1 | !> @file multi_agent_system_mod.f90 |
---|
2 | !--------------------------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
7 | ! (at your option) any later version. |
---|
8 | ! |
---|
9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
11 | ! Public License for more details. |
---|
12 | ! |
---|
13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
14 | ! <http://www.gnu.org/licenses/>. |
---|
15 | ! |
---|
16 | ! Copyright 2016-2020 Leibniz Universitaet Hannover |
---|
17 | !--------------------------------------------------------------------------------------------------! |
---|
18 | ! |
---|
19 | ! Current revisions: |
---|
20 | ! ------------------ |
---|
21 | ! |
---|
22 | ! |
---|
23 | ! Former revisions: |
---|
24 | ! ----------------- |
---|
25 | ! $Id: multi_agent_system_mod.f90 4753 2020-10-21 14:55:41Z moh.hefny $ |
---|
26 | ! file re-formatted to follow the PALM coding standard |
---|
27 | ! |
---|
28 | ! 4623 2020-07-24 08:42:02Z raasch |
---|
29 | ! some switches calculated explicitly to avoid compiler warnings |
---|
30 | ! |
---|
31 | ! 4481 2020-03-31 18:55:54Z maronga |
---|
32 | ! bugfix: cpp-directives for serial mode added |
---|
33 | ! |
---|
34 | ! 4346 2019-12-18 11:55:56Z motisi |
---|
35 | ! Removed wall_flags_static_0 from USE statements as it's not used within the module |
---|
36 | ! |
---|
37 | ! 4329 2019-12-10 15:46:36Z motisi |
---|
38 | ! Renamed wall_flags_0 to wall_flags_static_0 |
---|
39 | ! |
---|
40 | ! 4307 2019-11-26 14:12:36Z maronga |
---|
41 | ! Activated output of iPT |
---|
42 | ! |
---|
43 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
44 | ! Corrected "Former revisions" section |
---|
45 | ! |
---|
46 | ! 4168 2019-08-16 13:50:17Z suehring |
---|
47 | ! Replace function get_topography_top_index by topo_top_ind |
---|
48 | ! |
---|
49 | ! 3987 2019-05-22 09:52:13Z kanani |
---|
50 | ! Introduce alternative switch for debug output during timestepping |
---|
51 | ! |
---|
52 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
53 | ! Changes related to global restructuring of location messages and introduction of additional debug |
---|
54 | ! messages |
---|
55 | ! |
---|
56 | ! 3876 2019-04-08 18:41:49Z knoop |
---|
57 | ! replaced nspec by nvar: only variable species should bconsidered, fixed species are not relevant |
---|
58 | ! |
---|
59 | ! 3766 2019-02-26 16:23:41Z raasch |
---|
60 | ! save attribute added to local targets to avoid outlive pointer target warning |
---|
61 | ! |
---|
62 | ! 3665 2019-01-10 08:28:24Z raasch |
---|
63 | ! unused variables removed |
---|
64 | ! |
---|
65 | ! 3159 2018-07-20 11:20:01Z sward |
---|
66 | ! Initial revision |
---|
67 | ! |
---|
68 | ! |
---|
69 | ! |
---|
70 | ! Authors: |
---|
71 | ! -------- |
---|
72 | ! @author sward |
---|
73 | ! |
---|
74 | ! |
---|
75 | ! Description: |
---|
76 | ! ------------ |
---|
77 | !> Multi Agent System for the simulation of pedestrian movement in urban environments |
---|
78 | !--------------------------------------------------------------------------------------------------! |
---|
79 | MODULE multi_agent_system_mod |
---|
80 | |
---|
81 | USE, INTRINSIC :: ISO_C_BINDING |
---|
82 | |
---|
83 | USE basic_constants_and_equations_mod, & |
---|
84 | ONLY: pi |
---|
85 | |
---|
86 | USE control_parameters, & |
---|
87 | ONLY: biometeorology, & |
---|
88 | debug_output_timestep, & |
---|
89 | dt_3d, & |
---|
90 | dt_write_agent_data, & |
---|
91 | message_string, & |
---|
92 | time_since_reference_point |
---|
93 | |
---|
94 | USE cpulog, & |
---|
95 | ONLY: cpu_log, log_point, log_point_s |
---|
96 | |
---|
97 | USE grid_variables, & |
---|
98 | ONLY: ddx, ddy, dx, dy |
---|
99 | |
---|
100 | USE indices, & |
---|
101 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, topo_top_ind |
---|
102 | |
---|
103 | USE random_function_mod, & |
---|
104 | ONLY: random_function |
---|
105 | |
---|
106 | USE kinds |
---|
107 | |
---|
108 | USE pegrid |
---|
109 | |
---|
110 | INTEGER(iwp), PARAMETER :: max_number_of_agent_groups = 100 !< maximum allowed number of agent groups |
---|
111 | INTEGER(iwp), PARAMETER :: nr_2_direction_move = 10000 !< parameter for agent exchange |
---|
112 | INTEGER(iwp), PARAMETER :: phase_init = 1 !< phase parameter |
---|
113 | INTEGER(iwp), PARAMETER :: phase_release = 2 !< phase parameter |
---|
114 | |
---|
115 | CHARACTER(LEN=15) :: bc_mas_lr = 'absorb' !< left/right boundary condition |
---|
116 | CHARACTER(LEN=15) :: bc_mas_ns = 'absorb' !< north/south boundary condition |
---|
117 | |
---|
118 | INTEGER(iwp) :: agt_path_size = 15 !< size of agent path array |
---|
119 | INTEGER(iwp) :: deleted_agents = 0 !< number of deleted agents per time step |
---|
120 | INTEGER(iwp) :: dim_size_agtnum_manual = 9999999 !< namelist parameter (see documentation) |
---|
121 | INTEGER(iwp) :: heap_count !< number of items in binary heap (for pathfinding) |
---|
122 | INTEGER(iwp) :: ibc_mas_lr !< agent left/right boundary condition dummy |
---|
123 | INTEGER(iwp) :: ibc_mas_ns !< agent north/south boundary condition dummy |
---|
124 | ! INTEGER(iwp) :: ind_pm10 = -9 !< chemical species index of PM10 |
---|
125 | ! INTEGER(iwp) :: ind_pm25 = -9 !< chemical species index of PM2.5 |
---|
126 | INTEGER(iwp) :: iran_agent = -1234567 !< number for random generator |
---|
127 | INTEGER(iwp) :: min_nr_agent = 2 !< namelist parameter (see documentation) |
---|
128 | #if defined( __parallel ) |
---|
129 | INTEGER(iwp) :: ghla_count_recv !< number of agents in left ghost layer |
---|
130 | INTEGER(iwp) :: ghna_count_recv !< number of agents in north ghost layer |
---|
131 | INTEGER(iwp) :: ghra_count_recv !< number of agents in right ghost layer |
---|
132 | INTEGER(iwp) :: ghsa_count_recv !< number of agents in south ghost layer |
---|
133 | INTEGER(iwp) :: nr_move_north !< number of agts to move north during exchange_horiz |
---|
134 | INTEGER(iwp) :: nr_move_south !< number of agts to move south during exchange_horiz |
---|
135 | #endif |
---|
136 | INTEGER(iwp) :: maximum_number_of_agents = 0 !< maximum number of agents during run |
---|
137 | INTEGER(iwp) :: number_of_agents = 0 !< number of agents for each grid box (3d array is saved on agt_count) |
---|
138 | INTEGER(iwp) :: number_of_agent_groups = 1 !< namelist parameter (see documentation) |
---|
139 | INTEGER(iwp) :: sort_count_mas = 0 !< counter for sorting agents |
---|
140 | INTEGER(iwp) :: step_dealloc_mas = 100 !< namelist parameter (see documentation) |
---|
141 | INTEGER(iwp) :: total_number_of_agents !< total number of agents in the whole model domain |
---|
142 | |
---|
143 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: agt_count !< 3d array of number of agents of every grid box |
---|
144 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: s_measure_height !< k-index(s-grid) for measurement |
---|
145 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: top_top_s !< k-index of first s-gridpoint above topography |
---|
146 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: top_top_w !< k-index of first v-gridpoint above topography |
---|
147 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: obstacle_flags !< flags to identify corners and edges of topography that cannot |
---|
148 | !< be crossed by agents |
---|
149 | |
---|
150 | LOGICAL :: deallocate_memory_mas = .TRUE. !< namelist parameter (see documentation) |
---|
151 | LOGICAL :: dt_3d_reached_mas !< flag: agent timestep has reached model timestep |
---|
152 | LOGICAL :: dt_3d_reached_l_mas !< flag: agent timestep has reached model timestep |
---|
153 | LOGICAL :: agents_active = .FALSE. !< flag for agent system |
---|
154 | LOGICAL :: random_start_position_agents = .TRUE. !< namelist parameter (see documentation) |
---|
155 | LOGICAL :: read_agents_from_restartfile = .FALSE. !< namelist parameter (see documentation) |
---|
156 | LOGICAL :: agent_own_timestep = .FALSE. !< namelist parameter (see documentation) |
---|
157 | |
---|
158 | LOGICAL, DIMENSION(max_number_of_agent_groups) :: a_rand_target = .FALSE. !< namelist parameter (see documentation) |
---|
159 | |
---|
160 | REAL(wp) :: agent_maximum_age = 9999999.9_wp !< namelist parameter (see documentation) |
---|
161 | REAL(wp) :: agent_substep_time = 0.0_wp !< time measurement during one LES timestep |
---|
162 | REAL(wp) :: alloc_factor_mas = 20.0_wp !< namelist parameter (see documentation) |
---|
163 | REAL(wp) :: coll_t_0 = 3. !< namelist parameter (see documentation) |
---|
164 | REAL(wp) :: corner_gate_start = 0.5_wp !< namelist parameter (see documentation) |
---|
165 | REAL(wp) :: corner_gate_width = 1.0_wp !< namelist parameter (see documentation) |
---|
166 | REAL(wp) :: dim_size_factor_agtnum = 1.0_wp !< namelist parameter (see documentation) |
---|
167 | REAL(wp) :: d_sigma_rep_agent !< inverse of sigma_rep_agent |
---|
168 | REAL(wp) :: d_sigma_rep_wall !< inverse of sigma_rep_wall |
---|
169 | REAL(wp) :: d_tau_accel_agent !< inverse of tau_accel_agent |
---|
170 | REAL(wp) :: desired_speed = 1.2_wp !< namelist parameter (see documentation) |
---|
171 | REAL(wp) :: des_sp_sig = .2_wp !< namelist parameter (see documentation) |
---|
172 | REAL(wp) :: dist_target_reached = 2.0_wp !< distance at which target counts as reached |
---|
173 | REAL(wp) :: dist_to_int_target = .25_wp !< namelist parameter (see documentation) |
---|
174 | REAL(wp) :: dt_agent = 0.02_wp !< namelist parameter (see documentation) |
---|
175 | REAL(wp) :: dt_arel = 9999999.9_wp !< namelist parameter (see documentation) |
---|
176 | REAL(wp) :: end_time_arel = 9999999.9_wp !< namelist parameter (see documentation) |
---|
177 | REAL(wp) :: force_x !< dummy value for force on current agent in x-direction |
---|
178 | REAL(wp) :: force_y !< dummy value for force on current agent in y-direction |
---|
179 | REAL(wp) :: max_dist_from_path = 0.25_wp !< distance from current path at which a new path is calculated |
---|
180 | REAL(wp) :: radius_agent = .25_wp !< namelist parameter (see documentation) |
---|
181 | REAL(wp) :: repuls_agent = 1.5_wp !< namelist parameter (see documentation) |
---|
182 | REAL(wp) :: repuls_wall = 7.0_wp !< namelist parameter (see documentation) |
---|
183 | REAL(wp) :: scan_radius_agent = 3.0_wp !< namelist parameter (see documentation) |
---|
184 | REAL(wp) :: scan_radius_wall = 2.0_wp !< namelist parameter (see documentation) |
---|
185 | REAL(wp) :: sigma_rep_agent = 0.3_wp !< namelist parameter (see documentation) |
---|
186 | REAL(wp) :: sigma_rep_wall = 0.1_wp !< namelist parameter (see documentation) |
---|
187 | REAL(wp) :: tau_accel_agent = 0.5_wp !< namelist parameter (see documentation) |
---|
188 | REAL(wp) :: time_arel = 0.0_wp !< time for agent release |
---|
189 | REAL(wp) :: time_write_agent_data = 0.0_wp !< write agent data at current time on file |
---|
190 | REAL(wp) :: v_max_agent = 1.3_wp !< namelist parameter (see documentation) |
---|
191 | |
---|
192 | REAL(wp), DIMENSION(:), ALLOCATABLE :: dummy_path_x !< dummy path (x-coordinate) |
---|
193 | REAL(wp), DIMENSION(:), ALLOCATABLE :: dummy_path_y !< dummy path (y-coordinate) |
---|
194 | |
---|
195 | REAL(wp), DIMENSION(max_number_of_agent_groups) :: adx = 9999999.9_wp !< namelist parameter (see documentation) |
---|
196 | REAL(wp), DIMENSION(max_number_of_agent_groups) :: ady = 9999999.9_wp !< namelist parameter (see documentation) |
---|
197 | REAL(wp), DIMENSION(max_number_of_agent_groups) :: asl = 9999999.9_wp !< namelist parameter (see documentation) |
---|
198 | REAL(wp), DIMENSION(max_number_of_agent_groups) :: asn = 9999999.9_wp !< namelist parameter (see documentation) |
---|
199 | REAL(wp), DIMENSION(max_number_of_agent_groups) :: asr = 9999999.9_wp !< namelist parameter (see documentation) |
---|
200 | REAL(wp), DIMENSION(max_number_of_agent_groups) :: ass = 9999999.9_wp !< namelist parameter (see documentation) |
---|
201 | REAL(wp), DIMENSION(max_number_of_agent_groups) :: at_x = 9999999.9_wp !< namelist parameter (see documentation) |
---|
202 | REAL(wp), DIMENSION(max_number_of_agent_groups) :: at_y = 9999999.9_wp !< namelist parameter (see documentation) |
---|
203 | ! |
---|
204 | !-- Type for the definition of an agent |
---|
205 | TYPE agent_type |
---|
206 | INTEGER(iwp) :: block_nr !< number for sorting |
---|
207 | INTEGER(iwp) :: group !< number of agent group |
---|
208 | INTEGER(idp) :: id !< particle ID (64 bit integer) |
---|
