k,j), & |
---|
1102 | fac_dt ) |
---|
1103 | |
---|
1104 | ENDDO |
---|
1105 | q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,j,nxr+1) |
---|
1106 | ENDDO |
---|
1107 | ENDIF |
---|
1108 | |
---|
1109 | IF ( air_chemistry ) THEN |
---|
1110 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
1111 | IF ( nest_offl%chem_from_file_r(n) ) THEN |
---|
1112 | DO j = nys, nyn |
---|
1113 | DO k = nzb+1, nzt |
---|
1114 | chem_species(n)%conc(k,j,nxr+1) = interpolate_in_time(& |
---|
1115 | nest_offl%chem_right(0,k,j,n),& |
---|
1116 | nest_offl%chem_right(1,k,j,n),& |
---|
1117 | fac_dt ) |
---|
1118 | ENDDO |
---|
1119 | ref_chem_l(nzb+1:nzt,n) = ref_chem_l(nzb+1:nzt,n) & |
---|
1120 | + chem_species(n)%conc(nzb+1:nzt,j,nxr+1) |
---|
1121 | ENDDO |
---|
1122 | ENDIF |
---|
1123 | ENDDO |
---|
1124 | ENDIF |
---|
1125 | |
---|
1126 | ENDIF |
---|
1127 | |
---|
1128 | IF ( bc_dirichlet_s ) THEN |
---|
1129 | |
---|
1130 | DO i = nxl, nxr |
---|
1131 | DO k = nzb+1, nzt |
---|
1132 | v(k,0,i) = interpolate_in_time( nest_offl%v_south(0,k,i), & |
---|
1133 | nest_offl%v_south(1,k,i), & |
---|
1134 | fac_dt ) * & |
---|
1135 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1136 | BTEST( wall_flags_0(k,0,i), 2 ) ) |
---|
1137 | v(k,-1,i) = v(k,0,i) |
---|
1138 | ENDDO |
---|
1139 | v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,0,i) |
---|
1140 | ENDDO |
---|
1141 | |
---|
1142 | DO i = nxl, nxr |
---|
1143 | DO k = nzb+1, nzt-1 |
---|
1144 | w(k,-1,i) = interpolate_in_time( nest_offl%w_south(0,k,i), & |
---|
1145 | nest_offl%w_south(1,k,i), & |
---|
1146 | fac_dt ) * & |
---|
1147 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1148 | BTEST( wall_flags_0(k,-1,i), 3 ) ) |
---|
1149 | ENDDO |
---|
1150 | w(nzt,-1,i) = w(nzt-1,-1,i) |
---|
1151 | ENDDO |
---|
1152 | |
---|
1153 | DO i = nxlu, nxr |
---|
1154 | DO k = nzb+1, nzt |
---|
1155 | u(k,-1,i) = interpolate_in_time( nest_offl%u_south(0,k,i), & |
---|
1156 | nest_offl%u_south(1,k,i), & |
---|
1157 | fac_dt ) * & |
---|
1158 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1159 | BTEST( wall_flags_0(k,-1,i), 1 ) ) |
---|
1160 | ENDDO |
---|
1161 | u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,-1,i) |
---|
1162 | ENDDO |
---|
1163 | |
---|
1164 | IF ( .NOT. neutral ) THEN |
---|
1165 | DO i = nxl, nxr |
---|
1166 | DO k = nzb+1, nzt |
---|
1167 | pt(k,-1,i) = interpolate_in_time( & |
---|
1168 | nest_offl%pt_south(0,k,i), & |
---|
1169 | nest_offl%pt_south(1,k,i), & |
---|
1170 | fac_dt ) |
---|
1171 | |
---|
1172 | ENDDO |
---|
1173 | pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,-1,i) |
---|
1174 | ENDDO |
---|
1175 | ENDIF |
---|
1176 | |
---|
1177 | IF ( humidity ) THEN |
---|
1178 | DO i = nxl, nxr |
---|
1179 | DO k = nzb+1, nzt |
---|
1180 | q(k,-1,i) = interpolate_in_time( & |
---|
1181 | nest_offl%q_south(0,k,i), & |
---|
1182 | nest_offl%q_south(1,k,i), & |
---|
1183 | fac_dt ) |
---|
1184 | |
---|
1185 | ENDDO |
---|
1186 | q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,-1,i) |
---|
1187 | ENDDO |
---|
1188 | ENDIF |
---|
1189 | |
---|
1190 | IF ( air_chemistry ) THEN |
---|
1191 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
1192 | IF ( nest_offl%chem_from_file_s(n) ) THEN |
---|
1193 | DO i = nxl, nxr |
---|
1194 | DO k = nzb+1, nzt |
---|
1195 | chem_species(n)%conc(k,-1,i) = interpolate_in_time( & |
---|
1196 | nest_offl%chem_south(0,k,i,n),& |
---|
1197 | nest_offl%chem_south(1,k,i,n),& |
---|
1198 | fac_dt ) |
---|
1199 | ENDDO |
---|
1200 | ref_chem_l(nzb+1:nzt,n) = ref_chem_l(nzb+1:nzt,n) & |
---|
1201 | + chem_species(n)%conc(nzb+1:nzt,-1,i) |
---|
1202 | ENDDO |
---|
1203 | ENDIF |
---|
1204 | ENDDO |
---|
1205 | ENDIF |
---|
1206 | |
---|
1207 | ENDIF |
---|
1208 | |
---|
1209 | IF ( bc_dirichlet_n ) THEN |
---|
1210 | |
---|
1211 | DO i = nxl, nxr |
---|
1212 | DO k = nzb+1, nzt |
---|
1213 | v(k,nyn+1,i) = interpolate_in_time( nest_offl%v_north(0,k,i), & |
---|
1214 | nest_offl%v_north(1,k,i), & |
---|
1215 | fac_dt ) * & |
---|
1216 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1217 | BTEST( wall_flags_0(k,nyn+1,i), 2 ) ) |
---|
1218 | ENDDO |
---|
1219 | v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,nyn+1,i) |
---|
1220 | ENDDO |
---|
1221 | DO i = nxl, nxr |
---|
1222 | DO k = nzb+1, nzt-1 |
---|
1223 | w(k,nyn+1,i) = interpolate_in_time( nest_offl%w_north(0,k,i), & |
---|
1224 | nest_offl%w_north(1,k,i), & |
---|
1225 | fac_dt ) * & |
---|
1226 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1227 | BTEST( wall_flags_0(k,nyn+1,i), 3 ) ) |
---|
1228 | ENDDO |
---|
1229 | w(nzt,nyn+1,i) = w(nzt-1,nyn+1,i) |
---|
1230 | ENDDO |
---|
1231 | |
---|
1232 | DO i = nxlu, nxr |
---|
1233 | DO k = nzb+1, nzt |
---|
1234 | u(k,nyn+1,i) = interpolate_in_time( nest_offl%u_north(0,k,i), & |
---|
1235 | nest_offl%u_north(1,k,i), & |
---|
1236 | fac_dt ) * & |
---|
1237 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1238 | BTEST( wall_flags_0(k,nyn+1,i), 1 ) ) |
---|
1239 | |
---|
1240 | ENDDO |
---|
1241 | u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,nyn+1,i) |
---|
1242 | ENDDO |
---|
1243 | |
---|
1244 | IF ( .NOT. neutral ) THEN |
---|
1245 | DO i = nxl, nxr |
---|
1246 | DO k = nzb+1, nzt |
---|
1247 | pt(k,nyn+1,i) = interpolate_in_time( & |
---|
1248 | nest_offl%pt_north(0,k,i), & |
---|
1249 | nest_offl%pt_north(1,k,i), & |
---|
1250 | fac_dt ) |
---|
1251 | |
---|
1252 | ENDDO |
---|
1253 | pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,nyn+1,i) |
---|
1254 | ENDDO |
---|
1255 | ENDIF |
---|
1256 | |
---|
1257 | IF ( humidity ) THEN |
---|
1258 | DO i = nxl, nxr |
---|
1259 | DO k = nzb+1, nzt |
---|
1260 | q(k,nyn+1,i) = interpolate_in_time( & |
---|
1261 | nest_offl%q_north(0,k,i), & |
---|
1262 | nest_offl%q_north(1,k,i), & |
---|
1263 | fac_dt ) |
---|
1264 | |
---|
1265 | ENDDO |
---|
1266 | q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,nyn+1,i) |
---|
1267 | ENDDO |
---|
1268 | ENDIF |
---|
1269 | |
---|
1270 | IF ( air_chemistry ) THEN |
---|
1271 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
1272 | IF ( nest_offl%chem_from_file_n(n) ) THEN |
---|
1273 | DO i = nxl, nxr |
