[3347] | 1 | !> @file nesting_offl_mod.f90 |
---|
| 2 | !------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of the PALM model system. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
| 18 | !------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
| 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
| 22 | ! |
---|
| 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! |
---|
| 27 | ! Initial Revision: |
---|
| 28 | ! - separate offline nesting from large_scale_nudging_mod |
---|
| 29 | ! - revise offline nesting, adjust for usage of synthetic turbulence generator |
---|
| 30 | ! - adjust Rayleigh damping depending on the time-depending atmospheric |
---|
| 31 | ! conditions |
---|
| 32 | ! |
---|
| 33 | ! |
---|
| 34 | ! Description: |
---|
| 35 | ! ------------ |
---|
| 36 | !> Offline nesting in larger-scale models. Boundary conditions for the simulation |
---|
| 37 | !> are read from NetCDF file and are prescribed onto the respective arrays. |
---|
| 38 | !> Further, a mass-flux correction is performed to maintain the mass balance. |
---|
| 39 | !--------------------------------------------------------------------------------! |
---|
| 40 | MODULE nesting_offl_mod |
---|
| 41 | |
---|
| 42 | USE arrays_3d, & |
---|
| 43 | ONLY: dzw, e, diss, pt, pt_init, q, q_init, s, u, u_init, ug, v, & |
---|
| 44 | v_init, vg, w, zu, zw |
---|
| 45 | |
---|
| 46 | USE control_parameters, & |
---|
| 47 | ONLY: bc_dirichlet_l, bc_dirichlet_n, bc_dirichlet_r, bc_dirichlet_s, & |
---|
| 48 | dt_3d, dz, constant_diffusion, humidity, message_string, & |
---|
| 49 | nesting_offline, neutral, passive_scalar, rans_mode, rans_tke_e,& |
---|
| 50 | time_since_reference_point, volume_flow |
---|
| 51 | |
---|
| 52 | USE cpulog, & |
---|
| 53 | ONLY: cpu_log, log_point |
---|
| 54 | |
---|
| 55 | USE grid_variables |
---|
| 56 | |
---|
| 57 | USE indices, & |
---|
| 58 | ONLY: nbgp, nx, nxl, nxlg, nxlu, nxr, nxrg, ny, nys, & |
---|
| 59 | nysv, nysg, nyn, nyng, nzb, nz, nzt, wall_flags_0 |
---|
| 60 | |
---|
| 61 | USE kinds |
---|
| 62 | |
---|
| 63 | USE netcdf_data_input_mod, & |
---|
| 64 | ONLY: nest_offl |
---|
| 65 | |
---|
| 66 | USE pegrid |
---|
| 67 | |
---|
| 68 | REAL(wp) :: zi_ribulk = 0.0_wp !< boundary-layer depth according to bulk Richardson criterion, i.e. the height where Ri_bulk exceeds the critical |
---|
| 69 | !< bulk Richardson number of 0.25 |
---|
| 70 | |
---|
| 71 | SAVE |
---|
| 72 | PRIVATE |
---|
| 73 | ! |
---|
| 74 | !-- Public subroutines |
---|
| 75 | PUBLIC nesting_offl_bc, nesting_offl_header, nesting_offl_init, & |
---|
| 76 | nesting_offl_mass_conservation, nesting_offl_parin |
---|
| 77 | ! |
---|
| 78 | !-- Public variables |
---|
| 79 | PUBLIC zi_ribulk |
---|
| 80 | |
---|
| 81 | INTERFACE nesting_offl_bc |
---|
| 82 | MODULE PROCEDURE nesting_offl_bc |
---|
| 83 | END INTERFACE nesting_offl_bc |
---|
| 84 | |
---|
| 85 | INTERFACE nesting_offl_header |
---|
| 86 | MODULE PROCEDURE nesting_offl_header |
---|
| 87 | END INTERFACE nesting_offl_header |
---|
| 88 | |
---|
| 89 | INTERFACE nesting_offl_init |
---|
| 90 | MODULE PROCEDURE nesting_offl_init |
---|
| 91 | END INTERFACE nesting_offl_init |
---|
| 92 | |
---|
| 93 | INTERFACE nesting_offl_mass_conservation |
---|
| 94 | MODULE PROCEDURE nesting_offl_mass_conservation |
---|
| 95 | END INTERFACE nesting_offl_mass_conservation |
---|
| 96 | |
---|
| 97 | INTERFACE nesting_offl_parin |
---|
| 98 | MODULE PROCEDURE nesting_offl_parin |
---|
| 99 | END INTERFACE nesting_offl_parin |
---|
| 100 | |
---|
| 101 | CONTAINS |
---|
| 102 | |
---|
| 103 | |
---|
| 104 | !------------------------------------------------------------------------------! |
---|
| 105 | ! Description: |
---|
| 106 | ! ------------ |
---|
| 107 | !> In this subroutine a constant mass within the model domain is guaranteed. |
---|
| 108 | !> Larger-scale models may be based on a compressible equation system, which is |
---|
| 109 | !> not consistent with PALMs incompressible equation system. In order to avoid |
---|
| 110 | !> a decrease or increase of mass during the simulation, non-divergent flow |
---|
| 111 | !> through the lateral and top boundaries is compensated by the vertical wind |
---|
| 112 | !> component at the top boundary. |
---|
| 113 | !------------------------------------------------------------------------------! |
---|
| 114 | SUBROUTINE nesting_offl_mass_conservation |
---|
| 115 | |
---|
| 116 | IMPLICIT NONE |
---|
| 117 | |
---|
| 118 | INTEGER(iwp) :: i !< grid index in x-direction |
---|
| 119 | INTEGER(iwp) :: j !< grid index in y-direction |
---|
| 120 | INTEGER(iwp) :: k !< grid index in z-direction |
---|
| 121 | |
---|
| 122 | REAL(wp) :: d_area_t !< inverse of the total area of the horizontal model domain |
---|
| 123 | REAL(wp) :: w_correct !< vertical velocity increment required to compensate non-divergent flow through the boundaries |
---|
| 124 | REAL(wp), DIMENSION(1:3) :: volume_flow_l !< local volume flow |
---|
| 125 | |
---|
| 126 | |
---|
| 127 | CALL cpu_log( log_point(58), 'offline nesting', 'start' ) |
---|
| 128 | |
---|
| 129 | volume_flow = 0.0_wp |
---|
| 130 | volume_flow_l = 0.0_wp |
---|
| 131 | |
---|
| 132 | d_area_t = 1.0_wp / ( ( nx + 1 ) * dx * ( ny + 1 ) * dy ) |
---|
| 133 | |
---|
| 134 | IF ( bc_dirichlet_l ) THEN |
---|
| 135 | i = nxl |
---|
| 136 | DO j = nys, nyn |
---|
| 137 | DO k = nzb+1, nzt |
---|
| 138 | volume_flow_l(1) = volume_flow_l(1) + u(k,j,i) * dzw(k) * dy & |
---|
| 139 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 140 | BTEST( wall_flags_0(k,j,i), 1 ) ) |
---|
| 141 | ENDDO |
---|
| 142 | ENDDO |
---|
| 143 | ENDIF |
---|
| 144 | IF ( bc_dirichlet_r ) THEN |
---|
| 145 | i = nxr+1 |
---|
| 146 | DO j = nys, nyn |
---|
| 147 | DO k = nzb+1, nzt |
---|
| 148 | volume_flow_l(1) = volume_flow_l(1) - u(k,j,i) * dzw(k) * dy & |
---|
| 149 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 150 | BTEST( wall_flags_0(k,j,i), 1 ) ) |