209 | INTEGER(iwp) :: path_counter !< current target along path (path_x/y) |
---|
210 | LOGICAL :: agent_mask !< if this parameter is set to false the agent will be deleted |
---|
211 | REAL(wp) :: age !< age of agent |
---|
212 | REAL(wp) :: age_m !< age of agent |
---|
213 | REAL(wp) :: dt_sum !< sum of agents subtimesteps |
---|
214 | REAL(wp) :: clo !< clothing index |
---|
215 | REAL(wp) :: energy_storage !< energy stored by agent |
---|
216 | REAL(wp) :: clothing_temp !< energy stored by agent |
---|
217 | REAL(wp) :: actlev !< metabolic + work energy of the person |
---|
218 | REAL(wp) :: age_years !< physical age of the person |
---|
219 | REAL(wp) :: weight !< total weight of the person (kg) |
---|
220 | REAL(wp) :: height !< height of the person (m) |
---|
221 | REAL(wp) :: work !< workload of the agent (W) |
---|
222 | INTEGER(iwp) :: sex !< agents gender: 1 = male, 2 = female |
---|
223 | REAL(wp) :: force_x !< force term x-direction |
---|
224 | REAL(wp) :: force_y !< force term y-direction |
---|
225 | REAL(wp) :: origin_x !< origin x-position of agent |
---|
226 | REAL(wp) :: origin_y !< origin y-position of agent |
---|
227 | REAL(wp) :: pm10 !< PM10 concentration at agent position |
---|
228 | REAL(wp) :: pm25 !< PM25 concentration at agent position |
---|
229 | REAL(wp) :: speed_abs !< absolute value of agent speed |
---|
230 | REAL(wp) :: speed_e_x !< normalized speed of agent in x |
---|
231 | REAL(wp) :: speed_e_y !< normalized speed of agent in y |
---|
232 | REAL(wp) :: speed_des !< agent's desired speed |
---|
233 | REAL(wp) :: speed_x !< speed of agent in x |
---|
234 | REAL(wp) :: speed_y !< speed of agent in y |
---|
235 | REAL(wp) :: ipt !< instationary thermal index iPT (degree_C) |
---|
236 | REAL(wp) :: windspeed !< absolute value of windspeed at agent position |
---|
237 | REAL(wp) :: x !< x-position |
---|
238 | REAL(wp) :: y !< y-position |
---|
239 | REAL(wp) :: t !< temperature |
---|
240 | REAL(wp) :: t_x !< x-position |
---|
241 | REAL(wp) :: t_y !< y-position |
---|
242 | REAL(wp), DIMENSION(0:15) :: path_x !< agent path to target (x) |
---|
243 | REAL(wp), DIMENSION(0:15) :: path_y !< agent path to target (y) |
---|
244 | END TYPE agent_type |
---|
245 | |
---|
246 | TYPE(agent_type) :: zero_agent !< zero agent to avoid weird thing |
---|
247 | |
---|
248 | TYPE(agent_type), DIMENSION(:), POINTER :: agents !< Agent array for this grid cell |
---|
249 | #if defined( __parallel ) |
---|
250 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: agt_gh_l !< ghost layer left of pe domain |
---|
251 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: agt_gh_n !< ghost layer north of pe domain |
---|
252 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: agt_gh_r !< ghost layer right of pe domain |
---|
253 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: agt_gh_s !< ghost layer south of pe domain |
---|
254 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: move_also_north !< for agent exchange between PEs |
---|
255 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: move_also_south !< for agent exchange between PEs |
---|
256 | #endif |
---|
257 | ! |
---|
258 | !-- Type for 2D grid on which agents are stored |
---|
259 | TYPE grid_agent_def |
---|
260 | INTEGER(iwp), DIMENSION(0:3) :: start_index !< start agent index for current block |
---|
261 | INTEGER(iwp), DIMENSION(0:3) :: end_index !< end agent index for current block |
---|
262 | INTEGER(iwp) :: id_counter !< agent id counter (removeable?) |
---|
263 | LOGICAL :: time_loop_done !< timestep loop for agent advection |
---|
264 | TYPE(agent_type), POINTER, DIMENSION(:) :: agents !< Particle array for this grid cell |
---|
265 | END TYPE grid_agent_def |
---|
266 | |
---|
267 | TYPE(grid_agent_def), DIMENSION(:,:), ALLOCATABLE, TARGET :: grid_agents !< 2D grid on which agents are stored |
---|
268 | ! |
---|
269 | !-- Item in a priority queue (binary heap) |
---|
270 | TYPE heap_item |
---|
271 | INTEGER(iwp) :: mesh_id !< id of the submitted mesh point |
---|
272 | REAL(wp) :: priority !< priority of the mesh point (= distance so far + heuristic to goal) |
---|
273 | END TYPE heap_item |
---|
274 | |
---|
275 | TYPE(heap_item), DIMENSION(:), ALLOCATABLE :: queue !< priority queue realized as binary heap |
---|
276 | ! |
---|
277 | !-- Type for mesh point in visibility graph |
---|
278 | TYPE mesh_point |
---|
279 | INTEGER(iwp) :: polygon_id !< Polygon the point belongs to |
---|
280 | INTEGER(iwp) :: vertex_id !< Vertex in the polygon |
---|
281 | INTEGER(iwp) :: noc !< number of connections |
---|
282 | INTEGER(iwp) :: origin_id !< ID of previous mesh point on path (A*) |
---|
283 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: connected_vertices !< Index of connected vertices |
---|
284 | REAL(wp) :: cost_so_far !< Cost to reach this mesh point (A*) |
---|
285 | REAL(wp) :: x !< x-coordinate |
---|
286 | REAL(wp) :: y !< y-coordinate |
---|
287 | REAL(wp) :: x_s !< corner shifted outward from building by 1m (x) |
---|
288 | REAL(wp) :: y_s !< corner shifted outward from building by 1m (y) |
---|
289 | REAL(wp), DIMENSION(:), ALLOCATABLE :: distance_to_vertex !< Distance to each vertex |
---|
290 | END TYPE mesh_point |
---|
291 | |
---|
292 | TYPE(mesh_point), DIMENSION(:), ALLOCATABLE :: mesh !< navigation mesh |
---|
293 | TYPE(mesh_point), DIMENSION(:), ALLOCATABLE :: tmp_mesh !< temporary navigation mesh |
---|
294 | ! |
---|
295 | !-- Vertex of a polygon |
---|
296 | TYPE vertex_type |
---|
297 | LOGICAL :: delete !< Flag to mark vertex for deletion |
---|
298 | REAL(wp) :: x !< x-coordinate |
---|
299 | REAL(wp) :: y !< y-coordinate |
---|
300 | END TYPE vertex_type |
---|
301 | ! |
---|
302 | !-- Polygon containing a number of vertices |
---|
303 | TYPE polygon_type |
---|
304 | INTEGER(iwp) :: nov !< Number of vertices in this polygon |
---|
305 | TYPE(vertex_type), DIMENSION(:), ALLOCATABLE :: vertices !< Array of vertices |
---|
306 | END TYPE polygon_type |
---|
307 | |
---|
308 | TYPE(polygon_type), DIMENSION(:), ALLOCATABLE :: polygons !< Building data in polygon form |
---|
309 | |
---|
310 | SAVE |
---|
311 | |
---|
312 | PRIVATE |
---|
313 | ! |
---|
314 | !-- Public functions |
---|
315 | PUBLIC mas_init, mas_last_actions, mas_parin, multi_agent_system |
---|
316 | |
---|
317 | ! |
---|
318 | !-- Public parameters, constants and initial values |
---|
319 | PUBLIC agents_active |
---|
320 | |
---|
321 | INTERFACE mas_parin |
---|
322 | MODULE PROCEDURE mas_parin |
---|
323 | END INTERFACE mas_parin |
---|
324 | |
---|
325 | INTERFACE mas_init |
---|
326 | MODULE PROCEDURE mas_init |
---|
327 | END INTERFACE mas_init |
---|
328 | |
---|
329 | INTERFACE mas_last_actions |
---|
330 | MODULE PROCEDURE mas_last_actions |
---|
331 | END INTERFACE mas_last_actions |
---|
332 | |
---|
333 | INTERFACE multi_agent_system |
---|
334 | MODULE PROCEDURE multi_agent_system |
---|
335 | END INTERFACE multi_agent_system |
---|
336 | |
---|
337 | CONTAINS |
---|
338 | |
---|
339 | |
---|
340 | !--------------------------------------------------------------------------------------------------! |
---|
341 | ! Description: |
---|
342 | ! ------------ |
---|
343 | !> Multi Agent System: |
---|
344 | !> executes a number of agents sub-timesteps until the model timestep is reached. |
---|
345 | !> The agent timestep is usually smaller than the model timestep. |
---|
346 | !--------------------------------------------------------------------------------------------------! |
---|
347 | SUBROUTINE multi_agent_system |
---|
348 | |
---|
349 | USE biometeorology_mod, & |
---|
350 | ONLY: bio_calc_ipt, & |
---|
351 | bio_calculate_mrt_grid, & |
---|
352 | bio_get_thermal_index_input_ij |
---|
353 | |
---|
354 | |
---|
355 | IMPLICIT NONE |
---|
356 | |
---|
357 | INTEGER(iwp) :: i !< counter |
---|
358 | INTEGER(iwp) :: ie !< counter |
---|
359 | INTEGER(iwp) :: is !< counter |
---|
360 | INTEGER(iwp) :: j !< counter |
---|
361 | INTEGER(iwp) :: je !< counter |
---|
362 | INTEGER(iwp) :: js !< counter |
---|
363 | INTEGER(iwp), SAVE :: mas_count = 0 !< counts the mas-calls |
---|
364 | INTEGER(iwp) :: a !< agent iterator |
---|
365 | ! |
---|
366 | !-- local meteorological conditions |
---|
367 | REAL(wp) :: pair !< air pressure (hPa) |
---|
368 | REAL(wp) :: ta !< air temperature (degree_C) |
---|
369 | REAL(wp) :: tmrt !< mean radiant temperature (degree_C) |
---|
370 | REAL(wp) :: v !< wind speed (local level) (m/s) |
---|
371 | REAL(wp) :: vp !< vapour pressure (hPa) |
---|
372 | |
---|
373 | |
---|
374 | LOGICAL :: first_loop_stride !< flag for first loop stride of agent sub-timesteps |
---|
375 | LOGICAL, SAVE :: first_call = .TRUE. !< first call of mas flag for output |
---|
376 | |
---|
377 | |
---|
378 | IF ( debug_output_timestep ) CALL debug_message( 'multi_agent_system', 'start' ) |
---|
379 | |
---|
380 | CALL cpu_log( log_point(9), 'mas', 'start' ) |
---|
381 | ! |
---|
382 | !-- Initialize variables for the next (sub-) timestep, i.e., for marking those agents to be deleted |
---|
383 | !-- after the timestep |
---|
384 | deleted_agents = 0 |
---|
385 | agent_substep_time = 0.0_wp |
---|
386 | ! |
---|
387 | !-- If necessary, release new set of agents |
---|
388 | IF ( time_arel >= dt_arel .AND. end_time_arel > time_since_reference_point ) THEN |
---|
389 | |
---|
390 | CALL mas_create_agent( phase_release ) |
---|
391 | ! |
---|
392 | !-- The MOD function allows for changes in the output interval with restart runs. |
---|
393 | time_arel = MOD( time_arel, MAX( dt_arel, dt_3d ) ) |
---|
394 | |
---|
395 | ENDIF |
---|
396 | |
---|
397 | first_loop_stride = .TRUE. |
---|
398 | grid_agents(:,:)%time_loop_done = .TRUE. |
---|
399 | ! |
---|
400 | !-- Set timestep variable |
---|
401 | IF ( .NOT. agent_own_timestep ) dt_agent = dt_3d |
---|
402 | ! |
---|
403 | !-- Timestep loop for agent transport. |
---|
404 | !-- This loop has to be repeated until the transport time of every agent (within the total domain!) |
---|
405 | !-- has reached the LES timestep (dt_3d). |
---|
406 | !-- Timestep scheme is Euler-forward. |
---|
407 | DO |
---|
408 | ! |
---|
409 | !-- Write agent data at current time on file. |
---|
410 | time_write_agent_data = time_write_agent_data + dt_agent |
---|
411 | agent_substep_time = agent_substep_time + dt_agent |
---|
412 | IF ( time_write_agent_data >= dt_write_agent_data ) THEN |
---|
413 | #if defined( __netcdf ) |
---|
414 | IF ( first_loop_stride ) CALL mas_get_prognostic_quantities |
---|
415 | CALL mas_data_output_agents ( first_call ) |
---|
416 | #else |
---|
417 | WRITE( message_string, * ) 'NetCDF is needed for agent output. ', & |
---|
418 | 'Set __netcdf in compiler options' |
---|
419 | CALL message( 'multi_agent_system', 'PA0071', 1, 2, 0, 6, 0 ) |
---|
420 | #endif |
---|
421 | IF(first_call) first_call = .FALSE. |
---|
422 | time_write_agent_data = time_write_agent_data - dt_write_agent_data |
---|
423 | ENDIF |
---|
424 | ! |
---|
425 | !-- Flag is true by default, will be set to false if an agent has not yet reached the model |
---|
426 | !-- timestep. |
---|
427 | grid_agents(:,:)%time_loop_done = .TRUE. |
---|
428 | |
---|
429 | ! |
---|
430 | !-- First part of agent transport: |
---|
431 | !-- Evaluate social forces for all agents at current positions |
---|
432 | CALL cpu_log( log_point_s(9), 'mas_social_forces', 'start' ) |
---|
433 | DO i = nxl, nxr |
---|
434 | DO j = nys, nyn |
---|
435 | |
---|
436 | number_of_agents = agt_count(j,i) |
---|
437 | ! |
---|
438 | !-- If grid cell is empty, cycle |
---|
439 | IF ( number_of_agents <= 0 ) CYCLE |
---|
440 | |
---|
441 | agents => grid_agents(j,i)%agents(1:number_of_agents) |
---|
442 | ! |
---|
443 | !-- Evaluation of social forces |
---|
444 | CALL mas_timestep_forces_call(i,j) |
---|
445 | |
---|
446 | ENDDO |
---|
447 | ENDDO |
---|
448 | CALL cpu_log( log_point_s(9), 'mas_social_forces', 'stop' ) |
---|
449 | ! |
---|
450 | !-- Second part of agent transport: |
---|
451 | !-- timestep |
---|
452 | CALL cpu_log( log_point_s(16), 'mas_timestep', 'start' ) |
---|
453 | DO i = nxl, nxr |
---|
454 | DO j = nys, nyn |
---|
455 | |
---|
456 | number_of_agents = agt_count(j,i) |
---|
457 | ! |
---|
458 | !-- If grid cell is empty, flag must be true |
---|
459 | IF ( number_of_agents <= 0 ) THEN |
---|
460 | grid_agents(j,i)%time_loop_done = .TRUE. |
---|
461 | CYCLE |
---|
462 | ENDIF |
---|
463 | |
---|