---|
1274 | DO k = nzb+1, nzt |
---|
1275 | chem_species(n)%conc(k,nyn+1,i) = interpolate_in_time(& |
---|
1276 | nest_offl%chem_north(0,k,i,n),& |
---|
1277 | nest_offl%chem_north(1,k,i,n),& |
---|
1278 | fac_dt ) |
---|
1279 | ENDDO |
---|
1280 | ref_chem_l(nzb+1:nzt,n) = ref_chem_l(nzb+1:nzt,n) & |
---|
1281 | + chem_species(n)%conc(nzb+1:nzt,nyn+1,i) |
---|
1282 | ENDDO |
---|
1283 | ENDIF |
---|
1284 | ENDDO |
---|
1285 | ENDIF |
---|
1286 | |
---|
1287 | ENDIF |
---|
1288 | ! |
---|
1289 | !-- Top boundary |
---|
1290 | DO i = nxlu, nxr |
---|
1291 | DO j = nys, nyn |
---|
1292 | u(nzt+1,j,i) = interpolate_in_time( nest_offl%u_top(0,j,i), & |
---|
1293 | nest_offl%u_top(1,j,i), & |
---|
1294 | fac_dt ) * & |
---|
1295 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1296 | BTEST( wall_flags_0(nzt+1,j,i), 1 ) ) |
---|
1297 | u_ref_l(nzt+1) = u_ref_l(nzt+1) + u(nzt+1,j,i) |
---|
1298 | ENDDO |
---|
1299 | ENDDO |
---|
1300 | ! |
---|
1301 | !-- For left boundary set boundary condition for u-component also at top |
---|
1302 | !-- grid point. |
---|
1303 | !-- Note, this has no effect on the numeric solution, only for data output. |
---|
1304 | IF ( bc_dirichlet_l ) u(nzt+1,:,nxl) = u(nzt+1,:,nxlu) |
---|
1305 | |
---|
1306 | DO i = nxl, nxr |
---|
1307 | DO j = nysv, nyn |
---|
1308 | v(nzt+1,j,i) = interpolate_in_time( nest_offl%v_top(0,j,i), & |
---|
1309 | nest_offl%v_top(1,j,i), & |
---|
1310 | fac_dt ) * & |
---|
1311 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1312 | BTEST( wall_flags_0(nzt+1,j,i), 2 ) ) |
---|
1313 | v_ref_l(nzt+1) = v_ref_l(nzt+1) + v(nzt+1,j,i) |
---|
1314 | ENDDO |
---|
1315 | ENDDO |
---|
1316 | ! |
---|
1317 | !-- For south boundary set boundary condition for v-component also at top |
---|
1318 | !-- grid point. |
---|
1319 | !-- Note, this has no effect on the numeric solution, only for data output. |
---|
1320 | IF ( bc_dirichlet_s ) v(nzt+1,nys,:) = v(nzt+1,nysv,:) |
---|
1321 | |
---|
1322 | DO i = nxl, nxr |
---|
1323 | DO j = nys, nyn |
---|
1324 | w(nzt,j,i) = interpolate_in_time( nest_offl%w_top(0,j,i), & |
---|
1325 | nest_offl%w_top(1,j,i), & |
---|
1326 | fac_dt ) * & |
---|
1327 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1328 | BTEST( wall_flags_0(nzt,j,i), 3 ) ) |
---|
1329 | w(nzt+1,j,i) = w(nzt,j,i) |
---|
1330 | ENDDO |
---|
1331 | ENDDO |
---|
1332 | |
---|
1333 | |
---|
1334 | IF ( .NOT. neutral ) THEN |
---|
1335 | DO i = nxl, nxr |
---|
1336 | DO j = nys, nyn |
---|
1337 | pt(nzt+1,j,i) = interpolate_in_time( nest_offl%pt_top(0,j,i), & |
---|
1338 | nest_offl%pt_top(1,j,i), & |
---|
1339 | fac_dt ) |
---|
1340 | pt_ref_l(nzt+1) = pt_ref_l(nzt+1) + pt(nzt+1,j,i) |
---|
1341 | ENDDO |
---|
1342 | ENDDO |
---|
1343 | ENDIF |
---|
1344 | |
---|
1345 | IF ( humidity ) THEN |
---|
1346 | DO i = nxl, nxr |
---|
1347 | DO j = nys, nyn |
---|
1348 | q(nzt+1,j,i) = interpolate_in_time( nest_offl%q_top(0,j,i), & |
---|
1349 | nest_offl%q_top(1,j,i), & |
---|
1350 | fac_dt ) |
---|
1351 | q_ref_l(nzt+1) = q_ref_l(nzt+1) + q(nzt+1,j,i) |
---|
1352 | ENDDO |
---|
1353 | ENDDO |
---|
1354 | ENDIF |
---|
1355 | |
---|
1356 | IF ( air_chemistry ) THEN |
---|
1357 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
1358 | IF ( nest_offl%chem_from_file_t(n) ) THEN |
---|
1359 | DO i = nxl, nxr |
---|
1360 | DO j = nys, nyn |
---|
1361 | chem_species(n)%conc(nzt+1,j,i) = interpolate_in_time( & |
---|
1362 | nest_offl%chem_top(0,j,i,n), & |
---|
1363 | nest_offl%chem_top(1,j,i,n), & |
---|
1364 | fac_dt ) |
---|
1365 | ref_chem_l(nzt+1,n) = ref_chem_l(nzt+1,n) + & |
---|
1366 | chem_species(n)%conc(nzt+1,j,i) |
---|
1367 | ENDDO |
---|
1368 | ENDDO |
---|
1369 | ENDIF |
---|
1370 | ENDDO |
---|
1371 | ENDIF |
---|
1372 | ! |
---|
1373 | !-- Moreover, set Neumann boundary condition for subgrid-scale TKE, |
---|
1374 | !-- passive scalar, dissipation, and chemical species if required |
---|
1375 | IF ( rans_mode .AND. rans_tke_e ) THEN |
---|
1376 | IF ( bc_dirichlet_l ) diss(:,:,nxl-1) = diss(:,:,nxl) |
---|
1377 | IF ( bc_dirichlet_r ) diss(:,:,nxr+1) = diss(:,:,nxr) |
---|
1378 | IF ( bc_dirichlet_s ) diss(:,nys-1,:) = diss(:,nys,:) |
---|
1379 | IF ( bc_dirichlet_n ) diss(:,nyn+1,:) = diss(:,nyn,:) |
---|
1380 | ENDIF |
---|
1381 | ! IF ( .NOT. constant_diffusion ) THEN |
---|
1382 | ! IF ( bc_dirichlet_l ) e(:,:,nxl-1) = e(:,:,nxl) |
---|
1383 | ! IF ( bc_dirichlet_r ) e(:,:,nxr+1) = e(:,:,nxr) |
---|
1384 | ! IF ( bc_dirichlet_s ) e(:,nys-1,:) = e(:,nys,:) |
---|
1385 | ! IF ( bc_dirichlet_n ) e(:,nyn+1,:) = e(:,nyn,:) |
---|
1386 | ! e(nzt+1,:,:) = e(nzt,:,:) |
---|
1387 | ! ENDIF |
---|
1388 | ! IF ( passive_scalar ) THEN |
---|
1389 | ! IF ( bc_dirichlet_l ) s(:,:,nxl-1) = s(:,:,nxl) |
---|
1390 | ! IF ( bc_dirichlet_r ) s(:,:,nxr+1) = s(:,:,nxr) |
---|
1391 | ! IF ( bc_dirichlet_s ) s(:,nys-1,:) = s(:,nys,:) |
---|
1392 | ! IF ( bc_dirichlet_n ) s(:,nyn+1,:) = s(:,nyn,:) |
---|
1393 | ! ENDIF |
---|
1394 | |
---|
1395 | CALL exchange_horiz( u, nbgp ) |
---|
1396 | CALL exchange_horiz( v, nbgp ) |
---|
1397 | CALL exchange_horiz( w, nbgp ) |
---|
1398 | IF ( .NOT. neutral ) CALL exchange_horiz( pt, nbgp ) |
---|
1399 | IF ( humidity ) CALL exchange_horiz( q, nbgp ) |
---|
1400 | IF ( air_chemistry ) THEN |
---|
1401 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
1402 | ! |
---|
1403 | !-- Do local exchange only when necessary, i.e. when data is coming |
---|
1404 | !-- from dynamic file. |
---|
1405 | IF ( nest_offl%chem_from_file_t(n) ) & |
---|
1406 | CALL exchange_horiz( chem_species(n)%conc, nbgp ) |
---|
1407 | ENDDO |
---|
1408 | ENDIF |
---|
1409 | ! |
---|
1410 | !-- Set top boundary condition at all horizontal grid points, also at the |
---|
1411 | !-- lateral boundary grid points. |
---|
1412 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
1413 | ! |
---|
1414 | !-- In case of Rayleigh damping, where the profiles u_init, v_init |
---|
1415 | !-- q_init and pt_init are still used, update these profiles from the |
---|
1416 | !-- averaged boundary data. |
---|
1417 | !-- But first, average these data. |
---|
1418 | #if defined( __parallel ) |
---|