---|
| 151 | ENDDO |
---|
| 152 | ENDDO |
---|
| 153 | ENDIF |
---|
| 154 | IF ( bc_dirichlet_s ) THEN |
---|
| 155 | j = nys |
---|
| 156 | DO i = nxl, nxr |
---|
| 157 | DO k = nzb+1, nzt |
---|
| 158 | volume_flow_l(2) = volume_flow_l(2) + v(k,j,i) * dzw(k) * dx & |
---|
| 159 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 160 | BTEST( wall_flags_0(k,j,i), 2 ) ) |
---|
| 161 | ENDDO |
---|
| 162 | ENDDO |
---|
| 163 | ENDIF |
---|
| 164 | IF ( bc_dirichlet_n ) THEN |
---|
| 165 | j = nyn+1 |
---|
| 166 | DO i = nxl, nxr |
---|
| 167 | DO k = nzb+1, nzt |
---|
| 168 | volume_flow_l(2) = volume_flow_l(2) - v(k,j,i) * dzw(k) * dx & |
---|
| 169 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 170 | BTEST( wall_flags_0(k,j,i), 2 ) ) |
---|
| 171 | ENDDO |
---|
| 172 | ENDDO |
---|
| 173 | ENDIF |
---|
| 174 | ! |
---|
| 175 | !-- Top boundary |
---|
| 176 | k = nzt |
---|
| 177 | DO i = nxl, nxr |
---|
| 178 | DO j = nys, nyn |
---|
| 179 | volume_flow_l(3) = volume_flow_l(3) - w(k,j,i) * dx * dy |
---|
| 180 | ENDDO |
---|
| 181 | ENDDO |
---|
| 182 | |
---|
| 183 | #if defined( __parallel ) |
---|
| 184 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 185 | CALL MPI_ALLREDUCE( volume_flow_l, volume_flow, 3, MPI_REAL, MPI_SUM, & |
---|
| 186 | comm2d, ierr ) |
---|
| 187 | #else |
---|
| 188 | volume_flow = volume_flow_l |
---|
| 189 | #endif |
---|
| 190 | |
---|
| 191 | w_correct = SUM( volume_flow ) * d_area_t |
---|
| 192 | |
---|
| 193 | DO i = nxl, nxr |
---|
| 194 | DO j = nys, nyn |
---|
| 195 | DO k = nzt, nzt + 1 |
---|
| 196 | w(k,j,i) = w(k,j,i) + w_correct |
---|
| 197 | ENDDO |
---|
| 198 | ENDDO |
---|
| 199 | ENDDO |
---|
| 200 | |
---|
| 201 | CALL cpu_log( log_point(58), 'offline nesting', 'stop' ) |
---|
| 202 | |
---|
| 203 | END SUBROUTINE nesting_offl_mass_conservation |
---|
| 204 | |
---|
| 205 | |
---|
| 206 | !------------------------------------------------------------------------------! |
---|
| 207 | ! Description: |
---|
| 208 | ! ------------ |
---|
| 209 | !> Set the lateral and top boundary conditions in case the PALM domain is |
---|
| 210 | !> nested offline in a mesoscale model. Further, average boundary data and |
---|
| 211 | !> determine mean profiles, further used for correct damping in the sponge |
---|
| 212 | !> layer. |
---|
| 213 | !------------------------------------------------------------------------------! |
---|
| 214 | SUBROUTINE nesting_offl_bc |
---|
| 215 | |
---|
| 216 | IMPLICIT NONE |
---|
| 217 | |
---|
| 218 | INTEGER(iwp) :: i !< running index x-direction |
---|
| 219 | INTEGER(iwp) :: j !< running index y-direction |
---|
| 220 | INTEGER(iwp) :: k !< running index z-direction |
---|
| 221 | |
---|
| 222 | REAL(wp) :: fac_dt !< interpolation factor |
---|
| 223 | |
---|
| 224 | REAL(wp), DIMENSION(nzb:nzt+1) :: pt_ref !< reference profile for potential temperature |
---|
| 225 | REAL(wp), DIMENSION(nzb:nzt+1) :: pt_ref_l !< reference profile for potential temperature on subdomain |
---|
| 226 | REAL(wp), DIMENSION(nzb:nzt+1) :: q_ref !< reference profile for mixing ratio on subdomain |
---|
| 227 | REAL(wp), DIMENSION(nzb:nzt+1) :: q_ref_l !< reference profile for mixing ratio on subdomain |
---|
| 228 | REAL(wp), DIMENSION(nzb:nzt+1) :: u_ref !< reference profile for u-component on subdomain |
---|
| 229 | REAL(wp), DIMENSION(nzb:nzt+1) :: u_ref_l !< reference profile for u-component on subdomain |
---|
| 230 | REAL(wp), DIMENSION(nzb:nzt+1) :: v_ref !< reference profile for v-component on subdomain |
---|
| 231 | REAL(wp), DIMENSION(nzb:nzt+1) :: v_ref_l !< reference profile for v-component on subdomain |
---|
| 232 | |
---|
| 233 | CALL cpu_log( log_point(58), 'offline nesting', 'start' ) |
---|
| 234 | ! |
---|
| 235 | !-- Set mean profiles, derived from boundary data, to zero |
---|
| 236 | pt_ref = 0.0_wp |
---|
| 237 | q_ref = 0.0_wp |
---|
| 238 | u_ref = 0.0_wp |
---|
| 239 | v_ref = 0.0_wp |
---|
| 240 | |
---|
| 241 | pt_ref_l = 0.0_wp |
---|
| 242 | q_ref_l = 0.0_wp |
---|
| 243 | u_ref_l = 0.0_wp |
---|
| 244 | v_ref_l = 0.0_wp |
---|
| 245 | ! |
---|
| 246 | !-- Determine interpolation factor and limit it to 1. This is because |
---|
| 247 | !-- t+dt can slightly exceed time(tind_p) before boundary data is updated |
---|
| 248 | !-- again. |
---|
| 249 | fac_dt = ( time_since_reference_point - nest_offl%time(nest_offl%tind) & |
---|
| 250 | + dt_3d ) / & |
---|
| 251 | ( nest_offl%time(nest_offl%tind_p) - nest_offl%time(nest_offl%tind) ) |
---|
| 252 | fac_dt = MIN( 1.0_wp, fac_dt ) |
---|
| 253 | ! |
---|
| 254 | !-- Set boundary conditions of u-, v-, w-component, as well as q, and pt. |
---|
| 255 | !-- Note, boundary values at the left boundary: i=-1 (v,w,pt,q) and |
---|
| 256 | !-- i=0 (u), at the right boundary: i=nxr+1 (all), at the south boundary: |
---|
| 257 | !-- j=-1 (u,w,pt,q) and j=0 (v), at the north boundary: j=nyn+1 (all). |
---|
| 258 | !-- Please note, at the left (for u) and south (for v) boundary, values |
---|
| 259 | !-- for u and v are set also at i/j=-1, since these values are used in |
---|
| 260 | !-- boundary_conditions() to restore prognostic values. |
---|
| 261 | !-- Further, sum up data to calculate mean profiles from boundary data, |
---|
| 262 | !-- used for Rayleigh damping. |
---|
| 263 | IF ( bc_dirichlet_l ) THEN |
---|
| 264 | |
---|
| 265 | DO j = nys, nyn |
---|
| 266 | DO k = nzb+1, nzt |
---|
| 267 | u(k,j,0) = interpolate_in_time( nest_offl%u_left(0,k,j), & |
---|
| 268 | nest_offl%u_left(1,k,j), & |
---|
| 269 | fac_dt ) * & |
---|
| 270 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 271 | BTEST( wall_flags_0(k,j,0), 1 ) ) |
---|
| 272 | u(k,j,-1) = u(k,j,0) |
---|
| 273 | ENDDO |
---|
| 274 | u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,j,0) |
---|
| 275 | ENDDO |
---|
| 276 | |
---|
| 277 | DO j = nys, nyn |
---|
| 278 | DO k = nzb+1, nzt-1 |
---|