464 | agents => grid_agents(j,i)%agents(1:number_of_agents) |
---|
465 | |
---|
466 | agents(1:number_of_agents)%agent_mask = .TRUE. |
---|
467 | ! |
---|
468 | !-- Initialize the variable storing the total time that an agent has advanced within the |
---|
469 | !-- timestep procedure. |
---|
470 | IF ( first_loop_stride ) THEN |
---|
471 | agents(1:number_of_agents)%dt_sum = 0.0_wp |
---|
472 | ENDIF |
---|
473 | ! |
---|
474 | !-- Initialize the switch used for the loop exit condition checked at the end of this loop. |
---|
475 | !-- If at least one agent has failed to reach the LES timestep, this switch will be set |
---|
476 | !-- false in mas_transport. |
---|
477 | dt_3d_reached_l_mas = .TRUE. |
---|
478 | ! |
---|
479 | !-- Timestep |
---|
480 | CALL mas_timestep |
---|
481 | ! |
---|
482 | !-- Delete agents that have been simulated longer than allowed. |
---|
483 | CALL mas_boundary_conds( 'max_sim_time' ) |
---|
484 | ! |
---|
485 | !-- Delete agents that have reached target area. |
---|
486 | CALL mas_boundary_conds( 'target_area' ) |
---|
487 | ! |
---|
488 | !-- If not all agents of the actual grid cell have reached the LES timestep, this cell has |
---|
489 | !-- to do another loop iteration. Due to the fact that agents can move into neighboring |
---|
490 | !-- grid cell, these neighbor cells also have to perform another loop iteration. |
---|
491 | IF ( .NOT. dt_3d_reached_l_mas ) THEN |
---|
492 | js = MAX(nys,j-1) |
---|
493 | je = MIN(nyn,j+1) |
---|
494 | is = MAX(nxl,i-1) |
---|
495 | ie = MIN(nxr,i+1) |
---|
496 | grid_agents(js:je,is:ie)%time_loop_done = .FALSE. |
---|
497 | ENDIF |
---|
498 | |
---|
499 | ENDDO |
---|
500 | ENDDO |
---|
501 | CALL cpu_log( log_point_s(16), 'mas_timestep', 'stop' ) |
---|
502 | |
---|
503 | ! |
---|
504 | !-- Find out, if all agents on each PE have completed the LES timestep and set the switch |
---|
505 | !-- corespondingly. |
---|
506 | dt_3d_reached_l_mas = ALL(grid_agents(:,:)%time_loop_done) |
---|
507 | #if defined( __parallel ) |
---|
508 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
509 | CALL MPI_ALLREDUCE( dt_3d_reached_l_mas, dt_3d_reached_mas, 1, MPI_LOGICAL, MPI_LAND, & |
---|
510 | comm2d, ierr ) |
---|
511 | #else |
---|
512 | dt_3d_reached_mas = dt_3d_reached_l_mas |
---|
513 | #endif |
---|
514 | |
---|
515 | ! |
---|
516 | !-- Increment time since last release |
---|
517 | IF ( dt_3d_reached_mas ) time_arel = time_arel + dt_3d |
---|
518 | |
---|
519 | ! |
---|
520 | !-- Move Agents local to PE to a different grid cell |
---|
521 | CALL cpu_log( log_point_s(18), 'mas_move_exch_sort', 'start' ) |
---|
522 | CALL mas_eh_move_agent |
---|
523 | ! |
---|
524 | !-- Horizontal boundary conditions including exchange between subdmains |
---|
525 | CALL mas_eh_exchange_horiz |
---|
526 | ! |
---|
527 | !-- Pack agents (eliminate those marked for deletion), determine new number of agents |
---|
528 | CALL mas_ps_sort_in_subboxes |
---|
529 | CALL cpu_log( log_point_s(18), 'mas_move_exch_sort', 'stop' ) |
---|
530 | ! |
---|
531 | !-- Initialize variables for the next (sub-) timestep, i.e., for marking those agents to be |
---|
532 | !-- deleted after the timestep |
---|
533 | deleted_agents = 0 |
---|
534 | |
---|
535 | IF ( biometeorology ) THEN |
---|
536 | ! |
---|
537 | !-- Fill out the MRT 2D grid from appropriate source (RTM, RRTMG,...) |
---|
538 | CALL bio_calculate_mrt_grid ( .FALSE. ) |
---|
539 | ! |
---|
540 | !-- Call of human thermal comfort mod (and UV exposure) |
---|
541 | DO i = nxl, nxr |
---|
542 | DO j = nys, nyn |
---|
543 | |
---|
544 | number_of_agents = agt_count(j,i) |
---|
545 | ! |
---|
546 | !-- If grid cell gets empty, cycle |
---|
547 | IF ( number_of_agents <= 0 ) CYCLE |
---|
548 | |
---|
549 | agents => grid_agents(j,i)%agents(1:number_of_agents) |
---|
550 | ! |
---|
551 | !-- Evaluation of social forces |
---|
552 | ! CALL bio_dynamic( i, j ) |
---|
553 | ! |
---|
554 | !-- Determine local meteorological conditions |
---|
555 | CALL bio_get_thermal_index_input_ij ( .FALSE., i, j, ta, vp, v, pair, tmrt ) |
---|
556 | |
---|
557 | DO a = 1, number_of_agents |
---|
558 | ! |
---|
559 | !-- Calculate instationary thermal indices based on local tmrt |
---|
560 | |
---|
561 | CALL bio_calc_ipt ( ta, vp, v, pair, tmrt, & |
---|
562 | agents(a)%dt_sum, & |
---|
563 | agents(a)%energy_storage, & |
---|
564 | agents(a)%clothing_temp, & |
---|
565 | agents(a)%clo, & |
---|
566 | agents(a)%actlev, & |
---|
567 | agents(a)%age_years, & |
---|
568 | agents(a)%weight, & |
---|
569 | agents(a)%height, & |
---|
570 | agents(a)%work, & |
---|
571 | agents(a)%sex, & |
---|
572 | agents(a)%ipt ) |
---|
573 | END DO |
---|
574 | |
---|
575 | ENDDO |
---|
576 | ENDDO |
---|
577 | ENDIF |
---|
578 | |
---|
579 | IF ( dt_3d_reached_mas ) EXIT |
---|
580 | |
---|
581 | first_loop_stride = .FALSE. |
---|
582 | ENDDO ! timestep loop |
---|
583 | |
---|
584 | ! |
---|
585 | !-- Deallocate unused memory |
---|
586 | IF ( deallocate_memory_mas .AND. mas_count == step_dealloc_mas ) THEN |
---|
587 | CALL mas_eh_dealloc_agents_array |
---|
588 | mas_count = 0 |
---|
589 | ELSEIF ( deallocate_memory_mas ) THEN |
---|
590 | mas_count = mas_count + 1 |
---|
591 | ENDIF |
---|
592 | |
---|
593 | CALL cpu_log( log_point(9), 'mas', 'stop' ) |
---|
594 | |
---|
595 | IF ( debug_output_timestep ) CALL debug_message( 'multi_agent_system', 'end' ) |
---|
596 | |
---|
597 | |
---|
598 | END SUBROUTINE multi_agent_system |
---|
599 | |
---|
600 | !--------------------------------------------------------------------------------------------------! |
---|
601 | ! Description: |
---|
602 | ! ------------ |
---|
603 | !> Calculation of the direction vector from each agent to its current intermittent target. |
---|
604 | !--------------------------------------------------------------------------------------------------! |
---|
605 | SUBROUTINE mas_agent_direction |
---|
606 | |
---|
607 | IMPLICIT NONE |
---|
608 | |
---|
609 | LOGICAL :: path_flag !< true if new path must be calculated |
---|
610 | |
---|
611 | INTEGER(iwp) :: n !< loop variable over all agents in a grid box |
---|
612 | INTEGER(iwp) :: pc !< agent path counter |
---|
613 | |
---|
614 | REAL(wp) :: abs_dir !< length of direction vector (for normalization) |
---|
615 | ! REAL(wp) :: d_curr_target !< rounding influence expressed as x speed component |
---|
616 | ! REAL(wp) :: d_prev_target !< rounding influence expressed as x speed component |
---|
617 | REAL(wp) :: dir_x !< direction of agent (x) |
---|
618 | REAL(wp) :: dir_y !< direction of agent (y) |
---|
619 | ! REAL(wp) :: dist_round = 3. !< distance at which agents start rounding a corner |
---|
620 | REAL(wp) :: dtit !< distance to intermittent target |
---|
621 | ! REAL(wp) :: round_fac = 0.2 !< factor for rounding influence |
---|
622 | ! REAL(wp) :: speed_round_x !< rounding influence expressed as x speed component |
---|
623 | ! REAL(wp) :: speed_round_y !< rounding influence expressed as x speed component |
---|
624 | |
---|
625 | ! |
---|
626 | !-- Loop over all agents in the current grid box |
---|
627 | DO n = 1, number_of_agents |
---|
628 | path_flag = .FALSE. |
---|
629 | pc = agents(n)%path_counter |
---|
630 | ! |
---|
631 | !-- If no path was calculated for agent yet, do it. |
---|
632 | IF ( pc >= 999 ) THEN |
---|
633 | CALL mas_nav_find_path(n) |
---|
634 | pc = agents(n)%path_counter |
---|
635 | ! |
---|
636 | !-- Check if new path must be calculated and if so, do it. |
---|
637 | ELSE |
---|
638 | ! |
---|
639 | !-- Case one: Agent has come close enough to intermittent target. |
---|
640 | !-- -> chose new int target and calculate rest of path if no |
---|
641 | !-- new intermittent targets are left |
---|
642 | dtit = SQRT( ( agents(n)%x - agents(n)%path_x(pc) )**2 & |
---|
643 | + ( agents(n)%y - agents(n)%path_y(pc) )**2 ) |
---|
644 | IF ( dtit < dist_to_int_target ) THEN |
---|
645 | agents(n)%path_counter = agents(n)%path_counter + 1 |
---|
646 | pc = agents(n)%path_counter |
---|
647 | ! |
---|
648 | !-- Path counter out of scope (each agent can store a maximum of 15 intermittent targets on |
---|
649 | !-- the way to its final target); new path must be calculated. |
---|
650 | IF ( pc >= SIZE( agents(n)%path_x) ) THEN |
---|
651 | path_flag = .TRUE. |
---|
652 | ENDIF |
---|
653 | ! |
---|
654 | !-- Case two: Agent too far from path |
---|
655 | !-- -> set flag for new path to be calculated |
---|
656 | ELSEIF ( dist_point_to_edge(agents(n)%path_x(pc-1), & |
---|
657 | agents(n)%path_y(pc-1), & |
---|
658 | agents(n)%path_x(pc), & |
---|
659 | agents(n)%path_y(pc), & |
---|
660 | agents(n)%x, agents(n)%y) & |
---|
661 | > max_dist_from_path ) & |
---|
662 | THEN |
---|
663 | path_flag = .TRUE. |
---|
664 | ENDIF |
---|
665 | ! |
---|
666 | !-- If one of the above two cases was true, calculate new path and reset 0th path point. |
---|
667 | !-- This point (the last target the agent had) is needed for the agent's rounding of corners |
---|
668 | !-- and the calculation of its deviation from its current path. |
---|
669 | IF ( path_flag ) THEN |
---|
670 | CALL mas_nav_find_path(n) |
---|
671 | pc = agents(n)%path_counter |
---|
672 | ENDIF |
---|
673 | ENDIF |
---|
674 | ! |
---|
675 | !-- Normalize direction vector |
---|
676 | abs_dir = 1.0d-12 |
---|
677 | dir_x = agents(n)%path_x(pc) - agents(n)%x |
---|
678 | dir_y = agents(n)%path_y(pc) - agents(n)%y |
---|
679 | abs_dir = SQRT( dir_x**2 + dir_y**2 )+1.0d-12 |
---|
680 | !-- needed later for corner rounding |
---|
681 | ! dir_x = dir_x/abs_dir |
---|
682 | ! dir_y = dir_y/abs_dir |
---|
683 | ! dir_x = dir_x + speed_round_x |
---|
684 | ! dir_y = dir_y + speed_round_y |
---|
685 | ! abs_dir = SQRT(dir_x**2 + dir_y**2)+1.0d-12 |
---|
686 | agents(n)%speed_e_x = dir_x/abs_dir |
---|
687 | agents(n)%speed_e_y = dir_y/abs_dir |
---|
688 | ENDDO |
---|
689 | |
---|
690 | ! |
---|
691 | !-- corner rounding; to be added |
---|
692 | ! |
---|
693 | !-- Calculate direction change due to rounding of corners |
---|
694 | |
---|
695 | ! speed_round_x = 0. |
---|
696 | ! speed_round_y = 0. |
---|
697 | ! |
---|
698 | ! d_curr_target = SQRT( (agents(n)%path_x(pc) - agents(n)%x)**2 + & |
---|
699 | ! (agents(n)%path_y(pc) - agents(n)%y)**2 ) |
---|
700 | ! d_prev_target = SQRT( (agents(n)%path_x(pc-1) - agents(n)%x)**2 + & |
---|
701 | ! (agents(n)%path_y(pc-1) - agents(n)%y)**2 ) |
---|
702 | ! ! |
---|
703 | ! !-- Agent is close to next target and that target is not the final one |
---|
704 | ! IF ( d_curr_target < dist_round .AND. dist_round < & |
---|
705 | ! SQRT( (agents(n)%path_x(pc) - agents(n)%t_x)**2 + & |
---|
706 | ! (agents(n)%path_y(pc) - agents(n)%t_y)**2 ) ) & |
---|
707 | ! THEN |
---|
708 | ! speed_round_x = (agents(n)%path_x(pc+1) - agents(n)%path_x(pc)) / & |
---|
709 | ! ABS( agents(n)%path_x(pc) & |
---|
710 | ! - agents(n)%path_x(pc+1)) * round_fac * & |
---|
711 | ! SIN( pi/dist_round*d_curr_target ) |
---|
712 | ! speed_round_y = (agents(n)%path_y(pc+1) - agents(n)%path_y(pc)) / & |
---|
713 | ! ABS( agents(n)%path_y(pc) & |
---|
714 | ! - agents(n)%path_y(pc+1)) * round_fac * & |
---|
715 | ! SIN( pi/dist_round*d_curr_target ) |
---|
716 | ! ENDIF |
---|
717 | ! |
---|
718 | ! IF ( d_prev_target < dist_round ) THEN |
---|
719 | ! IF ( agents(n)%path_x(pc) /= agents(n)%path_x(pc+1) ) THEN |
---|
720 | ! speed_round_x = speed_round_x + & |
---|
721 | ! (agents(n)%path_x(pc) - agents(n)%path_x(pc+1)) / & |
---|
722 | ! ABS( agents(n)%path_x(pc) & |
---|
723 | ! - agents(n)%path_x(pc+1)) * round_fac * & |
---|
724 | ! SIN( pi/dist_round*d_prev_target ) |
---|
725 | ! ENDIF |
---|
726 | ! |
---|
727 | ! IF ( agents(n)%path_y(pc) /= agents(n)%path_y(pc+1) ) THEN |
---|
728 | ! speed_round_y = speed_round_y + & |
---|
729 | ! (agents(n)%path_y(pc) - agents(n)%path_y(pc+1)) / & |
---|
730 | ! ABS( agents(n)%path_y(pc) & |
---|
731 | ! - agents(n)%path_y(pc+1)) * round_fac * & |
---|
732 | ! SIN( pi/dist_round*d_prev_target ) |
---|
733 | ! ENDIF |
---|
734 | |
---|
735 | ! ENDIF |
---|
736 | |
---|
737 | |
---|
738 | END SUBROUTINE mas_agent_direction |
---|
739 | |
---|
740 | !--------------------------------------------------------------------------------------------------! |
---|
741 | ! Description: |
---|
742 | ! ------------ |
---|
743 | !> Boundary conditions for maximum time, target reached and out of domain |
---|
