[3347] | 1 | !> @file nesting_offl_mod.f90 |
---|
| 2 | !------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of the PALM model system. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[3347] | 18 | !------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
| 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
| 22 | ! |
---|
[3705] | 23 | ! |
---|
[3347] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
[3413] | 26 | ! $Id: nesting_offl_mod.f90 4182 2019-08-22 15:20:23Z suehring $ |
---|
[4182] | 27 | ! Corrected "Former revisions" section |
---|
| 28 | ! |
---|
| 29 | ! 4169 2019-08-19 13:54:35Z suehring |
---|
[4169] | 30 | ! Additional check added. |
---|
| 31 | ! |
---|
| 32 | ! 4168 2019-08-16 13:50:17Z suehring |
---|
[4168] | 33 | ! Replace function get_topography_top_index by topo_top_ind |
---|
| 34 | ! |
---|
| 35 | ! 4125 2019-07-29 13:31:44Z suehring |
---|
[4125] | 36 | ! In order to enable netcdf parallel access, allocate dummy arrays for the |
---|
| 37 | ! lateral boundary data on cores that actually do not belong to these |
---|
| 38 | ! boundaries. |
---|
| 39 | ! |
---|
| 40 | ! 4079 2019-07-09 18:04:41Z suehring |
---|
[4079] | 41 | ! - Set boundary condition for w at nzt+1 at the lateral boundaries, even |
---|
| 42 | ! though these won't enter the numerical solution. However, due to the mass |
---|
| 43 | ! conservation these values might some up to very large values which will |
---|
| 44 | ! occur in the run-control file |
---|
| 45 | ! - Bugfix in offline nesting of chemical species |
---|
| 46 | ! - Do not set Neumann conditions for TKE and passive scalar |
---|
| 47 | ! |
---|
| 48 | ! 4022 2019-06-12 11:52:39Z suehring |
---|
[4022] | 49 | ! Detection of boundary-layer depth in stable boundary layer on basis of |
---|
| 50 | ! boundary data improved |
---|
| 51 | ! Routine for boundary-layer depth calculation renamed and made public |
---|
| 52 | ! |
---|
| 53 | ! 3987 2019-05-22 09:52:13Z kanani |
---|
[3987] | 54 | ! Introduce alternative switch for debug output during timestepping |
---|
| 55 | ! |
---|
| 56 | ! 3964 2019-05-09 09:48:32Z suehring |
---|
[3964] | 57 | ! Ensure that veloctiy term in calculation of bulk Richardson number does not |
---|
| 58 | ! become zero |
---|
| 59 | ! |
---|
| 60 | ! 3937 2019-04-29 15:09:07Z suehring |
---|
[3937] | 61 | ! Set boundary conditon on upper-left and upper-south grid point for the u- and |
---|
| 62 | ! v-component, respectively. |
---|
| 63 | ! |
---|
| 64 | ! 3891 2019-04-12 17:52:01Z suehring |
---|
[3891] | 65 | ! Bugfix, do not overwrite lateral and top boundary data in case of restart |
---|
| 66 | ! runs. |
---|
| 67 | ! |
---|
| 68 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
[3885] | 69 | ! Changes related to global restructuring of location messages and introduction |
---|
| 70 | ! of additional debug messages |
---|
| 71 | ! |
---|
| 72 | ! |
---|
[3858] | 73 | ! Do local data exchange for chemistry variables only when boundary data is |
---|
| 74 | ! coming from dynamic file |
---|
| 75 | ! |
---|
| 76 | ! 3737 2019-02-12 16:57:06Z suehring |
---|
[3737] | 77 | ! Introduce mesoscale nesting for chemical species |
---|
| 78 | ! |
---|
| 79 | ! 3705 2019-01-29 19:56:39Z suehring |
---|
[3705] | 80 | ! Formatting adjustments |
---|
| 81 | ! |
---|
| 82 | ! 3704 2019-01-29 19:51:41Z suehring |
---|
[3579] | 83 | ! Check implemented for offline nesting in child domain |
---|
| 84 | ! |
---|
[4182] | 85 | ! Initial Revision: |
---|
| 86 | ! - separate offline nesting from large_scale_nudging_mod |
---|
| 87 | ! - revise offline nesting, adjust for usage of synthetic turbulence generator |
---|
| 88 | ! - adjust Rayleigh damping depending on the time-depending atmospheric |
---|
| 89 | ! conditions |
---|
[3413] | 90 | ! |
---|
[4182] | 91 | ! |
---|
[3347] | 92 | ! Description: |
---|
| 93 | ! ------------ |
---|
| 94 | !> Offline nesting in larger-scale models. Boundary conditions for the simulation |
---|
| 95 | !> are read from NetCDF file and are prescribed onto the respective arrays. |
---|
| 96 | !> Further, a mass-flux correction is performed to maintain the mass balance. |
---|
| 97 | !--------------------------------------------------------------------------------! |
---|
| 98 | MODULE nesting_offl_mod |
---|
| 99 | |
---|
| 100 | USE arrays_3d, & |
---|
| 101 | ONLY: dzw, e, diss, pt, pt_init, q, q_init, s, u, u_init, ug, v, & |
---|
[3737] | 102 | v_init, vg, w, zu, zw |
---|
| 103 | |
---|
[3876] | 104 | USE chem_modules, & |
---|
[3737] | 105 | ONLY: chem_species |
---|
[3347] | 106 | |
---|
| 107 | USE control_parameters, & |
---|
[4169] | 108 | ONLY: air_chemistry, & |
---|
| 109 | bc_dirichlet_l, & |
---|
| 110 | bc_dirichlet_n, & |
---|
| 111 | bc_dirichlet_r, & |
---|
| 112 | bc_dirichlet_s, & |
---|
| 113 | dt_3d, & |
---|
| 114 | dz, & |
---|
| 115 | constant_diffusion, & |
---|
| 116 | child_domain, & |
---|
[3987] | 117 | debug_output_timestep, & |
---|
[4169] | 118 | end_time, & |
---|
[3987] | 119 | humidity, & |
---|
| 120 | initializing_actions, & |
---|
[4169] | 121 | message_string, & |
---|
| 122 | nesting_offline, & |
---|
| 123 | neutral, & |
---|
| 124 | passive_scalar, & |
---|
| 125 | rans_mode, & |
---|
| 126 | rans_tke_e, & |
---|
| 127 | rayleigh_damping_factor, & |
---|
| 128 | rayleigh_damping_height, & |
---|
| 129 | spinup_time, & |
---|
| 130 | time_since_reference_point, & |
---|
| 131 | volume_flow |
---|
[3347] | 132 | |
---|
| 133 | USE cpulog, & |
---|
| 134 | ONLY: cpu_log, log_point |
---|
| 135 | |
---|
| 136 | USE grid_variables |
---|
| 137 | |
---|
| 138 | USE indices, & |
---|
| 139 | ONLY: nbgp, nx, nxl, nxlg, nxlu, nxr, nxrg, ny, nys, & |
---|
[4168] | 140 | nysv, nysg, nyn, nyng, nzb, nz, nzt, & |
---|
| 141 | topo_top_ind, & |
---|
| 142 | wall_flags_0 |
---|
[3347] | 143 | |
---|
| 144 | USE kinds |
---|
| 145 | |
---|
| 146 | USE netcdf_data_input_mod, & |
---|
| 147 | ONLY: nest_offl |
---|
| 148 | |
---|
| 149 | USE pegrid |
---|
| 150 | |
---|
| 151 | REAL(wp) :: zi_ribulk = 0.0_wp !< boundary-layer depth according to bulk Richardson criterion, i.e. the height where Ri_bulk exceeds the critical |
---|
| 152 | !< bulk Richardson number of 0.25 |
---|
| 153 | |
---|
| 154 | SAVE |
---|
| 155 | PRIVATE |
---|
| 156 | ! |
---|
| 157 | !-- Public subroutines |
---|
[4022] | 158 | PUBLIC nesting_offl_bc, & |
---|
| 159 | nesting_offl_calc_zi, & |
---|
| 160 | nesting_offl_check_parameters, & |
---|
| 161 | nesting_offl_header, & |
---|
| 162 | nesting_offl_init, & |
---|
| 163 | nesting_offl_mass_conservation, & |
---|
| 164 | nesting_offl_parin |
---|
[3347] | 165 | ! |
---|
| 166 | !-- Public variables |
---|
| 167 | PUBLIC zi_ribulk |
---|
| 168 | |
---|
| 169 | INTERFACE nesting_offl_bc |
---|
| 170 | MODULE PROCEDURE nesting_offl_bc |
---|
| 171 | END INTERFACE nesting_offl_bc |
---|
| 172 | |
---|
[4022] | 173 | INTERFACE nesting_offl_calc_zi |
---|
| 174 | MODULE PROCEDURE nesting_offl_calc_zi |
---|
| 175 | END INTERFACE nesting_offl_calc_zi |
---|
| 176 | |
---|
[3579] | 177 | INTERFACE nesting_offl_check_parameters |
---|
| 178 | MODULE PROCEDURE nesting_offl_check_parameters |
---|
| 179 | END INTERFACE nesting_offl_check_parameters |
---|
| 180 | |
---|
[3347] | 181 | INTERFACE nesting_offl_header |
---|
| 182 | MODULE PROCEDURE nesting_offl_header |
---|
| 183 | END INTERFACE nesting_offl_header |
---|
| 184 | |
---|
| 185 | INTERFACE nesting_offl_init |
---|
| 186 | MODULE PROCEDURE nesting_offl_init |
---|
| 187 | END INTERFACE nesting_offl_init |
---|
| 188 | |
---|
| 189 | INTERFACE nesting_offl_mass_conservation |
---|
| 190 | MODULE PROCEDURE nesting_offl_mass_conservation |
---|
| 191 | END INTERFACE nesting_offl_mass_conservation |
---|
| 192 | |
---|
| 193 | INTERFACE nesting_offl_parin |
---|
| 194 | MODULE PROCEDURE nesting_offl_parin |
---|
| 195 | END INTERFACE nesting_offl_parin |
---|
| 196 | |
---|
| 197 | CONTAINS |
---|
| 198 | |
---|
| 199 | |
---|
| 200 | !------------------------------------------------------------------------------! |
---|
| 201 | ! Description: |
---|
| 202 | ! ------------ |
---|
| 203 | !> In this subroutine a constant mass within the model domain is guaranteed. |
---|
| 204 | !> Larger-scale models may be based on a compressible equation system, which is |
---|
| 205 | !> not consistent with PALMs incompressible equation system. In order to avoid |
---|
| 206 | !> a decrease or increase of mass during the simulation, non-divergent flow |
---|
| 207 | !> through the lateral and top boundaries is compensated by the vertical wind |
---|