1419 | CALL MPI_ALLREDUCE( u_ref_l, u_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM, & |
---|
1420 | comm2d, ierr ) |
---|
1421 | CALL MPI_ALLREDUCE( v_ref_l, v_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM, & |
---|
1422 | comm2d, ierr ) |
---|
1423 | IF ( humidity ) THEN |
---|
1424 | CALL MPI_ALLREDUCE( q_ref_l, q_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM, & |
---|
1425 | comm2d, ierr ) |
---|
1426 | ENDIF |
---|
1427 | IF ( .NOT. neutral ) THEN |
---|
1428 | CALL MPI_ALLREDUCE( pt_ref_l, pt_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM,& |
---|
1429 | comm2d, ierr ) |
---|
1430 | ENDIF |
---|
1431 | IF ( air_chemistry ) THEN |
---|
1432 | CALL MPI_ALLREDUCE( ref_chem_l, ref_chem, & |
---|
1433 | ( nzt+1-nzb+1 ) * SIZE( ref_chem(nzb,:) ), & |
---|
1434 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1435 | ENDIF |
---|
1436 | #else |
---|
1437 | u_ref = u_ref_l |
---|
1438 | v_ref = v_ref_l |
---|
1439 | IF ( humidity ) q_ref = q_ref_l |
---|
1440 | IF ( .NOT. neutral ) pt_ref = pt_ref_l |
---|
1441 | IF ( air_chemistry ) ref_chem = ref_chem_l |
---|
1442 | #endif |
---|
1443 | ! |
---|
1444 | !-- Average data. Note, reference profiles up to nzt are derived from lateral |
---|
1445 | !-- boundaries, at the model top it is derived from the top boundary. Thus, |
---|
1446 | !-- number of input data is different from nzb:nzt compared to nzt+1. |
---|
1447 | !-- Derived from lateral boundaries. |
---|
1448 | u_ref(nzb:nzt) = u_ref(nzb:nzt) / REAL( 2.0_wp * ( ny + 1 + nx ), & |
---|
1449 | KIND = wp ) |
---|
1450 | v_ref(nzb:nzt) = v_ref(nzb:nzt) / REAL( 2.0_wp * ( ny + nx + 1 ), & |
---|
1451 | KIND = wp ) |
---|
1452 | IF ( humidity ) & |
---|
1453 | q_ref(nzb:nzt) = q_ref(nzb:nzt) / REAL( 2.0_wp * & |
---|
1454 | ( ny + 1 + nx + 1 ), & |
---|
1455 | KIND = wp ) |
---|
1456 | IF ( .NOT. neutral ) & |
---|
1457 | pt_ref(nzb:nzt) = pt_ref(nzb:nzt) / REAL( 2.0_wp * & |
---|
1458 | ( ny + 1 + nx + 1 ), & |
---|
1459 | KIND = wp ) |
---|
1460 | IF ( air_chemistry ) & |
---|
1461 | ref_chem(nzb:nzt,:) = ref_chem(nzb:nzt,:) / REAL( 2.0_wp * & |
---|
1462 | ( ny + 1 + nx + 1 ), & |
---|
1463 | KIND = wp ) |
---|
1464 | ! |
---|
1465 | !-- Derived from top boundary. |
---|
1466 | u_ref(nzt+1) = u_ref(nzt+1) / REAL( ( ny + 1 ) * ( nx ), KIND = wp ) |
---|
1467 | v_ref(nzt+1) = v_ref(nzt+1) / REAL( ( ny ) * ( nx + 1 ), KIND = wp ) |
---|
1468 | IF ( humidity ) & |
---|
1469 | q_ref(nzt+1) = q_ref(nzt+1) / REAL( ( ny + 1 ) * ( nx + 1 ), & |
---|
1470 | KIND = wp ) |
---|
1471 | IF ( .NOT. neutral ) & |
---|
1472 | pt_ref(nzt+1) = pt_ref(nzt+1) / REAL( ( ny + 1 ) * ( nx + 1 ), & |
---|
1473 | KIND = wp ) |
---|
1474 | IF ( air_chemistry ) & |
---|
1475 | ref_chem(nzt+1,:) = ref_chem(nzt+1,:) / & |
---|
1476 | REAL( ( ny + 1 ) * ( nx + 1 ),KIND = wp ) |
---|
1477 | ! |
---|
1478 | !-- Write onto init profiles, which are used for damping. Also set lower |
---|
1479 | !-- boundary condition for scalars (not required for u and v as these are |
---|
1480 | !-- zero at k=nzb. |
---|
1481 | u_init = u_ref |
---|
1482 | v_init = v_ref |
---|
1483 | IF ( humidity ) THEN |
---|
1484 | q_init = q_ref |
---|
1485 | q_init(nzb) = q_init(nzb+1) |
---|
1486 | ENDIF |
---|
1487 | IF ( .NOT. neutral ) THEN |
---|
1488 | pt_init = pt_ref |
---|
1489 | pt_init(nzb) = pt_init(nzb+1) |
---|
1490 | ENDIF |
---|
1491 | |
---|
1492 | IF ( air_chemistry ) THEN |
---|
1493 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
1494 | IF ( nest_offl%chem_from_file_t(n) ) THEN |
---|
1495 | chem_species(n)%conc_pr_init(:) = ref_chem(:,n) |
---|
1496 | chem_species(n)%conc_pr_init(nzb) = & |
---|
1497 | chem_species(n)%conc_pr_init(nzb+1) |
---|
1498 | ENDIF |
---|
1499 | ENDDO |
---|
1500 | ENDIF |
---|
1501 | |
---|
1502 | DEALLOCATE( ref_chem ) |
---|
1503 | DEALLOCATE( ref_chem_l ) |
---|
1504 | ! |
---|
1505 | !-- Further, adjust Rayleigh damping height in case of time-changing conditions. |
---|
1506 | !-- Therefore, calculate boundary-layer depth first. |
---|
1507 | CALL nesting_offl_calc_zi |
---|
1508 | CALL adjust_sponge_layer |
---|
1509 | |
---|
1510 | CALL cpu_log( log_point(58), 'offline nesting', 'stop' ) |
---|
1511 | |
---|
1512 | IF ( debug_output_timestep ) CALL debug_message( 'nesting_offl_bc', 'end' ) |
---|
1513 | |
---|
1514 | |
---|
1515 | END SUBROUTINE nesting_offl_bc |
---|
1516 | |
---|
1517 | !------------------------------------------------------------------------------! |
---|
1518 | ! Description: |
---|
1519 | !------------------------------------------------------------------------------! |
---|
1520 | !> Update of the geostrophic wind components. |
---|
1521 | !> @todo: update geostrophic wind also in the child domains (should be done |
---|
1522 | !> in the nesting. |
---|
1523 | !------------------------------------------------------------------------------! |
---|
1524 | SUBROUTINE nesting_offl_geostrophic_wind |
---|
1525 | |
---|
1526 | INTEGER(iwp) :: k |
---|
1527 | ! |
---|
1528 | !-- Update geostrophic wind components from dynamic input file. |
---|
1529 | DO k = nzb+1, nzt |
---|
1530 | ug(k) = interpolate_in_time( nest_offl%ug(0,k), nest_offl%ug(1,k), & |
---|
1531 | fac_dt ) |
---|
1532 | vg(k) = interpolate_in_time( nest_offl%vg(0,k), nest_offl%vg(1,k), & |
---|
1533 | fac_dt ) |
---|
1534 | ENDDO |
---|
1535 | ug(nzt+1) = ug(nzt) |
---|
1536 | vg(nzt+1) = vg(nzt) |
---|
1537 | |
---|
1538 | END SUBROUTINE nesting_offl_geostrophic_wind |
---|
1539 | |
---|
1540 | !------------------------------------------------------------------------------! |
---|
1541 | ! Description: |
---|
1542 | !------------------------------------------------------------------------------! |
---|
1543 | !> Determine the interpolation constant for time interpolation. The |
---|
1544 | !> calculation is separated from the nesting_offl_bc and |
---|
1545 | !> nesting_offl_geostrophic_wind in order to be independent on the order |
---|
1546 | !> of calls. |
---|
1547 | !------------------------------------------------------------------------------! |
---|
1548 | SUBROUTINE nesting_offl_interpolation_factor |
---|
1549 | ! |
---|