| 279 | w(k,j,-1) = interpolate_in_time( nest_offl%w_left(0,k,j), & |
---|
| 280 | nest_offl%w_left(1,k,j), & |
---|
| 281 | fac_dt ) * & |
---|
| 282 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 283 | BTEST( wall_flags_0(k,j,-1), 3 ) ) |
---|
| 284 | ENDDO |
---|
| 285 | ENDDO |
---|
| 286 | |
---|
| 287 | DO j = nysv, nyn |
---|
| 288 | DO k = nzb+1, nzt |
---|
| 289 | v(k,j,-1) = interpolate_in_time( nest_offl%v_left(0,k,j), & |
---|
| 290 | nest_offl%v_left(1,k,j), & |
---|
| 291 | fac_dt ) * & |
---|
| 292 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 293 | BTEST( wall_flags_0(k,j,-1), 2 ) ) |
---|
| 294 | ENDDO |
---|
| 295 | v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,j,-1) |
---|
| 296 | ENDDO |
---|
| 297 | |
---|
| 298 | IF ( .NOT. neutral ) THEN |
---|
| 299 | DO j = nys, nyn |
---|
| 300 | DO k = nzb+1, nzt |
---|
| 301 | pt(k,j,-1) = interpolate_in_time( nest_offl%pt_left(0,k,j), & |
---|
| 302 | nest_offl%pt_left(1,k,j), & |
---|
| 303 | fac_dt ) |
---|
| 304 | |
---|
| 305 | ENDDO |
---|
| 306 | pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,j,-1) |
---|
| 307 | ENDDO |
---|
| 308 | ENDIF |
---|
| 309 | |
---|
| 310 | IF ( humidity ) THEN |
---|
| 311 | DO j = nys, nyn |
---|
| 312 | DO k = nzb+1, nzt |
---|
| 313 | q(k,j,-1) = interpolate_in_time( nest_offl%q_left(0,k,j), & |
---|
| 314 | nest_offl%q_left(1,k,j), & |
---|
| 315 | fac_dt ) |
---|
| 316 | |
---|
| 317 | ENDDO |
---|
| 318 | q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,j,-1) |
---|
| 319 | ENDDO |
---|
| 320 | ENDIF |
---|
| 321 | |
---|
| 322 | ENDIF |
---|
| 323 | |
---|
| 324 | IF ( bc_dirichlet_r ) THEN |
---|
| 325 | |
---|
| 326 | DO j = nys, nyn |
---|
| 327 | DO k = nzb+1, nzt |
---|
| 328 | u(k,j,nxr+1) = interpolate_in_time( nest_offl%u_right(0,k,j), & |
---|
| 329 | nest_offl%u_right(1,k,j), & |
---|
| 330 | fac_dt ) * & |
---|
| 331 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 332 | BTEST( wall_flags_0(k,j,nxr+1), 1 ) ) |
---|
| 333 | ENDDO |
---|
| 334 | u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,j,nxr+1) |
---|
| 335 | ENDDO |
---|
| 336 | DO j = nys, nyn |
---|
| 337 | DO k = nzb+1, nzt-1 |
---|
| 338 | w(k,j,nxr+1) = interpolate_in_time( nest_offl%w_right(0,k,j), & |
---|
| 339 | nest_offl%w_right(1,k,j), & |
---|
| 340 | fac_dt ) * & |
---|
| 341 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 342 | BTEST( wall_flags_0(k,j,nxr+1), 3 ) ) |
---|
| 343 | ENDDO |
---|
| 344 | ENDDO |
---|
| 345 | |
---|
| 346 | DO j = nysv, nyn |
---|
| 347 | DO k = nzb+1, nzt |
---|
| 348 | v(k,j,nxr+1) = interpolate_in_time( nest_offl%v_right(0,k,j), & |
---|
| 349 | nest_offl%v_right(1,k,j), & |
---|
| 350 | fac_dt ) * & |
---|
| 351 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 352 | BTEST( wall_flags_0(k,j,nxr+1), 2 ) ) |
---|
| 353 | ENDDO |
---|
| 354 | v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,j,nxr+1) |
---|
| 355 | ENDDO |
---|
| 356 | |
---|
| 357 | IF ( .NOT. neutral ) THEN |
---|
| 358 | DO j = nys, nyn |
---|
| 359 | DO k = nzb+1, nzt |
---|
| 360 | pt(k,j,nxr+1) = interpolate_in_time( & |
---|
| 361 | nest_offl%pt_right(0,k,j), & |
---|
| 362 | nest_offl%pt_right(1,k,j), & |
---|
| 363 | fac_dt ) |
---|
| 364 | ENDDO |
---|
| 365 | pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,j,nxr+1) |
---|
| 366 | ENDDO |
---|
| 367 | ENDIF |
---|
| 368 | |
---|
| 369 | IF ( humidity ) THEN |
---|
| 370 | DO j = nys, nyn |
---|
| 371 | DO k = nzb+1, nzt |
---|
| 372 | q(k,j,nxr+1) = interpolate_in_time( & |
---|
| 373 | nest_offl%q_right(0,k,j), & |
---|
| 374 | nest_offl%q_right(1,k,j), & |
---|
| 375 | fac_dt ) |
---|
| 376 | |
---|
| 377 | ENDDO |
---|
| 378 | q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,j,nxr+1) |
---|
| 379 | ENDDO |
---|
| 380 | ENDIF |
---|
| 381 | |
---|
| 382 | ENDIF |
---|
| 383 | |
---|
| 384 | IF ( bc_dirichlet_s ) THEN |
---|
| 385 | |
---|
| 386 | DO i = nxl, nxr |
---|
| 387 | DO k = nzb+1, nzt |
---|
| 388 | v(k,0,i) = interpolate_in_time( nest_offl%v_south(0,k,i), & |
---|
| 389 | nest_offl%v_south(1,k,i), & |
---|
| 390 | fac_dt ) * & |
---|
| 391 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 392 | BTEST( wall_flags_0(k,0,i), 2 ) ) |
---|
| 393 | v(k,-1,i) = v(k,0,i) |
---|
| 394 | ENDDO |
---|
| 395 | v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,0,i) |
---|
| 396 | ENDDO |
---|
| 397 | |
---|
| 398 | DO i = nxl, nxr |
---|
| 399 | DO k = nzb+1, nzt-1 |
---|
| 400 | w(k,-1,i) = interpolate_in_time( nest_offl%w_south(0,k,i), & |
---|
| 401 | nest_offl%w_south(1,k,i), & |
---|
| 402 | fac_dt ) * & |
---|
| 403 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 404 | BTEST( wall_flags_0(k,-1,i), 3 ) ) |
---|
| 405 | ENDDO |
---|
| 406 | ENDDO |
---|
| 407 | |
---|
| 408 | DO i = nxlu, nxr |
---|
| 409 | DO k = nzb+1, nzt |
---|
| 410 | u(k,-1,i) = interpolate_in_time( nest_offl%u_south(0,k,i), & |
---|
| 411 | nest_offl%u_south(1,k,i), & |
---|
| 412 | fac_dt ) * & |
---|
| 413 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 414 | BTEST( wall_flags_0(k,-1,i), 1 ) ) |
---|
| 415 | ENDDO |
---|
| 416 | u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,-1,i) |
---|
| 417 | ENDDO |
---|
| 418 | |
---|
| 419 | IF ( .NOT. neutral ) THEN |
---|
| 420 | DO i = nxl, nxr |
---|
| 421 | DO k = nzb+1, nzt |
---|
| 422 | pt(k,-1,i) = interpolate_in_time( & |
---|
| 423 | nest_offl%pt_south(0,k,i), & |
---|
| 424 | nest_offl%pt_south(1,k,i), & |
---|
| 425 | fac_dt ) |
---|
| 426 | |
---|
| 427 | ENDDO |
---|
| 428 | pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,-1,i) |
---|
| 429 | ENDDO |
---|
| 430 | ENDIF |
---|
| 431 | |
---|
| 432 | IF ( humidity ) THEN |
---|
| 433 | DO i = nxl, nxr |
---|
| 434 | DO k = nzb+1, nzt |
---|
| 435 | q(k,-1,i) = interpolate_in_time( & |
---|
| 436 | nest_offl%q_south(0,k,i), & |
---|
| 437 | nest_offl%q_south(1,k,i), & |
---|
| 438 | fac_dt ) |
---|
| 439 | |
---|
