1 | !> @file nesting_offl_mod.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: nesting_offl_mod.f90 3858 2019-04-03 14:41:42Z suehring $ |
---|
27 | ! Do local data exchange for chemistry variables only when boundary data is |
---|
28 | ! coming from dynamic file |
---|
29 | ! |
---|
30 | ! 3737 2019-02-12 16:57:06Z suehring |
---|
31 | ! Introduce mesoscale nesting for chemical species |
---|
32 | ! |
---|
33 | ! 3705 2019-01-29 19:56:39Z suehring |
---|
34 | ! Formatting adjustments |
---|
35 | ! |
---|
36 | ! 3704 2019-01-29 19:51:41Z suehring |
---|
37 | ! Check implemented for offline nesting in child domain |
---|
38 | ! |
---|
39 | ! 3413 2018-10-24 10:28:44Z suehring |
---|
40 | ! Keyword ID set |
---|
41 | ! |
---|
42 | ! 3404 2018-10-23 13:29:11Z suehring |
---|
43 | ! Consider time-dependent geostrophic wind components in offline nesting |
---|
44 | ! |
---|
45 | ! |
---|
46 | ! Initial Revision: |
---|
47 | ! - separate offline nesting from large_scale_nudging_mod |
---|
48 | ! - revise offline nesting, adjust for usage of synthetic turbulence generator |
---|
49 | ! - adjust Rayleigh damping depending on the time-depending atmospheric |
---|
50 | ! conditions |
---|
51 | ! |
---|
52 | ! |
---|
53 | ! Description: |
---|
54 | ! ------------ |
---|
55 | !> Offline nesting in larger-scale models. Boundary conditions for the simulation |
---|
56 | !> are read from NetCDF file and are prescribed onto the respective arrays. |
---|
57 | !> Further, a mass-flux correction is performed to maintain the mass balance. |
---|
58 | !--------------------------------------------------------------------------------! |
---|
59 | MODULE nesting_offl_mod |
---|
60 | |
---|
61 | USE arrays_3d, & |
---|
62 | ONLY: dzw, e, diss, pt, pt_init, q, q_init, s, u, u_init, ug, v, & |
---|
63 | v_init, vg, w, zu, zw |
---|
64 | |
---|
65 | USE chemistry_model_mod, & |
---|
66 | ONLY: chem_species |
---|
67 | |
---|
68 | USE control_parameters, & |
---|
69 | ONLY: air_chemistry, bc_dirichlet_l, bc_dirichlet_n, bc_dirichlet_r, & |
---|
70 | bc_dirichlet_s, dt_3d, dz, constant_diffusion, humidity, & |
---|
71 | message_string, nesting_offline, neutral, passive_scalar, & |
---|
72 | rans_mode, rans_tke_e, time_since_reference_point, volume_flow |
---|
73 | |
---|
74 | USE cpulog, & |
---|
75 | ONLY: cpu_log, log_point |
---|
76 | |
---|
77 | USE grid_variables |
---|
78 | |
---|
79 | USE indices, & |
---|
80 | ONLY: nbgp, nx, nxl, nxlg, nxlu, nxr, nxrg, ny, nys, & |
---|
81 | nysv, nysg, nyn, nyng, nzb, nz, nzt, wall_flags_0 |
---|
82 | |
---|
83 | USE kinds |
---|
84 | |
---|
85 | USE netcdf_data_input_mod, & |
---|
86 | ONLY: nest_offl |
---|
87 | |
---|
88 | USE pegrid |
---|
89 | |
---|
90 | REAL(wp) :: zi_ribulk = 0.0_wp !< boundary-layer depth according to bulk Richardson criterion, i.e. the height where Ri_bulk exceeds the critical |
---|
91 | !< bulk Richardson number of 0.25 |
---|
92 | |
---|
93 | SAVE |
---|
94 | PRIVATE |
---|
95 | ! |
---|
96 | !-- Public subroutines |
---|
97 | PUBLIC nesting_offl_bc, nesting_offl_check_parameters, nesting_offl_header,& |
---|
98 | nesting_offl_init, nesting_offl_mass_conservation, nesting_offl_parin |
---|
99 | ! |
---|
100 | !-- Public variables |
---|
101 | PUBLIC zi_ribulk |
---|
102 | |
---|
103 | INTERFACE nesting_offl_bc |
---|
104 | MODULE PROCEDURE nesting_offl_bc |
---|
105 | END INTERFACE nesting_offl_bc |
---|
106 | |
---|
107 | INTERFACE nesting_offl_check_parameters |
---|
108 | MODULE PROCEDURE nesting_offl_check_parameters |
---|
109 | END INTERFACE nesting_offl_check_parameters |
---|
110 | |
---|
111 | INTERFACE nesting_offl_header |
---|
112 | MODULE PROCEDURE nesting_offl_header |
---|
113 | END INTERFACE nesting_offl_header |
---|
114 | |
---|
115 | INTERFACE nesting_offl_init |
---|
116 | MODULE PROCEDURE nesting_offl_init |
---|
117 | END INTERFACE nesting_offl_init |
---|
118 | |
---|
119 | INTERFACE nesting_offl_mass_conservation |
---|
120 | MODULE PROCEDURE nesting_offl_mass_conservation |
---|
121 | END INTERFACE nesting_offl_mass_conservation |
---|
122 | |
---|
123 | INTERFACE nesting_offl_parin |
---|
124 | MODULE PROCEDURE nesting_offl_parin |
---|
125 | END INTERFACE nesting_offl_parin |
---|
126 | |
---|
127 | CONTAINS |
---|
128 | |
---|
129 | |
---|
130 | !------------------------------------------------------------------------------! |
---|
131 | ! Description: |
---|
132 | ! ------------ |
---|
133 | !> In this subroutine a constant mass within the model domain is guaranteed. |
---|
134 | !> Larger-scale models may be based on a compressible equation system, which is |
---|
135 | !> not consistent with PALMs incompressible equation system. In order to avoid |
---|
136 | !> a decrease or increase of mass during the simulation, non-divergent flow |
---|
137 | !> through the lateral and top boundaries is compensated by the vertical wind |
---|
138 | !> component at the top boundary. |
---|
139 | !------------------------------------------------------------------------------! |
---|
140 | SUBROUTINE nesting_offl_mass_conservation |
---|
141 | |
---|
142 | IMPLICIT NONE |
---|
143 | |
---|
144 | INTEGER(iwp) :: i !< grid index in x-direction |
---|
145 | INTEGER(iwp) :: j !< grid index in y-direction |
---|
146 | INTEGER(iwp) :: k !< grid index in z-direction |
---|
147 | |
---|
148 | REAL(wp) :: d_area_t !< inverse of the total area of the horizontal model domain |
---|
149 | REAL(wp) :: w_correct !< vertical velocity increment required to compensate non-divergent flow through the boundaries |
---|
150 | REAL(wp), DIMENSION(1:3) :: volume_flow_l !< local volume flow |
---|
151 | |
---|
152 | |
---|
153 | CALL cpu_log( log_point(58), 'offline nesting', 'start' ) |
---|
154 | |
---|
155 | volume_flow = 0.0_wp |
---|
156 | volume_flow_l = 0.0_wp |
---|
157 | |
---|
158 | d_area_t = 1.0_wp / ( ( nx + 1 ) * dx * ( ny + 1 ) * dy ) |
---|
159 | |
---|
160 | IF ( bc_dirichlet_l ) THEN |
---|
161 | i = nxl |
---|
162 | DO j = nys, nyn |
---|
163 | DO k = nzb+1, nzt |
---|
164 | volume_flow_l(1) = volume_flow_l(1) + u(k,j,i) * dzw(k) * dy & |
---|
165 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
166 | BTEST( wall_flags_0(k,j,i), 1 ) ) |
---|
167 | ENDDO |
---|
168 | ENDDO |
---|
169 | ENDIF |
---|
170 | IF ( bc_dirichlet_r ) THEN |
---|
171 | i = nxr+1 |
---|
172 | DO j = nys, nyn |
---|
173 | DO k = nzb+1, nzt |
---|
174 | volume_flow_l(1) = volume_flow_l(1) - u(k,j,i) * dzw(k) * dy & |
---|
175 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
176 | BTEST( wall_flags_0(k,j,i), 1 ) ) |
---|
177 | ENDDO |
---|
178 | ENDDO |
---|
179 | ENDIF |
---|
180 | IF ( bc_dirichlet_s ) THEN |
---|
181 | j = nys |
---|
182 | DO i = nxl, nxr |
---|
183 | DO k = nzb+1, nzt |
---|
184 | volume_flow_l(2) = volume_flow_l(2) + v(k,j,i) * dzw(k) * dx & |