1550 | !-- Determine interpolation factor and limit it to 1. This is because |
---|
1551 | !-- t+dt can slightly exceed time(tind_p) before boundary data is updated |
---|
1552 | !-- again. |
---|
1553 | fac_dt = ( time_utc_init + time_since_reference_point & |
---|
1554 | - nest_offl%time(nest_offl%tind) + dt_3d ) / & |
---|
1555 | ( nest_offl%time(nest_offl%tind_p) - nest_offl%time(nest_offl%tind) ) |
---|
1556 | |
---|
1557 | fac_dt = MIN( 1.0_wp, fac_dt ) |
---|
1558 | |
---|
1559 | END SUBROUTINE nesting_offl_interpolation_factor |
---|
1560 | |
---|
1561 | !------------------------------------------------------------------------------! |
---|
1562 | ! Description: |
---|
1563 | !------------------------------------------------------------------------------! |
---|
1564 | !> Calculates the boundary-layer depth from the boundary data, according to |
---|
1565 | !> bulk-Richardson criterion. |
---|
1566 | !------------------------------------------------------------------------------! |
---|
1567 | SUBROUTINE nesting_offl_calc_zi |
---|
1568 | |
---|
1569 | INTEGER(iwp) :: i !< loop index in x-direction |
---|
1570 | INTEGER(iwp) :: j !< loop index in y-direction |
---|
1571 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
1572 | INTEGER(iwp) :: k_max_loc !< index of maximum wind speed along z-direction |
---|
1573 | INTEGER(iwp) :: k_surface !< topography top index in z-direction |
---|
1574 | INTEGER(iwp) :: num_boundary_gp_non_cyclic !< number of non-cyclic boundaries, used for averaging ABL depth |
---|
1575 | INTEGER(iwp) :: num_boundary_gp_non_cyclic_l !< number of non-cyclic boundaries, used for averaging ABL depth |
---|
1576 | |
---|
1577 | REAL(wp) :: ri_bulk !< bulk Richardson number |
---|
1578 | REAL(wp) :: ri_bulk_crit = 0.25_wp !< critical bulk Richardson number |
---|
1579 | REAL(wp) :: topo_max !< maximum topography level in model domain |
---|
1580 | REAL(wp) :: topo_max_l !< maximum topography level in subdomain |
---|
1581 | REAL(wp) :: vpt_surface !< near-surface virtual potential temperature |
---|
1582 | REAL(wp) :: zi_l !< mean boundary-layer depth on subdomain |
---|
1583 | REAL(wp) :: zi_local !< local boundary-layer depth |
---|
1584 | |
---|
1585 | REAL(wp), DIMENSION(nzb:nzt+1) :: vpt_col !< vertical profile of virtual potential temperature at (j,i)-grid point |
---|
1586 | REAL(wp), DIMENSION(nzb:nzt+1) :: uv_abs !< vertical profile of horizontal wind speed at (j,i)-grid point |
---|
1587 | |
---|
1588 | |
---|
1589 | ! |
---|
1590 | !-- Calculate mean boundary-layer height from boundary data. |
---|
1591 | !-- Start with the left and right boundaries. |
---|
1592 | zi_l = 0.0_wp |
---|
1593 | num_boundary_gp_non_cyclic_l = 0 |
---|
1594 | IF ( bc_dirichlet_l .OR. bc_dirichlet_r ) THEN |
---|
1595 | ! |
---|
1596 | !-- Sum-up and store number of boundary grid points used for averaging |
---|
1597 | !-- ABL depth |
---|
1598 | num_boundary_gp_non_cyclic_l = num_boundary_gp_non_cyclic_l + & |
---|
1599 | nxr - nxl + 1 |
---|
1600 | ! |
---|
1601 | !-- Determine index along x. Please note, index indicates boundary |
---|
1602 | !-- grid point for scalars. |
---|
1603 | i = MERGE( -1, nxr + 1, bc_dirichlet_l ) |
---|
1604 | |
---|
1605 | DO j = nys, nyn |
---|
1606 | ! |
---|
1607 | !-- Determine topography top index at current (j,i) index |
---|
1608 | k_surface = topo_top_ind(j,i,0) |
---|
1609 | ! |
---|
1610 | !-- Pre-compute surface virtual temperature. Therefore, use 2nd |
---|
1611 | !-- prognostic level according to Heinze et al. (2017). |
---|
1612 | IF ( humidity ) THEN |
---|
1613 | vpt_surface = pt(k_surface+2,j,i) * & |
---|
1614 | ( 1.0_wp + 0.61_wp * q(k_surface+2,j,i) ) |
---|
1615 | vpt_col = pt(:,j,i) * ( 1.0_wp + 0.61_wp * q(:,j,i) ) |
---|
1616 | ELSE |
---|
1617 | vpt_surface = pt(k_surface+2,j,i) |
---|
1618 | vpt_col = pt(:,j,i) |
---|
1619 | ENDIF |
---|
1620 | ! |
---|
1621 | !-- Calculate local boundary layer height from bulk Richardson number, |
---|
1622 | !-- i.e. the height where the bulk Richardson number exceeds its |
---|
1623 | !-- critical value of 0.25 (according to Heinze et al., 2017). |
---|
1624 | !-- Note, no interpolation of u- and v-component is made, as both |
---|
1625 | !-- are mainly mean inflow profiles with very small spatial variation. |
---|
1626 | !-- Add a safety factor in case the velocity term becomes zero. This |
---|
1627 | !-- may happen if overhanging 3D structures are directly located at |
---|
1628 | !-- the boundary, where velocity inside the building is zero |
---|
1629 | !-- (k_surface is the index of the lowest upward-facing surface). |
---|
1630 | uv_abs(:) = SQRT( MERGE( u(:,j,i+1), u(:,j,i), & |
---|
1631 | bc_dirichlet_l )**2 + & |
---|
1632 | v(:,j,i)**2 ) |
---|
1633 | ! |
---|
1634 | !-- Determine index of the maximum wind speed |
---|
1635 | k_max_loc = MAXLOC( uv_abs(:), DIM = 1 ) - 1 |
---|
1636 | |
---|
1637 | zi_local = 0.0_wp |
---|
1638 | DO k = k_surface+1, nzt |
---|
1639 | ri_bulk = zu(k) * g / vpt_surface * & |
---|
1640 | ( vpt_col(k) - vpt_surface ) / & |
---|
1641 | ( uv_abs(k) + 1E-5_wp ) |
---|
1642 | ! |
---|
1643 | !-- Check if critical Richardson number is exceeded. Further, check |
---|
1644 | !-- if there is a maxium in the wind profile in order to detect also |
---|
1645 | !-- ABL heights in the stable boundary layer. |
---|
1646 | IF ( zi_local == 0.0_wp .AND. & |
---|
1647 | ( ri_bulk > ri_bulk_crit .OR. k == k_max_loc ) ) & |
---|
1648 | zi_local = zu(k) |
---|
1649 | ENDDO |
---|
1650 | ! |
---|
1651 | !-- Assure that the minimum local boundary-layer depth is at least at |
---|
1652 | !-- the second vertical grid level. |
---|
1653 | zi_l = zi_l + MAX( zi_local, zu(k_surface+2) ) |
---|
1654 | |
---|
1655 | ENDDO |
---|
1656 | |
---|
1657 | ENDIF |
---|
1658 | ! |
---|
1659 | !-- Do the same at the north and south boundaries. |
---|
1660 | IF ( bc_dirichlet_s .OR. bc_dirichlet_n ) THEN |
---|
1661 | |
---|
1662 | num_boundary_gp_non_cyclic_l = num_boundary_gp_non_cyclic_l + & |
---|
1663 | nxr - nxl + 1 |
---|
1664 | |
---|
1665 | j = MERGE( -1, nyn + 1, bc_dirichlet_s ) |
---|
1666 | |
---|
1667 | DO i = nxl, nxr |
---|
1668 | k_surface = topo_top_ind(j,i,0) |