| 440 | ENDDO |
---|
| 441 | q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,-1,i) |
---|
| 442 | ENDDO |
---|
| 443 | ENDIF |
---|
| 444 | |
---|
| 445 | ENDIF |
---|
| 446 | |
---|
| 447 | IF ( bc_dirichlet_n ) THEN |
---|
| 448 | |
---|
| 449 | DO i = nxl, nxr |
---|
| 450 | DO k = nzb+1, nzt |
---|
| 451 | v(k,nyn+1,i) = interpolate_in_time( nest_offl%v_north(0,k,i), & |
---|
| 452 | nest_offl%v_north(1,k,i), & |
---|
| 453 | fac_dt ) * & |
---|
| 454 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 455 | BTEST( wall_flags_0(k,nyn+1,i), 2 ) ) |
---|
| 456 | ENDDO |
---|
| 457 | v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,nyn+1,i) |
---|
| 458 | ENDDO |
---|
| 459 | DO i = nxl, nxr |
---|
| 460 | DO k = nzb+1, nzt-1 |
---|
| 461 | w(k,nyn+1,i) = interpolate_in_time( nest_offl%w_north(0,k,i), & |
---|
| 462 | nest_offl%w_north(1,k,i), & |
---|
| 463 | fac_dt ) * & |
---|
| 464 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 465 | BTEST( wall_flags_0(k,nyn+1,i), 3 ) ) |
---|
| 466 | ENDDO |
---|
| 467 | ENDDO |
---|
| 468 | |
---|
| 469 | DO i = nxlu, nxr |
---|
| 470 | DO k = nzb+1, nzt |
---|
| 471 | u(k,nyn+1,i) = interpolate_in_time( nest_offl%u_north(0,k,i), & |
---|
| 472 | nest_offl%u_north(1,k,i), & |
---|
| 473 | fac_dt ) * & |
---|
| 474 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 475 | BTEST( wall_flags_0(k,nyn+1,i), 1 ) ) |
---|
| 476 | |
---|
| 477 | ENDDO |
---|
| 478 | u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,nyn+1,i) |
---|
| 479 | ENDDO |
---|
| 480 | |
---|
| 481 | IF ( .NOT. neutral ) THEN |
---|
| 482 | DO i = nxl, nxr |
---|
| 483 | DO k = nzb+1, nzt |
---|
| 484 | pt(k,nyn+1,i) = interpolate_in_time( & |
---|
| 485 | nest_offl%pt_north(0,k,i), & |
---|
| 486 | nest_offl%pt_north(1,k,i), & |
---|
| 487 | fac_dt ) |
---|
| 488 | |
---|
| 489 | ENDDO |
---|
| 490 | pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,nyn+1,i) |
---|
| 491 | ENDDO |
---|
| 492 | ENDIF |
---|
| 493 | |
---|
| 494 | IF ( humidity ) THEN |
---|
| 495 | DO i = nxl, nxr |
---|
| 496 | DO k = nzb+1, nzt |
---|
| 497 | q(k,nyn+1,i) = interpolate_in_time( & |
---|
| 498 | nest_offl%q_north(0,k,i), & |
---|
| 499 | nest_offl%q_north(1,k,i), & |
---|
| 500 | fac_dt ) |
---|
| 501 | |
---|
| 502 | ENDDO |
---|
| 503 | q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,nyn+1,i) |
---|
| 504 | ENDDO |
---|
| 505 | ENDIF |
---|
| 506 | |
---|
| 507 | ENDIF |
---|
| 508 | ! |
---|
| 509 | !-- Top boundary |
---|
| 510 | DO i = nxlu, nxr |
---|
| 511 | DO j = nys, nyn |
---|
| 512 | u(nzt+1,j,i) = interpolate_in_time( nest_offl%u_top(0,j,i), & |
---|
| 513 | nest_offl%u_top(1,j,i), & |
---|
| 514 | fac_dt ) * & |
---|
| 515 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 516 | BTEST( wall_flags_0(nzt+1,j,i), 1 ) ) |
---|
| 517 | u_ref_l(nzt+1) = u_ref_l(nzt+1) + u(nzt+1,j,i) |
---|
| 518 | ENDDO |
---|
| 519 | ENDDO |
---|
| 520 | |
---|
| 521 | DO i = nxl, nxr |
---|
| 522 | DO j = nysv, nyn |
---|
| 523 | v(nzt+1,j,i) = interpolate_in_time( nest_offl%v_top(0,j,i), & |
---|
| 524 | nest_offl%v_top(1,j,i), & |
---|
| 525 | fac_dt ) * & |
---|
| 526 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 527 | BTEST( wall_flags_0(nzt+1,j,i), 2 ) ) |
---|
| 528 | v_ref_l(nzt+1) = v_ref_l(nzt+1) + v(nzt+1,j,i) |
---|
| 529 | ENDDO |
---|
| 530 | ENDDO |
---|
| 531 | |
---|
| 532 | DO i = nxl, nxr |
---|
| 533 | DO j = nys, nyn |
---|
| 534 | w(nzt,j,i) = interpolate_in_time( nest_offl%w_top(0,j,i), & |
---|
| 535 | nest_offl%w_top(1,j,i), & |
---|
| 536 | fac_dt ) * & |
---|
| 537 | MERGE( 1.0_wp, 0.0_wp, & |
---|
| 538 | BTEST( wall_flags_0(nzt,j,i), 3 ) ) |
---|
| 539 | w(nzt+1,j,i) = w(nzt,j,i) |
---|
| 540 | ENDDO |
---|
| 541 | ENDDO |
---|
| 542 | |
---|
| 543 | |
---|
| 544 | IF ( .NOT. neutral ) THEN |
---|
| 545 | DO i = nxl, nxr |
---|
| 546 | DO j = nys, nyn |
---|
| 547 | pt(nzt+1,j,i) = interpolate_in_time( nest_offl%pt_top(0,j,i), & |
---|
| 548 | nest_offl%pt_top(1,j,i), & |
---|
| 549 | fac_dt ) |
---|
| 550 | pt_ref_l(nzt+1) = pt_ref_l(nzt+1) + pt(nzt+1,j,i) |
---|
| 551 | ENDDO |
---|
| 552 | ENDDO |
---|
| 553 | ENDIF |
---|
| 554 | |
---|
| 555 | IF ( humidity ) THEN |
---|
| 556 | DO i = nxl, nxr |
---|
| 557 | DO j = nys, nyn |
---|
| 558 | q(nzt+1,j,i) = interpolate_in_time( nest_offl%q_top(0,j,i), & |
---|
| 559 | nest_offl%q_top(1,j,i), & |
---|
| 560 | fac_dt ) |
---|
| 561 | q_ref_l(nzt+1) = q_ref_l(nzt+1) + q(nzt+1,j,i) |
---|
| 562 | ENDDO |
---|
| 563 | ENDDO |
---|
| 564 | ENDIF |
---|
| 565 | ! |
---|
| 566 | !-- Moreover, set Neumann boundary condition for subgrid-scale TKE, |
---|
| 567 | !-- passive scalar, dissipation, and chemical species if required |
---|
| 568 | IF ( rans_mode .AND. rans_tke_e ) THEN |
---|
| 569 | IF ( bc_dirichlet_l ) diss(:,:,nxl-1) = diss(:,:,nxl) |
---|
| 570 | IF ( bc_dirichlet_r ) diss(:,:,nxr+1) = diss(:,:,nxr) |
---|
| 571 | IF ( bc_dirichlet_s ) diss(:,nys-1,:) = diss(:,nys,:) |
---|
| 572 | IF ( bc_dirichlet_n ) diss(:,nyn+1,:) = diss(:,nyn,:) |
---|
| 573 | ENDIF |
---|
| 574 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 575 | IF ( bc_dirichlet_l ) e(:,:,nxl-1) = e(:,:,nxl) |
---|
| 576 | IF ( bc_dirichlet_r ) e(:,:,nxr+1) = e(:,:,nxr) |
---|
| 577 | IF ( bc_dirichlet_s ) e(:,nys-1,:) = e(:,nys,:) |
---|
| 578 | IF ( bc_dirichlet_n ) e(:,nyn+1,:) = e(:,nyn,:) |
---|
| 579 | e(nzt+1,:,:) = e(nzt,:,:) |
---|
| 580 | ENDIF |
---|
| 581 | IF ( passive_scalar ) THEN |
---|
| 582 | IF ( bc_dirichlet_l ) s(:,:,nxl-1) = s(:,:,nxl) |
---|
| 583 | IF ( bc_dirichlet_r ) s(:,:,nxr+1) = s(:,:,nxr) |
---|
| 584 | IF ( bc_dirichlet_s ) s(:,nys-1,:) = s(:,nys,:) |
---|
| 585 | IF ( bc_dirichlet_n ) s(:,nyn+1,:) = s(:,nyn,:) |
---|
| 586 | ENDIF |
---|
| 587 | |
---|
| 588 | CALL exchange_horiz( u, nbgp ) |
---|
| 589 | CALL exchange_horiz( v, nbgp ) |
---|
| 590 | CALL exchange_horiz( w, nbgp ) |
---|
| 591 | IF ( .NOT. neutral ) CALL exchange_horiz( pt, nbgp ) |