---|
185 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
186 | BTEST( wall_flags_0(k,j,i), 2 ) ) |
---|
187 | ENDDO |
---|
188 | ENDDO |
---|
189 | ENDIF |
---|
190 | IF ( bc_dirichlet_n ) THEN |
---|
191 | j = nyn+1 |
---|
192 | DO i = nxl, nxr |
---|
193 | DO k = nzb+1, nzt |
---|
194 | volume_flow_l(2) = volume_flow_l(2) - v(k,j,i) * dzw(k) * dx & |
---|
195 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
196 | BTEST( wall_flags_0(k,j,i), 2 ) ) |
---|
197 | ENDDO |
---|
198 | ENDDO |
---|
199 | ENDIF |
---|
200 | ! |
---|
201 | !-- Top boundary |
---|
202 | k = nzt |
---|
203 | DO i = nxl, nxr |
---|
204 | DO j = nys, nyn |
---|
205 | volume_flow_l(3) = volume_flow_l(3) - w(k,j,i) * dx * dy |
---|
206 | ENDDO |
---|
207 | ENDDO |
---|
208 | |
---|
209 | #if defined( __parallel ) |
---|
210 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
211 | CALL MPI_ALLREDUCE( volume_flow_l, volume_flow, 3, MPI_REAL, MPI_SUM, & |
---|
212 | comm2d, ierr ) |
---|
213 | #else |
---|
214 | volume_flow = volume_flow_l |
---|
215 | #endif |
---|
216 | |
---|
217 | w_correct = SUM( volume_flow ) * d_area_t |
---|
218 | |
---|
219 | DO i = nxl, nxr |
---|
220 | DO j = nys, nyn |
---|
221 | DO k = nzt, nzt + 1 |
---|
222 | w(k,j,i) = w(k,j,i) + w_correct |
---|
223 | ENDDO |
---|
224 | ENDDO |
---|
225 | ENDDO |
---|
226 | |
---|
227 | CALL cpu_log( log_point(58), 'offline nesting', 'stop' ) |
---|
228 | |
---|
229 | END SUBROUTINE nesting_offl_mass_conservation |
---|
230 | |
---|
231 | |
---|
232 | !------------------------------------------------------------------------------! |
---|
233 | ! Description: |
---|
234 | ! ------------ |
---|
235 | !> Set the lateral and top boundary conditions in case the PALM domain is |
---|
236 | !> nested offline in a mesoscale model. Further, average boundary data and |
---|
237 | !> determine mean profiles, further used for correct damping in the sponge |
---|
238 | !> layer. |
---|
239 | !------------------------------------------------------------------------------! |
---|
240 | SUBROUTINE nesting_offl_bc |
---|
241 | |
---|
242 | IMPLICIT NONE |
---|
243 | |
---|
244 | INTEGER(iwp) :: i !< running index x-direction |
---|
245 | INTEGER(iwp) :: j !< running index y-direction |
---|
246 | INTEGER(iwp) :: k !< running index z-direction |
---|
247 | INTEGER(iwp) :: n !< running index for chemical species |
---|
248 | |
---|
249 | REAL(wp) :: fac_dt !< interpolation factor |
---|
250 | |
---|
251 | REAL(wp), DIMENSION(nzb:nzt+1) :: pt_ref !< reference profile for potential temperature |
---|
252 | REAL(wp), DIMENSION(nzb:nzt+1) :: pt_ref_l !< reference profile for potential temperature on subdomain |
---|
253 | REAL(wp), DIMENSION(nzb:nzt+1) :: q_ref !< reference profile for mixing ratio on subdomain |
---|
254 | REAL(wp), DIMENSION(nzb:nzt+1) :: q_ref_l !< reference profile for mixing ratio on subdomain |
---|
255 | REAL(wp), DIMENSION(nzb:nzt+1) :: u_ref !< reference profile for u-component on subdomain |
---|
256 | REAL(wp), DIMENSION(nzb:nzt+1) :: u_ref_l !< reference profile for u-component on subdomain |
---|
257 | REAL(wp), DIMENSION(nzb:nzt+1) :: v_ref !< reference profile for v-component on subdomain |
---|
258 | REAL(wp), DIMENSION(nzb:nzt+1) :: v_ref_l !< reference profile for v-component on subdomain |
---|
259 | |
---|
260 | CALL cpu_log( log_point(58), 'offline nesting', 'start' ) |
---|
261 | ! |
---|
262 | !-- Set mean profiles, derived from boundary data, to zero |
---|
263 | pt_ref = 0.0_wp |
---|
264 | q_ref = 0.0_wp |
---|
265 | u_ref = 0.0_wp |
---|
266 | v_ref = 0.0_wp |
---|
267 | |
---|
268 | pt_ref_l = 0.0_wp |
---|
269 | q_ref_l = 0.0_wp |
---|
270 | u_ref_l = 0.0_wp |
---|
271 | v_ref_l = 0.0_wp |
---|
272 | ! |
---|
273 | !-- Determine interpolation factor and limit it to 1. This is because |
---|
274 | !-- t+dt can slightly exceed time(tind_p) before boundary data is updated |
---|
275 | !-- again. |
---|
276 | fac_dt = ( time_since_reference_point - nest_offl%time(nest_offl%tind) & |
---|
277 | + dt_3d ) / & |
---|
278 | ( nest_offl%time(nest_offl%tind_p) - nest_offl%time(nest_offl%tind) ) |
---|
279 | fac_dt = MIN( 1.0_wp, fac_dt ) |
---|
280 | ! |
---|
281 | !-- Set boundary conditions of u-, v-, w-component, as well as q, and pt. |
---|
282 | !-- Note, boundary values at the left boundary: i=-1 (v,w,pt,q) and |
---|
283 | !-- i=0 (u), at the right boundary: i=nxr+1 (all), at the south boundary: |
---|
284 | !-- j=-1 (u,w,pt,q) and j=0 (v), at the north boundary: j=nyn+1 (all). |
---|
285 | !-- Please note, at the left (for u) and south (for v) boundary, values |
---|
286 | !-- for u and v are set also at i/j=-1, since these values are used in |
---|
287 | !-- boundary_conditions() to restore prognostic values. |
---|
288 | !-- Further, sum up data to calculate mean profiles from boundary data, |
---|
289 | !-- used for Rayleigh damping. |
---|
290 | IF ( bc_dirichlet_l ) THEN |
---|
291 | |
---|
292 | DO j = nys, nyn |
---|
293 | DO k = nzb+1, nzt |
---|
294 | u(k,j,0) = interpolate_in_time( nest_offl%u_left(0,k,j), & |
---|
295 | nest_offl%u_left(1,k,j), & |
---|
296 | fac_dt ) * & |
---|
297 | MERGE( 1.0_wp, 0.0_wp, & |
---|
298 | BTEST( wall_flags_0(k,j,0), 1 ) ) |
---|
299 | u(k,j,-1) = u(k,j,0) |
---|
300 | ENDDO |
---|
301 | u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,j,0) |
---|
302 | ENDDO |
---|
303 | |
---|
304 | DO j = nys, nyn |
---|
305 | DO k = nzb+1, nzt-1 |
---|
306 | w(k,j,-1) = interpolate_in_time( nest_offl%w_left(0,k,j), & |
---|
307 | nest_offl%w_left(1,k,j), & |
---|
308 | fac_dt ) * & |
---|
309 | MERGE( 1.0_wp, 0.0_wp, & |
---|
310 | BTEST( wall_flags_0(k,j,-1), 3 ) ) |
---|
311 | ENDDO |
---|
312 | ENDDO |
---|
313 | |
---|
314 | DO j = nysv, nyn |
---|
315 | DO k = nzb+1, nzt |
---|
316 | v(k,j,-1) = interpolate_in_time( nest_offl%v_left(0,k,j), & |
---|
317 | nest_offl%v_left(1,k,j), & |
---|
318 | fac_dt ) * & |
---|
319 | MERGE( 1.0_wp, 0.0_wp, & |
---|
320 | BTEST( wall_flags_0(k,j,-1), 2 ) ) |
---|
321 | ENDDO |
---|
322 | v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,j,-1) |
---|
323 | ENDDO |
---|
324 | |
---|
325 | IF ( .NOT. neutral ) THEN |
---|
326 | DO j = nys, nyn |
---|
327 | DO k = nzb+1, nzt |
---|
328 | pt(k,j,-1) = interpolate_in_time( nest_offl%pt_left(0,k,j), & |
---|
329 | nest_offl%pt_left(1,k,j), & |
---|
330 | fac_dt ) |
---|
331 | |
---|
332 | ENDDO |
---|
333 | pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,j,-1) |
---|
334 | ENDDO |
---|
335 | ENDIF |
---|
336 | |
---|
337 | IF ( humidity ) THEN |
---|
338 | DO j = nys, nyn |
---|
339 | DO k = nzb+1, nzt |
---|
340 | q(k,j,-1) = interpolate_in_time( nest_offl%q_left(0,k,j), & |
---|
341 | nest_offl%q_left(1,k,j), & |
---|
342 | fac_dt ) |
---|