| 208 | !> component at the top boundary. |
---|
| 209 | !------------------------------------------------------------------------------! |
---|
| 210 | SUBROUTINE nesting_offl_mass_conservation |
---|
| 211 | |
---|
| 212 | IMPLICIT NONE |
---|
| 213 | |
---|
| 214 | INTEGER(iwp) :: i !< grid index in x-direction |
---|
| 215 | INTEGER(iwp) :: j !< grid index in y-direction |
---|
| 216 | INTEGER(iwp) :: k !< grid index in z-direction |
---|
| 217 | |
---|
| 218 | REAL(wp) :: d_area_t !< inverse of the total area of the horizontal model domain |
---|
| 219 | REAL(wp) :: w_correct !< vertical velocity increment required to compensate non-divergent flow through the boundaries |
---|
| 220 | REAL(wp), DIMENSION(1:3) :: volume_flow_l !< local volume flow |
---|
| 221 | |
---|
[3987] | 222 | |
---|
| 223 | IF ( debug_output_timestep ) CALL debug_message( 'nesting_offl_mass_conservation', 'start' ) |
---|
| 224 | |
---|
[3347] | 225 | CALL cpu_log( log_point(58), 'offline nesting', 'start' ) |
---|
| 226 | |
---|
| 227 | volume_flow = 0.0_wp |
---|
| 228 | volume_flow_l = 0.0_wp |
---|
| 229 | |
---|
| 230 | d_area_t = 1.0_wp / ( ( nx + 1 ) * dx * ( ny + 1 ) * dy ) |
---|
| 231 | |
---|
| 232 | IF ( bc_dirichlet_l ) THEN |
---|
| 233 | i = nxl |
---|
| 234 | DO j = nys, nyn |
---|
| 235 | DO k = nzb+1, nzt |
---|
| 236 | volume_flow_l(1) = volume_flow_l(1) + u(k,j,i) * dzw(k) * dy & |
---|
| 237 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 238 | BTEST( wall_flags_0(k,j,i), 1 ) ) |
---|
| 239 | ENDDO |
---|
| 240 | ENDDO |
---|
| 241 | ENDIF |
---|
| 242 | IF ( bc_dirichlet_r ) THEN |
---|
| 243 | i = nxr+1 |
---|
| 244 | DO j = nys, nyn |
---|
| 245 | DO k = nzb+1, nzt |
---|
| 246 | volume_flow_l(1) = volume_flow_l(1) - u(k,j,i) * dzw(k) * dy & |
---|
| 247 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 248 | BTEST( wall_flags_0(k,j,i), 1 ) ) |
---|
| 249 | ENDDO |
---|
| 250 | ENDDO |
---|
| 251 | ENDIF |
---|
| 252 | IF ( bc_dirichlet_s ) THEN |
---|
| 253 | j = nys |
---|
| 254 | DO i = nxl, nxr |
---|
| 255 | DO k = nzb+1, nzt |
---|
| 256 | volume_flow_l(2) = volume_flow_l(2) + v(k,j,i) * dzw(k) * dx & |
---|
| 257 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 258 | BTEST( wall_flags_0(k,j,i), 2 ) ) |
---|
| 259 | ENDDO |
---|
| 260 | ENDDO |
---|
| 261 | ENDIF |
---|
| 262 | IF ( bc_dirichlet_n ) THEN |
---|
| 263 | j = nyn+1 |
---|
| 264 | DO i = nxl, nxr |
---|
| 265 | DO k = nzb+1, nzt |
---|
| 266 | volume_flow_l(2) = volume_flow_l(2) - v(k,j,i) * dzw(k) * dx & |
---|
| 267 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 268 | BTEST( wall_flags_0(k,j,i), 2 ) ) |
---|
| 269 | ENDDO |
---|
| 270 | ENDDO |
---|
| 271 | ENDIF |
---|
| 272 | ! |
---|
| 273 | !-- Top boundary |
---|
| 274 | k = nzt |
---|
| 275 | DO i = nxl, nxr |
---|
| 276 | DO j = nys, nyn |
---|
| 277 | volume_flow_l(3) = volume_flow_l(3) - w(k,j,i) * dx * dy |
---|
| 278 | ENDDO |
---|
| 279 | ENDDO |
---|
| 280 | |
---|
| 281 | #if defined( __parallel ) |
---|
| 282 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 283 | CALL MPI_ALLREDUCE( volume_flow_l, volume_flow, 3, MPI_REAL, MPI_SUM, & |
---|
| 284 | comm2d, ierr ) |
---|
| 285 | #else |
---|
| 286 | volume_flow = volume_flow_l |
---|
| 287 | #endif |
---|
| 288 | |
---|
| 289 | w_correct = SUM( volume_flow ) * d_area_t |
---|
| 290 | |
---|
| 291 | DO i = nxl, nxr |
---|
| 292 | DO j = nys, nyn |
---|
| 293 | DO k = nzt, nzt + 1 |
---|
| 294 | w(k,j,i) = w(k,j,i) + w_correct |
---|
| 295 | ENDDO |
---|
| 296 | ENDDO |
---|
| 297 | ENDDO |
---|
| 298 | |
---|
| 299 | CALL cpu_log( log_point(58), 'offline nesting', 'stop' ) |
---|
| 300 | |
---|
[3987] | 301 | IF ( debug_output_timestep ) CALL debug_message( 'nesting_offl_mass_conservation', 'end' ) |
---|
| 302 | |
---|
[3347] | 303 | END SUBROUTINE nesting_offl_mass_conservation |
---|
| 304 | |
---|
| 305 | |
---|
| 306 | !------------------------------------------------------------------------------! |
---|
| 307 | ! Description: |
---|
| 308 | ! ------------ |
---|
| 309 | !> Set the lateral and top boundary conditions in case the PALM domain is |
---|
| 310 | !> nested offline in a mesoscale model. Further, average boundary data and |
---|
| 311 | !> determine mean profiles, further used for correct damping in the sponge |
---|
| 312 | !> layer. |
---|
| 313 | !------------------------------------------------------------------------------! |
---|
| 314 | SUBROUTINE nesting_offl_bc |
---|
| 315 | |
---|
| 316 | IMPLICIT NONE |
---|
| 317 | |
---|
| 318 | INTEGER(iwp) :: i !< running index x-direction |
---|
| 319 | INTEGER(iwp) :: j !< running index y-direction |
---|
| 320 | INTEGER(iwp) :: k !< running index z-direction |
---|
[3737] | 321 | INTEGER(iwp) :: n !< running index for chemical species |
---|
[3347] | 322 | |
---|
| 323 | REAL(wp) :: fac_dt !< interpolation factor |
---|
| 324 | |
---|
| 325 | REAL(wp), DIMENSION(nzb:nzt+1) :: pt_ref !< reference profile for potential temperature |
---|
| 326 | REAL(wp), DIMENSION(nzb:nzt+1) :: pt_ref_l !< reference profile for potential temperature on subdomain |
---|
| 327 | REAL(wp), DIMENSION(nzb:nzt+1) :: q_ref !< reference profile for mixing ratio on subdomain |
---|
| 328 | REAL(wp), DIMENSION(nzb:nzt+1) :: q_ref_l !< reference profile for mixing ratio on subdomain |
---|
| 329 | REAL(wp), DIMENSION(nzb:nzt+1) :: u_ref !< reference profile for u-component on subdomain |
---|
| 330 | REAL(wp), DIMENSION(nzb:nzt+1) :: u_ref_l !< reference profile for u-component on subdomain |
---|
| 331 | REAL(wp), DIMENSION(nzb:nzt+1) :: v_ref !< reference profile for v-component on subdomain |
---|
| 332 | REAL(wp), DIMENSION(nzb:nzt+1) :: v_ref_l !< reference profile for v-component on subdomain |
---|
| 333 | |
---|
[3885] | 334 | |
---|
[3987] | 335 | IF ( debug_output_timestep ) CALL debug_message( 'nesting_offl_bc', 'start' ) |
---|
| 336 | |
---|
[3347] | 337 | CALL cpu_log( log_point(58), 'offline nesting', 'start' ) |
---|
| 338 | ! |
---|
| 339 | !-- Set mean profiles, derived from boundary data, to zero |
---|
| 340 | pt_ref = 0.0_wp |
---|
| 341 | q_ref = 0.0_wp |
---|
| 342 | u_ref = 0.0_wp |
---|
| 343 | v_ref = 0.0_wp |
---|
| 344 | |
---|
| 345 | pt_ref_l = 0.0_wp |
---|
| 346 | q_ref_l = 0.0_wp |
---|
| 347 | u_ref_l = 0.0_wp |
---|
| 348 | v_ref_l = 0.0_wp |
---|
| 349 | ! |
---|
| 350 | !-- Determine interpolation factor and limit it to 1. This is because |
---|
| 351 | !-- t+dt can slightly exceed time(tind_p) before boundary data is updated |
---|
| 352 | !-- again. |
---|
| 353 | fac_dt = ( time_since_reference_point - nest_offl%time(nest_offl%tind) & |
---|
| 354 | + dt_3d ) / & |
---|
| 355 | ( nest_offl%time(nest_offl%tind_p) - nest_offl%time(nest_offl%tind) ) |
---|
| 356 | fac_dt = MIN( 1.0_wp, fac_dt ) |
---|
| 357 | ! |
---|
| 358 | !-- Set boundary conditions of u-, v-, w-component, as well as q, and pt. |
---|
| 359 | !-- Note, boundary values at the left boundary: i=-1 (v,w,pt,q) and |
---|
| 360 | !-- i=0 (u), at the right boundary: i=nxr+1 (all), at the south boundary: |
---|
| 361 | !-- j=-1 (u,w,pt,q) and j=0 (v), at the north boundary: j=nyn+1 (all). |
---|
| 362 | !-- Please note, at the left (for u) and south (for v) boundary, values |
---|
| 363 | !-- for u and v are set also at i/j=-1, since these values are used in |
---|
| 364 | !-- boundary_conditions() to restore prognostic values. |
---|
| 365 | !-- Further, sum up data to calculate mean profiles from boundary data, |
---|
| 366 | !-- used for Rayleigh damping. |
---|
| 367 | IF ( bc_dirichlet_l ) THEN |
---|
| 368 | |
---|
| 369 | DO j = nys, nyn |
---|
| 370 | DO k = nzb+1, nzt |
---|
| 371 | u(k,j,0) = interpolate_in_time( nest_offl%u_left(0,k,j), & |
---|
| 372 | nest_offl%u_left(1,k,j), & |
---|
| 373 | fac_dt ) * & |
---|
| 374 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 375 | BTEST( wall_flags_0(k,j,0), 1 ) ) |
---|
| 376 | u(k,j,-1) = u(k,j,0) |
---|
| 377 | ENDDO |
---|
| 378 | u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,j,0) |
---|
| 379 | ENDDO |
---|
| 380 | |
---|
| 381 | DO j = nys, nyn |
---|
| 382 | DO k = nzb+1, nzt-1 |
---|
| 383 | w(k,j,-1) = interpolate_in_time( nest_offl%w_left(0,k,j), & |
---|
| 384 | nest_offl%w_left(1,k,j), & |
---|
| 385 | fac_dt ) * & |
---|
| 386 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 387 | BTEST( wall_flags_0(k,j,-1), 3 ) ) |
---|
| 388 | ENDDO |
---|
[4079] | 389 | w(nzt,j,-1) = w(nzt-1,j,-1) |
---|
[3347] | 390 | ENDDO |
---|
| 391 | |
---|
| 392 | DO j = nysv, nyn |
---|
| 393 | DO k = nzb+1, nzt |
---|
| 394 | v(k,j,-1) = interpolate_in_time( nest_offl%v_left(0,k,j), & |