---|
| 592 | IF ( humidity ) CALL exchange_horiz( q, nbgp ) |
---|
| 593 | ! |
---|
| 594 | !-- In case of Rayleigh damping, where the profiles u_init, v_init |
---|
| 595 | !-- q_init and pt_init are still used, update these profiles from the |
---|
| 596 | !-- averaged boundary data. |
---|
| 597 | !-- But first, average these data. |
---|
| 598 | #if defined( __parallel ) |
---|
| 599 | CALL MPI_ALLREDUCE( u_ref_l, u_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM, & |
---|
| 600 | comm2d, ierr ) |
---|
| 601 | CALL MPI_ALLREDUCE( v_ref_l, v_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM, & |
---|
| 602 | comm2d, ierr ) |
---|
| 603 | IF ( humidity ) THEN |
---|
| 604 | CALL MPI_ALLREDUCE( q_ref_l, q_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM, & |
---|
| 605 | comm2d, ierr ) |
---|
| 606 | ENDIF |
---|
| 607 | IF ( .NOT. neutral ) THEN |
---|
| 608 | CALL MPI_ALLREDUCE( pt_ref_l, pt_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM,& |
---|
| 609 | comm2d, ierr ) |
---|
| 610 | ENDIF |
---|
| 611 | #else |
---|
| 612 | u_ref = u_ref_l |
---|
| 613 | v_ref = v_ref_l |
---|
| 614 | IF ( humidity ) q_ref = q_ref_l |
---|
| 615 | IF ( .NOT. neutral ) pt_ref = pt_ref_l |
---|
| 616 | #endif |
---|
| 617 | ! |
---|
| 618 | !-- Average data. Note, reference profiles up to nzt are derived from lateral |
---|
| 619 | !-- boundaries, at the model top it is derived from the top boundary. Thus, |
---|
| 620 | !-- number of input data is different from nzb:nzt compared to nzt+1. |
---|
| 621 | !-- Derived from lateral boundaries. |
---|
| 622 | u_ref(nzb:nzt) = u_ref(nzb:nzt) / REAL( 2.0_wp * ( ny + 1 + nx ), & |
---|
| 623 | KIND = wp ) |
---|
| 624 | v_ref(nzb:nzt) = v_ref(nzb:nzt) / REAL( 2.0_wp * ( ny + nx + 1 ), & |
---|
| 625 | KIND = wp ) |
---|
| 626 | IF ( humidity ) & |
---|
| 627 | q_ref(nzb:nzt) = q_ref(nzb:nzt) / REAL( 2.0_wp * ( ny + 1 + nx + 1 ), & |
---|
| 628 | KIND = wp ) |
---|
| 629 | IF ( .NOT. neutral ) & |
---|
| 630 | pt_ref(nzb:nzt) = pt_ref(nzb:nzt) / REAL( 2.0_wp * ( ny + 1 + nx + 1 ), & |
---|
| 631 | KIND = wp ) |
---|
| 632 | ! |
---|
| 633 | !-- Derived from top boundary. |
---|
| 634 | u_ref(nzt+1) = u_ref(nzt+1) / REAL( ( ny + 1 ) * ( nx ), KIND = wp ) |
---|
| 635 | v_ref(nzt+1) = v_ref(nzt+1) / REAL( ( ny ) * ( nx + 1 ), KIND = wp ) |
---|
| 636 | IF ( humidity ) & |
---|
| 637 | q_ref(nzt+1) = q_ref(nzt+1) / REAL( ( ny + 1 ) * ( nx + 1 ), KIND = wp ) |
---|
| 638 | IF ( .NOT. neutral ) & |
---|
| 639 | pt_ref(nzt+1) = pt_ref(nzt+1) / REAL( ( ny + 1 ) * ( nx + 1 ), KIND = wp ) |
---|
| 640 | ! |
---|
| 641 | !-- Write onto init profiles, which are used for damping |
---|
| 642 | u_init = u_ref |
---|
| 643 | v_init = v_ref |
---|
| 644 | IF ( humidity ) q_init = q_ref |
---|
| 645 | IF ( .NOT. neutral ) pt_init = pt_ref |
---|
| 646 | ! |
---|
| 647 | !-- Set bottom boundary condition |
---|
| 648 | IF ( humidity ) q_init(nzb) = q_init(nzb+1) |
---|
| 649 | IF ( .NOT. neutral ) pt_init(nzb) = pt_init(nzb+1) |
---|
| 650 | ! |
---|
| 651 | !-- Further, adjust Rayleigh damping height in case of time-changing conditions. |
---|
| 652 | !-- Therefore, calculate boundary-layer depth first. |
---|
| 653 | CALL calc_zi |
---|
| 654 | CALL adjust_sponge_layer |
---|
| 655 | |
---|
| 656 | ! |
---|
| 657 | !-- Update geostrophic wind components from dynamic input file. |
---|
| 658 | !-- Note, at the moment this is not available. As a workaround, use reference |
---|
| 659 | !-- profiles derived from the boundary values. |
---|
| 660 | !-- This will be revised as soon as geostrophic wind components are provided by |
---|
| 661 | !-- dynamic input file. |
---|
| 662 | ug = u_init |
---|
| 663 | vg = v_init |
---|
| 664 | |
---|
| 665 | CALL cpu_log( log_point(58), 'offline nesting', 'stop' ) |
---|
| 666 | |
---|
| 667 | END SUBROUTINE nesting_offl_bc |
---|
| 668 | |
---|
| 669 | !------------------------------------------------------------------------------! |
---|
| 670 | ! Description: |
---|
| 671 | !------------------------------------------------------------------------------! |
---|
| 672 | !> Calculates the boundary-layer depth from the boundary data, according to |
---|
| 673 | !> bulk-Richardson criterion. |
---|
| 674 | !------------------------------------------------------------------------------! |
---|
| 675 | SUBROUTINE calc_zi |
---|
| 676 | |
---|
| 677 | USE basic_constants_and_equations_mod, & |
---|
| 678 | ONLY: g |
---|
| 679 | |
---|
| 680 | USE kinds |
---|
| 681 | |
---|
| 682 | USE surface_mod, & |
---|
| 683 | ONLY: get_topography_top_index, get_topography_top_index_ji |
---|
| 684 | |
---|
| 685 | IMPLICIT NONE |
---|
| 686 | |
---|
| 687 | INTEGER(iwp) :: i !< loop index in x-direction |
---|
| 688 | INTEGER(iwp) :: j !< loop index in y-direction |
---|
| 689 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
| 690 | INTEGER(iwp) :: k_surface !< topography top index in z-direction |
---|
| 691 | |
---|
| 692 | REAL(wp) :: ri_bulk !< bulk Richardson number |
---|
| 693 | REAL(wp) :: ri_bulk_crit = 0.25_wp !< critical bulk Richardson number |
---|
| 694 | REAL(wp) :: topo_max !< maximum topography level in model domain |
---|
| 695 | REAL(wp) :: topo_max_l !< maximum topography level in subdomain |
---|
| 696 | REAL(wp) :: u_comp !< u-component |
---|
| 697 | REAL(wp) :: v_comp !< v-component |
---|
| 698 | REAL(wp) :: vpt_surface !< near-surface virtual potential temperature |
---|
| 699 | REAL(wp) :: zi_l !< mean boundary-layer depth on subdomain |
---|
| 700 | REAL(wp) :: zi_local !< local boundary-layer depth |
---|
| 701 | |
---|
| 702 | REAL(wp), DIMENSION(nzb:nzt+1) :: vpt_col !< vertical profile of virtual potential temperature at (j,i)-grid point |
---|
| 703 | |
---|
| 704 | |
---|
| 705 | ! |
---|
| 706 | !-- Calculate mean boundary-layer height from boundary data. |
---|
| 707 | !-- Start with the left and right boundaries. |