---|
1669 | |
---|
1670 | IF ( humidity ) THEN |
---|
1671 | vpt_surface = pt(k_surface+2,j,i) * & |
---|
1672 | ( 1.0_wp + 0.61_wp * q(k_surface+2,j,i) ) |
---|
1673 | vpt_col = pt(:,j,i) * ( 1.0_wp + 0.61_wp * q(:,j,i) ) |
---|
1674 | ELSE |
---|
1675 | vpt_surface = pt(k_surface+2,j,i) |
---|
1676 | vpt_col = pt(:,j,i) |
---|
1677 | ENDIF |
---|
1678 | |
---|
1679 | uv_abs(:) = SQRT( u(:,j,i)**2 + & |
---|
1680 | MERGE( v(:,j+1,i), v(:,j,i), & |
---|
1681 | bc_dirichlet_s )**2 ) |
---|
1682 | ! |
---|
1683 | !-- Determine index of the maximum wind speed |
---|
1684 | k_max_loc = MAXLOC( uv_abs(:), DIM = 1 ) - 1 |
---|
1685 | |
---|
1686 | zi_local = 0.0_wp |
---|
1687 | DO k = k_surface+1, nzt |
---|
1688 | ri_bulk = zu(k) * g / vpt_surface * & |
---|
1689 | ( vpt_col(k) - vpt_surface ) / & |
---|
1690 | ( uv_abs(k) + 1E-5_wp ) |
---|
1691 | ! |
---|
1692 | !-- Check if critical Richardson number is exceeded. Further, check |
---|
1693 | !-- if there is a maxium in the wind profile in order to detect also |
---|
1694 | !-- ABL heights in the stable boundary layer. |
---|
1695 | IF ( zi_local == 0.0_wp .AND. & |
---|
1696 | ( ri_bulk > ri_bulk_crit .OR. k == k_max_loc ) ) & |
---|
1697 | zi_local = zu(k) |
---|
1698 | ENDDO |
---|
1699 | zi_l = zi_l + MAX( zi_local, zu(k_surface+2) ) |
---|
1700 | |
---|
1701 | ENDDO |
---|
1702 | |
---|
1703 | ENDIF |
---|
1704 | |
---|
1705 | #if defined( __parallel ) |
---|
1706 | CALL MPI_ALLREDUCE( zi_l, zi_ribulk, 1, MPI_REAL, MPI_SUM, & |
---|
1707 | comm2d, ierr ) |
---|
1708 | CALL MPI_ALLREDUCE( num_boundary_gp_non_cyclic_l, & |
---|
1709 | num_boundary_gp_non_cyclic, & |
---|
1710 | 1, MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
1711 | #else |
---|
1712 | zi_ribulk = zi_l |
---|
1713 | num_boundary_gp_non_cyclic = num_boundary_gp_non_cyclic_l |
---|
1714 | #endif |
---|
1715 | zi_ribulk = zi_ribulk / REAL( num_boundary_gp_non_cyclic, KIND = wp ) |
---|
1716 | ! |
---|
1717 | !-- Finally, check if boundary layer depth is not below the any topography. |
---|
1718 | !-- zi_ribulk will be used to adjust rayleigh damping height, i.e. the |
---|
1719 | !-- lower level of the sponge layer, as well as to adjust the synthetic |
---|
1720 | !-- turbulence generator accordingly. If Rayleigh damping would be applied |
---|
1721 | !-- near buildings, etc., this would spoil the simulation results. |
---|
1722 | topo_max_l = zw(MAXVAL( topo_top_ind(nys:nyn,nxl:nxr,0) )) |
---|
1723 | |
---|
1724 | #if defined( __parallel ) |
---|
1725 | CALL MPI_ALLREDUCE( topo_max_l, topo_max, 1, MPI_REAL, MPI_MAX, & |
---|
1726 | comm2d, ierr ) |
---|
1727 | #else |
---|
1728 | topo_max = topo_max_l |
---|
1729 | #endif |
---|
1730 | ! zi_ribulk = MAX( zi_ribulk, topo_max ) |
---|
1731 | |
---|
1732 | END SUBROUTINE nesting_offl_calc_zi |
---|
1733 | |
---|
1734 | |
---|
1735 | !------------------------------------------------------------------------------! |
---|
1736 | ! Description: |
---|
1737 | !------------------------------------------------------------------------------! |
---|
1738 | !> Adjust the height where the rayleigh damping starts, i.e. the lower level |
---|
1739 | !> of the sponge layer. |
---|
1740 | !------------------------------------------------------------------------------! |
---|
1741 | SUBROUTINE adjust_sponge_layer |
---|
1742 | |
---|
1743 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
1744 | |
---|
1745 | REAL(wp) :: rdh !< updated Rayleigh damping height |
---|
1746 | |
---|
1747 | |
---|
1748 | IF ( rayleigh_damping_height > 0.0_wp .AND. & |
---|
1749 | rayleigh_damping_factor > 0.0_wp ) THEN |
---|
1750 | ! |
---|
1751 | !-- Update Rayleigh-damping height and re-calculate height-depending |
---|
1752 | !-- damping coefficients. |
---|
1753 | !-- Assure that rayleigh damping starts well above the boundary layer. |
---|
1754 | rdh = MIN( MAX( zi_ribulk * 1.3_wp, 10.0_wp * dz(1) ), & |
---|
1755 | 0.8_wp * zu(nzt), rayleigh_damping_height ) |
---|
1756 | ! |
---|
1757 | !-- Update Rayleigh damping factor |
---|
1758 | DO k = nzb+1, nzt |
---|
1759 | IF ( zu(k) >= rdh ) THEN |
---|
1760 | rdf(k) = rayleigh_damping_factor * & |
---|
1761 | ( SIN( pi * 0.5_wp * ( zu(k) - rdh ) & |
---|
1762 | / ( zu(nzt) - rdh ) ) & |
---|
1763 | )**2 |
---|
1764 | ENDIF |
---|
1765 | ENDDO |
---|
1766 | rdf_sc = rdf |
---|
1767 | |
---|
1768 | ENDIF |
---|
1769 | |
---|
1770 | END SUBROUTINE adjust_sponge_layer |
---|
1771 | |
---|
1772 | !------------------------------------------------------------------------------! |
---|
1773 | ! Description: |
---|
1774 | ! ------------ |
---|
1775 | !> Performs consistency checks |
---|
1776 | !------------------------------------------------------------------------------! |
---|
1777 | SUBROUTINE nesting_offl_check_parameters |
---|
1778 | ! |
---|
1779 | !-- Check if offline nesting is applied in nested child domain. |
---|
1780 | IF ( nesting_offline .AND. child_domain ) THEN |
---|
1781 | message_string = 'Offline nesting is only applicable in root model.' |
---|
1782 | CALL message( 'offline_nesting_check_parameters', 'PA0622', 1, 2, 0, 6, 0 ) |
---|
1783 | ENDIF |
---|
1784 | |
---|
1785 | END SUBROUTINE nesting_offl_check_parameters |
---|
1786 | |
---|
1787 | !------------------------------------------------------------------------------! |
---|
1788 | ! Description: |
---|
1789 | ! ------------ |
---|
1790 | !> Reads the parameter list nesting_offl_parameters |
---|
1791 | !------------------------------------------------------------------------------! |
---|
1792 | SUBROUTINE nesting_offl_parin |
---|
1793 | |
---|
1794 | CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file |
---|
1795 | |
---|
1796 | |
---|
1797 | NAMELIST /nesting_offl_parameters/ nesting_offline |
---|
1798 | |
---|
1799 | line = ' ' |
---|
1800 | |
---|
1801 | ! |
---|
1802 | !-- Try to find stg package |
---|
1803 | REWIND ( 11 ) |
---|
1804 | line = ' ' |
---|
1805 | DO WHILE ( INDEX( line, '&nesting_offl_parameters' ) == 0 ) |
---|
1806 | READ ( 11, '(A)', END=20 ) line |
---|
1807 | ENDDO |
---|
1808 | BACKSPACE ( 11 ) |
---|
1809 | |
---|
1810 | ! |
---|