744 | !--------------------------------------------------------------------------------------------------! |
---|
745 | SUBROUTINE mas_boundary_conds( location ) |
---|
746 | |
---|
747 | IMPLICIT NONE |
---|
748 | |
---|
749 | CHARACTER (LEN=*) :: location !< Identifier |
---|
750 | |
---|
751 | INTEGER(iwp) :: grp !< agent group |
---|
752 | INTEGER(iwp) :: n !< agent number |
---|
753 | |
---|
754 | REAL(wp) :: dist_to_target !< distance to target |
---|
755 | |
---|
756 | IF ( location == 'max_sim_time' ) THEN |
---|
757 | |
---|
758 | ! |
---|
759 | !-- Delete agents that have been simulated longer than allowed |
---|
760 | DO n = 1, number_of_agents |
---|
761 | |
---|
762 | IF ( agents(n)%age > agent_maximum_age .AND. agents(n)%agent_mask ) THEN |
---|
763 | agents(n)%agent_mask = .FALSE. |
---|
764 | deleted_agents = deleted_agents + 1 |
---|
765 | ENDIF |
---|
766 | |
---|
767 | ENDDO |
---|
768 | ENDIF |
---|
769 | |
---|
770 | IF ( location == 'target_area' ) THEN |
---|
771 | |
---|
772 | ! |
---|
773 | !-- Delete agents that entered target region |
---|
774 | DO n = 1, number_of_agents |
---|
775 | grp = agents(n)%group |
---|
776 | dist_to_target = SQRT( ( agents(n)%x - at_x(grp) )**2 + ( agents(n)%y - at_y(grp) )**2 ) |
---|
777 | IF ( dist_to_target < dist_target_reached ) THEN |
---|
778 | agents(n)%agent_mask = .FALSE. |
---|
779 | deleted_agents = deleted_agents + 1 |
---|
780 | ENDIF |
---|
781 | |
---|
782 | ENDDO |
---|
783 | ENDIF |
---|
784 | |
---|
785 | END SUBROUTINE mas_boundary_conds |
---|
786 | |
---|
787 | !--------------------------------------------------------------------------------------------------! |
---|
788 | ! Description: |
---|
789 | ! ------------ |
---|
790 | !> Release new agents at their respective sources |
---|
791 | !--------------------------------------------------------------------------------------------------! |
---|
792 | SUBROUTINE mas_create_agent ( phase ) |
---|
793 | |
---|
794 | IMPLICIT NONE |
---|
795 | |
---|
796 | INTEGER(iwp) :: alloc_size !< relative increase of allocated memory for agents |
---|
797 | INTEGER(iwp) :: i !< loop variable ( agent groups ) |
---|
798 | INTEGER(iwp) :: ip !< index variable along x |
---|
799 | INTEGER(iwp) :: jp !< index variable along y |
---|
800 | INTEGER(iwp) :: loop_stride !< loop variable for initialization |
---|
801 | INTEGER(iwp) :: n !< loop variable ( number of agents ) |
---|
802 | INTEGER(iwp) :: new_size !< new size of allocated memory for agents |
---|
803 | INTEGER(iwp) :: rn_side !< index of agent path |
---|
804 | |
---|
805 | INTEGER(iwp), INTENT(IN) :: phase !< mode of inititialization |
---|
806 | |
---|
807 | INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg) :: local_count !< start address of new agent |
---|
808 | INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg) :: local_start !< start address of new agent |
---|
809 | |
---|
810 | LOGICAL :: first_stride !< flag for initialization |
---|
811 | |
---|
812 | REAL(wp) :: pos_x !< increment for agent position in x |
---|
813 | REAL(wp) :: pos_y !< increment for agent position in y |
---|
814 | REAL(wp) :: rand_contr !< dummy argument for random position |
---|
815 | REAL(wp) :: rn_side_dum !< index of agent path |
---|
816 | |
---|
817 | TYPE(agent_type),TARGET :: tmp_agent !< temporary agent used for initialization |
---|
818 | |
---|
819 | ! |
---|
820 | !-- Calculate agent positions and store agent attributes, if agent is situated on this PE. |
---|
821 | DO loop_stride = 1, 2 |
---|
822 | first_stride = (loop_stride == 1) |
---|
823 | IF ( first_stride ) THEN |
---|
824 | local_count = 0 ! count number of agents |
---|
825 | ELSE |
---|
826 | local_count = agt_count ! Start address of new agents |
---|
827 | ENDIF |
---|
828 | |
---|
829 | DO i = 1, number_of_agent_groups |
---|
830 | |
---|
831 | pos_y = ass(i) |
---|
832 | |
---|
833 | DO WHILE ( pos_y <= asn(i) ) |
---|
834 | |
---|
835 | IF ( pos_y >= nys * dy .AND. pos_y < ( nyn + 1 ) * dy ) THEN |
---|
836 | |
---|
837 | pos_x = asl(i) |
---|
838 | |
---|
839 | xloop: DO WHILE ( pos_x <= asr(i) ) |
---|
840 | |
---|
841 | IF ( pos_x >= nxl * dx .AND. pos_x < ( nxr + 1) * dx ) THEN |
---|
842 | |
---|
843 | tmp_agent%agent_mask = .TRUE. |
---|
844 | tmp_agent%group = i |
---|
845 | tmp_agent%id = 0_idp |
---|
846 | tmp_agent%block_nr = -1 |
---|
847 | tmp_agent%path_counter = 999 !SIZE(tmp_agent%path_x) |
---|
848 | tmp_agent%age = 0.0_wp |
---|
849 | tmp_agent%age_m = 0.0_wp |
---|
850 | tmp_agent%dt_sum = 0.0_wp |
---|
851 | tmp_agent%clo = -999.0_wp |
---|
852 | tmp_agent%energy_storage= 0.0_wp |
---|
853 | tmp_agent%ipt = 99999.0_wp |
---|
854 | tmp_agent%clothing_temp = -999._wp !< energy stored by agent (W) |
---|
855 | tmp_agent%actlev = 134.6862_wp !< metabolic + work energy of the person |
---|
856 | tmp_agent%age_years = 35._wp !< physical age of the person |
---|
857 | tmp_agent%weight = 75._wp !< total weight of the person (kg) |
---|
858 | tmp_agent%height = 1.75_wp !< height of the person (m) |
---|
859 | tmp_agent%work = 134.6862_wp !< workload of the agent (W) |
---|
860 | tmp_agent%sex = 1 !< agents gender: 1 = male, 2 = female |
---|
861 | tmp_agent%force_x = 0.0_wp |
---|
862 | tmp_agent%force_y = 0.0_wp |
---|
863 | tmp_agent%origin_x = pos_x |
---|
864 | tmp_agent%origin_y = pos_y |
---|
865 | tmp_agent%speed_abs = 0.0_wp |
---|
866 | tmp_agent%speed_e_x = 0.0_wp |
---|
867 | tmp_agent%speed_e_y = 0.0_wp |
---|
868 | tmp_agent%speed_des = random_normal(desired_speed,des_sp_sig) |
---|
869 | tmp_agent%speed_x = 0.0_wp |
---|
870 | tmp_agent%speed_y = 0.0_wp |
---|
871 | tmp_agent%x = pos_x |
---|
872 | tmp_agent%y = pos_y |
---|
873 | tmp_agent%path_x = -1.0_wp |
---|
874 | tmp_agent%path_y = -1.0_wp |
---|
875 | tmp_agent%t_x = - pi |
---|
876 | tmp_agent%t_y = - pi |
---|
877 | ! |
---|
878 | !-- Determine the grid indices of the agent position |
---|
879 | ip = tmp_agent%x * ddx |
---|
880 | jp = tmp_agent%y * ddy |
---|
881 | ! |
---|
882 | !-- Give each agent its target |
---|
883 | IF ( a_rand_target(i) ) THEN |
---|
884 | ! |
---|
885 | !-- Agent shall receive random target just outside simulated area |
---|
886 | rn_side_dum = random_function(iran_agent) |
---|
887 | rn_side = FLOOR( 4.*rn_side_dum ) |
---|
888 | IF ( rn_side < 2 ) THEN |
---|
889 | IF ( rn_side == 0 ) THEN |
---|
890 | tmp_agent%t_y = -2 * dy |
---|
891 | ELSE |
---|
892 | tmp_agent%t_y = ( ny + 3 ) * dy |
---|
893 | ENDIF |
---|
894 | tmp_agent%t_x = random_function(iran_agent) * ( nx + 1 ) * dx |
---|
895 | ELSE |
---|
896 | IF ( rn_side == 2 ) THEN |
---|
897 | tmp_agent%t_x = -2 * dx |
---|
898 | ELSE |
---|
899 | tmp_agent%t_x = ( nx + 3 ) * dx |
---|
900 | ENDIF |
---|
901 | tmp_agent%t_y = random_function(iran_agent) * ( ny + 1 ) * dy |
---|
902 | ENDIF |
---|
903 | ! |
---|
904 | !-- Agent gets target of her group |
---|
905 | ELSE |
---|
906 | tmp_agent%t_x = at_x(i) |
---|
907 | tmp_agent%t_y = at_y(i) |
---|
908 | ENDIF |
---|
909 | |
---|
910 | local_count(jp,ip) = local_count(jp,ip) + 1 |
---|
911 | |
---|
912 | IF ( .NOT. first_stride ) THEN |
---|
913 | grid_agents(jp,ip)%agents(local_count(jp,ip)) = tmp_agent |
---|
914 | ENDIF |
---|
915 | |
---|
916 | ENDIF |
---|
917 | |
---|
918 | pos_x = pos_x + adx(i) |
---|
919 | |
---|
920 | ENDDO xloop |
---|
921 | |
---|
922 | ENDIF |
---|
923 | |
---|
924 | pos_y = pos_y + ady(i) |
---|
925 | |
---|
926 | ENDDO |
---|
927 | |
---|
928 | ENDDO |
---|
929 | |
---|
930 | ! |
---|
931 | !-- Allocate or reallocate agents array to new size |
---|
932 | IF ( first_stride ) THEN |
---|
933 | DO ip = nxlg, nxrg |
---|
934 | DO jp = nysg, nyng |
---|
935 | IF ( phase == phase_init ) THEN |
---|
936 | IF ( local_count(jp,ip) > 0 ) THEN |
---|
937 | alloc_size = MAX( INT( local_count(jp,ip) * & |
---|
938 | ( 1.0_wp + alloc_factor_mas / 100.0_wp ) ), & |
---|
939 | min_nr_agent ) |
---|
940 | ELSE |
---|
941 | alloc_size = min_nr_agent |
---|
942 | ENDIF |
---|
943 | ALLOCATE( grid_agents(jp,ip)%agents(1:alloc_size) ) |
---|
944 | DO n = 1, alloc_size |
---|
945 | grid_agents(jp,ip)%agents(n) = zero_agent |
---|
946 | ENDDO |
---|
947 | ELSEIF ( phase == phase_release ) THEN |
---|
948 | IF ( local_count(jp,ip) > 0 ) THEN |
---|
949 | new_size = local_count(jp,ip) + agt_count(jp,ip) |
---|
950 | alloc_size = MAX( INT( new_size * & |
---|
951 | ( 1.0_wp + alloc_factor_mas / 100.0_wp ) ), & |
---|
952 | min_nr_agent ) |
---|
953 | IF( alloc_size > SIZE( grid_agents(jp,ip)%agents) ) THEN |
---|
954 | CALL mas_eh_realloc_agents_array(ip,jp,alloc_size) |
---|
955 | ENDIF |
---|
956 | ENDIF |
---|
957 | ENDIF |
---|
958 | ENDDO |
---|
959 | ENDDO |
---|
960 | ENDIF |
---|
961 | |
---|
962 | ENDDO |
---|
963 | |
---|
964 | local_start = agt_count+1 |
---|
965 | agt_count = local_count |
---|
966 | |
---|
967 | ! |
---|
968 | !-- Calculate agent IDs |
---|
969 | DO ip = nxl, nxr |
---|
970 | DO jp = nys, nyn |
---|
971 | number_of_agents = agt_count(jp,ip) |
---|
972 | IF ( number_of_agents <= 0 ) CYCLE |
---|
973 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
974 | |
---|
975 | DO n = local_start(jp,ip), number_of_agents !only new agents |
---|
976 | |
---|
977 | agents(n)%id = 10000_idp**2 * grid_agents(jp,ip)%id_counter + 10000_idp * jp + ip |
---|
978 | ! |
---|
979 | !-- Count the number of agents that have been released before |
---|
980 | grid_agents(jp,ip)%id_counter = grid_agents(jp,ip)%id_counter + 1 |
---|
981 | |
---|
982 | ENDDO |
---|
983 | |
---|
984 | ENDDO |
---|
985 | ENDDO |
---|
986 | |
---|
987 | ! |
---|
988 | !-- Add random fluctuation to agent positions. |
---|
989 | IF ( random_start_position_agents ) THEN |
---|
990 | DO ip = nxl, nxr |
---|
991 | DO jp = nys, nyn |
---|
992 | number_of_agents = agt_count(jp,ip) |
---|
993 | IF ( number_of_agents <= 0 ) CYCLE |
---|
994 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
995 | ! |
---|
996 | !-- Move only new agents. Moreover, limit random fluctuation in order to prevent that |
---|
997 | !-- agents move more than one grid box, which would lead to problems concerning agent |
---|
998 | !-- exchange between processors in case adx/ady are larger than dx/dy, respectively. |
---|
999 | DO n = local_start(jp,ip), number_of_agents |
---|
1000 | IF ( asl(agents(n)%group) /= asr(agents(n)%group) ) THEN |
---|
1001 | rand_contr = ( random_function( iran_agent ) - 0.5_wp ) * adx(agents(n)%group) |
---|
1002 | agents(n)%x = agents(n)%x + MERGE( rand_contr, SIGN( dx, rand_contr ), & |
---|
1003 | ABS( rand_contr ) < dx & |
---|
1004 | ) |
---|
1005 | ENDIF |
---|
1006 | IF ( ass(agents(n)%group) /= asn(agents(n)%group) ) THEN |
---|
1007 | rand_contr = ( random_function( iran_agent ) - 0.5_wp ) * ady(agents(n)%group) |
---|
1008 | agents(n)%y = agents(n)%y + & |
---|
1009 | MERGE( rand_contr, SIGN( dy, rand_contr ), ABS( rand_contr ) < dy ) |
---|
1010 | ENDIF |
---|
1011 | ENDDO |
---|
1012 | ! |
---|
1013 | !-- Delete agents that have been simulated longer than allowed |
---|
1014 | CALL mas_boundary_conds( 'max_sim_time' ) |
---|
1015 | ! |
---|
1016 | !-- Delete agents that have reached target area |
---|
1017 | CALL mas_boundary_conds( 'target_area' ) |
---|
1018 | |
---|
1019 | ENDDO |
---|
1020 | ENDDO |
---|
1021 | ! |
---|
1022 | !-- Exchange agents between grid cells and processors |
---|
1023 | CALL mas_eh_move_agent |
---|
1024 | CALL mas_eh_exchange_horiz |
---|
1025 | |
---|
1026 | ENDIF |
---|
1027 | ! |
---|
1028 | !-- In case of random_start_position_agents, delete agents identified by mas_eh_exchange_horiz and |
---|
1029 | !-- mas_boundary_conds. Then sort agents into blocks, which is needed for a fast interpolation of |
---|
1030 | !-- the LES fields on the agent position. |
---|
1031 | CALL mas_ps_sort_in_subboxes |
---|
1032 | |
---|
1033 | ! |
---|
1034 | !-- Determine the current number of agents |
---|
1035 | number_of_agents = 0 |
---|
1036 | DO ip = nxl, nxr |
---|
1037 | DO jp = nys, nyn |
---|
1038 | number_of_agents = number_of_agents + agt_count(jp,ip) |
---|
1039 | ENDDO |
---|
1040 | ENDDO |
---|
1041 | ! |
---|
1042 | !-- Calculate the number of agents of the total domain |
---|
1043 | #if defined( __parallel ) |
---|
1044 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1045 | CALL MPI_ALLREDUCE( number_of_agents, total_number_of_agents, 1, MPI_INTEGER, MPI_SUM, comm2d, & |
---|
1046 | ierr ) |
---|
1047 | #else |
---|