---|
| 708 | zi_l = 0.0_wp |
---|
| 709 | IF ( bc_dirichlet_l .OR. bc_dirichlet_r ) THEN |
---|
| 710 | ! |
---|
| 711 | !-- Determine index along x. Please note, index indicates boundary |
---|
| 712 | !-- grid point for scalars. |
---|
| 713 | i = MERGE( -1, nxr + 1, bc_dirichlet_l ) |
---|
| 714 | |
---|
| 715 | DO j = nys, nyn |
---|
| 716 | ! |
---|
| 717 | !-- Determine topography top index at current (j,i) index |
---|
| 718 | k_surface = get_topography_top_index_ji( j, i, 's' ) |
---|
| 719 | ! |
---|
| 720 | !-- Pre-compute surface virtual temperature. Therefore, use 2nd |
---|
| 721 | !-- prognostic level according to Heinze et al. (2017). |
---|
| 722 | IF ( humidity ) THEN |
---|
| 723 | vpt_surface = pt(k_surface+2,j,i) * & |
---|
| 724 | ( 1.0_wp + 0.61_wp * q(k_surface+2,j,i) ) |
---|
| 725 | vpt_col = pt(:,j,i) * ( 1.0_wp + 0.61_wp * q(:,j,i) ) |
---|
| 726 | ELSE |
---|
| 727 | vpt_surface = pt(k_surface+2,j,i) |
---|
| 728 | vpt_col = pt(:,j,i) |
---|
| 729 | ENDIF |
---|
| 730 | ! |
---|
| 731 | !-- Calculate local boundary layer height from bulk Richardson number, |
---|
| 732 | !-- i.e. the height where the bulk Richardson number exceeds its |
---|
| 733 | !-- critical value of 0.25 (according to Heinze et al., 2017). |
---|
| 734 | !-- Note, no interpolation of u- and v-component is made, as both |
---|
| 735 | !-- are mainly mean inflow profiles with very small spatial variation. |
---|
| 736 | zi_local = 0.0_wp |
---|
| 737 | DO k = k_surface+1, nzt |
---|
| 738 | u_comp = MERGE( u(k,j,i+1), u(k,j,i), bc_dirichlet_l ) |
---|
| 739 | v_comp = v(k,j,i) |
---|
| 740 | ri_bulk = zu(k) * g / vpt_surface * & |
---|
| 741 | ( vpt_col(k) - vpt_surface ) / & |
---|
| 742 | ( u_comp * u_comp + v_comp * v_comp ) |
---|
| 743 | |
---|
| 744 | IF ( zi_local == 0.0_wp .AND. ri_bulk > ri_bulk_crit ) & |
---|
| 745 | zi_local = zu(k) |
---|
| 746 | ENDDO |
---|
| 747 | ! |
---|
| 748 | !-- Assure that the minimum local boundary-layer depth is at least at |
---|
| 749 | !-- the second vertical grid level. |
---|
| 750 | zi_l = zi_l + MAX( zi_local, zu(k_surface+2) ) |
---|
| 751 | |
---|
| 752 | ENDDO |
---|
| 753 | |
---|
| 754 | ENDIF |
---|
| 755 | ! |
---|
| 756 | !-- Do the same at the north and south boundaries. |
---|
| 757 | IF ( bc_dirichlet_s .OR. bc_dirichlet_n ) THEN |
---|
| 758 | |
---|
| 759 | j = MERGE( -1, nyn + 1, bc_dirichlet_s ) |
---|
| 760 | |
---|
| 761 | DO i = nxl, nxr |
---|
| 762 | k_surface = get_topography_top_index_ji( j, i, 's' ) |
---|
| 763 | |
---|
| 764 | IF ( humidity ) THEN |
---|
| 765 | vpt_surface = pt(k_surface+2,j,i) * & |
---|
| 766 | ( 1.0_wp + 0.61_wp * q(k_surface+2,j,i) ) |
---|
| 767 | vpt_col = pt(:,j,i) * ( 1.0_wp + 0.61_wp * q(:,j,i) ) |
---|
| 768 | ELSE |
---|
| 769 | vpt_surface = pt(k_surface+2,j,i) |
---|
| 770 | vpt_col = pt(:,j,i) |
---|
| 771 | ENDIF |
---|
| 772 | |
---|
| 773 | zi_local = 0.0_wp |
---|
| 774 | DO k = k_surface+1, nzt |
---|
| 775 | u_comp = u(k,j,i) |
---|
| 776 | v_comp = MERGE( v(k,j+1,i), v(k,j,i), bc_dirichlet_s ) |
---|
| 777 | ri_bulk = zu(k) * g / vpt_surface * & |
---|
| 778 | ( vpt_col(k) - vpt_surface ) / & |
---|
| 779 | ( u_comp * u_comp + v_comp * v_comp ) |
---|
| 780 | |
---|
| 781 | IF ( zi_local == 0.0_wp .AND. ri_bulk > 0.25_wp ) & |
---|
| 782 | zi_local = zu(k) |
---|
| 783 | ENDDO |
---|
| 784 | zi_l = zi_l + MAX( zi_local, zu(k_surface+2) ) |
---|
| 785 | |
---|
| 786 | ENDDO |
---|
| 787 | |
---|
| 788 | ENDIF |
---|
| 789 | |
---|
| 790 | #if defined( __parallel ) |
---|
| 791 | CALL MPI_ALLREDUCE( zi_l, zi_ribulk, 1, MPI_REAL, MPI_SUM, & |
---|
| 792 | comm2d, ierr ) |
---|
| 793 | #else |
---|
| 794 | zi_ribulk = zi_l |
---|
| 795 | #endif |
---|
| 796 | zi_ribulk = zi_ribulk / REAL( 2 * nx + 2 * ny, KIND = wp ) |
---|
| 797 | ! |
---|
| 798 | !-- Finally, check if boundary layer depth is not below the any topography. |
---|
| 799 | !-- zi_ribulk will be used to adjust rayleigh damping height, i.e. the |
---|
| 800 | !-- lower level of the sponge layer, as well as to adjust the synthetic |
---|
| 801 | !-- turbulence generator accordingly. If Rayleigh damping would be applied |
---|
| 802 | !-- near buildings, etc., this would spoil the simulation results. |
---|
| 803 | topo_max_l = zw(MAXVAL( get_topography_top_index( 's' ))) |
---|
| 804 | |
---|
| 805 | #if defined( __parallel ) |
---|
| 806 | CALL MPI_ALLREDUCE( topo_max_l, topo_max, 1, MPI_REAL, MPI_MAX, & |
---|
| 807 | comm2d, ierr ) |
---|
| 808 | #else |
---|
| 809 | topo_max = topo_max_l |
---|
| 810 | #endif |
---|
| 811 | |
---|
| 812 | zi_ribulk = MAX( zi_ribulk, topo_max ) |
---|
| 813 | |
---|
| 814 | END SUBROUTINE calc_zi |
---|
| 815 | |
---|
| 816 | |
---|
| 817 | !------------------------------------------------------------------------------! |
---|
| 818 | ! Description: |
---|
| 819 | !------------------------------------------------------------------------------! |
---|
| 820 | !> Adjust the height where the rayleigh damping starts, i.e. the lower level |
---|
| 821 | !> of the sponge layer. |
---|
| 822 | !------------------------------------------------------------------------------! |
---|
| 823 | SUBROUTINE adjust_sponge_layer |
---|
| 824 | |
---|
| 825 | USE arrays_3d, & |
---|
| 826 | ONLY: rdf, rdf_sc, zu |
---|
| 827 | |
---|
| 828 | USE basic_constants_and_equations_mod, & |
---|
| 829 | ONLY: pi |
---|
| 830 | |
---|
| 831 | USE control_parameters, & |
---|
| 832 | ONLY: rayleigh_damping_height, rayleigh_damping_factor |
---|
| 833 | |
---|
| 834 | USE kinds |
---|
| 835 | |
---|
| 836 | IMPLICIT NONE |
---|
| 837 | |
---|
| 838 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
| 839 | |
---|
| 840 | REAL(wp) :: rdh !< updated Rayleigh damping height |
---|
| 841 | |
---|
| 842 | |
---|
| 843 | IF ( rayleigh_damping_height > 0.0_wp .AND. & |
---|
| 844 | rayleigh_damping_factor > 0.0_wp ) THEN |
---|
| 845 | ! |
---|