1811 | !-- Read namelist |
---|
1812 | READ ( 11, nesting_offl_parameters, ERR = 10, END = 20 ) |
---|
1813 | |
---|
1814 | GOTO 20 |
---|
1815 | |
---|
1816 | 10 BACKSPACE( 11 ) |
---|
1817 | READ( 11 , '(A)') line |
---|
1818 | CALL parin_fail_message( 'nesting_offl_parameters', line ) |
---|
1819 | |
---|
1820 | 20 CONTINUE |
---|
1821 | |
---|
1822 | |
---|
1823 | END SUBROUTINE nesting_offl_parin |
---|
1824 | |
---|
1825 | !------------------------------------------------------------------------------! |
---|
1826 | ! Description: |
---|
1827 | ! ------------ |
---|
1828 | !> Writes information about offline nesting into HEADER file |
---|
1829 | !------------------------------------------------------------------------------! |
---|
1830 | SUBROUTINE nesting_offl_header ( io ) |
---|
1831 | |
---|
1832 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
1833 | |
---|
1834 | WRITE ( io, 1 ) |
---|
1835 | IF ( nesting_offline ) THEN |
---|
1836 | WRITE ( io, 3 ) |
---|
1837 | ELSE |
---|
1838 | WRITE ( io, 2 ) |
---|
1839 | ENDIF |
---|
1840 | |
---|
1841 | 1 FORMAT (//' Offline nesting in COSMO model:'/ & |
---|
1842 | ' -------------------------------'/) |
---|
1843 | 2 FORMAT (' --> No offlince nesting is used (default) ') |
---|
1844 | 3 FORMAT (' --> Offlince nesting is used. Boundary data is read from dynamic input file ') |
---|
1845 | |
---|
1846 | END SUBROUTINE nesting_offl_header |
---|
1847 | |
---|
1848 | !------------------------------------------------------------------------------! |
---|
1849 | ! Description: |
---|
1850 | ! ------------ |
---|
1851 | !> Allocate arrays used to read boundary data from NetCDF file and initialize |
---|
1852 | !> boundary data. |
---|
1853 | !------------------------------------------------------------------------------! |
---|
1854 | SUBROUTINE nesting_offl_init |
---|
1855 | |
---|
1856 | INTEGER(iwp) :: n !< running index for chemical species |
---|
1857 | |
---|
1858 | ! |
---|
1859 | !-- Get time_utc_init from origin_date_time |
---|
1860 | CALL get_date_time( 0.0_wp, second_of_day = time_utc_init ) |
---|
1861 | |
---|
1862 | !-- Allocate arrays for geostrophic wind components. Arrays will |
---|
1863 | !-- incorporate 2 time levels in order to interpolate in between. |
---|
1864 | ALLOCATE( nest_offl%ug(0:1,1:nzt) ) |
---|
1865 | ALLOCATE( nest_offl%vg(0:1,1:nzt) ) |
---|
1866 | ! |
---|
1867 | !-- Allocate arrays for reading left/right boundary values. Arrays will |
---|
1868 | !-- incorporate 2 time levels in order to interpolate in between. If the core has |
---|
1869 | !-- no boundary, allocate a dummy array, in order to enable netcdf parallel |
---|
1870 | !-- access. Dummy arrays will be allocated with dimension length zero. |
---|
1871 | IF ( bc_dirichlet_l ) THEN |
---|
1872 | ALLOCATE( nest_offl%u_left(0:1,nzb+1:nzt,nys:nyn) ) |
---|
1873 | ALLOCATE( nest_offl%v_left(0:1,nzb+1:nzt,nysv:nyn) ) |
---|
1874 | ALLOCATE( nest_offl%w_left(0:1,nzb+1:nzt-1,nys:nyn) ) |
---|
1875 | IF ( humidity ) ALLOCATE( nest_offl%q_left(0:1,nzb+1:nzt,nys:nyn) ) |
---|
1876 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_left(0:1,nzb+1:nzt,nys:nyn) ) |
---|
1877 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_left(0:1,nzb+1:nzt,nys:nyn,& |
---|
1878 | 1:UBOUND( chem_species, 1 )) ) |
---|
1879 | ELSE |
---|
1880 | ALLOCATE( nest_offl%u_left(1:1,1:1,1:1) ) |
---|
1881 | ALLOCATE( nest_offl%v_left(1:1,1:1,1:1) ) |
---|
1882 | ALLOCATE( nest_offl%w_left(1:1,1:1,1:1) ) |
---|
1883 | IF ( humidity ) ALLOCATE( nest_offl%q_left(1:1,1:1,1:1) ) |
---|
1884 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_left(1:1,1:1,1:1) ) |
---|
1885 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_left(1:1,1:1,1:1, & |
---|
1886 | 1:UBOUND( chem_species, 1 )) ) |
---|
1887 | ENDIF |
---|
1888 | IF ( bc_dirichlet_r ) THEN |
---|
1889 | ALLOCATE( nest_offl%u_right(0:1,nzb+1:nzt,nys:nyn) ) |
---|
1890 | ALLOCATE( nest_offl%v_right(0:1,nzb+1:nzt,nysv:nyn) ) |
---|
1891 | ALLOCATE( nest_offl%w_right(0:1,nzb+1:nzt-1,nys:nyn) ) |
---|
1892 | IF ( humidity ) ALLOCATE( nest_offl%q_right(0:1,nzb+1:nzt,nys:nyn) ) |
---|
1893 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_right(0:1,nzb+1:nzt,nys:nyn) ) |
---|
1894 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_right(0:1,nzb+1:nzt,nys:nyn,& |
---|
1895 | 1:UBOUND( chem_species, 1 )) ) |
---|
1896 | ELSE |
---|
1897 | ALLOCATE( nest_offl%u_right(1:1,1:1,1:1) ) |
---|
1898 | ALLOCATE( nest_offl%v_right(1:1,1:1,1:1) ) |
---|
1899 | ALLOCATE( nest_offl%w_right(1:1,1:1,1:1) ) |
---|
1900 | IF ( humidity ) ALLOCATE( nest_offl%q_right(1:1,1:1,1:1) ) |
---|
1901 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_right(1:1,1:1,1:1) ) |
---|
1902 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_right(1:1,1:1,1:1, & |
---|
1903 | 1:UBOUND( chem_species, 1 )) ) |
---|
1904 | ENDIF |
---|
1905 | ! |
---|
1906 | !-- Allocate arrays for reading north/south boundary values. Arrays will |
---|
1907 | !-- incorporate 2 time levels in order to interpolate in between. If the core has |
---|
1908 | !-- no boundary, allocate a dummy array, in order to enable netcdf parallel |
---|
1909 | !-- access. Dummy arrays will be allocated with dimension length zero. |
---|
1910 | IF ( bc_dirichlet_n ) THEN |
---|
1911 | ALLOCATE( nest_offl%u_north(0:1,nzb+1:nzt,nxlu:nxr) ) |
---|
1912 | ALLOCATE( nest_offl%v_north(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
1913 | ALLOCATE( nest_offl%w_north(0:1,nzb+1:nzt-1,nxl:nxr) ) |
---|
1914 | IF ( humidity ) ALLOCATE( nest_offl%q_north(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
1915 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_north(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
1916 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_north(0:1,nzb+1:nzt,nxl:nxr,& |
---|
1917 | 1:UBOUND( chem_species, 1 )) ) |
---|
1918 | ELSE |
---|
1919 | ALLOCATE( nest_offl%u_north(1:1,1:1,1:1) ) |
---|
1920 | ALLOCATE( nest_offl%v_north(1:1,1:1,1:1) ) |
---|
1921 | ALLOCATE( nest_offl%w_north(1:1,1:1,1:1) ) |
---|
1922 | IF ( humidity ) ALLOCATE( nest_offl%q_north(1:1,1:1,1:1) ) |
---|