1048 | total_number_of_agents = number_of_agents |
---|
1049 | #endif |
---|
1050 | |
---|
1051 | RETURN |
---|
1052 | |
---|
1053 | END SUBROUTINE mas_create_agent |
---|
1054 | |
---|
1055 | !--------------------------------------------------------------------------------------------------! |
---|
1056 | ! Description: |
---|
1057 | ! ------------ |
---|
1058 | !> Creates flags that indicate if a gridbox contains edges or corners. These flags are used for |
---|
1059 | !> agents to check if obstacles are close to them. |
---|
1060 | !--------------------------------------------------------------------------------------------------! |
---|
1061 | SUBROUTINE mas_create_obstacle_flags |
---|
1062 | |
---|
1063 | USE arrays_3d, & |
---|
1064 | ONLY: zw |
---|
1065 | |
---|
1066 | IMPLICIT NONE |
---|
1067 | |
---|
1068 | INTEGER(iwp) :: il |
---|
1069 | INTEGER(iwp) :: jl |
---|
1070 | |
---|
1071 | ALLOCATE( obstacle_flags(nysg:nyng,nxlg:nxrg) ) |
---|
1072 | |
---|
1073 | obstacle_flags = 0 |
---|
1074 | |
---|
1075 | DO il = nxlg, nxrg |
---|
1076 | DO jl = nysg, nyng |
---|
1077 | ! |
---|
1078 | !-- Exclude cyclic topography boundary |
---|
1079 | IF ( il < 0 .OR. il > nx .OR. jl < 0 .OR. jl > ny ) CYCLE |
---|
1080 | ! |
---|
1081 | !-- North edge |
---|
1082 | IF ( jl < nyng ) THEN |
---|
1083 | IF ( ( top_top_s(jl,il) - top_top_s(jl+1,il) ) > 1 .AND. & |
---|
1084 | ( zw( top_top_w(jl,il) ) - zw( top_top_w(jl+1,il) ) ) > 0.51_wp ) & |
---|
1085 | THEN |
---|
1086 | obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 0 ) |
---|
1087 | ENDIF |
---|
1088 | ENDIF |
---|
1089 | ! |
---|
1090 | !-- North right corner |
---|
1091 | IF ( jl < nyng .AND. il < nxrg ) THEN |
---|
1092 | IF ( ( top_top_s(jl,il) - top_top_s(jl+1,il) ) > 1 .AND. & |
---|
1093 | ( top_top_s(jl,il) - top_top_s(jl+1,il+1) ) > 1 .AND. & |
---|
1094 | ( top_top_s(jl,il) - top_top_s(jl,il+1) ) > 1 .AND. & |
---|
1095 | ( zw( top_top_w(jl,il) ) - zw( top_top_w(jl+1,il+1) ) ) > 0.51_wp ) & |
---|
1096 | THEN |
---|
1097 | obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 1 ) |
---|
1098 | ENDIF |
---|
1099 | ENDIF |
---|
1100 | ! |
---|
1101 | !-- Right edge |
---|
1102 | IF ( il < nxrg ) THEN |
---|
1103 | IF ( ( top_top_s(jl,il) - top_top_s(jl,il+1) ) > 1 .AND. & |
---|
1104 | ( zw( top_top_w(jl,il) ) - zw( top_top_w(jl,il+1) ) ) > 0.51_wp ) & |
---|
1105 | THEN |
---|
1106 | obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 2 ) |
---|
1107 | ENDIF |
---|
1108 | ENDIF |
---|
1109 | ! |
---|
1110 | !-- South right corner |
---|
1111 | IF ( jl > nysg .AND. il < nxrg ) THEN |
---|
1112 | IF ( ( top_top_s(jl,il) - top_top_s(jl,il+1) ) > 1 .AND. & |
---|
1113 | ( top_top_s(jl,il) - top_top_s(jl-1,il+1) ) > 1 .AND. & |
---|
1114 | ( top_top_s(jl,il) - top_top_s(jl-1,il) ) > 1 .AND. & |
---|
1115 | ( zw(top_top_w(jl,il) ) - zw( top_top_w(jl-1,il+1) ) ) > 0.51_wp ) & |
---|
1116 | THEN |
---|
1117 | obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 3 ) |
---|
1118 | ENDIF |
---|
1119 | ENDIF |
---|
1120 | ! |
---|
1121 | !-- South edge |
---|
1122 | IF ( jl > nysg ) THEN |
---|
1123 | IF ( ( top_top_s(jl,il) - top_top_s(jl-1,il) ) > 1 .AND. & |
---|
1124 | ( zw( top_top_w(jl,il) ) - zw( top_top_w(jl-1,il) ) ) > 0.51_wp ) & |
---|
1125 | THEN |
---|
1126 | obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 4 ) |
---|
1127 | ENDIF |
---|
1128 | ENDIF |
---|
1129 | ! |
---|
1130 | !-- South left corner |
---|
1131 | IF ( jl > nysg .AND. il > nxlg ) THEN |
---|
1132 | IF ( ( top_top_s(jl,il) - top_top_s(jl-1,il) ) > 1 .AND. & |
---|
1133 | ( top_top_s(jl,il) - top_top_s(jl-1,il-1) ) > 1 .AND. & |
---|
1134 | ( top_top_s(jl,il) - top_top_s(jl,il-1) ) > 1 .AND. & |
---|
1135 | ( zw( top_top_w(jl,il) ) - zw(top_top_w(jl-1,il-1) ) ) > 0.51_wp ) & |
---|
1136 | THEN |
---|
1137 | obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 5 ) |
---|
1138 | ENDIF |
---|
1139 | ENDIF |
---|
1140 | ! |
---|
1141 | !-- Left edge |
---|
1142 | IF ( il > nxlg ) THEN |
---|
1143 | IF ( ( top_top_s(jl,il) - top_top_s(jl,il-1) ) > 1 .AND. & |
---|
1144 | ( zw(top_top_w(jl,il) ) - zw(top_top_w(jl,il-1) ) ) > 0.51_wp ) & |
---|
1145 | THEN |
---|
1146 | obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 6 ) |
---|
1147 | ENDIF |
---|
1148 | ENDIF |
---|
1149 | ! |
---|
1150 | !-- North left corner |
---|
1151 | IF ( jl < nyng .AND. il > nxlg ) THEN |
---|
1152 | IF ( ( top_top_s(jl,il) - top_top_s(jl,il-1) ) > 1 .AND. & |
---|
1153 | ( top_top_s(jl,il) - top_top_s(jl+1,il-1) ) > 1 .AND. & |
---|
1154 | ( top_top_s(jl,il) - top_top_s(jl+1,il) ) > 1 .AND. & |
---|
1155 | ( zw( top_top_w(jl,il) ) - zw( top_top_w(jl+1,il-1) ) ) > 0.51_wp ) & |
---|
1156 | THEN |
---|
1157 | obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 7 ) |
---|
1158 | ENDIF |
---|
1159 | ENDIF |
---|
1160 | |
---|
1161 | ENDDO |
---|
1162 | ENDDO |
---|
1163 | |
---|
1164 | END SUBROUTINE mas_create_obstacle_flags |
---|
1165 | |
---|
1166 | !--------------------------------------------------------------------------------------------------! |
---|
1167 | ! Description: |
---|
1168 | ! ------------ |
---|
1169 | !> Write agent data in netCDF format |
---|
1170 | !--------------------------------------------------------------------------------------------------! |
---|
1171 | SUBROUTINE mas_data_output_agents( ftest ) |
---|
1172 | |
---|
1173 | USE control_parameters, & |
---|
1174 | ONLY: agt_time_count, biometeorology, end_time, message_string, multi_agent_system_end, & |
---|
1175 | multi_agent_system_start |
---|
1176 | |
---|
1177 | USE netcdf_interface, & |
---|
1178 | ONLY: nc_stat, id_set_agt, id_var_time_agt, id_var_agt, netcdf_handle_error |
---|
1179 | |
---|
1180 | USE pegrid |
---|
1181 | |
---|
1182 | #if defined( __netcdf ) |
---|
1183 | USE NETCDF |
---|
1184 | #endif |
---|
1185 | USE mas_global_attributes, & |
---|
1186 | ONLY: dim_size_agtnum |
---|
1187 | |
---|
1188 | IMPLICIT NONE |
---|
1189 | |
---|
1190 | #if defined( __parallel ) |
---|
1191 | INTEGER(iwp) :: agt_size !< Agent size in bytes |
---|
1192 | INTEGER(iwp) :: n !< counter (number of PEs) |
---|
1193 | INTEGER(iwp) :: noa_rcv !< received number of agents |
---|
1194 | #endif |
---|
1195 | INTEGER(iwp) :: dummy !< dummy |
---|
1196 | INTEGER(iwp) :: ii !< counter (x) |
---|
1197 | INTEGER(iwp) :: ip !< counter (x) |
---|
1198 | INTEGER(iwp) :: jp !< counter (y) |
---|
1199 | INTEGER(iwp) :: noa !< number of agents |
---|
1200 | INTEGER(iwp) :: out_noa !< number of agents for output |
---|
1201 | |
---|
1202 | #if defined( __parallel ) |
---|
1203 | INTEGER(iwp), DIMENSION(0:numprocs-1) :: noa_arr !< number of agents on each PE |
---|
1204 | #endif |
---|
1205 | ! |
---|
1206 | !-- SAVE attribute required to avoid compiler warning about pointer outlive the pointer target |
---|
1207 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE, TARGET, SAVE :: trf_agents !< all agents on current PE |
---|
1208 | #if defined( __parallel ) |
---|
1209 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE, TARGET, SAVE :: out_agents !< all agents in entire domain |
---|
1210 | #endif |
---|
1211 | |
---|
1212 | LOGICAL, INTENT (INOUT) :: ftest |
---|
1213 | |
---|
1214 | LOGICAL, SAVE :: agt_dimension_exceeded = .FALSE. |
---|
1215 | |
---|
1216 | |
---|
1217 | CALL cpu_log( log_point_s(17), 'mas_data_output', 'start' ) |
---|
1218 | ! |
---|
1219 | !-- Get total number of agents and put all agents on one PE in one array |
---|
1220 | noa = 0 |
---|
1221 | DO ip = nxl, nxr |
---|
1222 | DO jp = nys, nyn |
---|
1223 | noa = noa + agt_count(jp,ip) |
---|
1224 | ENDDO |
---|
1225 | ENDDO |
---|
1226 | IF ( noa > 0 ) THEN |
---|
1227 | ALLOCATE( trf_agents(1:noa) ) |
---|
1228 | dummy = 1 |
---|
1229 | DO ip = nxl, nxr |
---|
1230 | DO jp = nys, nyn |
---|
1231 | IF ( agt_count(jp,ip) == 0 ) CYCLE |
---|
1232 | agents => grid_agents(jp,ip)%agents(1:agt_count(jp,ip)) |
---|
1233 | trf_agents(dummy:(dummy-1+agt_count(jp,ip))) = agents |
---|
1234 | dummy = dummy + agt_count(jp,ip) |
---|
1235 | ENDDO |
---|
1236 | ENDDO |
---|
1237 | ENDIF |
---|
1238 | #if defined( __parallel ) |
---|
1239 | ! |
---|
1240 | !-- Gather all agents on PE0 for output |
---|
1241 | IF ( myid == 0 ) THEN |
---|
1242 | noa_arr(0) = noa |
---|
1243 | ! |
---|
1244 | !-- Receive data from all other PEs. |
---|
1245 | DO n = 1, numprocs-1 |
---|
1246 | CALL MPI_RECV( noa_arr(n), 1, MPI_INTEGER, n, 0, comm2d, status, ierr ) |
---|
1247 | ENDDO |
---|
1248 | ELSE |
---|
1249 | CALL MPI_SEND( noa, 1, MPI_INTEGER, 0, 0, comm2d, ierr ) |
---|
1250 | ENDIF |
---|
1251 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1252 | agt_size = STORAGE_SIZE( zero_agent ) / 8 |
---|
1253 | IF ( myid == 0 ) THEN |
---|
1254 | ! |
---|
1255 | !-- Receive data from all other PEs. |
---|
1256 | out_noa = SUM( noa_arr ) |
---|
1257 | IF ( out_noa > 0 ) THEN |
---|
1258 | ALLOCATE( out_agents(1:out_noa) ) |
---|
1259 | IF ( noa > 0 ) THEN |
---|
1260 | out_agents(1:noa) = trf_agents |
---|
1261 | ENDIF |
---|
1262 | noa_rcv = noa |
---|
1263 | DO n = 1, numprocs-1 |
---|
1264 | IF ( noa_arr(n) > 0 ) THEN |
---|
1265 | CALL MPI_RECV( out_agents(noa_rcv+1), noa_arr(n) * agt_size, MPI_BYTE, n, 0, & |
---|
1266 | comm2d, status, ierr ) |
---|
1267 | noa_rcv = noa_rcv + noa_arr(n) |
---|
1268 | ENDIF |
---|
1269 | ENDDO |
---|
1270 | ELSE |
---|
1271 | ALLOCATE( out_agents(1:2) ) |
---|
1272 | out_agents = zero_agent |
---|
1273 | out_noa = 2 |
---|
1274 | ENDIF |
---|
1275 | ELSE |
---|
1276 | IF ( noa > 0 ) THEN |
---|
1277 | CALL MPI_SEND( trf_agents(1), noa*agt_size, MPI_BYTE, 0, 0, comm2d, ierr ) |
---|
1278 | ENDIF |
---|
1279 | ENDIF |
---|
1280 | ! |
---|
1281 | !-- A barrier has to be set, because otherwise some PEs may proceed too fast so that PE0 may receive |
---|
1282 | !-- wrong data on tag 0. |
---|
1283 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
1284 | #endif |
---|
1285 | IF ( myid == 0 ) THEN |
---|
1286 | #if defined( __parallel ) |
---|
1287 | agents => out_agents |
---|
1288 | #else |
---|
1289 | agents => trf_agents |
---|
1290 | #endif |
---|
1291 | |
---|
1292 | #if defined( __netcdf ) |
---|
1293 | ! |
---|
1294 | !-- Update maximum number of agents |
---|
1295 | maximum_number_of_agents = MAX(maximum_number_of_agents, out_noa) |
---|
1296 | ! |
---|
1297 | !-- Output in netCDF format |
---|
1298 | IF ( ftest ) THEN |
---|
1299 | ! |
---|
1300 | !-- First, define size of agent number dimension from amount of agents released, release |
---|
1301 | !-- interval, time of agent simulation and max age of agents. |
---|
1302 | dim_size_agtnum = MIN( MIN( multi_agent_system_end, end_time ) & |
---|
1303 | - multi_agent_system_start, & |
---|
1304 | agent_maximum_age) |
---|
1305 | |
---|
1306 | DO ii = 1, number_of_agent_groups |
---|
1307 | dim_size_agtnum = dim_size_agtnum & |
---|
1308 | + ( FLOOR( ( asr(ii)-asl(ii) ) / adx(ii) ) + 1 ) & |
---|
1309 | * ( FLOOR( ( asn(ii)-ass(ii) ) / ady(ii) ) + 1 ) & |
---|
1310 | * ( FLOOR( dim_size_agtnum / dt_arel ) + 1 ) & |
---|
1311 | * dim_size_factor_agtnum |
---|
1312 | dim_size_agtnum = MIN( dim_size_agtnum, dim_size_agtnum_manual ) |
---|
1313 | ENDDO |
---|
1314 | CALL check_open( 118 ) |
---|
1315 | ENDIF |
---|
1316 | |
---|
1317 | ! |
---|
1318 | !-- Update the NetCDF time axis |
---|
1319 | agt_time_count = agt_time_count + 1 |
---|
1320 | |
---|
1321 | IF ( .NOT. agt_dimension_exceeded ) THEN |
---|
1322 | ! |
---|
1323 | !-- If number of agents to be output exceeds dimension, set flag and print warning. |
---|
1324 | IF ( out_noa > dim_size_agtnum ) THEN |
---|
1325 | |
---|
1326 | agt_dimension_exceeded = .TRUE. |
---|
1327 | WRITE( message_string, '(A,F11.1,2(A,I8))' ) & |
---|
1328 | 'Number of agents exceeds agent dimension.' // & |
---|
1329 | '&Starting at time_since_reference_point = ', & |
---|
1330 | time_since_reference_point, & |
---|
1331 | ' s, &data may be missing.'// & |
---|
1332 | '&Number of agents: ', out_noa, & |
---|
1333 | '&Agent dimension size: ', dim_size_agtnum |
---|
1334 | |
---|
1335 | CALL message( 'mas_data_output_agents', 'PA0420', 0, 1, 0, 6, 0 ) |
---|
1336 | |
---|
1337 | ENDIF |
---|
1338 | ENDIF |
---|
1339 | |
---|
1340 | ! |
---|
1341 | !-- Reduce number of output agents to dimension size, if necessary. |
---|
1342 | IF ( agt_dimension_exceeded ) THEN |
---|
1343 | |
---|
1344 | out_noa = MIN( out_noa, dim_size_agtnum ) |