| 846 | !-- Update Rayleigh-damping height and re-calculate height-depending |
---|
| 847 | !-- damping coefficients. |
---|
| 848 | !-- Assure that rayleigh damping starts well above the boundary layer. |
---|
| 849 | rdh = MIN( MAX( zi_ribulk * 1.3_wp, 10.0_wp * dz(1) ), & |
---|
| 850 | 0.8_wp * zu(nzt), rayleigh_damping_height ) |
---|
| 851 | ! |
---|
| 852 | !-- Update Rayleigh damping factor |
---|
| 853 | DO k = nzb+1, nzt |
---|
| 854 | IF ( zu(k) >= rdh ) THEN |
---|
| 855 | rdf(k) = rayleigh_damping_factor * & |
---|
| 856 | ( SIN( pi * 0.5_wp * ( zu(k) - rdh ) & |
---|
| 857 | / ( zu(nzt) - rdh ) ) & |
---|
| 858 | )**2 |
---|
| 859 | ENDIF |
---|
| 860 | ENDDO |
---|
| 861 | rdf_sc = rdf |
---|
| 862 | |
---|
| 863 | ENDIF |
---|
| 864 | |
---|
| 865 | END SUBROUTINE adjust_sponge_layer |
---|
| 866 | |
---|
| 867 | !------------------------------------------------------------------------------! |
---|
| 868 | ! Description: |
---|
| 869 | ! ------------ |
---|
| 870 | !> Performs consistency checks |
---|
| 871 | !------------------------------------------------------------------------------! |
---|
| 872 | SUBROUTINE nesting_offl_check_parameters |
---|
| 873 | |
---|
| 874 | IMPLICIT NONE |
---|
| 875 | ! |
---|
| 876 | !-- Perform checks |
---|
| 877 | |
---|
| 878 | |
---|
| 879 | END SUBROUTINE nesting_offl_check_parameters |
---|
| 880 | |
---|
| 881 | !------------------------------------------------------------------------------! |
---|
| 882 | ! Description: |
---|
| 883 | ! ------------ |
---|
| 884 | !> Reads the parameter list nesting_offl_parameters |
---|
| 885 | !------------------------------------------------------------------------------! |
---|
| 886 | SUBROUTINE nesting_offl_parin |
---|
| 887 | |
---|
| 888 | IMPLICIT NONE |
---|
| 889 | |
---|
| 890 | CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file |
---|
| 891 | |
---|
| 892 | |
---|
| 893 | NAMELIST /nesting_offl_parameters/ nesting_offline |
---|
| 894 | |
---|
| 895 | line = ' ' |
---|
| 896 | |
---|
| 897 | ! |
---|
| 898 | !-- Try to find stg package |
---|
| 899 | REWIND ( 11 ) |
---|
| 900 | line = ' ' |
---|
| 901 | DO WHILE ( INDEX( line, '&nesting_offl_parameters' ) == 0 ) |
---|
| 902 | READ ( 11, '(A)', END=20 ) line |
---|
| 903 | ENDDO |
---|
| 904 | BACKSPACE ( 11 ) |
---|
| 905 | |
---|
| 906 | ! |
---|
| 907 | !-- Read namelist |
---|
| 908 | READ ( 11, nesting_offl_parameters, ERR = 10, END = 20 ) |
---|
| 909 | |
---|
| 910 | GOTO 20 |
---|
| 911 | |
---|
| 912 | 10 BACKSPACE( 11 ) |
---|
| 913 | READ( 11 , '(A)') line |
---|
| 914 | CALL parin_fail_message( 'nesting_offl_parameters', line ) |
---|
| 915 | |
---|
| 916 | 20 CONTINUE |
---|
| 917 | |
---|
| 918 | |
---|
| 919 | END SUBROUTINE nesting_offl_parin |
---|
| 920 | |
---|
| 921 | !------------------------------------------------------------------------------! |
---|
| 922 | ! Description: |
---|
| 923 | ! ------------ |
---|
| 924 | !> Writes information about offline nesting into HEADER file |
---|
| 925 | !------------------------------------------------------------------------------! |
---|
| 926 | SUBROUTINE nesting_offl_header ( io ) |
---|
| 927 | |
---|
| 928 | IMPLICIT NONE |
---|
| 929 | |
---|
| 930 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
| 931 | |
---|
| 932 | WRITE ( io, 1 ) |
---|
| 933 | IF ( nesting_offline ) THEN |
---|
| 934 | WRITE ( io, 3 ) |
---|
| 935 | ELSE |
---|
| 936 | WRITE ( io, 2 ) |
---|
| 937 | ENDIF |
---|
| 938 | |
---|
| 939 | 1 FORMAT (//' Offline nesting in COSMO model:'/ & |
---|
| 940 | ' -------------------------------'/) |
---|
| 941 | 2 FORMAT (' --> No offlince nesting is used (default) ') |
---|
| 942 | 3 FORMAT (' --> Offlince nesting is used. Boundary data is read from dynamic input file ') |
---|
| 943 | |
---|
| 944 | END SUBROUTINE nesting_offl_header |
---|
| 945 | |
---|
| 946 | !------------------------------------------------------------------------------! |
---|
| 947 | ! Description: |
---|
| 948 | ! ------------ |
---|
| 949 | !> Allocate arrays used to read boundary data from NetCDF file and initialize |
---|
| 950 | !> boundary data. |
---|
| 951 | !------------------------------------------------------------------------------! |
---|
| 952 | SUBROUTINE nesting_offl_init |
---|
| 953 | |
---|
| 954 | USE netcdf_data_input_mod, & |
---|
| 955 | ONLY: netcdf_data_input_offline_nesting |
---|
| 956 | |
---|
| 957 | IMPLICIT NONE |
---|
| 958 | |
---|
| 959 | |
---|
| 960 | !-- Allocate arrays for geostrophic wind components. Arrays will |
---|
| 961 | !-- incorporate 2 time levels in order to interpolate in between. Please |
---|
| 962 | !-- note, forcing using geostrophic wind components is only required in |
---|
| 963 | !-- case of cyclic boundary conditions. |
---|
| 964 | ! IF ( bc_lr_cyc .AND. bc_ns_cyc ) THEN |
---|
| 965 | ! ALLOCATE( nest_offl%ug(0:1,nzb:nzt+1) ) |
---|
| 966 | ! ALLOCATE( nest_offl%vg(0:1,nzb:nzt+1) ) |
---|
| 967 | ! ENDIF |
---|
| 968 | ! |
---|
| 969 | !-- Allocate arrays for reading boundary values. Arrays will incorporate 2 |
---|
| 970 | !-- time levels in order to interpolate in between. |
---|
| 971 | IF ( bc_dirichlet_l ) THEN |
---|
| 972 | ALLOCATE( nest_offl%u_left(0:1,nzb+1:nzt,nys:nyn) ) |
---|
| 973 | ALLOCATE( nest_offl%v_left(0:1,nzb+1:nzt,nysv:nyn) ) |
---|
| 974 | ALLOCATE( nest_offl%w_left(0:1,nzb+1:nzt-1,nys:nyn) ) |
---|
| 975 | IF ( humidity ) ALLOCATE( nest_offl%q_left(0:1,nzb+1:nzt,nys:nyn) ) |
---|
| 976 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_left(0:1,nzb+1:nzt,nys:nyn) ) |
---|
| 977 | ENDIF |
---|
| 978 | IF ( bc_dirichlet_r ) THEN |
---|
| 979 | ALLOCATE( nest_offl%u_right(0:1,nzb+1:nzt,nys:nyn) ) |
---|
| 980 | ALLOCATE( nest_offl%v_right(0:1,nzb+1:nzt,nysv:nyn) ) |
---|
| 981 | ALLOCATE( nest_offl%w_right(0:1,nzb+1:nzt-1,nys:nyn) ) |
---|
| 982 | IF ( humidity ) ALLOCATE( nest_offl%q_right(0:1,nzb+1:nzt,nys:nyn) ) |
---|