1923 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_north(1:1,1:1,1:1) ) |
---|
1924 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_north(1:1,1:1,1:1, & |
---|
1925 | 1:UBOUND( chem_species, 1 )) ) |
---|
1926 | ENDIF |
---|
1927 | IF ( bc_dirichlet_s ) THEN |
---|
1928 | ALLOCATE( nest_offl%u_south(0:1,nzb+1:nzt,nxlu:nxr) ) |
---|
1929 | ALLOCATE( nest_offl%v_south(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
1930 | ALLOCATE( nest_offl%w_south(0:1,nzb+1:nzt-1,nxl:nxr) ) |
---|
1931 | IF ( humidity ) ALLOCATE( nest_offl%q_south(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
1932 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_south(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
1933 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_south(0:1,nzb+1:nzt,nxl:nxr,& |
---|
1934 | 1:UBOUND( chem_species, 1 )) ) |
---|
1935 | ELSE |
---|
1936 | ALLOCATE( nest_offl%u_south(1:1,1:1,1:1) ) |
---|
1937 | ALLOCATE( nest_offl%v_south(1:1,1:1,1:1) ) |
---|
1938 | ALLOCATE( nest_offl%w_south(1:1,1:1,1:1) ) |
---|
1939 | IF ( humidity ) ALLOCATE( nest_offl%q_south(1:1,1:1,1:1) ) |
---|
1940 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_south(1:1,1:1,1:1) ) |
---|
1941 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_south(1:1,1:1,1:1, & |
---|
1942 | 1:UBOUND( chem_species, 1 )) ) |
---|
1943 | ENDIF |
---|
1944 | ! |
---|
1945 | !-- Allocate arrays for reading data at the top boundary. In contrast to the |
---|
1946 | !-- lateral boundaries, every core reads these data so that no dummy |
---|
1947 | !-- arrays need to be allocated. |
---|
1948 | ALLOCATE( nest_offl%u_top(0:1,nys:nyn,nxlu:nxr) ) |
---|
1949 | ALLOCATE( nest_offl%v_top(0:1,nysv:nyn,nxl:nxr) ) |
---|
1950 | ALLOCATE( nest_offl%w_top(0:1,nys:nyn,nxl:nxr) ) |
---|
1951 | IF ( humidity ) ALLOCATE( nest_offl%q_top(0:1,nys:nyn,nxl:nxr) ) |
---|
1952 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_top(0:1,nys:nyn,nxl:nxr) ) |
---|
1953 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_top(0:1,nys:nyn,nxl:nxr, & |
---|
1954 | 1:UBOUND( chem_species, 1 )) ) |
---|
1955 | ! |
---|
1956 | !-- For chemical species, create the names of the variables. This is necessary |
---|
1957 | !-- to identify the respective variable and write it onto the correct array |
---|
1958 | !-- in the chem_species datatype. |
---|
1959 | IF ( air_chemistry ) THEN |
---|
1960 | ALLOCATE( nest_offl%chem_from_file_l(1:UBOUND( chem_species, 1 )) ) |
---|
1961 | ALLOCATE( nest_offl%chem_from_file_n(1:UBOUND( chem_species, 1 )) ) |
---|
1962 | ALLOCATE( nest_offl%chem_from_file_r(1:UBOUND( chem_species, 1 )) ) |
---|
1963 | ALLOCATE( nest_offl%chem_from_file_s(1:UBOUND( chem_species, 1 )) ) |
---|
1964 | ALLOCATE( nest_offl%chem_from_file_t(1:UBOUND( chem_species, 1 )) ) |
---|
1965 | |
---|
1966 | ALLOCATE( nest_offl%var_names_chem_l(1:UBOUND( chem_species, 1 )) ) |
---|
1967 | ALLOCATE( nest_offl%var_names_chem_n(1:UBOUND( chem_species, 1 )) ) |
---|
1968 | ALLOCATE( nest_offl%var_names_chem_r(1:UBOUND( chem_species, 1 )) ) |
---|
1969 | ALLOCATE( nest_offl%var_names_chem_s(1:UBOUND( chem_species, 1 )) ) |
---|
1970 | ALLOCATE( nest_offl%var_names_chem_t(1:UBOUND( chem_species, 1 )) ) |
---|
1971 | ! |
---|
1972 | !-- Initialize flags that indicate whether the variable is on file or |
---|
1973 | !-- not. Please note, this is only necessary for chemistry variables. |
---|
1974 | nest_offl%chem_from_file_l(:) = .FALSE. |
---|
1975 | nest_offl%chem_from_file_n(:) = .FALSE. |
---|
1976 | nest_offl%chem_from_file_r(:) = .FALSE. |
---|
1977 | nest_offl%chem_from_file_s(:) = .FALSE. |
---|
1978 | nest_offl%chem_from_file_t(:) = .FALSE. |
---|
1979 | |
---|
1980 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
1981 | nest_offl%var_names_chem_l(n) = nest_offl%char_l // & |
---|
1982 | TRIM(chem_species(n)%name) |
---|
1983 | nest_offl%var_names_chem_n(n) = nest_offl%char_n // & |
---|
1984 | TRIM(chem_species(n)%name) |
---|
1985 | nest_offl%var_names_chem_r(n) = nest_offl%char_r // & |
---|
1986 | TRIM(chem_species(n)%name) |
---|
1987 | nest_offl%var_names_chem_s(n) = nest_offl%char_s // & |
---|
1988 | TRIM(chem_species(n)%name) |
---|
1989 | nest_offl%var_names_chem_t(n) = nest_offl%char_t // & |
---|
1990 | TRIM(chem_species(n)%name) |
---|
1991 | ENDDO |
---|
1992 | ENDIF |
---|
1993 | ! |
---|
1994 | !-- Before initial data input is initiated, check if dynamic input file is |
---|
1995 | !-- present. |
---|
1996 | IF ( .NOT. input_pids_dynamic ) THEN |
---|
1997 | message_string = 'nesting_offline = .TRUE. requires dynamic ' // & |
---|
1998 | 'input file ' // & |
---|
1999 | TRIM( input_file_dynamic ) // TRIM( coupling_char ) |
---|
2000 | CALL message( 'nesting_offl_init', 'PA0546', 1, 2, 0, 6, 0 ) |
---|
2001 | ENDIF |
---|
2002 | ! |
---|
2003 | !-- Read COSMO data at lateral and top boundaries |
---|
2004 | CALL nesting_offl_input |
---|
2005 | ! |
---|
2006 | !-- Check if sufficient time steps are provided to cover the entire |
---|
2007 | !-- simulation. Note, dynamic input is only required for the 3D simulation, |
---|
2008 | !-- not for the soil/wall spinup. However, as the spinup time is added |
---|
2009 | !-- to the end_time, this must be considered here. |
---|
2010 | IF ( end_time - spinup_time > & |
---|
2011 | nest_offl%time(nest_offl%nt-1) - time_utc_init ) THEN |
---|
2012 | message_string = 'end_time of the simulation exceeds the ' // & |
---|
2013 | 'time dimension in the dynamic input file.' |
---|
2014 | CALL message( 'nesting_offl_init', 'PA0183', 1, 2, 0, 6, 0 ) |
---|
2015 | ENDIF |
---|
2016 | |
---|
2017 | IF ( nest_offl%time(0) /= time_utc_init ) THEN |
---|
2018 | message_string = 'Offline nesting: time dimension must start at ' // & |
---|
2019 | ' time_utc_init.' |
---|
2020 | CALL message( 'nesting_offl_init', 'PA0676', 1, 2, 0, 6, 0 ) |
---|
2021 | ENDIF |
---|
2022 | ! |
---|
2023 | !-- Initialize boundary data. Please note, do not initialize boundaries in |
---|
2024 | !-- case of restart runs. This case the boundaries are already initialized |
---|
2025 | !-- and the boundary data from file would be on the wrong time level. |
---|
2026 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