---|
| 395 | nest_offl%v_left(1,k,j), & |
---|
| 396 | fac_dt ) * & |
---|
| 397 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 398 | BTEST( wall_flags_0(k,j,-1), 2 ) ) |
---|
| 399 | ENDDO |
---|
| 400 | v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,j,-1) |
---|
| 401 | ENDDO |
---|
| 402 | |
---|
| 403 | IF ( .NOT. neutral ) THEN |
---|
| 404 | DO j = nys, nyn |
---|
| 405 | DO k = nzb+1, nzt |
---|
| 406 | pt(k,j,-1) = interpolate_in_time( nest_offl%pt_left(0,k,j), & |
---|
| 407 | nest_offl%pt_left(1,k,j), & |
---|
| 408 | fac_dt ) |
---|
| 409 | |
---|
| 410 | ENDDO |
---|
| 411 | pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,j,-1) |
---|
| 412 | ENDDO |
---|
| 413 | ENDIF |
---|
| 414 | |
---|
| 415 | IF ( humidity ) THEN |
---|
| 416 | DO j = nys, nyn |
---|
| 417 | DO k = nzb+1, nzt |
---|
| 418 | q(k,j,-1) = interpolate_in_time( nest_offl%q_left(0,k,j), & |
---|
| 419 | nest_offl%q_left(1,k,j), & |
---|
| 420 | fac_dt ) |
---|
| 421 | |
---|
| 422 | ENDDO |
---|
| 423 | q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,j,-1) |
---|
| 424 | ENDDO |
---|
| 425 | ENDIF |
---|
[3737] | 426 | |
---|
| 427 | IF ( air_chemistry ) THEN |
---|
| 428 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
| 429 | IF ( nest_offl%chem_from_file_l(n) ) THEN |
---|
| 430 | DO j = nys, nyn |
---|
| 431 | DO k = nzb+1, nzt |
---|
| 432 | chem_species(n)%conc(k,j,-1) = interpolate_in_time( & |
---|
| 433 | nest_offl%chem_left(0,k,j,n),& |
---|
| 434 | nest_offl%chem_left(1,k,j,n),& |
---|
| 435 | fac_dt ) |
---|
| 436 | ENDDO |
---|
| 437 | ENDDO |
---|
| 438 | ENDIF |
---|
| 439 | ENDDO |
---|
| 440 | ENDIF |
---|
[3347] | 441 | |
---|
| 442 | ENDIF |
---|
| 443 | |
---|
| 444 | IF ( bc_dirichlet_r ) THEN |
---|
| 445 | |
---|
| 446 | DO j = nys, nyn |
---|
| 447 | DO k = nzb+1, nzt |
---|
| 448 | u(k,j,nxr+1) = interpolate_in_time( nest_offl%u_right(0,k,j), & |
---|
| 449 | nest_offl%u_right(1,k,j), & |
---|
| 450 | fac_dt ) * & |
---|
| 451 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 452 | BTEST( wall_flags_0(k,j,nxr+1), 1 ) ) |
---|
| 453 | ENDDO |
---|
| 454 | u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,j,nxr+1) |
---|
| 455 | ENDDO |
---|
| 456 | DO j = nys, nyn |
---|
| 457 | DO k = nzb+1, nzt-1 |
---|
| 458 | w(k,j,nxr+1) = interpolate_in_time( nest_offl%w_right(0,k,j), & |
---|
| 459 | nest_offl%w_right(1,k,j), & |
---|
| 460 | fac_dt ) * & |
---|
| 461 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 462 | BTEST( wall_flags_0(k,j,nxr+1), 3 ) ) |
---|
| 463 | ENDDO |
---|
[4079] | 464 | w(nzt,j,nxr+1) = w(nzt-1,j,nxr+1) |
---|
[3347] | 465 | ENDDO |
---|
| 466 | |
---|
| 467 | DO j = nysv, nyn |
---|
| 468 | DO k = nzb+1, nzt |
---|
| 469 | v(k,j,nxr+1) = interpolate_in_time( nest_offl%v_right(0,k,j), & |
---|
| 470 | nest_offl%v_right(1,k,j), & |
---|
| 471 | fac_dt ) * & |
---|
| 472 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 473 | BTEST( wall_flags_0(k,j,nxr+1), 2 ) ) |
---|
| 474 | ENDDO |
---|
| 475 | v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,j,nxr+1) |
---|
| 476 | ENDDO |
---|
| 477 | |
---|
| 478 | IF ( .NOT. neutral ) THEN |
---|
| 479 | DO j = nys, nyn |
---|
| 480 | DO k = nzb+1, nzt |
---|
| 481 | pt(k,j,nxr+1) = interpolate_in_time( & |
---|
| 482 | nest_offl%pt_right(0,k,j), & |
---|
| 483 | nest_offl%pt_right(1,k,j), & |
---|
| 484 | fac_dt ) |
---|
| 485 | ENDDO |
---|
| 486 | pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,j,nxr+1) |
---|
| 487 | ENDDO |
---|
| 488 | ENDIF |
---|
| 489 | |
---|
| 490 | IF ( humidity ) THEN |
---|
| 491 | DO j = nys, nyn |
---|
| 492 | DO k = nzb+1, nzt |
---|
| 493 | q(k,j,nxr+1) = interpolate_in_time( & |
---|
| 494 | nest_offl%q_right(0,k,j), & |
---|
| 495 | nest_offl%q_right(1,k,j), & |
---|
| 496 | fac_dt ) |
---|
| 497 | |
---|
| 498 | ENDDO |
---|
| 499 | q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,j,nxr+1) |
---|
| 500 | ENDDO |
---|
| 501 | ENDIF |
---|
[3737] | 502 | |
---|
| 503 | IF ( air_chemistry ) THEN |
---|
| 504 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
| 505 | IF ( nest_offl%chem_from_file_r(n) ) THEN |
---|
| 506 | DO j = nys, nyn |
---|
| 507 | DO k = nzb+1, nzt |
---|
| 508 | chem_species(n)%conc(k,j,nxr+1) = interpolate_in_time(& |
---|
| 509 | nest_offl%chem_right(0,k,j,n),& |
---|
| 510 | nest_offl%chem_right(1,k,j,n),& |
---|
| 511 | fac_dt ) |
---|
| 512 | ENDDO |
---|
| 513 | ENDDO |
---|
| 514 | ENDIF |
---|
| 515 | ENDDO |
---|
| 516 | ENDIF |
---|
[3347] | 517 | |
---|
| 518 | ENDIF |
---|
| 519 | |
---|
| 520 | IF ( bc_dirichlet_s ) THEN |
---|
| 521 | |
---|
| 522 | DO i = nxl, nxr |
---|
| 523 | DO k = nzb+1, nzt |
---|
| 524 | v(k,0,i) = interpolate_in_time( nest_offl%v_south(0,k,i), & |
---|
| 525 | nest_offl%v_south(1,k,i), & |
---|
| 526 | fac_dt ) * & |
---|
| 527 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 528 | BTEST( wall_flags_0(k,0,i), 2 ) ) |
---|
| 529 | v(k,-1,i) = v(k,0,i) |
---|
| 530 | ENDDO |
---|
| 531 | v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,0,i) |
---|
| 532 | ENDDO |
---|
| 533 | |
---|
| 534 | DO i = nxl, nxr |
---|
| 535 | DO k = nzb+1, nzt-1 |
---|
| 536 | w(k,-1,i) = interpolate_in_time( nest_offl%w_south(0,k,i), & |
---|
| 537 | nest_offl%w_south(1,k,i), & |
---|
| 538 | fac_dt ) * & |
---|
| 539 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 540 | BTEST( wall_flags_0(k,-1,i), 3 ) ) |
---|
| 541 | ENDDO |
---|
[4079] | 542 | w(nzt,-1,i) = w(nzt-1,-1,i) |
---|
[3347] | 543 | ENDDO |
---|
| 544 | |
---|
| 545 | DO i = nxlu, nxr |
---|
| 546 | DO k = nzb+1, nzt |
---|
| 547 | u(k,-1,i) = interpolate_in_time( nest_offl%u_south(0,k,i), & |
---|
| 548 | nest_offl%u_south(1,k,i), & |
---|
| 549 | fac_dt ) * & |
---|
| 550 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 551 | BTEST( wall_flags_0(k,-1,i), 1 ) ) |
---|
| 552 | ENDDO |
---|
| 553 | u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,-1,i) |
---|
| 554 | ENDDO |
---|
| 555 | |
---|
| 556 | IF ( .NOT. neutral ) THEN |
---|
| 557 | DO i = nxl, nxr |
---|
| 558 | DO k = nzb+1, nzt |
---|
| 559 | pt(k,-1,i) = interpolate_in_time( & |
---|
| 560 | nest_offl%pt_south(0,k,i), & |
---|
| 561 | nest_offl%pt_south(1,k,i), & |
---|
| 562 | fac_dt ) |
---|
| 563 | |
---|
| 564 | ENDDO |
---|
| 565 | pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,-1,i) |
---|
| 566 | ENDDO |
---|
| 567 | ENDIF |
---|
| 568 | |
---|
| 569 | IF ( humidity ) THEN |
---|
| 570 | DO i = nxl, nxr |
---|
| 571 | DO k = nzb+1, nzt |
---|
| 572 | q(k,-1,i) = interpolate_in_time( & |
---|
| 573 | nest_offl%q_south(0,k,i), & |
---|
| 574 | nest_offl%q_south(1,k,i), & |
---|
| 575 | fac_dt ) |
---|
| 576 | |
---|
| 577 | ENDDO |
---|
| 578 | q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,-1,i) |
---|
| 579 | ENDDO |
---|
| 580 | ENDIF |
---|
[3737] | 581 | |
---|
| 582 | IF ( air_chemistry ) THEN |
---|
| 583 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
| 584 | IF ( nest_offl%chem_from_file_s(n) ) THEN |
---|
| 585 | DO i = nxl, nxr |
---|
| 586 | DO k = nzb+1, nzt |
---|
| 587 | chem_species(n)%conc(k,-1,i) = interpolate_in_time( & |
---|
| 588 | nest_offl%chem_south(0,k,i,n),& |
---|
| 589 | nest_offl%chem_south(1,k,i,n),& |
---|
| 590 | fac_dt ) |
---|
| 591 | ENDDO |
---|
| 592 | ENDDO |
---|
| 593 | ENDIF |
---|
| 594 | ENDDO |
---|
| 595 | ENDIF |
---|
[3347] | 596 | |
---|
| 597 | ENDIF |
---|
| 598 | |
---|
| 599 | IF ( bc_dirichlet_n ) THEN |
---|
| 600 | |
---|
| 601 | DO i = nxl, nxr |
---|
| 602 | DO k = nzb+1, nzt |
---|
| 603 | v(k,nyn+1,i) = interpolate_in_time( nest_offl%v_north(0,k,i), & |
---|
| 604 | nest_offl%v_north(1,k,i), & |
---|
| 605 | fac_dt ) * & |
---|
| 606 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 607 | BTEST( wall_flags_0(k,nyn+1,i), 2 ) ) |
---|
| 608 | ENDDO |
---|
| 609 | v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,nyn+1,i) |
---|
| 610 | ENDDO |
---|
| 611 | DO i = nxl, nxr |
---|
| 612 | DO k = nzb+1, nzt-1 |
---|
| 613 | w(k,nyn+1,i) = interpolate_in_time( nest_offl%w_north(0,k,i), & |
---|
| 614 | nest_offl%w_north(1,k,i), & |
---|
| 615 | fac_dt ) * & |
---|
| 616 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 617 | BTEST( wall_flags_0(k,nyn+1,i), 3 ) ) |
---|
| 618 | ENDDO |
---|
[4079] | 619 | w(nzt,nyn+1,i) = w(nzt-1,nyn+1,i) |
---|
[3347] | 620 | ENDDO |
---|
| 621 | |
---|
| 622 | DO i = nxlu, nxr |
---|
| 623 | DO k = nzb+1, nzt |
---|
| 624 | u(k,nyn+1,i) = interpolate_in_time( nest_offl%u_north(0,k,i), & |
---|
| 625 | nest_offl%u_north(1,k,i), & |
---|
| 626 | fac_dt ) * & |