| 983 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_right(0:1,nzb+1:nzt,nys:nyn) ) |
---|
| 984 | ENDIF |
---|
| 985 | IF ( bc_dirichlet_n ) THEN |
---|
| 986 | ALLOCATE( nest_offl%u_north(0:1,nzb+1:nzt,nxlu:nxr) ) |
---|
| 987 | ALLOCATE( nest_offl%v_north(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
| 988 | ALLOCATE( nest_offl%w_north(0:1,nzb+1:nzt-1,nxl:nxr) ) |
---|
| 989 | IF ( humidity ) ALLOCATE( nest_offl%q_north(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
| 990 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_north(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
| 991 | ENDIF |
---|
| 992 | IF ( bc_dirichlet_s ) THEN |
---|
| 993 | ALLOCATE( nest_offl%u_south(0:1,nzb+1:nzt,nxlu:nxr) ) |
---|
| 994 | ALLOCATE( nest_offl%v_south(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
| 995 | ALLOCATE( nest_offl%w_south(0:1,nzb+1:nzt-1,nxl:nxr) ) |
---|
| 996 | IF ( humidity ) ALLOCATE( nest_offl%q_south(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
| 997 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_south(0:1,nzb+1:nzt,nxl:nxr) ) |
---|
| 998 | ENDIF |
---|
| 999 | |
---|
| 1000 | ALLOCATE( nest_offl%u_top(0:1,nys:nyn,nxlu:nxr) ) |
---|
| 1001 | ALLOCATE( nest_offl%v_top(0:1,nysv:nyn,nxl:nxr) ) |
---|
| 1002 | ALLOCATE( nest_offl%w_top(0:1,nys:nyn,nxl:nxr) ) |
---|
| 1003 | IF ( humidity ) ALLOCATE( nest_offl%q_top(0:1,nys:nyn,nxl:nxr) ) |
---|
| 1004 | IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_top(0:1,nys:nyn,nxl:nxr) ) |
---|
| 1005 | |
---|
| 1006 | ! |
---|
| 1007 | !-- Read COSMO data at lateral and top boundaries |
---|
| 1008 | CALL netcdf_data_input_offline_nesting |
---|
| 1009 | ! |
---|
| 1010 | !-- Initialize boundary data |
---|
| 1011 | IF ( bc_dirichlet_l ) THEN |
---|
| 1012 | u(nzb+1:nzt,nys:nyn,0) = nest_offl%u_left(0,nzb+1:nzt,nys:nyn) |
---|
| 1013 | v(nzb+1:nzt,nysv:nyn,-1) = nest_offl%v_left(0,nzb+1:nzt,nysv:nyn) |
---|
| 1014 | w(nzb+1:nzt-1,nys:nyn,-1) = nest_offl%w_left(0,nzb+1:nzt-1,nys:nyn) |
---|
| 1015 | IF ( .NOT. neutral ) pt(nzb+1:nzt,nys:nyn,-1) = & |
---|
| 1016 | nest_offl%pt_left(0,nzb+1:nzt,nys:nyn) |
---|
| 1017 | IF ( humidity ) q(nzb+1:nzt,nys:nyn,-1) = & |
---|
| 1018 | nest_offl%q_left(0,nzb+1:nzt,nys:nyn) |
---|
| 1019 | ENDIF |
---|
| 1020 | IF ( bc_dirichlet_r ) THEN |
---|
| 1021 | u(nzb+1:nzt,nys:nyn,nxr+1) = nest_offl%u_right(0,nzb+1:nzt,nys:nyn) |
---|
| 1022 | v(nzb+1:nzt,nysv:nyn,nxr+1) = nest_offl%v_right(0,nzb+1:nzt,nysv:nyn) |
---|
| 1023 | w(nzb+1:nzt-1,nys:nyn,nxr+1) = nest_offl%w_right(0,nzb+1:nzt-1,nys:nyn) |
---|
| 1024 | IF ( .NOT. neutral ) pt(nzb+1:nzt,nys:nyn,nxr+1) = & |
---|
| 1025 | nest_offl%pt_right(0,nzb+1:nzt,nys:nyn) |
---|
| 1026 | IF ( humidity ) q(nzb+1:nzt,nys:nyn,nxr+1) = & |
---|
| 1027 | nest_offl%q_right(0,nzb+1:nzt,nys:nyn) |
---|
| 1028 | ENDIF |
---|
| 1029 | IF ( bc_dirichlet_s ) THEN |
---|
| 1030 | u(nzb+1:nzt,-1,nxlu:nxr) = nest_offl%u_south(0,nzb+1:nzt,nxlu:nxr) |
---|
| 1031 | v(nzb+1:nzt,0,nxl:nxr) = nest_offl%v_south(0,nzb+1:nzt,nxl:nxr) |
---|
| 1032 | w(nzb+1:nzt-1,-1,nxl:nxr) = nest_offl%w_south(0,nzb+1:nzt-1,nxl:nxr) |
---|
| 1033 | IF ( .NOT. neutral ) pt(nzb+1:nzt,-1,nxl:nxr) = & |
---|
| 1034 | nest_offl%pt_south(0,nzb+1:nzt,nxl:nxr) |
---|
| 1035 | IF ( humidity ) q(nzb+1:nzt,-1,nxl:nxr) = & |
---|
| 1036 | nest_offl%q_south(0,nzb+1:nzt,nxl:nxr) |
---|
| 1037 | ENDIF |
---|
| 1038 | IF ( bc_dirichlet_n ) THEN |
---|
| 1039 | u(nzb+1:nzt,nyn+1,nxlu:nxr) = nest_offl%u_north(0,nzb+1:nzt,nxlu:nxr) |
---|
| 1040 | v(nzb+1:nzt,nyn+1,nxl:nxr) = nest_offl%v_north(0,nzb+1:nzt,nxl:nxr) |
---|
| 1041 | w(nzb+1:nzt-1,nyn+1,nxl:nxr) = nest_offl%w_north(0,nzb+1:nzt-1,nxl:nxr) |
---|
| 1042 | IF ( .NOT. neutral ) pt(nzb+1:nzt,nyn+1,nxl:nxr) = & |
---|
| 1043 | nest_offl%pt_north(0,nzb+1:nzt,nxl:nxr) |
---|
| 1044 | IF ( humidity ) q(nzb+1:nzt,nyn+1,nxl:nxr) = & |
---|
| 1045 | nest_offl%q_north(0,nzb+1:nzt,nxl:nxr) |
---|
| 1046 | ENDIF |
---|
| 1047 | ! |
---|
| 1048 | !-- Initial calculation of the boundary layer depth from the prescribed |
---|
| 1049 | !-- boundary data. This is requiered for initialize the synthetic turbulence |
---|
| 1050 | !-- generator correctly. |
---|
| 1051 | CALL calc_zi |
---|
| 1052 | |
---|
| 1053 | ! |
---|
| 1054 | !-- After boundary data is initialized, mask topography at the |
---|
| 1055 | !-- boundaries for the velocity components. |
---|
| 1056 | u = MERGE( u, 0.0_wp, BTEST( wall_flags_0, 1 ) ) |
---|
| 1057 | v = MERGE( v, 0.0_wp, BTEST( wall_flags_0, 2 ) ) |
---|
| 1058 | w = MERGE( w, 0.0_wp, BTEST( wall_flags_0, 3 ) ) |
---|
| 1059 | |
---|
| 1060 | CALL calc_zi |
---|
| 1061 | |
---|
| 1062 | ! |
---|
| 1063 | !-- After boundary data is initialized, ensure mass conservation |
---|
| 1064 | CALL nesting_offl_mass_conservation |
---|
| 1065 | |
---|
| 1066 | END SUBROUTINE nesting_offl_init |
---|
| 1067 | |
---|
| 1068 | !------------------------------------------------------------------------------! |
---|
| 1069 | ! Description: |
---|
| 1070 | !------------------------------------------------------------------------------! |
---|
| 1071 | !> Interpolation function, used to interpolate boundary data in time. |
---|
| 1072 | !------------------------------------------------------------------------------! |
---|
| 1073 | FUNCTION interpolate_in_time( var_t1, var_t2, fac ) |
---|
| 1074 | |
---|
| 1075 | USE kinds |
---|
| 1076 | |
---|
| 1077 | IMPLICIT NONE |
---|
| 1078 | |
---|
| 1079 | REAL(wp) :: interpolate_in_time !< time-interpolated boundary value |
---|
| 1080 | REAL(wp) :: var_t1 !< boundary value at t1 |
---|
| 1081 | REAL(wp) :: var_t2 !< boundary value at t2 |
---|
| 1082 | REAL(wp) :: fac !< interpolation factor |
---|
| 1083 | |
---|
| 1084 | interpolate_in_time = ( 1.0_wp - fac ) * var_t1 + fac * var_t2 |
---|
| 1085 | |
---|
| 1086 | END FUNCTION interpolate_in_time |
---|
| 1087 | |
---|
| 1088 | |
---|
| 1089 | |
---|
| 1090 | END MODULE nesting_offl_mod |
---|