343 | |
---|
344 | ENDDO |
---|
345 | q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,j,-1) |
---|
346 | ENDDO |
---|
347 | ENDIF |
---|
348 | |
---|
349 | IF ( air_chemistry ) THEN |
---|
350 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
351 | IF ( nest_offl%chem_from_file_l(n) ) THEN |
---|
352 | DO j = nys, nyn |
---|
353 | DO k = nzb+1, nzt |
---|
354 | chem_species(n)%conc(k,j,-1) = interpolate_in_time( & |
---|
355 | nest_offl%chem_left(0,k,j,n),& |
---|
356 | nest_offl%chem_left(1,k,j,n),& |
---|
357 | fac_dt ) |
---|
358 | ENDDO |
---|
359 | ENDDO |
---|
360 | ENDIF |
---|
361 | ENDDO |
---|
362 | ENDIF |
---|
363 | |
---|
364 | ENDIF |
---|
365 | |
---|
366 | IF ( bc_dirichlet_r ) THEN |
---|
367 | |
---|
368 | DO j = nys, nyn |
---|
369 | DO k = nzb+1, nzt |
---|
370 | u(k,j,nxr+1) = interpolate_in_time( nest_offl%u_right(0,k,j), & |
---|
371 | nest_offl%u_right(1,k,j), & |
---|
372 | fac_dt ) * & |
---|
373 | MERGE( 1.0_wp, 0.0_wp, & |
---|
374 | BTEST( wall_flags_0(k,j,nxr+1), 1 ) ) |
---|
375 | ENDDO |
---|
376 | u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,j,nxr+1) |
---|
377 | ENDDO |
---|
378 | DO j = nys, nyn |
---|
379 | DO k = nzb+1, nzt-1 |
---|
380 | w(k,j,nxr+1) = interpolate_in_time( nest_offl%w_right(0,k,j), & |
---|
381 | nest_offl%w_right(1,k,j), & |
---|
382 | fac_dt ) * & |
---|
383 | MERGE( 1.0_wp, 0.0_wp, & |
---|
384 | BTEST( wall_flags_0(k,j,nxr+1), 3 ) ) |
---|
385 | ENDDO |
---|
386 | ENDDO |
---|
387 | |
---|
388 | DO j = nysv, nyn |
---|
389 | DO k = nzb+1, nzt |
---|
390 | v(k,j,nxr+1) = interpolate_in_time( nest_offl%v_right(0,k,j), & |
---|
391 | nest_offl%v_right(1,k,j), & |
---|
392 | fac_dt ) * & |
---|
393 | MERGE( 1.0_wp, 0.0_wp, & |
---|
394 | BTEST( wall_flags_0(k,j,nxr+1), 2 ) ) |
---|
395 | ENDDO |
---|
396 | v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,j,nxr+1) |
---|
397 | ENDDO |
---|
398 | |
---|
399 | IF ( .NOT. neutral ) THEN |
---|
400 | DO j = nys, nyn |
---|
401 | DO k = nzb+1, nzt |
---|
402 | pt(k,j,nxr+1) = interpolate_in_time( & |
---|
403 | nest_offl%pt_right(0,k,j), & |
---|
404 | nest_offl%pt_right(1,k,j), & |
---|
405 | fac_dt ) |
---|
406 | ENDDO |
---|
407 | pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,j,nxr+1) |
---|
408 | ENDDO |
---|
409 | ENDIF |
---|
410 | |
---|
411 | IF ( humidity ) THEN |
---|
412 | DO j = nys, nyn |
---|
413 | DO k = nzb+1, nzt |
---|
414 | q(k,j,nxr+1) = interpolate_in_time( & |
---|
415 | nest_offl%q_right(0,k,j), & |
---|
416 | nest_offl%q_right(1,k,j), & |
---|
417 | fac_dt ) |
---|
418 | |
---|
419 | ENDDO |
---|
420 | q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,j,nxr+1) |
---|
421 | ENDDO |
---|
422 | ENDIF |
---|
423 | |
---|
424 | IF ( air_chemistry ) THEN |
---|
425 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
426 | IF ( nest_offl%chem_from_file_r(n) ) THEN |
---|
427 | DO j = nys, nyn |
---|
428 | DO k = nzb+1, nzt |
---|
429 | chem_species(n)%conc(k,j,nxr+1) = interpolate_in_time(& |
---|
430 | nest_offl%chem_right(0,k,j,n),& |
---|
431 | nest_offl%chem_right(1,k,j,n),& |
---|
432 | fac_dt ) |
---|
433 | ENDDO |
---|
434 | ENDDO |
---|
435 | ENDIF |
---|
436 | ENDDO |
---|
437 | ENDIF |
---|
438 | |
---|
439 | ENDIF |
---|
440 | |
---|
441 | IF ( bc_dirichlet_s ) THEN |
---|
442 | |
---|
443 | DO i = nxl, nxr |
---|
444 | DO k = nzb+1, nzt |
---|
445 | v(k,0,i) = interpolate_in_time( nest_offl%v_south(0,k,i), & |
---|
446 | nest_offl%v_south(1,k,i), & |
---|
447 | fac_dt ) * & |
---|
448 | MERGE( 1.0_wp, 0.0_wp, & |
---|
449 | BTEST( wall_flags_0(k,0,i), 2 ) ) |
---|
450 | v(k,-1,i) = v(k,0,i) |
---|
451 | ENDDO |
---|
452 | v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,0,i) |
---|
453 | ENDDO |
---|
454 | |
---|
455 | DO i = nxl, nxr |
---|
456 | DO k = nzb+1, nzt-1 |
---|
457 | w(k,-1,i) = interpolate_in_time( nest_offl%w_south(0,k,i), & |
---|
458 | nest_offl%w_south(1,k,i), & |
---|
459 | fac_dt ) * & |
---|
460 | MERGE( 1.0_wp, 0.0_wp, & |
---|
461 | BTEST( wall_flags_0(k,-1,i), 3 ) ) |
---|
462 | ENDDO |
---|
463 | ENDDO |
---|
464 | |
---|
465 | DO i = nxlu, nxr |
---|
466 | DO k = nzb+1, nzt |
---|
467 | u(k,-1,i) = interpolate_in_time( nest_offl%u_south(0,k,i), & |
---|
468 | nest_offl%u_south(1,k,i), & |
---|
469 | fac_dt ) * & |
---|
470 | MERGE( 1.0_wp, 0.0_wp, & |
---|
471 | BTEST( wall_flags_0(k,-1,i), 1 ) ) |
---|
472 | ENDDO |
---|
473 | u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,-1,i) |
---|
474 | ENDDO |
---|
475 | |
---|
476 | IF ( .NOT. neutral ) THEN |
---|
477 | DO i = nxl, nxr |
---|
478 | DO k = nzb+1, nzt |
---|
479 | pt(k,-1,i) = interpolate_in_time( & |
---|
480 | nest_offl%pt_south(0,k,i), & |
---|
481 | nest_offl%pt_south(1,k,i), & |
---|
482 | fac_dt ) |
---|
483 | |
---|
484 | ENDDO |
---|
485 | pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,-1,i) |
---|
486 | ENDDO |
---|
487 | ENDIF |
---|
488 | |
---|
489 | IF ( humidity ) THEN |
---|
490 | DO i = nxl, nxr |
---|
491 | DO k = nzb+1, nzt |
---|
492 | q(k,-1,i) = interpolate_in_time( & |
---|
493 | nest_offl%q_south(0,k,i), & |
---|
494 | nest_offl%q_south(1,k,i), & |
---|
495 | fac_dt ) |
---|
496 | |
---|
497 | ENDDO |
---|
498 | q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,-1,i) |
---|
499 | ENDDO |
---|
500 | ENDIF |
---|
501 | |
---|
502 | IF ( air_chemistry ) THEN |
---|
503 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
504 | IF ( nest_offl%chem_from_file_s(n) ) THEN |
---|
505 | DO i = nxl, nxr |
---|
506 | DO k = nzb+1, nzt |
---|
507 | chem_species(n)%conc(k,-1,i) = interpolate_in_time( & |
---|
508 | nest_offl%chem_south(0,k,i,n),& |
---|
509 | nest_offl%chem_south(1,k,i,n),& |
---|
510 | fac_dt ) |
---|
511 | ENDDO |
---|
512 | ENDDO |
---|
513 | ENDIF |
---|
514 | ENDDO |
---|
515 | ENDIF |
---|
516 | |
---|
517 | ENDIF |
---|
518 | |
---|
519 | IF ( bc_dirichlet_n ) THEN |
---|
520 | |
---|
521 | DO i = nxl, nxr |
---|
522 | DO k = nzb+1, nzt |
---|
523 | v(k,nyn+1,i) = interpolate_in_time( nest_offl%v_north(0,k,i), & |
---|
524 | nest_offl%v_north(1,k,i), & |
---|
525 | fac_dt ) * & |
---|
526 | MERGE( 1.0_wp, 0.0_wp, & |
---|
527 | BTEST( wall_flags_0(k,nyn+1,i), 2 ) ) |
---|
528 | ENDDO |
---|
529 | v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,nyn+1,i) |
---|
530 | ENDDO |
---|
531 | DO i = nxl, nxr |
---|
532 | DO k = nzb+1, nzt-1 |
---|
533 | w(k,nyn+1,i) = interpolate_in_time( nest_offl%w_north(0,k,i), & |
---|
534 | nest_offl%w_north(1,k,i), & |
---|
535 | fac_dt ) * & |
---|
536 | MERGE( 1.0_wp, 0.0_wp, & |
---|
537 | BTEST( wall_flags_0(k,nyn+1,i), 3 ) ) |
---|
538 | ENDDO |
---|
539 | ENDDO |
---|
540 | |
---|
541 | DO i = nxlu, nxr |
---|
542 | DO k = nzb+1, nzt |
---|
543 | u(k,nyn+1,i) = interpolate_in_time( nest_offl%u_north(0,k,i), & |
---|