---|
| 627 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 628 | BTEST( wall_flags_0(k,nyn+1,i), 1 ) ) |
---|
| 629 | |
---|
| 630 | ENDDO |
---|
| 631 | u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,nyn+1,i) |
---|
| 632 | ENDDO |
---|
| 633 | |
---|
| 634 | IF ( .NOT. neutral ) THEN |
---|
| 635 | DO i = nxl, nxr |
---|
| 636 | DO k = nzb+1, nzt |
---|
| 637 | pt(k,nyn+1,i) = interpolate_in_time( & |
---|
| 638 | nest_offl%pt_north(0,k,i), & |
---|
| 639 | nest_offl%pt_north(1,k,i), & |
---|
| 640 | fac_dt ) |
---|
| 641 | |
---|
| 642 | ENDDO |
---|
| 643 | pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,nyn+1,i) |
---|
| 644 | ENDDO |
---|
| 645 | ENDIF |
---|
| 646 | |
---|
| 647 | IF ( humidity ) THEN |
---|
| 648 | DO i = nxl, nxr |
---|
| 649 | DO k = nzb+1, nzt |
---|
| 650 | q(k,nyn+1,i) = interpolate_in_time( & |
---|
| 651 | nest_offl%q_north(0,k,i), & |
---|
| 652 | nest_offl%q_north(1,k,i), & |
---|
| 653 | fac_dt ) |
---|
| 654 | |
---|
| 655 | ENDDO |
---|
| 656 | q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,nyn+1,i) |
---|
| 657 | ENDDO |
---|
| 658 | ENDIF |
---|
[3737] | 659 | |
---|
| 660 | IF ( air_chemistry ) THEN |
---|
| 661 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
| 662 | IF ( nest_offl%chem_from_file_n(n) ) THEN |
---|
| 663 | DO i = nxl, nxr |
---|
| 664 | DO k = nzb+1, nzt |
---|
| 665 | chem_species(n)%conc(k,nyn+1,i) = interpolate_in_time(& |
---|
| 666 | nest_offl%chem_north(0,k,i,n),& |
---|
| 667 | nest_offl%chem_north(1,k,i,n),& |
---|
| 668 | fac_dt ) |
---|
| 669 | ENDDO |
---|
| 670 | ENDDO |
---|
| 671 | ENDIF |
---|
| 672 | ENDDO |
---|
| 673 | ENDIF |
---|
[3347] | 674 | |
---|
| 675 | ENDIF |
---|
| 676 | ! |
---|
| 677 | !-- Top boundary |
---|
| 678 | DO i = nxlu, nxr |
---|
| 679 | DO j = nys, nyn |
---|
| 680 | u(nzt+1,j,i) = interpolate_in_time( nest_offl%u_top(0,j,i), & |
---|
| 681 | nest_offl%u_top(1,j,i), & |
---|
| 682 | fac_dt ) * & |
---|
| 683 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 684 | BTEST( wall_flags_0(nzt+1,j,i), 1 ) ) |
---|
| 685 | u_ref_l(nzt+1) = u_ref_l(nzt+1) + u(nzt+1,j,i) |
---|
| 686 | ENDDO |
---|
| 687 | ENDDO |
---|
[3937] | 688 | ! |
---|
| 689 | !-- For left boundary set boundary condition for u-component also at top |
---|
| 690 | !-- grid point. |
---|
| 691 | !-- Note, this has no effect on the numeric solution, only for data output. |
---|
| 692 | IF ( bc_dirichlet_l ) u(nzt+1,:,nxl) = u(nzt+1,:,nxlu) |
---|
[3347] | 693 | |
---|
| 694 | DO i = nxl, nxr |
---|
| 695 | DO j = nysv, nyn |
---|
| 696 | v(nzt+1,j,i) = interpolate_in_time( nest_offl%v_top(0,j,i), & |
---|
| 697 | nest_offl%v_top(1,j,i), & |
---|
| 698 | fac_dt ) * & |
---|
| 699 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 700 | BTEST( wall_flags_0(nzt+1,j,i), 2 ) ) |
---|
| 701 | v_ref_l(nzt+1) = v_ref_l(nzt+1) + v(nzt+1,j,i) |
---|
| 702 | ENDDO |
---|
| 703 | ENDDO |
---|
[3937] | 704 | ! |
---|
| 705 | !-- For south boundary set boundary condition for v-component also at top |
---|
| 706 | !-- grid point. |
---|
| 707 | !-- Note, this has no effect on the numeric solution, only for data output. |
---|
| 708 | IF ( bc_dirichlet_s ) v(nzt+1,nys,:) = v(nzt+1,nysv,:) |
---|
[3347] | 709 | |
---|
| 710 | DO i = nxl, nxr |
---|
| 711 | DO j = nys, nyn |
---|
| 712 | w(nzt,j,i) = interpolate_in_time( nest_offl%w_top(0,j,i), & |
---|
| 713 | nest_offl%w_top(1,j,i), & |
---|
| 714 | fac_dt ) * & |
---|
| 715 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 716 | BTEST( wall_flags_0(nzt,j,i), 3 ) ) |
---|
| 717 | w(nzt+1,j,i) = w(nzt,j,i) |
---|
| 718 | ENDDO |
---|
| 719 | ENDDO |
---|
| 720 | |
---|
| 721 | |
---|
| 722 | IF ( .NOT. neutral ) THEN |
---|
| 723 | DO i = nxl, nxr |
---|
| 724 | DO j = nys, nyn |
---|
| 725 | pt(nzt+1,j,i) = interpolate_in_time( nest_offl%pt_top(0,j,i), & |
---|
| 726 | nest_offl%pt_top(1,j,i), & |
---|
| 727 | fac_dt ) |
---|
| 728 | pt_ref_l(nzt+1) = pt_ref_l(nzt+1) + pt(nzt+1,j,i) |
---|
| 729 | ENDDO |
---|
| 730 | ENDDO |
---|
| 731 | ENDIF |
---|
| 732 | |
---|
| 733 | IF ( humidity ) THEN |
---|
| 734 | DO i = nxl, nxr |
---|
| 735 | DO j = nys, nyn |
---|
| 736 | q(nzt+1,j,i) = interpolate_in_time( nest_offl%q_top(0,j,i), & |
---|
| 737 | nest_offl%q_top(1,j,i), & |
---|
| 738 | fac_dt ) |
---|
| 739 | q_ref_l(nzt+1) = q_ref_l(nzt+1) + q(nzt+1,j,i) |
---|
| 740 | ENDDO |
---|
| 741 | ENDDO |
---|
| 742 | ENDIF |
---|
[3737] | 743 | |
---|
| 744 | IF ( air_chemistry ) THEN |
---|
| 745 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
| 746 | IF ( nest_offl%chem_from_file_t(n) ) THEN |
---|
| 747 | DO i = nxl, nxr |
---|
| 748 | DO j = nys, nyn |
---|
| 749 | chem_species(n)%conc(nzt+1,j,i) = interpolate_in_time( & |
---|
[4079] | 750 | nest_offl%chem_top(0,j,i,n), & |
---|
| 751 | nest_offl%chem_top(1,j,i,n), & |
---|
[3737] | 752 | fac_dt ) |
---|
| 753 | ENDDO |
---|
| 754 | ENDDO |
---|
| 755 | ENDIF |
---|
| 756 | ENDDO |
---|
| 757 | ENDIF |
---|
[3347] | 758 | ! |
---|
| 759 | !-- Moreover, set Neumann boundary condition for subgrid-scale TKE, |
---|
| 760 | !-- passive scalar, dissipation, and chemical species if required |
---|
| 761 | IF ( rans_mode .AND. rans_tke_e ) THEN |
---|
| 762 | IF ( bc_dirichlet_l ) diss(:,:,nxl-1) = diss(:,:,nxl) |
---|
| 763 | IF ( bc_dirichlet_r ) diss(:,:,nxr+1) = diss(:,:,nxr) |
---|
| 764 | IF ( bc_dirichlet_s ) diss(:,nys-1,:) = diss(:,nys,:) |
---|
| 765 | IF ( bc_dirichlet_n ) diss(:,nyn+1,:) = diss(:,nyn,:) |
---|
| 766 | ENDIF |
---|
[4079] | 767 | ! IF ( .NOT. constant_diffusion ) THEN |
---|
| 768 | ! IF ( bc_dirichlet_l ) e(:,:,nxl-1) = e(:,:,nxl) |
---|
| 769 | ! IF ( bc_dirichlet_r ) e(:,:,nxr+1) = e(:,:,nxr) |
---|
| 770 | ! IF ( bc_dirichlet_s ) e(:,nys-1,:) = e(:,nys,:) |
---|
| 771 | ! IF ( bc_dirichlet_n ) e(:,nyn+1,:) = e(:,nyn,:) |
---|
| 772 | ! e(nzt+1,:,:) = e(nzt,:,:) |
---|
| 773 | ! ENDIF |
---|
| 774 | ! IF ( passive_scalar ) THEN |
---|
| 775 | ! IF ( bc_dirichlet_l ) s(:,:,nxl-1) = s(:,:,nxl) |
---|
| 776 | ! IF ( bc_dirichlet_r ) s(:,:,nxr+1) = s(:,:,nxr) |
---|
| 777 | ! IF ( bc_dirichlet_s ) s(:,nys-1,:) = s(:,nys,:) |
---|
| 778 | ! IF ( bc_dirichlet_n ) s(:,nyn+1,:) = s(:,nyn,:) |
---|
| 779 | ! ENDIF |
---|
[3347] | 780 | |
---|
| 781 | CALL exchange_horiz( u, nbgp ) |
---|
| 782 | CALL exchange_horiz( v, nbgp ) |
---|
| 783 | CALL exchange_horiz( w, nbgp ) |
---|
| 784 | IF ( .NOT. neutral ) CALL exchange_horiz( pt, nbgp ) |
---|
| 785 | IF ( humidity ) CALL exchange_horiz( q, nbgp ) |
---|
[3737] | 786 | IF ( air_chemistry ) THEN |
---|
| 787 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
[3858] | 788 | ! |
---|
| 789 | !-- Do local exchange only when necessary, i.e. when data is coming |
---|
| 790 | !-- from dynamic file. |
---|
| 791 | IF ( nest_offl%chem_from_file_t(n) ) & |
---|
| 792 | CALL exchange_horiz( chem_species(n)%conc, nbgp ) |
---|
[3737] | 793 | ENDDO |
---|
| 794 | ENDIF |
---|
[3347] | 795 | ! |
---|
[4079] | 796 | !-- Set top boundary condition at all horizontal grid points, also at the |
---|
| 797 | !-- lateral boundary grid points. |
---|
| 798 | w(nzt+1,:,:) = w(nzt,:,:) |
---|
| 799 | ! |
---|
[3347] | 800 | !-- In case of Rayleigh damping, where the profiles u_init, v_init |
---|
| 801 | !-- q_init and pt_init are still used, update these profiles from the |
---|
| 802 | !-- averaged boundary data. |
---|
| 803 | !-- But first, average these data. |
---|
| 804 | #if defined( __parallel ) |
---|
| 805 | CALL MPI_ALLREDUCE( u_ref_l, u_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM, & |
---|
| 806 | comm2d, ierr ) |
---|
| 807 | CALL MPI_ALLREDUCE( v_ref_l, v_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM, & |
---|
| 808 | comm2d, ierr ) |
---|
| 809 | IF ( humidity ) THEN |
---|
| 810 | CALL MPI_ALLREDUCE( q_ref_l, q_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM, & |
---|
| 811 | comm2d, ierr ) |
---|
| 812 | ENDIF |
---|
| 813 | IF ( .NOT. neutral ) THEN |
---|
| 814 | CALL MPI_ALLREDUCE( pt_ref_l, pt_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM,& |
---|
| 815 | comm2d, ierr ) |
---|
| 816 | ENDIF |
---|
| 817 | #else |
---|
[3704] | 818 | u_ref = u_ref_l |
---|
| 819 | v_ref = v_ref_l |
---|
| 820 | IF ( humidity ) q_ref = q_ref_l |
---|
| 821 | IF ( .NOT. neutral ) pt_ref = pt_ref_l |
---|
[3347] | 822 | #endif |
---|
| 823 | ! |
---|
[3704] | 824 | !-- Average data. Note, reference profiles up to nzt are derived from lateral |
---|
| 825 | !-- boundaries, at the model top it is derived from the top boundary. Thus, |
---|
| 826 | !-- number of input data is different from nzb:nzt compared to nzt+1. |