---|
1345 | |
---|
1346 | ENDIF |
---|
1347 | |
---|
1348 | nc_stat = NF90_PUT_VAR( id_set_agt, id_var_time_agt, & |
---|
1349 | (/ time_since_reference_point + agent_substep_time /), & |
---|
1350 | start = (/ agt_time_count /), & |
---|
1351 | count = (/ 1 /) ) |
---|
1352 | CALL netcdf_handle_error( 'mas_data_output_agents', 1 ) |
---|
1353 | |
---|
1354 | ! |
---|
1355 | !-- Output agent attributes |
---|
1356 | |
---|
1357 | nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(1), agents%id, & |
---|
1358 | start = (/ 1, agt_time_count /), & |
---|
1359 | count = (/ out_noa /) ) |
---|
1360 | CALL netcdf_handle_error( 'mas_data_output_agents', 2 ) |
---|
1361 | |
---|
1362 | nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(2), agents%x, & |
---|
1363 | start = (/ 1, agt_time_count /), & |
---|
1364 | count = (/ out_noa /) ) |
---|
1365 | CALL netcdf_handle_error( 'mas_data_output_agents', 3 ) |
---|
1366 | |
---|
1367 | nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(3), agents%y, & |
---|
1368 | start = (/ 1, agt_time_count /), & |
---|
1369 | count = (/ out_noa /) ) |
---|
1370 | CALL netcdf_handle_error( 'mas_data_output_agents', 4 ) |
---|
1371 | |
---|
1372 | nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(4), agents%windspeed, & |
---|
1373 | start = (/ 1, agt_time_count /), & |
---|
1374 | count = (/ out_noa /) ) |
---|
1375 | CALL netcdf_handle_error( 'mas_data_output_agents', 5 ) |
---|
1376 | |
---|
1377 | nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(5), agents%t, & |
---|
1378 | start = (/ 1, agt_time_count /), & |
---|
1379 | count = (/ out_noa /) ) |
---|
1380 | CALL netcdf_handle_error( 'mas_data_output_agents', 6 ) |
---|
1381 | |
---|
1382 | nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(6), agents%group, & |
---|
1383 | start = (/ 1, agt_time_count /), & |
---|
1384 | count = (/ out_noa /) ) |
---|
1385 | CALL netcdf_handle_error( 'mas_data_output_agents', 7 ) |
---|
1386 | |
---|
1387 | |
---|
1388 | IF ( biometeorology ) THEN |
---|
1389 | nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(7), agents%ipt, & |
---|
1390 | start = (/ 1, agt_time_count /), & |
---|
1391 | count = (/ out_noa /) ) |
---|
1392 | CALL netcdf_handle_error( 'mas_data_output_agents', 8 ) |
---|
1393 | ENDIF |
---|
1394 | |
---|
1395 | |
---|
1396 | |
---|
1397 | ! nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(8), agents%pm10, & |
---|
1398 | ! start = (/ 1, agt_time_count /), & |
---|
1399 | ! count = (/ out_noa /) ) |
---|
1400 | ! CALL netcdf_handle_error( 'mas_data_output_agents', 9 ) |
---|
1401 | ! |
---|
1402 | ! nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(9), agents%pm25, & |
---|
1403 | ! start = (/ 1, agt_time_count /), & |
---|
1404 | ! count = (/ out_noa /) ) |
---|
1405 | ! CALL netcdf_handle_error( 'mas_data_output_agents', 10 ) |
---|
1406 | ! |
---|
1407 | ! |
---|
1408 | ! nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(9), agents%uv, & |
---|
1409 | ! start = (/ 1, agt_time_count /), & |
---|
1410 | ! count = (/ out_noa /) ) |
---|
1411 | ! CALL netcdf_handle_error( 'mas_data_output_agents', 10 ) |
---|
1412 | |
---|
1413 | CALL cpu_log( log_point_s(17), 'mas_data_output', 'stop' ) |
---|
1414 | |
---|
1415 | |
---|
1416 | #endif |
---|
1417 | |
---|
1418 | #if defined( __parallel ) |
---|
1419 | IF ( ALLOCATED( out_agents ) ) DEALLOCATE( out_agents ) |
---|
1420 | #endif |
---|
1421 | ELSE |
---|
1422 | CALL cpu_log( log_point_s(17), 'mas_data_output', 'stop' ) |
---|
1423 | ENDIF |
---|
1424 | |
---|
1425 | IF ( ALLOCATED( trf_agents ) ) DEALLOCATE( trf_agents ) |
---|
1426 | |
---|
1427 | END SUBROUTINE mas_data_output_agents |
---|
1428 | |
---|
1429 | #if defined( __parallel ) |
---|
1430 | !--------------------------------------------------------------------------------------------------! |
---|
1431 | ! Description: |
---|
1432 | ! ------------ |
---|
1433 | !> If an agent moves from one processor to another, this subroutine moves the corresponding elements |
---|
1434 | !> from the agent arrays of the old grid cells to the agent arrays of the new grid cells. |
---|
1435 | !--------------------------------------------------------------------------------------------------! |
---|
1436 | SUBROUTINE mas_eh_add_agents_to_gridcell (agent_array) |
---|
1437 | |
---|
1438 | IMPLICIT NONE |
---|
1439 | |
---|
1440 | INTEGER(iwp) :: aindex !< dummy argument for new number of agents per grid box |
---|
1441 | INTEGER(iwp) :: ip !< grid index (x) of agent |
---|
1442 | INTEGER(iwp) :: jp !< grid index (x) of agent |
---|
1443 | INTEGER(iwp) :: n !< index variable of agent |
---|
1444 | |
---|
1445 | LOGICAL :: pack_done !< flag to indicate that packing is done |
---|
1446 | |
---|
1447 | TYPE(agent_type), DIMENSION(:), INTENT(IN) :: agent_array !< new agents in a grid box |
---|
1448 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: temp_ns !< temporary agent array for reallocation |
---|
1449 | |
---|
1450 | pack_done = .FALSE. |
---|
1451 | |
---|
1452 | DO n = 1, SIZE(agent_array) |
---|
1453 | |
---|
1454 | IF ( .NOT. agent_array(n)%agent_mask ) CYCLE |
---|
1455 | |
---|
1456 | ip = agent_array(n)%x * ddx |
---|
1457 | jp = agent_array(n)%y * ddy |
---|
1458 | |
---|
1459 | IF ( ip >= nxl .AND. ip <= nxr .AND. jp >= nys .AND. jp <= nyn ) THEN ! agent stays on processor |
---|
1460 | number_of_agents = agt_count(jp,ip) |
---|
1461 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
1462 | |
---|
1463 | aindex = agt_count(jp,ip)+1 |
---|
1464 | IF( aindex > SIZE( grid_agents(jp,ip)%agents ) ) THEN |
---|
1465 | IF ( pack_done ) THEN |
---|
1466 | CALL mas_eh_realloc_agents_array (ip,jp) |
---|
1467 | ELSE |
---|
1468 | CALL mas_ps_pack |
---|
1469 | agt_count(jp,ip) = number_of_agents |
---|
1470 | aindex = agt_count(jp,ip)+1 |
---|
1471 | IF ( aindex > SIZE( grid_agents(jp,ip)%agents ) ) THEN |
---|
1472 | CALL mas_eh_realloc_agents_array (ip,jp) |
---|
1473 | ENDIF |
---|
1474 | pack_done = .TRUE. |
---|
1475 | ENDIF |
---|
1476 | ENDIF |
---|
1477 | grid_agents(jp,ip)%agents(aindex) = agent_array(n) |
---|
1478 | agt_count(jp,ip) = aindex |
---|
1479 | ELSE |
---|
1480 | IF ( jp <= nys - 1 ) THEN |
---|
1481 | nr_move_south = nr_move_south+1 |
---|
1482 | ! |
---|
1483 | !-- Before agent information is swapped to exchange-array, check if enough memory is |
---|
1484 | !-- allocated. If required, reallocate exchange array. |
---|
1485 | IF ( nr_move_south > SIZE( move_also_south ) ) THEN |
---|
1486 | ! |
---|
1487 | !-- At first, allocate further temporary array to swap agent information. |
---|
1488 | ALLOCATE( temp_ns( SIZE( move_also_south ) + nr_2_direction_move ) ) |
---|
1489 | temp_ns(1:nr_move_south-1) = move_also_south(1:nr_move_south-1) |
---|
1490 | DEALLOCATE( move_also_south ) |
---|
1491 | ALLOCATE( move_also_south( SIZE(temp_ns) ) ) |
---|
1492 | move_also_south(1:nr_move_south-1) = temp_ns(1:nr_move_south-1) |
---|
1493 | DEALLOCATE( temp_ns ) |
---|
1494 | |
---|
1495 | ENDIF |
---|
1496 | |
---|
1497 | move_also_south(nr_move_south) = agent_array(n) |
---|
1498 | |
---|
1499 | IF ( jp == -1 ) THEN |
---|
1500 | ! |
---|
1501 | !-- Apply boundary condition along y |
---|
1502 | IF ( ibc_mas_ns == 0 ) THEN |
---|
1503 | move_also_south(nr_move_south)%y = move_also_south(nr_move_south)%y & |
---|
1504 | + ( ny + 1 ) * dy |
---|
1505 | move_also_south(nr_move_south)%origin_y = & |
---|
1506 | move_also_south(nr_move_south)%origin_y & |
---|
1507 | + ( ny + 1 ) * dy |
---|
1508 | ELSEIF ( ibc_mas_ns == 1 ) THEN |
---|
1509 | ! |
---|
1510 | !-- Agent absorption |
---|
1511 | move_also_south(nr_move_south)%agent_mask = .FALSE. |
---|
1512 | deleted_agents = deleted_agents + 1 |
---|
1513 | |
---|
1514 | ENDIF |
---|
1515 | ENDIF |
---|
1516 | ELSEIF ( jp >= nyn+1 ) THEN |
---|
1517 | nr_move_north = nr_move_north+1 |
---|
1518 | ! |
---|
1519 | !-- Before agent information is swapped to exchange-array, check if enough memory is |
---|
1520 | !-- allocated. If required, reallocate exchange array. |
---|
1521 | IF ( nr_move_north > SIZE( move_also_north ) ) THEN |
---|
1522 | ! |
---|
1523 | !-- At first, allocate further temporary array to swap agent information. |
---|
1524 | ALLOCATE( temp_ns( SIZE( move_also_north ) + nr_2_direction_move ) ) |
---|
1525 | temp_ns(1:nr_move_north-1) = move_also_south(1:nr_move_north-1) |
---|
1526 | DEALLOCATE( move_also_north ) |
---|
1527 | ALLOCATE( move_also_north(SIZE(temp_ns)) ) |
---|
1528 | move_also_north(1:nr_move_north-1) = temp_ns(1:nr_move_north-1) |
---|
1529 | DEALLOCATE( temp_ns ) |
---|
1530 | |
---|
1531 | ENDIF |
---|
1532 | |
---|
1533 | move_also_north(nr_move_north) = agent_array(n) |
---|
1534 | IF ( jp == ny+1 ) THEN |
---|
1535 | ! |
---|
1536 | !-- Apply boundary condition along y |
---|
1537 | IF ( ibc_mas_ns == 0 ) THEN |
---|
1538 | |
---|
1539 | move_also_north(nr_move_north)%y = move_also_north(nr_move_north)%y & |
---|
1540 | - ( ny + 1 ) * dy |
---|
1541 | move_also_north(nr_move_north)%origin_y = & |
---|
1542 | move_also_north(nr_move_north)%origin_y & |
---|
1543 | - ( ny + 1 ) * dy |
---|
1544 | ELSEIF ( ibc_mas_ns == 1 ) THEN |
---|
1545 | ! |
---|
1546 | !-- Agent absorption |
---|
1547 | move_also_north(nr_move_north)%agent_mask = .FALSE. |
---|
1548 | deleted_agents = deleted_agents + 1 |
---|
1549 | |
---|
1550 | ENDIF |
---|
1551 | ENDIF |
---|
1552 | ENDIF |
---|
1553 | ENDIF |
---|
1554 | ENDDO |
---|
1555 | |
---|
1556 | RETURN |
---|
1557 | |
---|
1558 | END SUBROUTINE mas_eh_add_agents_to_gridcell |
---|
1559 | #endif |
---|
1560 | |
---|
1561 | |
---|
1562 | #if defined( __parallel ) |
---|
1563 | !--------------------------------------------------------------------------------------------------! |
---|
1564 | ! Description: |
---|
1565 | ! ------------ |
---|
1566 | !> After ghost layer agents have been received from neighboring PEs, this subroutine sorts them into |
---|
1567 | !> the corresponding grid cells |
---|
1568 | !--------------------------------------------------------------------------------------------------! |
---|
1569 | SUBROUTINE mas_eh_add_ghost_agents_to_gridcell (agent_array) |
---|
1570 | |
---|
1571 | IMPLICIT NONE |
---|
1572 | |
---|
1573 | INTEGER(iwp) :: aindex !< dummy argument for new number of agents per grid box |
---|
1574 | INTEGER(iwp) :: ip !< grid index (x) of agent |
---|
1575 | INTEGER(iwp) :: jp !< grid index (x) of agent |
---|
1576 | INTEGER(iwp) :: n !< index variable of agent |
---|
1577 | |
---|
1578 | LOGICAL :: pack_done !< flag to indicate that packing is done |
---|
1579 | |
---|
1580 | TYPE(agent_type), DIMENSION(:), INTENT(IN) :: agent_array !< new agents in a grid box |
---|
1581 | |
---|
1582 | pack_done = .FALSE. |
---|
1583 | |
---|
1584 | DO n = 1, SIZE(agent_array) |
---|
1585 | |
---|
1586 | IF ( .NOT. agent_array(n)%agent_mask ) CYCLE |
---|
1587 | |
---|
1588 | ip = agent_array(n)%x * ddx |
---|
1589 | jp = agent_array(n)%y * ddy |
---|
1590 | |
---|
1591 | IF ( ip < nxl .OR. ip > nxr .OR. jp < nys .OR. jp > nyn ) THEN |
---|
1592 | number_of_agents = agt_count(jp,ip) |
---|
1593 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
1594 | |
---|
1595 | aindex = agt_count(jp,ip)+1 |
---|
1596 | IF( aindex > SIZE( grid_agents(jp,ip)%agents ) ) THEN |
---|
1597 | IF ( pack_done ) THEN |
---|
1598 | CALL mas_eh_realloc_agents_array (ip,jp) |
---|
1599 | ELSE |
---|
1600 | CALL mas_ps_pack |
---|
1601 | agt_count(jp,ip) = number_of_agents |
---|
1602 | aindex = agt_count(jp,ip)+1 |
---|
1603 | IF ( aindex > SIZE( grid_agents(jp,ip)%agents ) ) THEN |
---|
1604 | CALL mas_eh_realloc_agents_array (ip,jp) |
---|
1605 | ENDIF |
---|
1606 | pack_done = .TRUE. |
---|
1607 | ENDIF |
---|
1608 | ENDIF |
---|
1609 | grid_agents(jp,ip)%agents(aindex) = agent_array(n) |
---|
1610 | agt_count(jp,ip) = aindex |
---|
1611 | ENDIF |
---|
1612 | ENDDO |
---|
1613 | END SUBROUTINE mas_eh_add_ghost_agents_to_gridcell |
---|
1614 | #endif |
---|
1615 | |
---|
1616 | !--------------------------------------------------------------------------------------------------! |
---|
1617 | ! Description: |
---|
1618 | ! ------------ |
---|
1619 | !> Resizing of agent arrays |
---|
1620 | !--------------------------------------------------------------------------------------------------! |
---|
1621 | SUBROUTINE mas_eh_dealloc_agents_array |
---|
1622 | |
---|
1623 | IMPLICIT NONE |
---|