544 | nest_offl%u_north(1,k,i), & |
---|
545 | fac_dt ) * & |
---|
546 | MERGE( 1.0_wp, 0.0_wp, & |
---|
547 | BTEST( wall_flags_0(k,nyn+1,i), 1 ) ) |
---|
548 | |
---|
549 | ENDDO |
---|
550 | u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,nyn+1,i) |
---|
551 | ENDDO |
---|
552 | |
---|
553 | IF ( .NOT. neutral ) THEN |
---|
554 | DO i = nxl, nxr |
---|
555 | DO k = nzb+1, nzt |
---|
556 | pt(k,nyn+1,i) = interpolate_in_time( & |
---|
557 | nest_offl%pt_north(0,k,i), & |
---|
558 | nest_offl%pt_north(1,k,i), & |
---|
559 | fac_dt ) |
---|
560 | |
---|
561 | ENDDO |
---|
562 | pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,nyn+1,i) |
---|
563 | ENDDO |
---|
564 | ENDIF |
---|
565 | |
---|
566 | IF ( humidity ) THEN |
---|
567 | DO i = nxl, nxr |
---|
568 | DO k = nzb+1, nzt |
---|
569 | q(k,nyn+1,i) = interpolate_in_time( & |
---|
570 | nest_offl%q_north(0,k,i), & |
---|
571 | nest_offl%q_north(1,k,i), & |
---|
572 | fac_dt ) |
---|
573 | |
---|
574 | ENDDO |
---|
575 | q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,nyn+1,i) |
---|
576 | ENDDO |
---|
577 | ENDIF |
---|
578 | |
---|
579 | IF ( air_chemistry ) THEN |
---|
580 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
581 | IF ( nest_offl%chem_from_file_n(n) ) THEN |
---|
582 | DO i = nxl, nxr |
---|
583 | DO k = nzb+1, nzt |
---|
584 | chem_species(n)%conc(k,nyn+1,i) = interpolate_in_time(& |
---|
585 | nest_offl%chem_north(0,k,i,n),& |
---|
586 | nest_offl%chem_north(1,k,i,n),& |
---|
587 | fac_dt ) |
---|
588 | ENDDO |
---|
589 | ENDDO |
---|
590 | ENDIF |
---|
591 | ENDDO |
---|
592 | ENDIF |
---|
593 | |
---|
594 | ENDIF |
---|
595 | ! |
---|
596 | !-- Top boundary |
---|
597 | DO i = nxlu, nxr |
---|
598 | DO j = nys, nyn |
---|
599 | u(nzt+1,j,i) = interpolate_in_time( nest_offl%u_top(0,j,i), & |
---|
600 | nest_offl%u_top(1,j,i), & |
---|
601 | fac_dt ) * & |
---|
602 | MERGE( 1.0_wp, 0.0_wp, & |
---|
603 | BTEST( wall_flags_0(nzt+1,j,i), 1 ) ) |
---|
604 | u_ref_l(nzt+1) = u_ref_l(nzt+1) + u(nzt+1,j,i) |
---|
605 | ENDDO |
---|
606 | ENDDO |
---|
607 | |
---|
608 | DO i = nxl, nxr |
---|
609 | DO j = nysv, nyn |
---|
610 | v(nzt+1,j,i) = interpolate_in_time( nest_offl%v_top(0,j,i), & |
---|
611 | nest_offl%v_top(1,j,i), & |
---|
612 | fac_dt ) * & |
---|
613 | MERGE( 1.0_wp, 0.0_wp, & |
---|
614 | BTEST( wall_flags_0(nzt+1,j,i), 2 ) ) |
---|
615 | v_ref_l(nzt+1) = v_ref_l(nzt+1) + v(nzt+1,j,i) |
---|
616 | ENDDO |
---|
617 | ENDDO |
---|
618 | |
---|
619 | DO i = nxl, nxr |
---|
620 | DO j = nys, nyn |
---|
621 | w(nzt,j,i) = interpolate_in_time( nest_offl%w_top(0,j,i), & |
---|
622 | nest_offl%w_top(1,j,i), & |
---|
623 | fac_dt ) * & |
---|
624 | MERGE( 1.0_wp, 0.0_wp, & |
---|
625 | BTEST( wall_flags_0(nzt,j,i), 3 ) ) |
---|
626 | w(nzt+1,j,i) = w(nzt,j,i) |
---|
627 | ENDDO |
---|
628 | ENDDO |
---|
629 | |
---|
630 | |
---|
631 | IF ( .NOT. neutral ) THEN |
---|
632 | DO i = nxl, nxr |
---|
633 | DO j = nys, nyn |
---|
634 | pt(nzt+1,j,i) = interpolate_in_time( nest_offl%pt_top(0,j,i), & |
---|
635 | nest_offl%pt_top(1,j,i), & |
---|
636 | fac_dt ) |
---|
637 | pt_ref_l(nzt+1) = pt_ref_l(nzt+1) + pt(nzt+1,j,i) |
---|
638 | ENDDO |
---|
639 | ENDDO |
---|
640 | ENDIF |
---|
641 | |
---|
642 | IF ( humidity ) THEN |
---|
643 | DO i = nxl, nxr |
---|
644 | DO j = nys, nyn |
---|
645 | q(nzt+1,j,i) = interpolate_in_time( nest_offl%q_top(0,j,i), & |
---|
646 | nest_offl%q_top(1,j,i), & |
---|
647 | fac_dt ) |
---|
648 | q_ref_l(nzt+1) = q_ref_l(nzt+1) + q(nzt+1,j,i) |
---|
649 | ENDDO |
---|
650 | ENDDO |
---|
651 | ENDIF |
---|
652 | |
---|
653 | IF ( air_chemistry ) THEN |
---|
654 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
655 | IF ( nest_offl%chem_from_file_t(n) ) THEN |
---|
656 | DO i = nxl, nxr |
---|
657 | DO j = nys, nyn |
---|
658 | chem_species(n)%conc(nzt+1,j,i) = interpolate_in_time( & |
---|
659 | nest_offl%chem_north(0,j,i,n), & |
---|
660 | nest_offl%chem_north(1,j,i,n), & |
---|
661 | fac_dt ) |
---|
662 | ENDDO |
---|
663 | ENDDO |
---|
664 | ENDIF |
---|
665 | ENDDO |
---|
666 | ENDIF |
---|
667 | ! |
---|
668 | !-- Moreover, set Neumann boundary condition for subgrid-scale TKE, |
---|
669 | !-- passive scalar, dissipation, and chemical species if required |
---|
670 | IF ( rans_mode .AND. rans_tke_e ) THEN |
---|
671 | IF ( bc_dirichlet_l ) diss(:,:,nxl-1) = diss(:,:,nxl) |
---|
672 | IF ( bc_dirichlet_r ) diss(:,:,nxr+1) = diss(:,:,nxr) |
---|
673 | IF ( bc_dirichlet_s ) diss(:,nys-1,:) = diss(:,nys,:) |
---|
674 | IF ( bc_dirichlet_n ) diss(:,nyn+1,:) = diss(:,nyn,:) |
---|
675 | ENDIF |
---|
676 | IF ( .NOT. constant_diffusion ) THEN |
---|
677 | IF ( bc_dirichlet_l ) e(:,:,nxl-1) = e(:,:,nxl) |
---|
678 | IF ( bc_dirichlet_r ) e(:,:,nxr+1) = e(:,:,nxr) |
---|
679 | IF ( bc_dirichlet_s ) e(:,nys-1,:) = e(:,nys,:) |
---|
680 | IF ( bc_dirichlet_n ) e(:,nyn+1,:) = e(:,nyn,:) |
---|
681 | e(nzt+1,:,:) = e(nzt,:,:) |
---|
682 | ENDIF |
---|
683 | IF ( passive_scalar ) THEN |
---|
684 | IF ( bc_dirichlet_l ) s(:,:,nxl-1) = s(:,:,nxl) |
---|
685 | IF ( bc_dirichlet_r ) s(:,:,nxr+1) = s(:,:,nxr) |
---|
686 | IF ( bc_dirichlet_s ) s(:,nys-1,:) = s(:,nys,:) |
---|
687 | IF ( bc_dirichlet_n ) s(:,nyn+1,:) = s(:,nyn,:) |
---|
688 | ENDIF |
---|
689 | |
---|
690 | CALL exchange_horiz( u, nbgp ) |
---|
691 | CALL exchange_horiz( v, nbgp ) |
---|
692 | CALL exchange_horiz( w, nbgp ) |
---|
693 | IF ( .NOT. neutral ) CALL exchange_horiz( pt, nbgp ) |
---|
694 | IF ( humidity ) CALL exchange_horiz( q, nbgp ) |
---|
695 | IF ( air_chemistry ) THEN |
---|
696 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
697 | ! |
---|
698 | !-- Do local exchange only when necessary, i.e. when data is coming |
---|
699 | !-- from dynamic file. |
---|
700 | IF ( nest_offl%chem_from_file_t(n) ) & |
---|
701 | CALL exchange_horiz( chem_species(n)%conc, nbgp ) |
---|
702 | ENDDO |
---|
703 | ENDIF |
---|
704 | |
---|
705 | ! |
---|
706 | !-- In case of Rayleigh damping, where the profiles u_init, v_init |
---|
707 | !-- q_init and pt_init are still used, update these profiles from the |
---|
708 | !-- averaged boundary data. |
---|
709 | !-- But first, average these data. |
---|
710 | #if defined( __parallel ) |
---|
711 | CALL MPI_ALLREDUCE( u_ref_l, u_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM, & |
---|
712 | comm2d, ierr ) |
---|
713 | CALL MPI_ALLREDUCE( v_ref_l, v_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM, & |
---|
714 | comm2d, ierr ) |
---|
715 | IF ( humidity ) THEN |
---|
716 | CALL MPI_ALLREDUCE( q_ref_l, q_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM, & |
---|
717 | comm2d, ierr ) |
---|
718 | ENDIF |
---|
719 | IF ( .NOT. neutral ) THEN |
---|
720 | CALL MPI_ALLREDUCE( pt_ref_l, pt_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM,& |