---|
| 827 | !-- Derived from lateral boundaries. |
---|
| 828 | u_ref(nzb:nzt) = u_ref(nzb:nzt) / REAL( 2.0_wp * ( ny + 1 + nx ), & |
---|
| 829 | KIND = wp ) |
---|
| 830 | v_ref(nzb:nzt) = v_ref(nzb:nzt) / REAL( 2.0_wp * ( ny + nx + 1 ), & |
---|
| 831 | KIND = wp ) |
---|
| 832 | IF ( humidity ) & |
---|
| 833 | q_ref(nzb:nzt) = q_ref(nzb:nzt) / REAL( 2.0_wp * & |
---|
| 834 | ( ny + 1 + nx + 1 ), & |
---|
| 835 | KIND = wp ) |
---|
| 836 | IF ( .NOT. neutral ) & |
---|
| 837 | pt_ref(nzb:nzt) = pt_ref(nzb:nzt) / REAL( 2.0_wp * & |
---|
| 838 | ( ny + 1 + nx + 1 ), & |
---|
| 839 | KIND = wp ) |
---|
[3347] | 840 | ! |
---|
[3704] | 841 | !-- Derived from top boundary. |
---|
| 842 | u_ref(nzt+1) = u_ref(nzt+1) / REAL( ( ny + 1 ) * ( nx ), KIND = wp ) |
---|
| 843 | v_ref(nzt+1) = v_ref(nzt+1) / REAL( ( ny ) * ( nx + 1 ), KIND = wp ) |
---|
| 844 | IF ( humidity ) & |
---|
| 845 | q_ref(nzt+1) = q_ref(nzt+1) / REAL( ( ny + 1 ) * ( nx + 1 ), & |
---|
| 846 | KIND = wp ) |
---|
| 847 | IF ( .NOT. neutral ) & |
---|
| 848 | pt_ref(nzt+1) = pt_ref(nzt+1) / REAL( ( ny + 1 ) * ( nx + 1 ), & |
---|
| 849 | KIND = wp ) |
---|
[3347] | 850 | ! |
---|
[3704] | 851 | !-- Write onto init profiles, which are used for damping |
---|
| 852 | u_init = u_ref |
---|
| 853 | v_init = v_ref |
---|
| 854 | IF ( humidity ) q_init = q_ref |
---|
| 855 | IF ( .NOT. neutral ) pt_init = pt_ref |
---|
[3347] | 856 | ! |
---|
[3704] | 857 | !-- Set bottom boundary condition |
---|
| 858 | IF ( humidity ) q_init(nzb) = q_init(nzb+1) |
---|
| 859 | IF ( .NOT. neutral ) pt_init(nzb) = pt_init(nzb+1) |
---|
[3347] | 860 | ! |
---|
[3704] | 861 | !-- Further, adjust Rayleigh damping height in case of time-changing conditions. |
---|
| 862 | !-- Therefore, calculate boundary-layer depth first. |
---|
[4022] | 863 | CALL nesting_offl_calc_zi |
---|
[3704] | 864 | CALL adjust_sponge_layer |
---|
[3347] | 865 | |
---|
| 866 | ! |
---|
[3704] | 867 | !-- Update geostrophic wind components from dynamic input file. |
---|
| 868 | DO k = nzb+1, nzt |
---|
| 869 | ug(k) = interpolate_in_time( nest_offl%ug(0,k), nest_offl%ug(1,k), & |
---|
| 870 | fac_dt ) |
---|
| 871 | vg(k) = interpolate_in_time( nest_offl%vg(0,k), nest_offl%vg(1,k), & |
---|
| 872 | fac_dt ) |
---|
| 873 | ENDDO |
---|
| 874 | ug(nzt+1) = ug(nzt) |
---|
| 875 | vg(nzt+1) = vg(nzt) |
---|
[3347] | 876 | |
---|
[3704] | 877 | CALL cpu_log( log_point(58), 'offline nesting', 'stop' ) |
---|
[3347] | 878 | |
---|
[3987] | 879 | IF ( debug_output_timestep ) CALL debug_message( 'nesting_offl_bc', 'end' ) |
---|
| 880 | |
---|
| 881 | |
---|
[3347] | 882 | END SUBROUTINE nesting_offl_bc |
---|
| 883 | |
---|
| 884 | !------------------------------------------------------------------------------! |
---|
| 885 | ! Description: |
---|
| 886 | !------------------------------------------------------------------------------! |
---|
| 887 | !> Calculates the boundary-layer depth from the boundary data, according to |
---|
| 888 | !> bulk-Richardson criterion. |
---|
| 889 | !------------------------------------------------------------------------------! |
---|
[4022] | 890 | SUBROUTINE nesting_offl_calc_zi |
---|
[3347] | 891 | |
---|
| 892 | USE basic_constants_and_equations_mod, & |
---|
| 893 | ONLY: g |
---|
| 894 | |
---|
| 895 | USE kinds |
---|
| 896 | |
---|
| 897 | IMPLICIT NONE |
---|
| 898 | |
---|
[4022] | 899 | INTEGER(iwp) :: i !< loop index in x-direction |
---|
| 900 | INTEGER(iwp) :: j !< loop index in y-direction |
---|
| 901 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
| 902 | INTEGER(iwp) :: k_max_loc !< index of maximum wind speed along z-direction |
---|
| 903 | INTEGER(iwp) :: k_surface !< topography top index in z-direction |
---|
| 904 | INTEGER(iwp) :: num_boundary_gp_non_cyclic !< number of non-cyclic boundaries, used for averaging ABL depth |
---|
| 905 | INTEGER(iwp) :: num_boundary_gp_non_cyclic_l !< number of non-cyclic boundaries, used for averaging ABL depth |
---|
[3347] | 906 | |
---|
| 907 | REAL(wp) :: ri_bulk !< bulk Richardson number |
---|
| 908 | REAL(wp) :: ri_bulk_crit = 0.25_wp !< critical bulk Richardson number |
---|
| 909 | REAL(wp) :: topo_max !< maximum topography level in model domain |
---|
| 910 | REAL(wp) :: topo_max_l !< maximum topography level in subdomain |
---|
| 911 | REAL(wp) :: vpt_surface !< near-surface virtual potential temperature |
---|
| 912 | REAL(wp) :: zi_l !< mean boundary-layer depth on subdomain |
---|
| 913 | REAL(wp) :: zi_local !< local boundary-layer depth |
---|
| 914 | |
---|
| 915 | REAL(wp), DIMENSION(nzb:nzt+1) :: vpt_col !< vertical profile of virtual potential temperature at (j,i)-grid point |
---|
[4022] | 916 | REAL(wp), DIMENSION(nzb:nzt+1) :: uv_abs !< vertical profile of horizontal wind speed at (j,i)-grid point |
---|
[3347] | 917 | |
---|
| 918 | |
---|
| 919 | ! |
---|
| 920 | !-- Calculate mean boundary-layer height from boundary data. |
---|
| 921 | !-- Start with the left and right boundaries. |
---|
| 922 | zi_l = 0.0_wp |
---|
[4022] | 923 | num_boundary_gp_non_cyclic_l = 0 |
---|
[3347] | 924 | IF ( bc_dirichlet_l .OR. bc_dirichlet_r ) THEN |
---|
| 925 | ! |
---|
[4022] | 926 | !-- Sum-up and store number of boundary grid points used for averaging |
---|
| 927 | !-- ABL depth |
---|
| 928 | num_boundary_gp_non_cyclic_l = num_boundary_gp_non_cyclic_l + & |
---|
| 929 | nxr - nxl + 1 |
---|
| 930 | ! |
---|
[3347] | 931 | !-- Determine index along x. Please note, index indicates boundary |
---|
| 932 | !-- grid point for scalars. |
---|
| 933 | i = MERGE( -1, nxr + 1, bc_dirichlet_l ) |
---|
| 934 | |
---|
| 935 | DO j = nys, nyn |
---|
| 936 | ! |
---|
| 937 | !-- Determine topography top index at current (j,i) index |
---|
[4168] | 938 | k_surface = topo_top_ind(j,i,0) |
---|
[3347] | 939 | ! |
---|
| 940 | !-- Pre-compute surface virtual temperature. Therefore, use 2nd |
---|
| 941 | !-- prognostic level according to Heinze et al. (2017). |
---|
| 942 | IF ( humidity ) THEN |
---|
| 943 | vpt_surface = pt(k_surface+2,j,i) * & |
---|
| 944 | ( 1.0_wp + 0.61_wp * q(k_surface+2,j,i) ) |
---|
| 945 | vpt_col = pt(:,j,i) * ( 1.0_wp + 0.61_wp * q(:,j,i) ) |
---|
| 946 | ELSE |
---|
| 947 | vpt_surface = pt(k_surface+2,j,i) |
---|
| 948 | vpt_col = pt(:,j,i) |
---|
| 949 | ENDIF |
---|
| 950 | ! |
---|
| 951 | !-- Calculate local boundary layer height from bulk Richardson number, |
---|
| 952 | !-- i.e. the height where the bulk Richardson number exceeds its |
---|
| 953 | !-- critical value of 0.25 (according to Heinze et al., 2017). |
---|
| 954 | !-- Note, no interpolation of u- and v-component is made, as both |
---|
| 955 | !-- are mainly mean inflow profiles with very small spatial variation. |
---|
[3964] | 956 | !-- Add a safety factor in case the velocity term becomes zero. This |
---|
| 957 | !-- may happen if overhanging 3D structures are directly located at |
---|
| 958 | !-- the boundary, where velocity inside the building is zero |
---|
| 959 | !-- (k_surface is the index of the lowest upward-facing surface). |
---|
[4022] | 960 | uv_abs(:) = SQRT( MERGE( u(:,j,i+1), u(:,j,i), & |
---|
| 961 | bc_dirichlet_l )**2 + & |
---|
| 962 | v(:,j,i)**2 ) |
---|
| 963 | ! |
---|
| 964 | !-- Determine index of the maximum wind speed |
---|
| 965 | k_max_loc = MAXLOC( uv_abs(:), DIM = 1 ) - 1 |
---|
| 966 | |
---|
[3347] | 967 | zi_local = 0.0_wp |
---|
| 968 | DO k = k_surface+1, nzt |
---|
| 969 | ri_bulk = zu(k) * g / vpt_surface * & |
---|
| 970 | ( vpt_col(k) - vpt_surface ) / & |
---|
[4022] | 971 | ( uv_abs(k) + 1E-5_wp ) |
---|
| 972 | ! |
---|
| 973 | !-- Check if critical Richardson number is exceeded. Further, check |
---|
| 974 | !-- if there is a maxium in the wind profile in order to detect also |
---|
| 975 | !-- ABL heights in the stable boundary layer. |
---|
| 976 | IF ( zi_local == 0.0_wp .AND. & |
---|
| 977 | ( ri_bulk > ri_bulk_crit .OR. k == k_max_loc ) ) & |
---|
[3347] | 978 | zi_local = zu(k) |
---|
| 979 | ENDDO |
---|
| 980 | ! |
---|
| 981 | !-- Assure that the minimum local boundary-layer depth is at least at |
---|
| 982 | !-- the second vertical grid level. |
---|
| 983 | zi_l = zi_l + MAX( zi_local, zu(k_surface+2) ) |
---|
| 984 | |
---|
| 985 | ENDDO |
---|
| 986 | |
---|
| 987 | ENDIF |
---|
| 988 | ! |
---|
| 989 | !-- Do the same at the north and south boundaries. |
---|
| 990 | IF ( bc_dirichlet_s .OR. bc_dirichlet_n ) THEN |
---|
| 991 | |
---|
[4022] | 992 | num_boundary_gp_non_cyclic_l = num_boundary_gp_non_cyclic_l + & |
---|
| 993 | nxr - nxl + 1 |
---|
| 994 | |
---|