1624 | |
---|
1625 | INTEGER(iwp) :: i !< grid index (x) of agent |
---|
1626 | INTEGER(iwp) :: j !< grid index (y) of agent |
---|
1627 | INTEGER(iwp) :: new_size !< new array size |
---|
1628 | INTEGER(iwp) :: noa !< number of agents |
---|
1629 | INTEGER(iwp) :: old_size !< old array size |
---|
1630 | |
---|
1631 | LOGICAL :: dealloc !< flag that indicates if reallocation is necessary |
---|
1632 | |
---|
1633 | TYPE(agent_type), DIMENSION(10) :: tmp_agents_s !< temporary static agent array |
---|
1634 | |
---|
1635 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: tmp_agents_d !< temporary dynamic agent array |
---|
1636 | |
---|
1637 | DO i = nxlg, nxrg |
---|
1638 | DO j = nysg, nyng |
---|
1639 | ! |
---|
1640 | !-- Determine number of active agents |
---|
1641 | noa = agt_count(j,i) |
---|
1642 | ! |
---|
1643 | !-- Determine allocated memory size |
---|
1644 | old_size = SIZE( grid_agents(j,i)%agents ) |
---|
1645 | ! |
---|
1646 | !-- Check for large unused memory |
---|
1647 | dealloc = ( ( noa < min_nr_agent .AND. old_size > min_nr_agent ) .OR. & |
---|
1648 | ( noa > min_nr_agent .AND. & |
---|
1649 | old_size - noa * ( 1.0_wp + 0.01_wp * alloc_factor_mas ) > 0.0_wp ) & |
---|
1650 | ) |
---|
1651 | ! |
---|
1652 | !-- If large unused memory was found, resize the corresponding array |
---|
1653 | IF ( dealloc ) THEN |
---|
1654 | IF ( noa < min_nr_agent ) THEN |
---|
1655 | new_size = min_nr_agent |
---|
1656 | ELSE |
---|
1657 | new_size = INT( noa * ( 1.0_wp + 0.01_wp * alloc_factor_mas ) ) |
---|
1658 | ENDIF |
---|
1659 | |
---|
1660 | IF ( noa <= 10 ) THEN |
---|
1661 | |
---|
1662 | tmp_agents_s(1:noa) = grid_agents(j,i)%agents(1:noa) |
---|
1663 | |
---|
1664 | DEALLOCATE(grid_agents(j,i)%agents) |
---|
1665 | ALLOCATE(grid_agents(j,i)%agents(1:new_size)) |
---|
1666 | |
---|
1667 | grid_agents(j,i)%agents(1:noa) = tmp_agents_s(1:noa) |
---|
1668 | grid_agents(j,i)%agents(noa+1:new_size) = zero_agent |
---|
1669 | |
---|
1670 | ELSE |
---|
1671 | |
---|
1672 | ALLOCATE(tmp_agents_d(noa)) |
---|
1673 | tmp_agents_d(1:noa) = grid_agents(j,i)%agents(1:noa) |
---|
1674 | |
---|
1675 | DEALLOCATE(grid_agents(j,i)%agents) |
---|
1676 | ALLOCATE(grid_agents(j,i)%agents(new_size)) |
---|
1677 | |
---|
1678 | grid_agents(j,i)%agents(1:noa) = tmp_agents_d(1:noa) |
---|
1679 | grid_agents(j,i)%agents(noa+1:new_size) = zero_agent |
---|
1680 | |
---|
1681 | DEALLOCATE(tmp_agents_d) |
---|
1682 | |
---|
1683 | ENDIF |
---|
1684 | |
---|
1685 | ENDIF |
---|
1686 | ENDDO |
---|
1687 | ENDDO |
---|
1688 | |
---|
1689 | END SUBROUTINE mas_eh_dealloc_agents_array |
---|
1690 | |
---|
1691 | !--------------------------------------------------------------------------------------------------! |
---|
1692 | ! Description: |
---|
1693 | ! ------------ |
---|
1694 | !> Exchange between subdomains. |
---|
1695 | !> As soon as one agent has moved beyond the boundary of the domain, it is included in the relevant |
---|
1696 | !> transfer arrays and marked for subsequent deletion on this PE. |
---|
1697 | !> First sweep for crossings in x direction. Find out first the number of agents to be transferred |
---|
1698 | !> and allocate temporary arrays needed to store them. |
---|
1699 | !> For a one-dimensional decomposition along y, no transfer is necessary, because the agent remains |
---|
1700 | !> on the PE, but the agent coordinate has to be adjusted. |
---|
1701 | !--------------------------------------------------------------------------------------------------! |
---|
1702 | SUBROUTINE mas_eh_exchange_horiz |
---|
1703 | |
---|
1704 | IMPLICIT NONE |
---|
1705 | |
---|
1706 | INTEGER(iwp) :: ip !< index variable along x |
---|
1707 | INTEGER(iwp) :: jp !< index variable along y |
---|
1708 | INTEGER(iwp) :: n !< agent index variable |
---|
1709 | |
---|
1710 | #if defined( __parallel ) |
---|
1711 | |
---|
1712 | INTEGER(iwp) :: i !< grid index (x) of agent positition |
---|
1713 | INTEGER(iwp) :: j !< grid index (y) of agent positition |
---|
1714 | INTEGER(iwp) :: par_size !< Agent size in bytes |
---|
1715 | |
---|
1716 | INTEGER(iwp) :: trla_count !< number of agents send to left PE |
---|
1717 | INTEGER(iwp) :: trla_count_recv !< number of agents receive from right PE |
---|
1718 | INTEGER(iwp) :: trna_count !< number of agents send to north PE |
---|
1719 | INTEGER(iwp) :: trna_count_recv !< number of agents receive from south PE |
---|
1720 | INTEGER(iwp) :: trra_count !< number of agents send to right PE |
---|
1721 | INTEGER(iwp) :: trra_count_recv !< number of agents receive from left PE |
---|
1722 | INTEGER(iwp) :: trsa_count !< number of agents send to south PE |
---|
1723 | INTEGER(iwp) :: trsa_count_recv !< number of agents receive from north PE |
---|
1724 | |
---|
1725 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: rvla !< agents received from right PE |
---|
1726 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: rvna !< agents received from south PE |
---|
1727 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: rvra !< agents received from left PE |
---|
1728 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: rvsa !< agents received from north PE |
---|
1729 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: trla !< agents send to left PE |
---|
1730 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: trna !< agents send to north PE |
---|
1731 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: trra !< agents send to right PE |
---|
1732 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: trsa !< agents send to south PE |
---|
1733 | |
---|
1734 | ! |
---|
1735 | !-- Exchange between subdomains. |
---|
1736 | !-- As soon as one agent has moved beyond the boundary of the domain, it is included in the relevant |
---|
1737 | !-- transfer arrays and marked for subsequent deletion on this PE. |
---|
1738 | !-- First sweep for crossings in x direction. Find out first the number of agents to be transferred |
---|
1739 | !-- and allocate temporary arrays needed to store them. |
---|
1740 | !-- For a one-dimensional decomposition along y, no transfer is necessary, because the agent remains |
---|
1741 | !-- on the PE, but the agent coordinate has to be adjusted. |
---|
1742 | trla_count = 0 |
---|
1743 | trra_count = 0 |
---|
1744 | |
---|
1745 | trla_count_recv = 0 |
---|
1746 | trra_count_recv = 0 |
---|
1747 | |
---|
1748 | IF ( pdims(1) /= 1 ) THEN |
---|
1749 | ! |
---|
1750 | !-- First calculate the storage necessary for sending and receiving the data. |
---|
1751 | !-- Compute only first (nxl) and last (nxr) loop iterration. |
---|
1752 | DO ip = nxl, nxr, nxr - nxl |
---|
1753 | DO jp = nys, nyn |
---|
1754 | |
---|
1755 | number_of_agents = agt_count(jp,ip) |
---|
1756 | IF ( number_of_agents <= 0 ) CYCLE |
---|
1757 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
1758 | DO n = 1, number_of_agents |
---|
1759 | IF ( agents(n)%agent_mask ) THEN |
---|
1760 | i = agents(n)%x * ddx |
---|
1761 | ! |
---|
1762 | !-- Above calculation does not work for indices less than zero |
---|
1763 | IF ( agents(n)%x < 0.0_wp ) i = -1 |
---|
1764 | |
---|
1765 | IF ( i < nxl ) THEN |
---|
1766 | trla_count = trla_count + 1 |
---|
1767 | ELSEIF ( i > nxr ) THEN |
---|
1768 | trra_count = trra_count + 1 |
---|
1769 | ENDIF |
---|
1770 | ENDIF |
---|
1771 | ENDDO |
---|
1772 | |
---|
1773 | ENDDO |
---|
1774 | ENDDO |
---|
1775 | |
---|
1776 | IF ( trla_count == 0 ) trla_count = 1 |
---|
1777 | IF ( trra_count == 0 ) trra_count = 1 |
---|
1778 | |
---|
1779 | ALLOCATE( trla(trla_count), trra(trra_count) ) |
---|
1780 | |
---|
1781 | trla = zero_agent |
---|
1782 | trra = zero_agent |
---|
1783 | |
---|
1784 | trla_count = 0 |
---|
1785 | trra_count = 0 |
---|
1786 | |
---|
1787 | ENDIF |
---|
1788 | ! |
---|
1789 | !-- Compute only first (nxl) and last (nxr) loop iterration |
---|
1790 | DO ip = nxl, nxr, nxr-nxl |
---|
1791 | DO jp = nys, nyn |
---|
1792 | number_of_agents = agt_count(jp,ip) |
---|
1793 | IF ( number_of_agents <= 0 ) CYCLE |
---|
1794 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
1795 | DO n = 1, number_of_agents |
---|
1796 | ! |
---|
1797 | !-- Only those agents that have not been marked as 'deleted' may be moved. |
---|
1798 | IF ( agents(n)%agent_mask ) THEN |
---|
1799 | |
---|
1800 | i = agents(n)%x * ddx |
---|
1801 | ! |
---|
1802 | !-- Above calculation does not work for indices less than zero |
---|
1803 | IF ( agents(n)%x < 0.0_wp ) i = -1 |
---|
1804 | |
---|
1805 | IF ( i < nxl ) THEN |
---|
1806 | IF ( i < 0 ) THEN |
---|
1807 | ! |
---|
1808 | !-- Apply boundary condition along x |
---|
1809 | IF ( ibc_mas_lr == 0 ) THEN |
---|
1810 | ! |
---|
1811 | !-- Cyclic condition |
---|
1812 | IF ( pdims(1) == 1 ) THEN |
---|
1813 | agents(n)%x = ( nx + 1 ) * dx + agents(n)%x |
---|
1814 | agents(n)%origin_x = ( nx + 1 ) * dx + agents(n)%origin_x |
---|
1815 | ELSE |
---|
1816 | trla_count = trla_count + 1 |
---|
1817 | trla(trla_count) = agents(n) |
---|
1818 | trla(trla_count)%x = ( nx + 1 ) * dx + trla(trla_count)%x |
---|
1819 | trla(trla_count)%origin_x = trla(trla_count)%origin_x + ( nx + 1 ) * dx |
---|
1820 | agents(n)%agent_mask = .FALSE. |
---|
1821 | deleted_agents = deleted_agents + 1 |
---|
1822 | |
---|
1823 | IF ( trla(trla_count)%x >= (nx + 1)* dx - 1.0E-12_wp ) THEN |
---|
1824 | trla(trla_count)%x = trla(trla_count)%x - 1.0E-10_wp |
---|
1825 | trla(trla_count)%origin_x = trla(trla_count)%origin_x - 1 |
---|
1826 | ENDIF |
---|
1827 | |
---|
1828 | ENDIF |
---|
1829 | |
---|
1830 | ELSEIF ( ibc_mas_lr == 1 ) THEN |
---|
1831 | ! |
---|
1832 | !-- Agent absorption |
---|
1833 | agents(n)%agent_mask = .FALSE. |
---|
1834 | deleted_agents = deleted_agents + 1 |
---|
1835 | |
---|
1836 | ENDIF |
---|
1837 | ELSE |
---|
1838 | ! |
---|
1839 | !-- Store agent data in the transfer array, which will be send to the neighbouring |
---|
1840 | !-- PE. |
---|
1841 | trla_count = trla_count + 1 |
---|
1842 | trla(trla_count) = agents(n) |
---|
1843 | agents(n)%agent_mask = .FALSE. |
---|
1844 | deleted_agents = deleted_agents + 1 |
---|
1845 | |
---|
1846 | ENDIF |
---|
1847 | |
---|
1848 | ELSEIF ( i > nxr ) THEN |
---|
1849 | IF ( i > nx ) THEN |
---|
1850 | ! |
---|
1851 | !-- Apply boundary condition along x |
---|
1852 | IF ( ibc_mas_lr == 0 ) THEN |
---|
1853 | ! |
---|
1854 | !-- Cyclic condition |
---|
1855 | IF ( pdims(1) == 1 ) THEN |
---|
1856 | agents(n)%x = agents(n)%x - ( nx + 1 ) * dx |
---|
1857 | agents(n)%origin_x = agents(n)%origin_x - ( nx + 1 ) * dx |
---|
1858 | ELSE |
---|
1859 | trra_count = trra_count + 1 |
---|
1860 | trra(trra_count) = agents(n) |
---|
1861 | trra(trra_count)%x = trra(trra_count)%x - ( nx + 1 ) * dx |
---|
1862 | trra(trra_count)%origin_x = trra(trra_count)%origin_x - ( nx + 1 ) * dx |
---|
1863 | agents(n)%agent_mask = .FALSE. |
---|
1864 | deleted_agents = deleted_agents + 1 |
---|
1865 | |
---|
1866 | ENDIF |
---|
1867 | |
---|
1868 | ELSEIF ( ibc_mas_lr == 1 ) THEN |
---|
1869 | ! |
---|
1870 | !-- Agent absorption |
---|
1871 | agents(n)%agent_mask = .FALSE. |
---|
1872 | deleted_agents = deleted_agents + 1 |
---|
1873 | |
---|
1874 | ENDIF |
---|
1875 | ELSE |
---|
1876 | ! |
---|
1877 | !-- Store agent data in the transfer array, which will be send to the neighbouring |
---|
1878 | !-- PE. |
---|
1879 | trra_count = trra_count + 1 |
---|
1880 | trra(trra_count) = agents(n) |
---|
1881 | agents(n)%agent_mask = .FALSE. |
---|
1882 | deleted_agents = deleted_agents + 1 |
---|
1883 | |
---|
1884 | ENDIF |
---|
1885 | |
---|
1886 | ENDIF |
---|
1887 | ENDIF |
---|
1888 | |
---|
1889 | ENDDO |
---|
1890 | ENDDO |
---|
1891 | ENDDO |
---|
1892 | |
---|
1893 | ! |
---|
1894 | !-- Allocate arrays required for north-south exchange, as these are used directly after agents are |
---|
1895 | !-- exchange along x-direction. |
---|
1896 | ALLOCATE( move_also_north(1:nr_2_direction_move) ) |
---|
1897 | ALLOCATE( move_also_south(1:nr_2_direction_move) ) |
---|
1898 | |
---|
1899 | nr_move_north = 0 |
---|
1900 | nr_move_south = 0 |
---|
1901 | ! |
---|
1902 | !-- Send left boundary, receive right boundary (but first exchange how many and check if agent |
---|
1903 | !-- storage must be extended). |
---|
1904 | IF ( pdims(1) /= 1 ) THEN |
---|
1905 | |
---|
1906 | CALL MPI_SENDRECV( trla_count, 1, MPI_INTEGER, pleft, 0, & |
---|
1907 | trra_count_recv, 1, MPI_INTEGER, pright, 0, & |
---|