2027 | IF ( bc_dirichlet_l ) THEN |
---|
2028 | u(nzb+1:nzt,nys:nyn,0) = nest_offl%u_left(0,nzb+1:nzt,nys:nyn) |
---|
2029 | v(nzb+1:nzt,nysv:nyn,-1) = nest_offl%v_left(0,nzb+1:nzt,nysv:nyn) |
---|
2030 | w(nzb+1:nzt-1,nys:nyn,-1) = nest_offl%w_left(0,nzb+1:nzt-1,nys:nyn) |
---|
2031 | IF ( .NOT. neutral ) pt(nzb+1:nzt,nys:nyn,-1) = & |
---|
2032 | nest_offl%pt_left(0,nzb+1:nzt,nys:nyn) |
---|
2033 | IF ( humidity ) q(nzb+1:nzt,nys:nyn,-1) = & |
---|
2034 | nest_offl%q_left(0,nzb+1:nzt,nys:nyn) |
---|
2035 | IF ( air_chemistry ) THEN |
---|
2036 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
2037 | IF( nest_offl%chem_from_file_l(n) ) THEN |
---|
2038 | chem_species(n)%conc(nzb+1:nzt,nys:nyn,-1) = & |
---|
2039 | nest_offl%chem_left(0,nzb+1:nzt,nys:nyn,n) |
---|
2040 | ENDIF |
---|
2041 | ENDDO |
---|
2042 | ENDIF |
---|
2043 | ENDIF |
---|
2044 | IF ( bc_dirichlet_r ) THEN |
---|
2045 | u(nzb+1:nzt,nys:nyn,nxr+1) = nest_offl%u_right(0,nzb+1:nzt,nys:nyn) |
---|
2046 | v(nzb+1:nzt,nysv:nyn,nxr+1) = nest_offl%v_right(0,nzb+1:nzt,nysv:nyn) |
---|
2047 | w(nzb+1:nzt-1,nys:nyn,nxr+1) = nest_offl%w_right(0,nzb+1:nzt-1,nys:nyn) |
---|
2048 | IF ( .NOT. neutral ) pt(nzb+1:nzt,nys:nyn,nxr+1) = & |
---|
2049 | nest_offl%pt_right(0,nzb+1:nzt,nys:nyn) |
---|
2050 | IF ( humidity ) q(nzb+1:nzt,nys:nyn,nxr+1) = & |
---|
2051 | nest_offl%q_right(0,nzb+1:nzt,nys:nyn) |
---|
2052 | IF ( air_chemistry ) THEN |
---|
2053 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
2054 | IF( nest_offl%chem_from_file_r(n) ) THEN |
---|
2055 | chem_species(n)%conc(nzb+1:nzt,nys:nyn,nxr+1) = & |
---|
2056 | nest_offl%chem_right(0,nzb+1:nzt,nys:nyn,n) |
---|
2057 | ENDIF |
---|
2058 | ENDDO |
---|
2059 | ENDIF |
---|
2060 | ENDIF |
---|
2061 | IF ( bc_dirichlet_s ) THEN |
---|
2062 | u(nzb+1:nzt,-1,nxlu:nxr) = nest_offl%u_south(0,nzb+1:nzt,nxlu:nxr) |
---|
2063 | v(nzb+1:nzt,0,nxl:nxr) = nest_offl%v_south(0,nzb+1:nzt,nxl:nxr) |
---|
2064 | w(nzb+1:nzt-1,-1,nxl:nxr) = nest_offl%w_south(0,nzb+1:nzt-1,nxl:nxr) |
---|
2065 | IF ( .NOT. neutral ) pt(nzb+1:nzt,-1,nxl:nxr) = & |
---|
2066 | nest_offl%pt_south(0,nzb+1:nzt,nxl:nxr) |
---|
2067 | IF ( humidity ) q(nzb+1:nzt,-1,nxl:nxr) = & |
---|
2068 | nest_offl%q_south(0,nzb+1:nzt,nxl:nxr) |
---|
2069 | IF ( air_chemistry ) THEN |
---|
2070 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
2071 | IF( nest_offl%chem_from_file_s(n) ) THEN |
---|
2072 | chem_species(n)%conc(nzb+1:nzt,-1,nxl:nxr) = & |
---|
2073 | nest_offl%chem_south(0,nzb+1:nzt,nxl:nxr,n) |
---|
2074 | ENDIF |
---|
2075 | ENDDO |
---|
2076 | ENDIF |
---|
2077 | ENDIF |
---|
2078 | IF ( bc_dirichlet_n ) THEN |
---|
2079 | u(nzb+1:nzt,nyn+1,nxlu:nxr) = nest_offl%u_north(0,nzb+1:nzt,nxlu:nxr) |
---|
2080 | v(nzb+1:nzt,nyn+1,nxl:nxr) = nest_offl%v_north(0,nzb+1:nzt,nxl:nxr) |
---|
2081 | w(nzb+1:nzt-1,nyn+1,nxl:nxr) = nest_offl%w_north(0,nzb+1:nzt-1,nxl:nxr) |
---|
2082 | IF ( .NOT. neutral ) pt(nzb+1:nzt,nyn+1,nxl:nxr) = & |
---|
2083 | nest_offl%pt_north(0,nzb+1:nzt,nxl:nxr) |
---|
2084 | IF ( humidity ) q(nzb+1:nzt,nyn+1,nxl:nxr) = & |
---|
2085 | nest_offl%q_north(0,nzb+1:nzt,nxl:nxr) |
---|
2086 | IF ( air_chemistry ) THEN |
---|
2087 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
2088 | IF( nest_offl%chem_from_file_n(n) ) THEN |
---|
2089 | chem_species(n)%conc(nzb+1:nzt,nyn+1,nxl:nxr) = & |
---|
2090 | nest_offl%chem_north(0,nzb+1:nzt,nxl:nxr,n) |
---|
2091 | ENDIF |
---|
2092 | ENDDO |
---|
2093 | ENDIF |
---|
2094 | ENDIF |
---|
2095 | ! |
---|
2096 | !-- Initialize geostrophic wind components. Actually this is already done in |
---|
2097 | !-- init_3d_model when initializing_action = 'inifor', however, in speical |
---|
2098 | !-- case of user-defined initialization this will be done here again, in |
---|
2099 | !-- order to have a consistent initialization. |
---|
2100 | ug(nzb+1:nzt) = nest_offl%ug(0,nzb+1:nzt) |
---|
2101 | vg(nzb+1:nzt) = nest_offl%vg(0,nzb+1:nzt) |
---|
2102 | ! |
---|
2103 | !-- Set bottom and top boundary condition for geostrophic wind components |
---|
2104 | ug(nzt+1) = ug(nzt) |
---|
2105 | vg(nzt+1) = vg(nzt) |
---|
2106 | ug(nzb) = ug(nzb+1) |
---|
2107 | vg(nzb) = vg(nzb+1) |
---|
2108 | ENDIF |
---|
2109 | ! |
---|
2110 | !-- After boundary data is initialized, mask topography at the |
---|
2111 | !-- boundaries for the velocity components. |
---|
2112 | u = MERGE( u, 0.0_wp, BTEST( wall_flags_0, 1 ) ) |
---|
2113 | v = MERGE( v, 0.0_wp, BTEST( wall_flags_0, 2 ) ) |
---|
2114 | w = MERGE( w, 0.0_wp, BTEST( wall_flags_0, 3 ) ) |
---|
2115 | ! |
---|
2116 | !-- Initial calculation of the boundary layer depth from the prescribed |
---|
2117 | !-- boundary data. This is requiered for initialize the synthetic turbulence |
---|
2118 | !-- generator correctly. |
---|
2119 | CALL nesting_offl_calc_zi |
---|
2120 | |
---|
2121 | ! |
---|
2122 | !-- After boundary data is initialized, ensure mass conservation. Not |
---|
2123 | !-- necessary in restart runs. |
---|
2124 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
2125 | CALL nesting_offl_mass_conservation |
---|
2126 | ENDIF |
---|
2127 | |
---|
2128 | END SUBROUTINE nesting_offl_init |
---|
2129 | |
---|
2130 | !------------------------------------------------------------------------------! |
---|
2131 | ! Description: |
---|
2132 | !------------------------------------------------------------------------------! |
---|
2133 | !> Interpolation function, used to interpolate boundary data in time. |
---|
2134 | !------------------------------------------------------------------------------! |
---|
2135 | FUNCTION interpolate_in_time( var_t1, var_t2, fac ) |
---|
2136 | |
---|
2137 | REAL(wp) :: interpolate_in_time !< time-interpolated boundary value |
---|
2138 | REAL(wp) :: var_t1 !< boundary value at t1 |
---|
2139 | REAL(wp) :: var_t2 !< boundary value at t2 |
---|
2140 | REAL(wp) :: fac !< interpolation factor |
---|
2141 | |
---|
2142 | interpolate_in_time = ( 1.0_wp - fac ) * var_t1 + fac * var_t2 |
---|
2143 | |
---|
2144 | END FUNCTION interpolate_in_time |
---|
2145 | |
---|
2146 | |
---|
2147 | |
---|
2148 | END MODULE nesting_offl_mod |
---|