[3347] | 995 | j = MERGE( -1, nyn + 1, bc_dirichlet_s ) |
---|
| 996 | |
---|
| 997 | DO i = nxl, nxr |
---|
[4168] | 998 | k_surface = topo_top_ind(j,i,0) |
---|
[3347] | 999 | |
---|
| 1000 | IF ( humidity ) THEN |
---|
| 1001 | vpt_surface = pt(k_surface+2,j,i) * & |
---|
| 1002 | ( 1.0_wp + 0.61_wp * q(k_surface+2,j,i) ) |
---|
| 1003 | vpt_col = pt(:,j,i) * ( 1.0_wp + 0.61_wp * q(:,j,i) ) |
---|
| 1004 | ELSE |
---|
| 1005 | vpt_surface = pt(k_surface+2,j,i) |
---|
| 1006 | vpt_col = pt(:,j,i) |
---|
| 1007 | ENDIF |
---|
| 1008 | |
---|
[4022] | 1009 | uv_abs(:) = SQRT( u(:,j,i)**2 + & |
---|
| 1010 | MERGE( v(:,j+1,i), v(:,j,i), & |
---|
| 1011 | bc_dirichlet_s )**2 ) |
---|
| 1012 | ! |
---|
| 1013 | !-- Determine index of the maximum wind speed |
---|
| 1014 | k_max_loc = MAXLOC( uv_abs(:), DIM = 1 ) - 1 |
---|
| 1015 | |
---|
[3347] | 1016 | zi_local = 0.0_wp |
---|
| 1017 | DO k = k_surface+1, nzt |
---|
| 1018 | ri_bulk = zu(k) * g / vpt_surface * & |
---|
| 1019 | ( vpt_col(k) - vpt_surface ) / & |
---|
[4022] | 1020 | ( uv_abs(k) + 1E-5_wp ) |
---|
| 1021 | ! |
---|
| 1022 | !-- Check if critical Richardson number is exceeded. Further, check |
---|
| 1023 | !-- if there is a maxium in the wind profile in order to detect also |
---|
| 1024 | !-- ABL heights in the stable boundary layer. |
---|
| 1025 | IF ( zi_local == 0.0_wp .AND. & |
---|
| 1026 | ( ri_bulk > ri_bulk_crit .OR. k == k_max_loc ) ) & |
---|
[3347] | 1027 | zi_local = zu(k) |
---|
| 1028 | ENDDO |
---|
| 1029 | zi_l = zi_l + MAX( zi_local, zu(k_surface+2) ) |
---|
| 1030 | |
---|
| 1031 | ENDDO |
---|
| 1032 | |
---|
| 1033 | ENDIF |
---|
| 1034 | |
---|
| 1035 | #if defined( __parallel ) |
---|
| 1036 | CALL MPI_ALLREDUCE( zi_l, zi_ribulk, 1, MPI_REAL, MPI_SUM, & |
---|
| 1037 | comm2d, ierr ) |
---|
[4022] | 1038 | CALL MPI_ALLREDUCE( num_boundary_gp_non_cyclic_l, & |
---|
| 1039 | num_boundary_gp_non_cyclic, & |
---|
| 1040 | 1, MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
[3347] | 1041 | #else |
---|
| 1042 | zi_ribulk = zi_l |
---|
[4022] | 1043 | num_boundary_gp_non_cyclic = num_boundary_gp_non_cyclic_l |
---|
[3347] | 1044 | #endif |
---|
[4022] | 1045 | zi_ribulk = zi_ribulk / REAL( num_boundary_gp_non_cyclic, KIND = wp ) |
---|
[3347] | 1046 | ! |
---|
| 1047 | !-- Finally, check if boundary layer depth is not below the any topography. |
---|
| 1048 | !-- zi_ribulk will be used to adjust rayleigh damping height, i.e. the |
---|
| 1049 | !-- lower level of the sponge layer, as well as to adjust the synthetic |
---|
| 1050 | !-- turbulence generator accordingly. If Rayleigh damping would be applied |
---|
| 1051 | !-- near buildings, etc., this would spoil the simulation results. |
---|
[4168] | 1052 | topo_max_l = zw(MAXVAL( topo_top_ind(nys:nyn,nxl:nxr,0) )) |
---|
[3347] | 1053 | |
---|
| 1054 | #if defined( __parallel ) |
---|
[4022] | 1055 | CALL MPI_ALLREDUCE( topo_max_l, topo_max, 1, MPI_REAL, MPI_MAX, & |
---|
[3347] | 1056 | comm2d, ierr ) |
---|
| 1057 | #else |
---|
| 1058 | topo_max = topo_max_l |
---|
| 1059 | #endif |
---|
[4022] | 1060 | ! zi_ribulk = MAX( zi_ribulk, topo_max ) |
---|
[3937] | 1061 | |
---|
[4022] | 1062 | END SUBROUTINE nesting_offl_calc_zi |
---|
[3347] | 1063 | |
---|
| 1064 | |
---|
| 1065 | !------------------------------------------------------------------------------! |
---|
| 1066 | ! Description: |
---|
| 1067 | !------------------------------------------------------------------------------! |
---|
| 1068 | !> Adjust the height where the rayleigh damping starts, i.e. the lower level |
---|
| 1069 | !> of the sponge layer. |
---|
| 1070 | !------------------------------------------------------------------------------! |
---|
| 1071 | SUBROUTINE adjust_sponge_layer |
---|
| 1072 | |
---|
| 1073 | USE arrays_3d, & |
---|
| 1074 | ONLY: rdf, rdf_sc, zu |
---|
| 1075 | |
---|
| 1076 | USE basic_constants_and_equations_mod, & |
---|
| 1077 | ONLY: pi |
---|
| 1078 | |
---|
| 1079 | USE kinds |
---|
| 1080 | |
---|
| 1081 | IMPLICIT NONE |
---|
| 1082 | |
---|
| 1083 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
| 1084 | |
---|
| 1085 | REAL(wp) :: rdh !< updated Rayleigh damping height |
---|
| 1086 | |
---|
| 1087 | |
---|
| 1088 | IF ( rayleigh_damping_height > 0.0_wp .AND. & |
---|
| 1089 | rayleigh_damping_factor > 0.0_wp ) THEN |
---|
| 1090 | ! |
---|
| 1091 | !-- Update Rayleigh-damping height and re-calculate height-depending |
---|
| 1092 | !-- damping coefficients. |
---|
| 1093 | !-- Assure that rayleigh damping starts well above the boundary layer. |
---|
| 1094 | rdh = MIN( MAX( zi_ribulk * 1.3_wp, 10.0_wp * dz(1) ), & |
---|
| 1095 | 0.8_wp * zu(nzt), rayleigh_damping_height ) |
---|
| 1096 | ! |
---|
| 1097 | !-- Update Rayleigh damping factor |
---|
| 1098 | DO k = nzb+1, nzt |
---|
| 1099 | IF ( zu(k) >= rdh ) THEN |
---|
| 1100 | rdf(k) = rayleigh_damping_factor * & |
---|
| 1101 | ( SIN( pi * 0.5_wp * ( zu(k) - rdh ) & |
---|
| 1102 | / ( zu(nzt) - rdh ) ) & |
---|
| 1103 | )**2 |
---|
| 1104 | ENDIF |
---|
| 1105 | ENDDO |
---|
| 1106 | rdf_sc = rdf |
---|
| 1107 | |
---|
| 1108 | ENDIF |
---|
| 1109 | |
---|
| 1110 | END SUBROUTINE adjust_sponge_layer |
---|
| 1111 | |
---|
| 1112 | !------------------------------------------------------------------------------! |
---|
| 1113 | ! Description: |
---|
| 1114 | ! ------------ |
---|
| 1115 | !> Performs consistency checks |
---|
| 1116 | !------------------------------------------------------------------------------! |
---|
| 1117 | SUBROUTINE nesting_offl_check_parameters |
---|
| 1118 | |
---|
| 1119 | IMPLICIT NONE |
---|
| 1120 | ! |
---|
[4169] | 1121 | !-- Check if offline nesting is applied in nested child domain. |
---|
[3579] | 1122 | IF ( nesting_offline .AND. child_domain ) THEN |
---|
| 1123 | message_string = 'Offline nesting is only applicable in root model.' |
---|
[4169] | 1124 | CALL message( 'offline_nesting_check_parameters', 'PA0622', 1, 2, 0, 6, 0 ) |
---|
| 1125 | ENDIF |
---|
[3347] | 1126 | |
---|
| 1127 | END SUBROUTINE nesting_offl_check_parameters |
---|
| 1128 | |
---|
| 1129 | !------------------------------------------------------------------------------! |
---|
| 1130 | ! Description: |
---|
| 1131 | ! ------------ |
---|
| 1132 | !> Reads the parameter list nesting_offl_parameters |
---|
| 1133 | !------------------------------------------------------------------------------! |
---|
| 1134 | SUBROUTINE nesting_offl_parin |
---|
| 1135 | |
---|
| 1136 | IMPLICIT NONE |
---|
| 1137 | |
---|
| 1138 | CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file |
---|
| 1139 | |
---|
| 1140 | |
---|
| 1141 | NAMELIST /nesting_offl_parameters/ nesting_offline |
---|
| 1142 | |
---|
| 1143 | line = ' ' |
---|
| 1144 | |
---|
| 1145 | ! |
---|
| 1146 | !-- Try to find stg package |
---|
| 1147 | REWIND ( 11 ) |
---|
| 1148 | line = ' ' |
---|
| 1149 | DO WHILE ( INDEX( line, '&nesting_offl_parameters' ) == 0 ) |
---|
| 1150 | READ ( 11, '(A)', END=20 ) line |
---|
| 1151 | ENDDO |
---|
| 1152 | BACKSPACE ( 11 ) |
---|
| 1153 | |
---|
| 1154 | ! |
---|
| 1155 | !-- Read namelist |
---|
| 1156 | READ ( 11, nesting_offl_parameters, ERR = 10, END = 20 ) |
---|
| 1157 | |
---|
| 1158 | GOTO 20 |
---|
| 1159 | |
---|
| 1160 | 10 BACKSPACE( 11 ) |
---|
| 1161 | READ( 11 , '(A)') line |
---|
| 1162 | CALL parin_fail_message( 'nesting_offl_parameters', line ) |
---|
| 1163 | |
---|
| 1164 | 20 CONTINUE |
---|
| 1165 | |
---|
| 1166 | |
---|
| 1167 | END SUBROUTINE nesting_offl_parin |
---|
| 1168 | |
---|
| 1169 | !------------------------------------------------------------------------------! |
---|
| 1170 | ! Description: |
---|
| 1171 | ! ------------ |
---|
| 1172 | !> Writes information about offline nesting into HEADER file |
---|
| 1173 | !------------------------------------------------------------------------------! |
---|
| 1174 | SUBROUTINE nesting_offl_header ( io ) |
---|
| 1175 | |
---|
| 1176 | IMPLICIT NONE |
---|
| 1177 | |
---|
| 1178 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
| 1179 | |
---|
| 1180 | WRITE ( io, 1 ) |
---|
| 1181 | IF ( nesting_offline ) THEN |
---|
| 1182 | WRITE ( io, 3 ) |
---|
| 1183 | ELSE |
---|
| 1184 | WRITE ( io, 2 ) |
---|
| 1185 | ENDIF |
---|
| 1186 | |
---|
| 1187 | 1 FORMAT (//' Offline nesting in COSMO model:'/ & |
---|
| 1188 | ' -------------------------------'/) |
---|
| 1189 | 2 FORMAT (' --> No offlince nesting is used (default) ') |
---|
| 1190 | 3 FORMAT (' --> Offlince nesting is used. Boundary data is read from dynamic input file ') |
---|
| 1191 | |
---|
| 1192 | END SUBROUTINE nesting_offl_header |