---|
721 | comm2d, ierr ) |
---|
722 | ENDIF |
---|
723 | #else |
---|
724 | u_ref = u_ref_l |
---|
725 | v_ref = v_ref_l |
---|
726 | IF ( humidity ) q_ref = q_ref_l |
---|
727 | IF ( .NOT. neutral ) pt_ref = pt_ref_l |
---|
728 | #endif |
---|
729 | ! |
---|
730 | !-- Average data. Note, reference profiles up to nzt are derived from lateral |
---|
731 | !-- boundaries, at the model top it is derived from the top boundary. Thus, |
---|
732 | !-- number of input data is different from nzb:nzt compared to nzt+1. |
---|
733 | !-- Derived from lateral boundaries. |
---|
734 | u_ref(nzb:nzt) = u_ref(nzb:nzt) / REAL( 2.0_wp * ( ny + 1 + nx ), & |
---|
735 | KIND = wp ) |
---|
736 | v_ref(nzb:nzt) = v_ref(nzb:nzt) / REAL( 2.0_wp * ( ny + nx + 1 ), & |
---|
737 | KIND = wp ) |
---|
738 | IF ( humidity ) & |
---|
739 | q_ref(nzb:nzt) = q_ref(nzb:nzt) / REAL( 2.0_wp * & |
---|
740 | ( ny + 1 + nx + 1 ), & |
---|
741 | KIND = wp ) |
---|
742 | IF ( .NOT. neutral ) & |
---|
743 | pt_ref(nzb:nzt) = pt_ref(nzb:nzt) / REAL( 2.0_wp * & |
---|
744 | ( ny + 1 + nx + 1 ), & |
---|
745 | KIND = wp ) |
---|
746 | ! |
---|
747 | !-- Derived from top boundary. |
---|
748 | u_ref(nzt+1) = u_ref(nzt+1) / REAL( ( ny + 1 ) * ( nx ), KIND = wp ) |
---|
749 | v_ref(nzt+1) = v_ref(nzt+1) / REAL( ( ny ) * ( nx + 1 ), KIND = wp ) |
---|
750 | IF ( humidity ) & |
---|
751 | q_ref(nzt+1) = q_ref(nzt+1) / REAL( ( ny + 1 ) * ( nx + 1 ), & |
---|
752 | KIND = wp ) |
---|
753 | IF ( .NOT. neutral ) & |
---|
754 | pt_ref(nzt+1) = pt_ref(nzt+1) / REAL( ( ny + 1 ) * ( nx + 1 ), & |
---|
755 | KIND = wp ) |
---|
756 | ! |
---|
757 | !-- Write onto init profiles, which are used for damping |
---|
758 | u_init = u_ref |
---|
759 | v_init = v_ref |
---|
760 | IF ( humidity ) q_init = q_ref |
---|
761 | IF ( .NOT. neutral ) pt_init = pt_ref |
---|
762 | ! |
---|
763 | !-- Set bottom boundary condition |
---|
764 | IF ( humidity ) q_init(nzb) = q_init(nzb+1) |
---|
765 | IF ( .NOT. neutral ) pt_init(nzb) = pt_init(nzb+1) |
---|
766 | ! |
---|
767 | !-- Further, adjust Rayleigh damping height in case of time-changing conditions. |
---|
768 | !-- Therefore, calculate boundary-layer depth first. |
---|
769 | CALL calc_zi |
---|
770 | CALL adjust_sponge_layer |
---|
771 | |
---|
772 | ! |
---|
773 | !-- Update geostrophic wind components from dynamic input file. |
---|
774 | DO k = nzb+1, nzt |
---|
775 | ug(k) = interpolate_in_time( nest_offl%ug(0,k), nest_offl%ug(1,k), & |
---|
776 | fac_dt ) |
---|
777 | vg(k) = interpolate_in_time( nest_offl%vg(0,k), nest_offl%vg(1,k), & |
---|
778 | fac_dt ) |
---|
779 | ENDDO |
---|
780 | ug(nzt+1) = ug(nzt) |
---|
781 | vg(nzt+1) = vg(nzt) |
---|
782 | |
---|
783 | CALL cpu_log( log_point(58), 'offline nesting', 'stop' ) |
---|
784 | |
---|
785 | END SUBROUTINE nesting_offl_bc |
---|
786 | |
---|
787 | !------------------------------------------------------------------------------! |
---|
788 | ! Description: |
---|
789 | !------------------------------------------------------------------------------! |
---|
790 | !> Calculates the boundary-layer depth from the boundary data, according to |
---|
791 | !> bulk-Richardson criterion. |
---|
792 | !------------------------------------------------------------------------------! |
---|
793 | SUBROUTINE calc_zi |
---|
794 | |
---|
795 | USE basic_constants_and_equations_mod, & |
---|
796 | ONLY: g |
---|
797 | |
---|
798 | USE kinds |
---|
799 | |
---|
800 | USE surface_mod, & |
---|
801 | ONLY: get_topography_top_index, get_topography_top_index_ji |
---|
802 | |
---|
803 | IMPLICIT NONE |
---|
804 | |
---|
805 | INTEGER(iwp) :: i !< loop index in x-direction |
---|
806 | INTEGER(iwp) :: j !< loop index in y-direction |
---|
807 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
808 | INTEGER(iwp) :: k_surface !< topography top index in z-direction |
---|
809 | |
---|
810 | REAL(wp) :: ri_bulk !< bulk Richardson number |
---|
811 | REAL(wp) :: ri_bulk_crit = 0.25_wp !< critical bulk Richardson number |
---|
812 | REAL(wp) :: topo_max !< maximum topography level in model domain |
---|
813 | REAL(wp) :: topo_max_l !< maximum topography level in subdomain |
---|
814 | REAL(wp) :: u_comp !< u-component |
---|
815 | REAL(wp) :: v_comp !< v-component |
---|
816 | REAL(wp) :: vpt_surface !< near-surface virtual potential temperature |
---|
817 | REAL(wp) :: zi_l !< mean boundary-layer depth on subdomain |
---|
818 | REAL(wp) :: zi_local !< local boundary-layer depth |
---|
819 | |
---|
820 | REAL(wp), DIMENSION(nzb:nzt+1) :: vpt_col !< vertical profile of virtual potential temperature at (j,i)-grid point |
---|
821 | |
---|
822 | |
---|
823 | ! |
---|
824 | !-- Calculate mean boundary-layer height from boundary data. |
---|
825 | !-- Start with the left and right boundaries. |
---|
826 | zi_l = 0.0_wp |
---|
827 | IF ( bc_dirichlet_l .OR. bc_dirichlet_r ) THEN |
---|
828 | ! |
---|
829 | !-- Determine index along x. Please note, index indicates boundary |
---|
830 | !-- grid point for scalars. |
---|
831 | i = MERGE( -1, nxr + 1, bc_dirichlet_l ) |
---|
832 | |
---|
833 | DO j = nys, nyn |
---|
834 | ! |
---|
835 | !-- Determine topography top index at current (j,i) index |
---|
836 | k_surface = get_topography_top_index_ji( j, i, 's' ) |
---|
837 | ! |
---|
838 | !-- Pre-compute surface virtual temperature. Therefore, use 2nd |
---|
839 | !-- prognostic level according to Heinze et al. (2017). |
---|
840 | IF ( humidity ) THEN |
---|
841 | vpt_surface = pt(k_surface+2,j,i) * & |
---|
842 | ( 1.0_wp + 0.61_wp * q(k_surface+2,j,i) ) |
---|
843 | vpt_col = pt(:,j,i) * ( 1.0_wp + 0.61_wp * q(:,j,i) ) |
---|
844 | ELSE |
---|
845 | vpt_surface = pt(k_surface+2,j,i) |
---|
846 | vpt_col = pt(:,j,i) |
---|
847 | ENDIF |
---|
848 | ! |
---|
849 | !-- Calculate local boundary layer height from bulk Richardson number, |
---|
850 | !-- i.e. the height where the bulk Richardson number exceeds its |
---|
851 | !-- critical value of 0.25 (according to Heinze et al., 2017). |
---|
852 | !-- Note, no interpolation of u- and v-component is made, as both |
---|
853 | !-- are mainly mean inflow profiles with very small spatial variation. |
---|
854 | zi_local = 0.0_wp |
---|
855 | DO k = k_surface+1, nzt |
---|
856 | u_comp = MERGE( u(k,j,i+1), u(k,j,i), bc_dirichlet_l ) |
---|
857 | v_comp = v(k,j,i) |
---|
858 | ri_bulk = zu(k) * g / vpt_surface * & |
---|
859 | ( vpt_col(k) - vpt_surface ) / & |
---|
860 | ( u_comp * u_comp + v_comp * v_comp ) |
---|
861 | |
---|
862 | IF ( zi_local == 0.0_wp .AND. ri_bulk > ri_bulk_crit ) & |
---|
863 | zi_local = zu(k) |
---|
864 | ENDDO |
---|
865 | ! |
---|
866 | !-- Assure that the minimum local boundary-layer depth is at least at |
---|
867 | !-- the second vertical grid level. |
---|