---|
| 1193 | |
---|
| 1194 | !------------------------------------------------------------------------------! |
---|
| 1195 | ! Description: |
---|
| 1196 | ! ------------ |
---|
| 1197 | !> Allocate arrays used to read boundary data from NetCDF file and initialize |
---|
| 1198 | !> boundary data. |
---|
| 1199 | !------------------------------------------------------------------------------! |
---|
| 1200 | SUBROUTINE nesting_offl_init |
---|
| 1201 | |
---|
| 1202 | USE netcdf_data_input_mod, & |
---|
| 1203 | ONLY: netcdf_data_input_offline_nesting |
---|
| 1204 | |
---|
| 1205 | IMPLICIT NONE |
---|
[3737] | 1206 | |
---|
| 1207 | INTEGER(iwp) :: n !< running index for chemical species |
---|
[3347] | 1208 | |
---|
| 1209 | |
---|
| 1210 | !-- Allocate arrays for geostrophic wind components. Arrays will |
---|
[3404] | 1211 | !-- incorporate 2 time levels in order to interpolate in between. |
---|
| 1212 | ALLOCATE( nest_offl%ug(0:1,1:nzt) ) |
---|
| 1213 | ALLOCATE( nest_offl%vg(0:1,1:nzt) ) |
---|
[3347] | 1214 | ! |
---|
[4125] | 1215 | !-- Allocate arrays for reading left/right boundary values. Arrays will |
---|
| 1216 | !-- incorporate 2 time levels in order to interpolate in between. If the core has |
---|
| 1217 | !-- no boundary, allocate a dummy array, in order to enable netcdf parallel |
---|
| 1218 | !-- access. Dummy arrays will be allocated with dimension length zero. |
---|
[3347] | 1219 | IF ( bc_dirichlet_l ) THEN |
---|
| 1220 | ALLOCATE( nest_offl%u_left(0:1,nzb+1:nzt,nys:nyn) ) |
---|
| 1221 | ALLOCATE( nest_offl%v_left(0:1,nzb+1:nzt,nysv:nyn) ) |
---|
| 1222 | ALLOCATE( nest_offl%w_left(0:1,nzb+1:nzt-1,nys:nyn) ) |
---|
| 1223 | IF ( humidity ) ALLOCATE( nest_offl%q_left(0:1,nzb+1:nzt,nys:nyn) ) |
---|
| 1224 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_left(0:1,nzb+1:nzt,nys:nyn) ) |
---|
[3737] | 1225 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_left(0:1,nzb+1:nzt,nys:nyn,& |
---|
| 1226 | 1:UBOUND( chem_species, 1 )) ) |
---|
[4125] | 1227 | ELSE |
---|
| 1228 | ALLOCATE( nest_offl%u_left(1:1,1:1,1:1) ) |
---|
| 1229 | ALLOCATE( nest_offl%v_left(1:1,1:1,1:1) ) |
---|
| 1230 | ALLOCATE( nest_offl%w_left(1:1,1:1,1:1) ) |
---|
| 1231 | IF ( humidity ) ALLOCATE( nest_offl%q_left(1:1,1:1,1:1) ) |
---|
| 1232 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_left(1:1,1:1,1:1) ) |
---|
| 1233 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_left(1:1,1:1,1:1, & |
---|
| 1234 | 1:UBOUND( chem_species, 1 )) ) |
---|
[3347] | 1235 | ENDIF |
---|
| 1236 | IF ( bc_dirichlet_r ) THEN |
---|
| 1237 | ALLOCATE( nest_offl%u_right(0:1,nzb+1:nzt,nys:nyn) ) |
---|
| 1238 | ALLOCATE( nest_offl%v_right(0:1,nzb+1:nzt,nysv:nyn) ) |
---|
| 1239 | ALLOCATE( nest_offl%w_right(0:1,nzb+1:nzt-1,nys:nyn) ) |
---|
| 1240 | IF ( humidity ) ALLOCATE( nest_offl%q_right(0:1,nzb+1:nzt,nys:nyn) ) |
---|
| 1241 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_right(0:1,nzb+1:nzt,nys:nyn) ) |
---|
[3737] | 1242 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_right(0:1,nzb+1:nzt,nys:nyn,& |
---|
| 1243 | 1:UBOUND( chem_species, 1 )) ) |
---|
[4125] | 1244 | ELSE |
---|
| 1245 | ALLOCATE( nest_offl%u_right(1:1,1:1,1:1) ) |
---|
| 1246 | ALLOCATE( nest_offl%v_right(1:1,1:1,1:1) ) |
---|
| 1247 | ALLOCATE( nest_offl%w_right(1:1,1:1,1:1) ) |
---|
| 1248 | IF ( humidity ) ALLOCATE( nest_offl%q_right(1:1,1:1,1:1) ) |
---|
| 1249 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_right(1:1,1:1,1:1) ) |
---|
| 1250 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_right(1:1,1:1,1:1, & |
---|
| 1251 | 1:UBOUND( chem_species, 1 )) ) |
---|
[3347] | 1252 | ENDIF |
---|
[4125] | 1253 | ! |
---|
| 1254 | !-- Allocate arrays for reading north/south boundary values. Arrays will |
---|
| 1255 | !-- incorporate 2 time levels in order to interpolate in between. If the core has |
---|
| 1256 | !-- no boundary, allocate a dummy array, in order to enable netcdf parallel |
---|
| 1257 | !-- access. Dummy arrays will be allocated with dimension length zero. |
---|
[3347] | 1258 | IF ( bc_dirichlet_n ) THEN |
---|
| 1259 | ALLOCATE( nest_offl%u_north(0:1,nzb+1:nzt,nxlu:nxr) ) |
---|
| 1260 | ALLOCATE( nest_offl%v_north(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
| 1261 | ALLOCATE( nest_offl%w_north(0:1,nzb+1:nzt-1,nxl:nxr) ) |
---|
| 1262 | IF ( humidity ) ALLOCATE( nest_offl%q_north(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
| 1263 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_north(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
[3737] | 1264 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_north(0:1,nzb+1:nzt,nxl:nxr,& |
---|
| 1265 | 1:UBOUND( chem_species, 1 )) ) |
---|
[4125] | 1266 | ELSE |
---|
| 1267 | ALLOCATE( nest_offl%u_north(1:1,1:1,1:1) ) |
---|
| 1268 | ALLOCATE( nest_offl%v_north(1:1,1:1,1:1) ) |
---|
| 1269 | ALLOCATE( nest_offl%w_north(1:1,1:1,1:1) ) |
---|
| 1270 | IF ( humidity ) ALLOCATE( nest_offl%q_north(1:1,1:1,1:1) ) |
---|
| 1271 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_north(1:1,1:1,1:1) ) |
---|
| 1272 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_north(1:1,1:1,1:1, & |
---|
| 1273 | 1:UBOUND( chem_species, 1 )) ) |
---|
[3347] | 1274 | ENDIF |
---|
| 1275 | IF ( bc_dirichlet_s ) THEN |
---|
| 1276 | ALLOCATE( nest_offl%u_south(0:1,nzb+1:nzt,nxlu:nxr) ) |
---|
| 1277 | ALLOCATE( nest_offl%v_south(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
| 1278 | ALLOCATE( nest_offl%w_south(0:1,nzb+1:nzt-1,nxl:nxr) ) |
---|
| 1279 | IF ( humidity ) ALLOCATE( nest_offl%q_south(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
| 1280 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_south(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
[3737] | 1281 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_south(0:1,nzb+1:nzt,nxl:nxr,& |
---|
| 1282 | 1:UBOUND( chem_species, 1 )) ) |
---|
[4125] | 1283 | ELSE |
---|
| 1284 | ALLOCATE( nest_offl%u_south(1:1,1:1,1:1) ) |
---|
| 1285 | ALLOCATE( nest_offl%v_south(1:1,1:1,1:1) ) |
---|
| 1286 | ALLOCATE( nest_offl%w_south(1:1,1:1,1:1) ) |
---|
| 1287 | IF ( humidity ) ALLOCATE( nest_offl%q_south(1:1,1:1,1:1) ) |
---|
| 1288 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_south(1:1,1:1,1:1) ) |
---|
| 1289 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_south(1:1,1:1,1:1, & |
---|
| 1290 | 1:UBOUND( chem_species, 1 )) ) |
---|
[3347] | 1291 | ENDIF |
---|
[4125] | 1292 | ! |
---|
| 1293 | !-- Allocate arrays for reading data at the top boundary. In contrast to the |
---|
| 1294 | !-- lateral boundaries, every core reads these data so that no dummy |
---|
| 1295 | !-- arrays need to be allocated. |
---|
[3347] | 1296 | ALLOCATE( nest_offl%u_top(0:1,nys:nyn,nxlu:nxr) ) |
---|
| 1297 | ALLOCATE( nest_offl%v_top(0:1,nysv:nyn,nxl:nxr) ) |
---|
| 1298 | ALLOCATE( nest_offl%w_top(0:1,nys:nyn,nxl:nxr) ) |
---|
| 1299 | IF ( humidity ) ALLOCATE( nest_offl%q_top(0:1,nys:nyn,nxl:nxr) ) |
---|
| 1300 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_top(0:1,nys:nyn,nxl:nxr) ) |
---|
[3737] | 1301 | IF ( air_chemistry ) ALLOCATE( nest_offl%chem_top(0:1,nys:nyn,nxl:nxr, & |
---|
| 1302 | 1:UBOUND( chem_species, 1 )) ) |
---|
[3347] | 1303 | ! |
---|
[3737] | 1304 | !-- For chemical species, create the names of the variables. This is necessary |
---|
| 1305 | !-- to identify the respective variable and write it onto the correct array |
---|
| 1306 | !-- in the chem_species datatype. |
---|
| 1307 | IF ( air_chemistry ) THEN |
---|
| 1308 | ALLOCATE( nest_offl%chem_from_file_l(1:UBOUND( chem_species, 1 )) ) |
---|
| 1309 | ALLOCATE( nest_offl%chem_from_file_n(1:UBOUND( chem_species, 1 )) ) |
---|
| 1310 | ALLOCATE( nest_offl%chem_from_file_r(1:UBOUND( chem_species, 1 )) ) |
---|
| 1311 | ALLOCATE( nest_offl%chem_from_file_s(1:UBOUND( chem_species, 1 )) ) |
---|
| 1312 | ALLOCATE( nest_offl%chem_from_file_t(1:UBOUND( chem_species, 1 )) ) |
---|
| 1313 | |
---|
| 1314 | ALLOCATE( nest_offl%var_names_chem_l(1:UBOUND( chem_species, 1 )) ) |
---|
| 1315 | ALLOCATE( nest_offl%var_names_chem_n(1:UBOUND( chem_species, 1 )) ) |
---|
| 1316 | ALLOCATE( nest_offl%var_names_chem_r(1:UBOUND( chem_species, 1 )) ) |
---|
| 1317 | ALLOCATE( nest_offl%var_names_chem_s(1:UBOUND( chem_species, 1 )) ) |
---|
| 1318 | ALLOCATE( nest_offl%var_names_chem_t(1:UBOUND( chem_species, 1 )) ) |
---|
| 1319 | ! |
---|
| 1320 | !-- Initialize flags that indicate whether the variable is on file or |
---|
| 1321 | !-- not. Please note, this is only necessary for chemistry variables. |
---|
| 1322 | nest_offl%chem_from_file_l(:) = .FALSE. |