868 | zi_l = zi_l + MAX( zi_local, zu(k_surface+2) ) |
---|
869 | |
---|
870 | ENDDO |
---|
871 | |
---|
872 | ENDIF |
---|
873 | ! |
---|
874 | !-- Do the same at the north and south boundaries. |
---|
875 | IF ( bc_dirichlet_s .OR. bc_dirichlet_n ) THEN |
---|
876 | |
---|
877 | j = MERGE( -1, nyn + 1, bc_dirichlet_s ) |
---|
878 | |
---|
879 | DO i = nxl, nxr |
---|
880 | k_surface = get_topography_top_index_ji( j, i, 's' ) |
---|
881 | |
---|
882 | IF ( humidity ) THEN |
---|
883 | vpt_surface = pt(k_surface+2,j,i) * & |
---|
884 | ( 1.0_wp + 0.61_wp * q(k_surface+2,j,i) ) |
---|
885 | vpt_col = pt(:,j,i) * ( 1.0_wp + 0.61_wp * q(:,j,i) ) |
---|
886 | ELSE |
---|
887 | vpt_surface = pt(k_surface+2,j,i) |
---|
888 | vpt_col = pt(:,j,i) |
---|
889 | ENDIF |
---|
890 | |
---|
891 | zi_local = 0.0_wp |
---|
892 | DO k = k_surface+1, nzt |
---|
893 | u_comp = u(k,j,i) |
---|
894 | v_comp = MERGE( v(k,j+1,i), v(k,j,i), bc_dirichlet_s ) |
---|
895 | ri_bulk = zu(k) * g / vpt_surface * & |
---|
896 | ( vpt_col(k) - vpt_surface ) / & |
---|
897 | ( u_comp * u_comp + v_comp * v_comp ) |
---|
898 | |
---|
899 | IF ( zi_local == 0.0_wp .AND. ri_bulk > 0.25_wp ) & |
---|
900 | zi_local = zu(k) |
---|
901 | ENDDO |
---|
902 | zi_l = zi_l + MAX( zi_local, zu(k_surface+2) ) |
---|
903 | |
---|
904 | ENDDO |
---|
905 | |
---|
906 | ENDIF |
---|
907 | |
---|
908 | #if defined( __parallel ) |
---|
909 | CALL MPI_ALLREDUCE( zi_l, zi_ribulk, 1, MPI_REAL, MPI_SUM, & |
---|
910 | comm2d, ierr ) |
---|
911 | #else |
---|
912 | zi_ribulk = zi_l |
---|
913 | #endif |
---|
914 | zi_ribulk = zi_ribulk / REAL( 2 * nx + 2 * ny, KIND = wp ) |
---|
915 | ! |
---|
916 | !-- Finally, check if boundary layer depth is not below the any topography. |
---|
917 | !-- zi_ribulk will be used to adjust rayleigh damping height, i.e. the |
---|
918 | !-- lower level of the sponge layer, as well as to adjust the synthetic |
---|
919 | !-- turbulence generator accordingly. If Rayleigh damping would be applied |
---|
920 | !-- near buildings, etc., this would spoil the simulation results. |
---|
921 | topo_max_l = zw(MAXVAL( get_topography_top_index( 's' ))) |
---|
922 | |
---|
923 | #if defined( __parallel ) |
---|
924 | CALL MPI_ALLREDUCE( topo_max_l, topo_max, 1, MPI_REAL, MPI_MAX, & |
---|
925 | comm2d, ierr ) |
---|
926 | #else |
---|
927 | topo_max = topo_max_l |
---|
928 | #endif |
---|
929 | |
---|
930 | zi_ribulk = MAX( zi_ribulk, topo_max ) |
---|
931 | |
---|
932 | END SUBROUTINE calc_zi |
---|
933 | |
---|
934 | |
---|
935 | !------------------------------------------------------------------------------! |
---|
936 | ! Description: |
---|
937 | !------------------------------------------------------------------------------! |
---|
938 | !> Adjust the height where the rayleigh damping starts, i.e. the lower level |
---|
939 | !> of the sponge layer. |
---|
940 | !------------------------------------------------------------------------------! |
---|
941 | SUBROUTINE adjust_sponge_layer |
---|
942 | |
---|
943 | USE arrays_3d, & |
---|
944 | ONLY: rdf, rdf_sc, zu |
---|
945 | |
---|
946 | USE basic_constants_and_equations_mod, & |
---|
947 | ONLY: pi |
---|
948 | |
---|
949 | USE control_parameters, & |
---|
950 | ONLY: rayleigh_damping_height, rayleigh_damping_factor |
---|
951 | |
---|
952 | USE kinds |
---|
953 | |
---|
954 | IMPLICIT NONE |
---|
955 | |
---|
956 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
957 | |
---|
958 | REAL(wp) :: rdh !< updated Rayleigh damping height |
---|
959 | |
---|
960 | |
---|
961 | IF ( rayleigh_damping_height > 0.0_wp .AND. & |
---|
962 | rayleigh_damping_factor > 0.0_wp ) THEN |
---|
963 | ! |
---|
964 | !-- Update Rayleigh-damping height and re-calculate height-depending |
---|
965 | !-- damping coefficients. |
---|
966 | !-- Assure that rayleigh damping starts well above the boundary layer. |
---|
967 | rdh = MIN( MAX( zi_ribulk * 1.3_wp, 10.0_wp * dz(1) ), & |
---|
968 | 0.8_wp * zu(nzt), rayleigh_damping_height ) |
---|
969 | ! |
---|
970 | !-- Update Rayleigh damping factor |
---|
971 | DO k = nzb+1, nzt |
---|
972 | IF ( zu(k) >= rdh ) THEN |
---|
973 | rdf(k) = rayleigh_damping_factor * & |
---|
974 | ( SIN( pi * 0.5_wp * ( zu(k) - rdh ) & |
---|
975 | / ( zu(nzt) - rdh ) ) & |
---|
976 | )**2 |
---|
977 | ENDIF |
---|
978 | ENDDO |
---|
979 | rdf_sc = rdf |
---|
980 | |
---|
981 | ENDIF |
---|
982 | |
---|
983 | END SUBROUTINE adjust_sponge_layer |
---|
984 | |
---|
985 | !------------------------------------------------------------------------------! |
---|
986 | ! Description: |
---|
987 | ! ------------ |
---|
988 | !> Performs consistency checks |
---|
989 | !------------------------------------------------------------------------------! |
---|
990 | SUBROUTINE nesting_offl_check_parameters |
---|
991 | |
---|
992 | USE control_parameters, & |
---|
993 | ONLY: child_domain, message_string, nesting_offline |
---|
994 | |
---|
995 | IMPLICIT NONE |
---|
996 | ! |
---|
997 | !-- Perform checks |
---|
998 | IF ( nesting_offline .AND. child_domain ) THEN |
---|
999 | message_string = 'Offline nesting is only applicable in root model.' |
---|
1000 | CALL message( 'stg_check_parameters', 'PA0622', 1, 2, 0, 6, 0 ) |
---|
1001 | ENDIF |
---|
1002 | |
---|
1003 | |
---|
1004 | END SUBROUTINE nesting_offl_check_parameters |
---|
1005 | |
---|
1006 | !------------------------------------------------------------------------------! |
---|
1007 | ! Description: |
---|
1008 | ! ------------ |
---|
1009 | !> Reads the parameter list nesting_offl_parameters |
---|
1010 | !------------------------------------------------------------------------------! |
---|
1011 | SUBROUTINE nesting_offl_parin |
---|
1012 | |
---|
1013 | IMPLICIT NONE |
---|
1014 | |
---|
1015 | CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file |
---|
1016 | |
---|
1017 | |
---|
1018 | NAMELIST /nesting_offl_parameters/ nesting_offline |
---|
1019 | |
---|
1020 | line = ' ' |
---|
1021 | |
---|
1022 | ! |
---|
1023 | !-- Try to find stg package |
---|
1024 | REWIND ( 11 ) |
---|
1025 | line = ' ' |
---|
1026 | DO WHILE ( INDEX( line, '&nesting_offl_parameters' ) == 0 ) |
---|
1027 | READ ( 11, '(A)', END=20 ) line |
---|
1028 | ENDDO |
---|
1029 | BACKSPACE ( 11 ) |
---|
1030 | |
---|
1031 | ! |
---|
1032 | !-- Read namelist |
---|
1033 | READ ( 11, nesting_offl_parameters, ERR = 10, END = 20 ) |
---|
1034 | |
---|
1035 | GOTO 20 |
---|
1036 | |
---|
1037 | 10 BACKSPACE( 11 ) |
---|
1038 | READ( 11 , '(A)') line |
---|
1039 | CALL parin_fail_message( 'nesting_offl_parameters', line ) |
---|
1040 | |
---|
1041 | 20 CONTINUE |
---|
1042 | |
---|
1043 | |
---|
1044 | END SUBROUTINE nesting_offl_parin |
---|
1045 | |
---|
1046 | !------------------------------------------------------------------------------! |
---|