---|
| 1323 | nest_offl%chem_from_file_n(:) = .FALSE. |
---|
| 1324 | nest_offl%chem_from_file_r(:) = .FALSE. |
---|
| 1325 | nest_offl%chem_from_file_s(:) = .FALSE. |
---|
| 1326 | nest_offl%chem_from_file_t(:) = .FALSE. |
---|
| 1327 | |
---|
| 1328 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
| 1329 | nest_offl%var_names_chem_l(n) = nest_offl%char_l // & |
---|
| 1330 | TRIM(chem_species(n)%name) |
---|
| 1331 | nest_offl%var_names_chem_n(n) = nest_offl%char_n // & |
---|
| 1332 | TRIM(chem_species(n)%name) |
---|
| 1333 | nest_offl%var_names_chem_r(n) = nest_offl%char_r // & |
---|
| 1334 | TRIM(chem_species(n)%name) |
---|
| 1335 | nest_offl%var_names_chem_s(n) = nest_offl%char_s // & |
---|
| 1336 | TRIM(chem_species(n)%name) |
---|
| 1337 | nest_offl%var_names_chem_t(n) = nest_offl%char_t // & |
---|
| 1338 | TRIM(chem_species(n)%name) |
---|
| 1339 | ENDDO |
---|
| 1340 | ENDIF |
---|
| 1341 | ! |
---|
[3347] | 1342 | !-- Read COSMO data at lateral and top boundaries |
---|
| 1343 | CALL netcdf_data_input_offline_nesting |
---|
| 1344 | ! |
---|
[4169] | 1345 | !-- Check if sufficient time steps are provided to cover the entire |
---|
| 1346 | !-- simulation. Note, dynamic input is only required for the 3D simulation, |
---|
| 1347 | !-- not for the soil/wall spinup. However, as the spinup time is added |
---|
| 1348 | !-- to the end_time, this must be considered here. |
---|
| 1349 | IF ( end_time - spinup_time > nest_offl%time(nest_offl%nt-1) ) THEN |
---|
| 1350 | message_string = 'end_time > provided time in offline nesting.' |
---|
| 1351 | CALL message( 'offline_nesting_check_parameters', 'PA0183', & |
---|
| 1352 | 1, 2, 0, 6, 0 ) |
---|
| 1353 | ENDIF |
---|
| 1354 | ! |
---|
[3891] | 1355 | !-- Initialize boundary data. Please note, do not initialize boundaries in |
---|
| 1356 | !-- case of restart runs. This case the boundaries are already initialized |
---|
| 1357 | !-- and the boundary data from file would be on the wrong time level. |
---|
| 1358 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
| 1359 | IF ( bc_dirichlet_l ) THEN |
---|
| 1360 | u(nzb+1:nzt,nys:nyn,0) = nest_offl%u_left(0,nzb+1:nzt,nys:nyn) |
---|
| 1361 | v(nzb+1:nzt,nysv:nyn,-1) = nest_offl%v_left(0,nzb+1:nzt,nysv:nyn) |
---|
| 1362 | w(nzb+1:nzt-1,nys:nyn,-1) = nest_offl%w_left(0,nzb+1:nzt-1,nys:nyn) |
---|
| 1363 | IF ( .NOT. neutral ) pt(nzb+1:nzt,nys:nyn,-1) = & |
---|
| 1364 | nest_offl%pt_left(0,nzb+1:nzt,nys:nyn) |
---|
| 1365 | IF ( humidity ) q(nzb+1:nzt,nys:nyn,-1) = & |
---|
| 1366 | nest_offl%q_left(0,nzb+1:nzt,nys:nyn) |
---|
| 1367 | IF ( air_chemistry ) THEN |
---|
| 1368 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
| 1369 | IF( nest_offl%chem_from_file_l(n) ) THEN |
---|
| 1370 | chem_species(n)%conc(nzb+1:nzt,nys:nyn,-1) = & |
---|
| 1371 | nest_offl%chem_left(0,nzb+1:nzt,nys:nyn,n) |
---|
| 1372 | ENDIF |
---|
| 1373 | ENDDO |
---|
| 1374 | ENDIF |
---|
[3737] | 1375 | ENDIF |
---|
[3891] | 1376 | IF ( bc_dirichlet_r ) THEN |
---|
| 1377 | u(nzb+1:nzt,nys:nyn,nxr+1) = nest_offl%u_right(0,nzb+1:nzt,nys:nyn) |
---|
| 1378 | v(nzb+1:nzt,nysv:nyn,nxr+1) = nest_offl%v_right(0,nzb+1:nzt,nysv:nyn) |
---|
| 1379 | w(nzb+1:nzt-1,nys:nyn,nxr+1) = nest_offl%w_right(0,nzb+1:nzt-1,nys:nyn) |
---|
| 1380 | IF ( .NOT. neutral ) pt(nzb+1:nzt,nys:nyn,nxr+1) = & |
---|
| 1381 | nest_offl%pt_right(0,nzb+1:nzt,nys:nyn) |
---|
| 1382 | IF ( humidity ) q(nzb+1:nzt,nys:nyn,nxr+1) = & |
---|
| 1383 | nest_offl%q_right(0,nzb+1:nzt,nys:nyn) |
---|
| 1384 | IF ( air_chemistry ) THEN |
---|
| 1385 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
| 1386 | IF( nest_offl%chem_from_file_r(n) ) THEN |
---|
| 1387 | chem_species(n)%conc(nzb+1:nzt,nys:nyn,nxr+1) = & |
---|
| 1388 | nest_offl%chem_right(0,nzb+1:nzt,nys:nyn,n) |
---|
| 1389 | ENDIF |
---|
| 1390 | ENDDO |
---|
| 1391 | ENDIF |
---|
[3737] | 1392 | ENDIF |
---|
[3891] | 1393 | IF ( bc_dirichlet_s ) THEN |
---|
| 1394 | u(nzb+1:nzt,-1,nxlu:nxr) = nest_offl%u_south(0,nzb+1:nzt,nxlu:nxr) |
---|
| 1395 | v(nzb+1:nzt,0,nxl:nxr) = nest_offl%v_south(0,nzb+1:nzt,nxl:nxr) |
---|
| 1396 | w(nzb+1:nzt-1,-1,nxl:nxr) = nest_offl%w_south(0,nzb+1:nzt-1,nxl:nxr) |
---|
| 1397 | IF ( .NOT. neutral ) pt(nzb+1:nzt,-1,nxl:nxr) = & |
---|
| 1398 | nest_offl%pt_south(0,nzb+1:nzt,nxl:nxr) |
---|
| 1399 | IF ( humidity ) q(nzb+1:nzt,-1,nxl:nxr) = & |
---|
| 1400 | nest_offl%q_south(0,nzb+1:nzt,nxl:nxr) |
---|
| 1401 | IF ( air_chemistry ) THEN |
---|
| 1402 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
| 1403 | IF( nest_offl%chem_from_file_s(n) ) THEN |
---|
| 1404 | chem_species(n)%conc(nzb+1:nzt,-1,nxl:nxr) = & |
---|
| 1405 | nest_offl%chem_south(0,nzb+1:nzt,nxl:nxr,n) |
---|
| 1406 | ENDIF |
---|
| 1407 | ENDDO |
---|
| 1408 | ENDIF |
---|
[3737] | 1409 | ENDIF |
---|
[3891] | 1410 | IF ( bc_dirichlet_n ) THEN |
---|
| 1411 | u(nzb+1:nzt,nyn+1,nxlu:nxr) = nest_offl%u_north(0,nzb+1:nzt,nxlu:nxr) |
---|
| 1412 | v(nzb+1:nzt,nyn+1,nxl:nxr) = nest_offl%v_north(0,nzb+1:nzt,nxl:nxr) |
---|
| 1413 | w(nzb+1:nzt-1,nyn+1,nxl:nxr) = nest_offl%w_north(0,nzb+1:nzt-1,nxl:nxr) |
---|
| 1414 | IF ( .NOT. neutral ) pt(nzb+1:nzt,nyn+1,nxl:nxr) = & |
---|
| 1415 | nest_offl%pt_north(0,nzb+1:nzt,nxl:nxr) |
---|
| 1416 | IF ( humidity ) q(nzb+1:nzt,nyn+1,nxl:nxr) = & |
---|
| 1417 | nest_offl%q_north(0,nzb+1:nzt,nxl:nxr) |
---|
| 1418 | IF ( air_chemistry ) THEN |
---|
| 1419 | DO n = 1, UBOUND( chem_species, 1 ) |
---|
| 1420 | IF( nest_offl%chem_from_file_n(n) ) THEN |
---|
| 1421 | chem_species(n)%conc(nzb+1:nzt,nyn+1,nxl:nxr) = & |
---|
| 1422 | nest_offl%chem_north(0,nzb+1:nzt,nxl:nxr,n) |
---|
| 1423 | ENDIF |
---|
| 1424 | ENDDO |
---|
| 1425 | ENDIF |
---|
[3737] | 1426 | ENDIF |
---|
[3891] | 1427 | ! |
---|
| 1428 | !-- Initialize geostrophic wind components. Actually this is already done in |
---|
| 1429 | !-- init_3d_model when initializing_action = 'inifor', however, in speical |
---|
| 1430 | !-- case of user-defined initialization this will be done here again, in |
---|
| 1431 | !-- order to have a consistent initialization. |
---|
| 1432 | ug(nzb+1:nzt) = nest_offl%ug(0,nzb+1:nzt) |
---|
| 1433 | vg(nzb+1:nzt) = nest_offl%vg(0,nzb+1:nzt) |
---|
| 1434 | ! |
---|
| 1435 | !-- Set bottom and top boundary condition for geostrophic wind components |
---|
| 1436 | ug(nzt+1) = ug(nzt) |
---|
| 1437 | vg(nzt+1) = vg(nzt) |
---|
| 1438 | ug(nzb) = ug(nzb+1) |
---|
| 1439 | vg(nzb) = vg(nzb+1) |
---|
| 1440 | ENDIF |
---|
[3347] | 1441 | ! |
---|
| 1442 | !-- After boundary data is initialized, mask topography at the |
---|
| 1443 | !-- boundaries for the velocity components. |
---|
| 1444 | u = MERGE( u, 0.0_wp, BTEST( wall_flags_0, 1 ) ) |
---|
| 1445 | v = MERGE( v, 0.0_wp, BTEST( wall_flags_0, 2 ) ) |
---|
| 1446 | w = MERGE( w, 0.0_wp, BTEST( wall_flags_0, 3 ) ) |
---|
[3891] | 1447 | ! |
---|
| 1448 | !-- Initial calculation of the boundary layer depth from the prescribed |
---|
| 1449 | !-- boundary data. This is requiered for initialize the synthetic turbulence |
---|
| 1450 | !-- generator correctly. |
---|
[4022] | 1451 | CALL nesting_offl_calc_zi |
---|
[3347] | 1452 | |
---|
| 1453 | ! |
---|
[3891] | 1454 | !-- After boundary data is initialized, ensure mass conservation. Not |
---|
| 1455 | !-- necessary in restart runs. |
---|
| 1456 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
| 1457 | CALL nesting_offl_mass_conservation |
---|
| 1458 | ENDIF |
---|
[3347] | 1459 | |
---|
| 1460 | END SUBROUTINE nesting_offl_init |
---|
| 1461 | |
---|
| 1462 | !------------------------------------------------------------------------------! |
---|
| 1463 | ! Description: |
---|
| 1464 | !------------------------------------------------------------------------------! |
---|
| 1465 | !> Interpolation function, used to interpolate boundary data in time. |
---|
| 1466 | !------------------------------------------------------------------------------! |
---|
| 1467 | FUNCTION interpolate_in_time( var_t1, var_t2, fac ) |
---|
| 1468 | |
---|
| 1469 | USE kinds |
---|
| 1470 | |
---|
| 1471 | IMPLICIT NONE |
---|
| 1472 | |
---|
| 1473 | REAL(wp) :: interpolate_in_time !< time-interpolated boundary value |
---|
| 1474 | REAL(wp) :: var_t1 !< boundary value at t1 |
---|
| 1475 | REAL(wp) :: var_t2 !< boundary value at t2 |
---|
| 1476 | REAL(wp) :: fac !< interpolation factor |
---|
| 1477 | |
---|
| 1478 | interpolate_in_time = ( 1.0_wp - fac ) * var_t1 + fac * var_t2 |
---|
| 1479 | |
---|
| 1480 | END FUNCTION interpolate_in_time |
---|
| 1481 | |
---|
| 1482 | |
---|
| 1483 | |
---|
| 1484 | END MODULE nesting_offl_mod |
---|