1047 | ! Description: |
---|
1048 | ! ------------ |
---|
1049 | !> Writes information about offline nesting into HEADER file |
---|
1050 | !------------------------------------------------------------------------------! |
---|
1051 | SUBROUTINE nesting_offl_header ( io ) |
---|
1052 | |
---|
1053 | IMPLICIT NONE |
---|
1054 | |
---|
1055 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
1056 | |
---|
1057 | WRITE ( io, 1 ) |
---|
1058 | IF ( nesting_offline ) THEN |
---|
1059 | WRITE ( io, 3 ) |
---|
1060 | ELSE |
---|
1061 | WRITE ( io, 2 ) |
---|
1062 | ENDIF |
---|
1063 | |
---|
1064 | 1 FORMAT (//' Offline nesting in COSMO model:'/ & |
---|
1065 | ' -------------------------------'/) |
---|
1066 | 2 FORMAT (' --> No offlince nesting is used (default) ') |
---|
1067 | 3 FORMAT (' --> Offlince nesting is used. Boundary data is read from dynamic input file ') |
---|
1068 | |
---|
1069 | END SUBROUTINE nesting_offl_header |
---|
1070 | |
---|
1071 | !------------------------------------------------------------------------------! |
---|
1072 | ! Description: |
---|
1073 | ! ------------ |
---|
1074 | !> Allocate arrays used to read boundary data from NetCDF file and initialize |
---|
1075 | !> boundary data. |
---|
1076 | !------------------------------------------------------------------------------! |
---|
1077 | SUBROUTINE nesting_offl_init |
---|
1078 | |
---|
1079 | USE netcdf_data_input_mod, & |
---|
1080 | ONLY: netcdf_data_input_offline_nesting |
---|
1081 | |
---|
1082 | IMPLICIT NONE |
---|
1083 | |
---|
1084 | INTEGER(iwp) :: n !< running index for chemical species |
---|
1085 | |
---|
1086 | |
---|
1087 | !-- Allocate arrays for geostrophic wind components. Arrays will |
---|
1088 | !-- incorporate 2 time levels in order to interpolate in between. |
---|
1089 | ALLOCATE( nest_offl%ug(0:1,1:nzt) ) |
---|
1090 | ALLOCATE( nest_offl%vg(0:1,1:nzt) ) |
---|
1091 | ! |
---|
1092 | !-- Allocate arrays for reading boundary values. Arrays will incorporate 2 |
---|
1093 | !-- time levels in order to interpolate in between. |
---|
1094 | IF ( bc_dirichlet_l ) THEN |
---|
1095 | ALLOCATE( nest_offl%u_left(0:1,nzb+1:nzt,nys:nyn) ) |
---|
1096 | ALLOCATE( nest_offl%v_left(0:1,nzb+1:nzt,nysv:nyn) ) |
---|
1097 | ALLOCATE( nest_offl%w_left(0:1,nzb+1:nzt-1,nys:nyn) ) |
---|
1098 | IF ( humidity ) ALLOCATE( nest_offl%q_left(0:1,nzb+1:nzt,nys:nyn) ) |
---|
1099 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_left(0:1,nzb+1:nzt,nys:nyn) ) |
---|
1100 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_left(0:1,nzb+1:nzt,nys:nyn,& |
---|
1101 | 1:UBOUND( chem_species, 1 )) ) |
---|
1102 | ENDIF |
---|
1103 | IF ( bc_dirichlet_r ) THEN |
---|
1104 | ALLOCATE( nest_offl%u_right(0:1,nzb+1:nzt,nys:nyn) ) |
---|
1105 | ALLOCATE( nest_offl%v_right(0:1,nzb+1:nzt,nysv:nyn) ) |
---|
1106 | ALLOCATE( nest_offl%w_right(0:1,nzb+1:nzt-1,nys:nyn) ) |
---|
1107 | IF ( humidity ) ALLOCATE( nest_offl%q_right(0:1,nzb+1:nzt,nys:nyn) ) |
---|
1108 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_right(0:1,nzb+1:nzt,nys:nyn) ) |
---|
1109 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_right(0:1,nzb+1:nzt,nys:nyn,& |
---|
1110 | 1:UBOUND( chem_species, 1 )) ) |
---|
1111 | ENDIF |
---|
1112 | IF ( bc_dirichlet_n ) THEN |
---|
1113 | ALLOCATE( nest_offl%u_north(0:1,nzb+1:nzt,nxlu:nxr) ) |
---|
1114 | ALLOCATE( nest_offl%v_north(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
1115 | ALLOCATE( nest_offl%w_north(0:1,nzb+1:nzt-1,nxl:nxr) ) |
---|
1116 | IF ( humidity ) ALLOCATE( nest_offl%q_north(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
1117 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_north(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
1118 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_north(0:1,nzb+1:nzt,nxl:nxr,& |
---|
1119 | 1:UBOUND( chem_species, 1 )) ) |
---|
1120 | ENDIF |
---|
1121 | IF ( bc_dirichlet_s ) THEN |
---|
1122 | ALLOCATE( nest_offl%u_south(0:1,nzb+1:nzt,nxlu:nxr) ) |
---|
1123 | ALLOCATE( nest_offl%v_south(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
1124 | ALLOCATE( nest_offl%w_south(0:1,nzb+1:nzt-1,nxl:nxr) ) |
---|
1125 | IF ( humidity ) ALLOCATE( nest_offl%q_south(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
1126 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_south(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
1127 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_south(0:1,nzb+1:nzt,nxl:nxr,& |
---|
1128 | 1:UBOUND( chem_species, 1 )) ) |
---|
1129 | ENDIF |
---|
1130 | |
---|
1131 | ALLOCATE( nest_offl%u_top(0:1,nys:nyn,nxlu:nxr) ) |
---|
1132 | ALLOCATE( nest_offl%v_top(0:1,nysv:nyn,nxl:nxr) ) |
---|
1133 | ALLOCATE( nest_offl%w_top(0:1,nys:nyn,nxl:nxr) ) |
---|
1134 | IF ( humidity ) ALLOCATE( nest_offl%q_top(0:1,nys:nyn,nxl:nxr) ) |
---|
1135 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_top(0:1,nys:nyn,nxl:nxr) ) |
---|
1136 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_top(0:1,nys:nyn,nxl:nxr, & |
---|
1137 | 1:UBOUND( chem_species, 1 )) ) |
---|
1138 | ! |
---|
1139 | !-- For chemical species, create the names of the variables. This is necessary |
---|
1140 | !-- to identify the respective variable and write it onto the correct array |
---|
1141 | !-- in the chem_species datatype. |
---|
1142 | IF ( air_chemistry ) THEN |
---|
1143 | ALLOCATE( nest_offl%chem_from_file_l(1:UBOUND( chem_species, 1 )) ) |
---|
1144 | ALLOCATE( nest_offl%chem_from_file_n(1:UBOUND( chem_species, 1 )) ) |
---|
1145 | ALLOCATE( nest_offl%chem_from_file_r(1:UBOUND( chem_species, 1 )) ) |
---|
1146 | ALLOCATE( nest_offl%chem_from_file_s(1:UBOUND( chem_species, 1 )) ) |
---|
1147 | ALLOCATE( nest_offl%chem_from_file_t(1:UBOUND( chem_species, 1 )) ) |
---|
1148 | |
---|
1149 | ALLOCATE( nest_offl%var_names_chem_l(1:UBOUND( chem_species, 1 )) ) |
---|
1150 | ALLOCATE( nest_offl%var_names_chem_n(1:UBOUND( chem_species, 1 )) ) |
---|
1151 | ALLOCATE( nest_offl%var_names_chem_r(1:UBOUND( chem_species, 1 )) ) |
---|
1152 | ALLOCATE( nest_offl%var_names_chem_s(1:UBOUND( chem_species, 1 )) ) |
---|
1153 | ALLOCATE( nest_offl%var_names_chem_t(1:UBOUND( chem_species, 1 )) ) |
---|
1154 | ! |
---|
1155 | !-- Initialize flags that indicate whether the variable is on file or |
---|
1156 | !-- not. Please note, this is only necessary for chemistry variables. |
---|
1157 | nest_offl%chem_from_file_l(:) = .FALSE. |
---|
1158 | nest_offl%chem_from_file_n(:) = .FALSE. |
---|
1159 | nest_offl%chem_from_file_r(:) = .FALSE. |
---|
1160 | nest_offl%chem_from_file_s(:) = .FALSE. |
---|
1161 | nest_offl%chem_from_file_t(:) = .FALSE. |
---|
1162 | |
---|
1163 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
1164 | nest_offl%var_names_chem_l(n) = nest_offl%char_l // & |
---|
1165 | TRIM(chem_species(n)%name) |
---|
1166 | nest_offl%var_names_chem_n(n) = nest_offl%char_n // & |
---|
1167 | TRIM(chem_species(n)%name) |
---|
1168 | nest_offl%var_names_chem_r(n) = nest_offl%char_r // & |
---|
1169 | TRIM(chem_species(n)%name) |
---|
1170 | nest_offl%var_names_chem_s(n) = nest_offl%char_s // & |
---|
1171 | TRIM(chem_species(n)%name) |
---|
1172 | nest_offl%var_names_chem_t(n) = nest_offl%char_t // & |
---|
1173 | TRIM(chem_species(n)%name) |
---|
1174 | ENDDO |
---|
1175 | ENDIF |
---|
1176 | ! |
---|
1177 | !-- Read COSMO data at lateral and top boundaries |
---|
1178 | CALL netcdf_data_input_offline_nesting |
---|
1179 | ! |
---|
1180 | !-- Initialize boundary data. |
---|
1181 | IF ( bc_dirichlet_l ) THEN |
---|
1182 | u(nzb+1:nzt,nys:nyn,0) = nest_offl%u_left(0,nzb+1:nzt,nys:nyn) |
---|
1183 | v(nzb+1:nzt,nysv:nyn,-1) = nest_offl%v_left(0,nzb+1:nzt,nysv:nyn) |
---|
1184 | w(nzb+1:nzt-1,nys:nyn,-1) = nest_offl%w_left(0,nzb+1:nzt-1,nys:nyn) |
---|
1185 | IF ( .NOT. neutral ) pt(nzb+1:nzt,nys:nyn,-1) = & |
---|
1186 | nest_offl%pt_left(0,nzb+1:nzt,nys:nyn) |
---|
1187 | IF ( humidity ) q(nzb+1:nzt,nys:nyn,-1) = & |
---|
1188 | nest_offl%q_left(0,nzb+1:nzt,nys:nyn) |
---|
1189 | IF ( air_chemistry ) THEN |
---|
1190 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
1191 | IF( nest_offl%chem_from_file_l(n) ) THEN |
---|
1192 | chem_species(n)%conc(nzb+1:nzt,nys:nyn,-1) = & |
---|
1193 | nest_offl%chem_left(0,nzb+1:nzt,nys:nyn,n) |
---|
1194 | ENDIF |
---|
1195 | ENDDO |
---|
1196 | ENDIF |
---|
1197 | ENDIF |
---|
1198 | IF ( bc_dirichlet_r ) THEN |
---|
1199 | u(nzb+1:nzt,nys:nyn,nxr+1) = nest_offl%u_right(0,nzb+1:nzt,nys:nyn) |
---|
1200 | v(nzb+1:nzt,nysv:nyn,nxr+1) = nest_offl%v_right(0,nzb+1:nzt,nysv:nyn) |
---|
1201 | w(nzb+1:nzt-1,nys:nyn,nxr+1) = nest_offl%w_right(0,nzb+1:nzt-1,nys:nyn) |
---|
1202 | IF ( .NOT. neutral ) pt(nzb+1:nzt,nys:nyn,nxr+1) = & |
---|
1203 | nest_offl%pt_right(0,nzb+1:nzt,nys:nyn) |
---|
1204 | IF ( humidity ) q(nzb+1:nzt,nys:nyn,nxr+1) = & |
---|
1205 | nest_offl%q_right(0,nzb+1:nzt,nys:nyn) |
---|
1206 | IF ( air_chemistry ) THEN |
---|
1207 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
1208 | IF( nest_offl%chem_from_file_r(n) ) THEN |
---|
1209 | chem_species(n)%conc(nzb+1:nzt,nys:nyn,nxr+1) = & |
---|
1210 | nest_offl%chem_right(0,nzb+1:nzt,nys:nyn,n) |
---|
1211 | ENDIF |
---|
1212 | ENDDO |
---|
1213 | ENDIF |
---|
1214 | ENDIF |
---|
1215 | IF ( bc_dirichlet_s ) THEN |
---|
1216 | u(nzb+1:nzt,-1,nxlu:nxr) = nest_offl%u_south(0,nzb+1:nzt,nxlu:nxr) |
---|
1217 | v(nzb+1:nzt,0,nxl:nxr) = nest_offl%v_south(0,nzb+1:nzt,nxl:nxr) |
---|
1218 | w(nzb+1:nzt-1,-1,nxl:nxr) = nest_offl%w_south(0,nzb+1:nzt-1,nxl:nxr) |
---|
1219 | IF ( .NOT. neutral ) pt(nzb+1:nzt,-1,nxl:nxr) = & |
---|
1220 | nest_offl%pt_south(0,nzb+1:nzt,nxl:nxr) |
---|
1221 | IF ( humidity ) q(nzb+1:nzt,-1,nxl:nxr) = & |
---|
1222 | nest_offl%q_south(0,nzb+1:nzt,nxl:nxr) |
---|
1223 | IF ( air_chemistry ) THEN |
---|
1224 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
1225 | IF( nest_offl%chem_from_file_s(n) ) THEN |
---|
1226 | chem_species(n)%conc(nzb+1:nzt,-1,nxl:nxr) = & |
---|
1227 | nest_offl%chem_south(0,nzb+1:nzt,nxl:nxr,n) |
---|
1228 | ENDIF |
---|
1229 | ENDDO |
---|
1230 | ENDIF |
---|
1231 | ENDIF |
---|
1232 | IF ( bc_dirichlet_n ) THEN |
---|
1233 | u(nzb+1:nzt,nyn+1,nxlu:nxr) = nest_offl%u_north(0,nzb+1:nzt,nxlu:nxr) |
---|
1234 | v(nzb+1:nzt,nyn+1,nxl:nxr) = nest_offl%v_north(0,nzb+1:nzt,nxl:nxr) |
---|
1235 | w(nzb+1:nzt-1,nyn+1,nxl:nxr) = nest_offl%w_north(0,nzb+1:nzt-1,nxl:nxr) |
---|
1236 | IF ( .NOT. neutral ) pt(nzb+1:nzt,nyn+1,nxl:nxr) = & |
---|
1237 | nest_offl%pt_north(0,nzb+1:nzt,nxl:nxr) |
---|
1238 | IF ( humidity ) q(nzb+1:nzt,nyn+1,nxl:nxr) = & |
---|
1239 | nest_offl%q_north(0,nzb+1:nzt,nxl:nxr) |
---|
1240 | IF ( air_chemistry ) THEN |
---|
1241 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
1242 | IF( nest_offl%chem_from_file_n(n) ) THEN |
---|
1243 | chem_species(n)%conc(nzb+1:nzt,nyn+1,nxl:nxr) = & |
---|
1244 | nest_offl%chem_north(0,nzb+1:nzt,nxl:nxr,n) |
---|
1245 | ENDIF |
---|
1246 | ENDDO |
---|
1247 | ENDIF |
---|
1248 | ENDIF |
---|
1249 | ! |
---|
1250 | !-- Initialize geostrophic wind components. Actually this is already done in |
---|
1251 | !-- init_3d_model when initializing_action = 'inifor', however, in speical |
---|
1252 | !-- case of user-defined initialization this will be done here again, in |
---|
1253 | !-- order to have a consistent initialization. |
---|
1254 | ug(nzb+1:nzt) = nest_offl%ug(0,nzb+1:nzt) |
---|
1255 | vg(nzb+1:nzt) = nest_offl%vg(0,nzb+1:nzt) |
---|
1256 | ! |
---|
1257 | !-- Set bottom and top boundary condition for geostrophic wind components |
---|
1258 | ug(nzt+1) = ug(nzt) |
---|
1259 | vg(nzt+1) = vg(nzt) |
---|
1260 | ug(nzb) = ug(nzb+1) |
---|
1261 | vg(nzb) = vg(nzb+1) |
---|
1262 | ! |
---|
1263 | !-- Initial calculation of the boundary layer depth from the prescribed |
---|
1264 | !-- boundary data. This is requiered for initialize the synthetic turbulence |
---|
1265 | !-- generator correctly. |
---|
1266 | CALL calc_zi |
---|
1267 | |
---|
1268 | ! |
---|
1269 | !-- After boundary data is initialized, mask topography at the |
---|
1270 | !-- boundaries for the velocity components. |
---|
1271 | u = MERGE( u, 0.0_wp, BTEST( wall_flags_0, 1 ) ) |
---|
1272 | v = MERGE( v, 0.0_wp, BTEST( wall_flags_0, 2 ) ) |
---|
1273 | w = MERGE( w, 0.0_wp, BTEST( wall_flags_0, 3 ) ) |
---|
1274 | |
---|
1275 | CALL calc_zi |
---|
1276 | |
---|
1277 | ! |
---|
1278 | !-- After boundary data is initialized, ensure mass conservation |
---|
1279 | CALL nesting_offl_mass_conservation |
---|
1280 | |
---|
1281 | END SUBROUTINE nesting_offl_init |
---|
1282 | |
---|
1283 | !------------------------------------------------------------------------------! |
---|
1284 | ! Description: |
---|
1285 | !------------------------------------------------------------------------------! |
---|
1286 | !> Interpolation function, used to interpolate boundary data in time. |
---|
1287 | !------------------------------------------------------------------------------! |
---|
1288 | FUNCTION interpolate_in_time( var_t1, var_t2, fac ) |
---|
1289 | |
---|
1290 | USE kinds |
---|
1291 | |
---|
1292 | IMPLICIT NONE |
---|
1293 | |
---|
1294 | REAL(wp) :: interpolate_in_time !< time-interpolated boundary value |
---|
1295 | REAL(wp) :: var_t1 !< boundary value at t1 |
---|
1296 | REAL(wp) :: var_t2 !< boundary value at t2 |
---|
1297 | REAL(wp) :: fac !< interpolation factor |
---|
1298 | |
---|
1299 | interpolate_in_time = ( 1.0_wp - fac ) * var_t1 + fac * var_t2 |
---|
1300 | |
---|
1301 | END FUNCTION interpolate_in_time |
---|
1302 | |
---|
1303 | |
---|
1304 | |
---|
1305 | END MODULE nesting_offl_mod |
---|