1908 | comm2d, status, ierr ) |
---|
1909 | |
---|
1910 | ALLOCATE( rvra(MAX( 1,trra_count_recv )) ) |
---|
1911 | ! |
---|
1912 | !-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit variables in structure |
---|
1913 | !-- agent_type (due to the calculation of par_size) |
---|
1914 | par_size = STORAGE_SIZE( trla(1) ) / 8 |
---|
1915 | CALL MPI_SENDRECV( trla, MAX( 1, trla_count ) * par_size, MPI_BYTE, pleft, 1, & |
---|
1916 | rvra, MAX( 1, trra_count_recv )* par_size, MPI_BYTE, pright, 1, & |
---|
1917 | comm2d, status, ierr ) |
---|
1918 | |
---|
1919 | IF ( trra_count_recv > 0 ) THEN |
---|
1920 | CALL mas_eh_add_agents_to_gridcell(rvra(1:trra_count_recv)) |
---|
1921 | ENDIF |
---|
1922 | |
---|
1923 | DEALLOCATE(rvra) |
---|
1924 | |
---|
1925 | ! |
---|
1926 | !-- Send right boundary, receive left boundary |
---|
1927 | CALL MPI_SENDRECV( trra_count, 1, MPI_INTEGER, pright, 0, & |
---|
1928 | trla_count_recv, 1, MPI_INTEGER, pleft, 0, & |
---|
1929 | comm2d, status, ierr ) |
---|
1930 | |
---|
1931 | ALLOCATE(rvla(MAX(1,trla_count_recv))) |
---|
1932 | ! |
---|
1933 | !-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit variables in structure |
---|
1934 | !-- agent_type (due to the calculation of par_size) |
---|
1935 | par_size = STORAGE_SIZE(trra(1))/8 |
---|
1936 | CALL MPI_SENDRECV( trra, MAX( 1, trra_count ) * par_size, MPI_BYTE, pright, 1, & |
---|
1937 | rvla, MAX(1,trla_count_recv) * par_size, MPI_BYTE, pleft, 1, & |
---|
1938 | comm2d, status, ierr ) |
---|
1939 | |
---|
1940 | IF ( trla_count_recv > 0 ) THEN |
---|
1941 | CALL mas_eh_add_agents_to_gridcell(rvla(1:trla_count_recv)) |
---|
1942 | ENDIF |
---|
1943 | |
---|
1944 | DEALLOCATE( rvla ) |
---|
1945 | DEALLOCATE( trla, trra ) |
---|
1946 | |
---|
1947 | ENDIF |
---|
1948 | |
---|
1949 | ! |
---|
1950 | !-- Check whether agents have crossed the boundaries in y direction. Note that this case can also |
---|
1951 | !-- apply to agents that have just been received from the adjacent right or left PE. |
---|
1952 | !-- Find out first the number of agents to be transferred and allocate temporary arrays needed to |
---|
1953 | !-- store them. |
---|
1954 | !-- For a one-dimensional decomposition along y, no transfer is necessary, because the agent remains |
---|
1955 | !-- on the PE. |
---|
1956 | trsa_count = nr_move_south |
---|
1957 | trna_count = nr_move_north |
---|
1958 | |
---|
1959 | trsa_count_recv = 0 |
---|
1960 | trna_count_recv = 0 |
---|
1961 | |
---|
1962 | IF ( pdims(2) /= 1 ) THEN |
---|
1963 | ! |
---|
1964 | !-- First calculate the storage necessary for sending and receiving the data. |
---|
1965 | DO ip = nxl, nxr |
---|
1966 | DO jp = nys, nyn, nyn-nys ! compute only first (nys) and last (nyn) loop iterration |
---|
1967 | number_of_agents = agt_count(jp,ip) |
---|
1968 | IF ( number_of_agents <= 0 ) CYCLE |
---|
1969 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
1970 | DO n = 1, number_of_agents |
---|
1971 | IF ( agents(n)%agent_mask ) THEN |
---|
1972 | j = agents(n)%y * ddy |
---|
1973 | ! |
---|
1974 | !-- Above calculation does not work for indices less than zero |
---|
1975 | IF ( agents(n)%y < 0.0_wp ) j = -1 |
---|
1976 | |
---|
1977 | IF ( j < nys ) THEN |
---|
1978 | trsa_count = trsa_count + 1 |
---|
1979 | ELSEIF ( j > nyn ) THEN |
---|
1980 | trna_count = trna_count + 1 |
---|
1981 | ENDIF |
---|
1982 | ENDIF |
---|
1983 | ENDDO |
---|
1984 | ENDDO |
---|
1985 | ENDDO |
---|
1986 | |
---|
1987 | IF ( trsa_count == 0 ) trsa_count = 1 |
---|
1988 | IF ( trna_count == 0 ) trna_count = 1 |
---|
1989 | |
---|
1990 | ALLOCATE( trsa(trsa_count), trna(trna_count) ) |
---|
1991 | |
---|
1992 | trsa = zero_agent |
---|
1993 | trna = zero_agent |
---|
1994 | |
---|
1995 | trsa_count = nr_move_south |
---|
1996 | trna_count = nr_move_north |
---|
1997 | |
---|
1998 | trsa(1:nr_move_south) = move_also_south(1:nr_move_south) |
---|
1999 | trna(1:nr_move_north) = move_also_north(1:nr_move_north) |
---|
2000 | |
---|
2001 | ENDIF |
---|
2002 | |
---|
2003 | DO ip = nxl, nxr |
---|
2004 | DO jp = nys, nyn, nyn-nys ! compute only first (nys) and last (nyn) loop iterration |
---|
2005 | number_of_agents = agt_count(jp,ip) |
---|
2006 | IF ( number_of_agents <= 0 ) CYCLE |
---|
2007 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
2008 | DO n = 1, number_of_agents |
---|
2009 | ! |
---|
2010 | !-- Only those agents that have not been marked as 'deleted' may be moved. |
---|
2011 | IF ( agents(n)%agent_mask ) THEN |
---|
2012 | |
---|
2013 | j = agents(n)%y * ddy |
---|
2014 | ! |
---|
2015 | !-- Above calculation does not work for indices less than zero |
---|
2016 | IF ( agents(n)%y < 0.0_wp * dy ) j = -1 |
---|
2017 | |
---|
2018 | IF ( j < nys ) THEN |
---|
2019 | IF ( j < 0 ) THEN |
---|
2020 | ! |
---|
2021 | !-- Apply boundary condition along y |
---|
2022 | IF ( ibc_mas_ns == 0 ) THEN |
---|
2023 | ! |
---|
2024 | !-- Cyclic condition |
---|
2025 | IF ( pdims(2) == 1 ) THEN |
---|
2026 | agents(n)%y = ( ny + 1 ) * dy + agents(n)%y |
---|
2027 | agents(n)%origin_y = ( ny + 1 ) * dy + agents(n)%origin_y |
---|
2028 | ELSE |
---|
2029 | trsa_count = trsa_count + 1 |
---|
2030 | trsa(trsa_count) = agents(n) |
---|
2031 | trsa(trsa_count)%y = ( ny + 1 ) * dy + trsa(trsa_count)%y |
---|
2032 | trsa(trsa_count)%origin_y = trsa(trsa_count)%origin_y + ( ny + 1 ) * dy |
---|
2033 | agents(n)%agent_mask = .FALSE. |
---|
2034 | deleted_agents = deleted_agents + 1 |
---|
2035 | |
---|
2036 | IF ( trsa(trsa_count)%y >= (ny+1)* dy - 1.0E-12_wp ) THEN |
---|
2037 | trsa(trsa_count)%y = trsa(trsa_count)%y - 1.0E-10_wp |
---|
2038 | trsa(trsa_count)%origin_y = trsa(trsa_count)%origin_y - 1 |
---|
2039 | ENDIF |
---|
2040 | |
---|
2041 | ENDIF |
---|
2042 | |
---|
2043 | ELSEIF ( ibc_mas_ns == 1 ) THEN |
---|
2044 | ! |
---|
2045 | !-- Agent absorption |
---|
2046 | agents(n)%agent_mask = .FALSE. |
---|
2047 | deleted_agents = deleted_agents + 1 |
---|
2048 | |
---|
2049 | ENDIF |
---|
2050 | ELSE |
---|
2051 | ! |
---|
2052 | !-- Store agent data in the transfer array, which will be send to the neighbouring |
---|
2053 | !-- PE. |
---|
2054 | trsa_count = trsa_count + 1 |
---|
2055 | trsa(trsa_count) = agents(n) |
---|
2056 | agents(n)%agent_mask = .FALSE. |
---|
2057 | deleted_agents = deleted_agents + 1 |
---|
2058 | |
---|
2059 | ENDIF |
---|
2060 | |
---|
2061 | ELSEIF ( j > nyn ) THEN |
---|
2062 | IF ( j > ny ) THEN |
---|
2063 | ! |
---|
2064 | !-- Apply boundary condition along y |
---|
2065 | IF ( ibc_mas_ns == 0 ) THEN |
---|
2066 | ! |
---|
2067 | !-- Cyclic condition |
---|
2068 | IF ( pdims(2) == 1 ) THEN |
---|
2069 | agents(n)%y = agents(n)%y - ( ny + 1 ) * dy |
---|
2070 | agents(n)%origin_y = agents(n)%origin_y - ( ny + 1 ) * dy |
---|
2071 | ELSE |
---|
2072 | trna_count = trna_count + 1 |
---|
2073 | trna(trna_count) = agents(n) |
---|
2074 | trna(trna_count)%y = trna(trna_count)%y - ( ny + 1 ) * dy |
---|
2075 | trna(trna_count)%origin_y = trna(trna_count)%origin_y - ( ny + 1 ) * dy |
---|
2076 | agents(n)%agent_mask = .FALSE. |
---|
2077 | deleted_agents = deleted_agents + 1 |
---|
2078 | ENDIF |
---|
2079 | |
---|
2080 | ELSEIF ( ibc_mas_ns == 1 ) THEN |
---|
2081 | ! |
---|
2082 | !-- Agent absorption |
---|
2083 | agents(n)%agent_mask = .FALSE. |
---|
2084 | deleted_agents = deleted_agents + 1 |
---|
2085 | |
---|
2086 | ENDIF |
---|
2087 | ELSE |
---|
2088 | ! |
---|
2089 | !-- Store agent data in the transfer array, which will be send to the neighbouring |
---|
2090 | !-- PE |
---|
2091 | trna_count = trna_count + 1 |
---|
2092 | trna(trna_count) = agents(n) |
---|
2093 | agents(n)%agent_mask = .FALSE. |
---|
2094 | deleted_agents = deleted_agents + 1 |
---|
2095 | |
---|
2096 | ENDIF |
---|
2097 | |
---|
2098 | ENDIF |
---|
2099 | ENDIF |
---|
2100 | ENDDO |
---|
2101 | ENDDO |
---|
2102 | ENDDO |
---|
2103 | |
---|
2104 | ! |
---|
2105 | !-- Send front boundary, receive back boundary (but first exchange how many and check if agent |
---|
2106 | !-- storage must be extended). |
---|
2107 | IF ( pdims(2) /= 1 ) THEN |
---|
2108 | |
---|
2109 | CALL MPI_SENDRECV( trsa_count, 1, MPI_INTEGER, psouth, 0, & |
---|
2110 | trna_count_recv, 1, MPI_INTEGER, pnorth, 0, & |
---|
2111 | comm2d, status, ierr ) |
---|
2112 | |
---|
2113 | ALLOCATE( rvna( MAX( 1, trna_count_recv )) ) |
---|
2114 | ! |
---|
2115 | !-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit variables in structure |
---|
2116 | !-- agent_type (due to the calculation of par_size) |
---|
2117 | par_size = STORAGE_SIZE(trsa(1))/8 |
---|
2118 | CALL MPI_SENDRECV( trsa, trsa_count * par_size, MPI_BYTE, psouth, 1, & |
---|
2119 | rvna, trna_count_recv * par_size, MPI_BYTE, pnorth, 1, & |
---|
2120 | comm2d, status, ierr ) |
---|
2121 | |
---|
2122 | IF ( trna_count_recv > 0 ) THEN |
---|
2123 | CALL mas_eh_add_agents_to_gridcell(rvna(1:trna_count_recv)) |
---|
2124 | ENDIF |
---|
2125 | |
---|
2126 | DEALLOCATE( rvna ) |
---|
2127 | |
---|
2128 | ! |
---|
2129 | !-- Send back boundary, receive front boundary |
---|
2130 | CALL MPI_SENDRECV( trna_count, 1, MPI_INTEGER, pnorth, 0, & |
---|
2131 | trsa_count_recv, 1, MPI_INTEGER, psouth, 0, & |
---|
2132 | comm2d, status, ierr ) |
---|
2133 | |
---|
2134 | ALLOCATE( rvsa( MAX( 1, trsa_count_recv )) ) |
---|
2135 | ! |
---|
2136 | !-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit variables in structure |
---|
2137 | !-- agent_type (due to the calculation of par_size) |
---|
2138 | par_size = STORAGE_SIZE( trna(1) ) / 8 |
---|
2139 | CALL MPI_SENDRECV( trna, trna_count * par_size, MPI_BYTE, pnorth, 1, & |
---|
2140 | rvsa, trsa_count_recv * par_size, MPI_BYTE, psouth, 1, & |
---|
2141 | comm2d, status, ierr ) |
---|
2142 | |
---|
2143 | IF ( trsa_count_recv > 0 ) THEN |
---|
2144 | CALL mas_eh_add_agents_to_gridcell(rvsa(1:trsa_count_recv)) |
---|
2145 | ENDIF |
---|
2146 | |
---|
2147 | DEALLOCATE( rvsa ) |
---|
2148 | |
---|
2149 | number_of_agents = number_of_agents + trsa_count_recv |
---|
2150 | |
---|
2151 | DEALLOCATE( trsa, trna ) |
---|
2152 | |
---|
2153 | ENDIF |
---|
2154 | |
---|
2155 | DEALLOCATE( move_also_north ) |
---|
2156 | DEALLOCATE( move_also_south ) |
---|
2157 | |
---|
2158 | ! |
---|
2159 | !-- Accumulate the number of agents transferred between the subdomains) |
---|
2160 | CALL mas_eh_ghost_exchange |
---|
2161 | |
---|
2162 | #else |
---|
2163 | |
---|
2164 | DO ip = nxl, nxr, nxr-nxl |
---|
2165 | DO jp = nys, nyn |
---|
2166 | number_of_agents = agt_count(jp,ip) |
---|
2167 | IF ( number_of_agents <= 0 ) CYCLE |
---|
2168 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
2169 | DO n = 1, number_of_agents |
---|
2170 | ! |
---|
2171 | !-- Apply boundary conditions |
---|
2172 | IF ( agents(n)%x < 0.0_wp ) THEN |
---|
2173 | |
---|
2174 | IF ( ibc_mas_lr == 0 ) THEN |
---|
2175 | ! |
---|
2176 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
2177 | agents(n)%x = ( nx + 1 ) * dx + agents(n)%x |
---|
2178 | agents(n)%origin_x = ( nx + 1 ) * dx + agents(n)%origin_x |
---|
2179 | ELSEIF ( ibc_mas_lr == 1 ) THEN |
---|
2180 | ! |
---|
2181 | !-- Agent absorption |
---|
2182 | agents(n)%agent_mask = .FALSE. |
---|
2183 | deleted_agents = deleted_agents + 1 |
---|
2184 | ENDIF |
---|
2185 | |
---|
2186 | ELSEIF ( agents(n)%x >= ( nx + 1 ) * dx ) THEN |
---|
2187 | |
---|
2188 | IF ( ibc_mas_lr == 0 ) THEN |
---|
2189 | ! |
---|
2190 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
2191 | agents(n)%x = agents(n)%x - ( nx + 1 ) * dx |
---|
2192 | |
---|
2193 | ELSEIF ( ibc_mas_lr == 1 ) THEN |
---|
2194 | ! |
---|
2195 | !-- Agent absorption |
---|
2196 | agents(n)%agent_mask = .FALSE. |
---|
2197 | deleted_agents = deleted_agents + 1 |
---|
2198 | ENDIF |
---|
2199 | |
---|
2200 | ENDIF |
---|
2201 | ENDDO |
---|
2202 | ENDDO |
---|
2203 | ENDDO |
---|
2204 | |
---|
2205 | DO ip = nxl, nxr |
---|
2206 | DO jp = nys, nyn, nyn-nys |
---|
2207 | number_of_agents = agt_count(jp,ip) |
---|
2208 | IF ( number_of_agents <= 0 ) CYCLE |
---|
2209 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
2210 | DO n = 1, number_of_agents |
---|
2211 | |
---|
2212 | IF ( agents(n)%y < 0.0_wp ) THEN |
---|
2213 | |
---|
2214 | IF ( ibc_mas_ns == 0 ) THEN |
---|
2215 | ! |
---|
2216 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
2217 | agents(n)%y = ( ny + 1 ) * dy + agents(n)%y |
---|
2218 | agents(n)%origin_y = ( ny + 1 ) * dy + & |
---|
2219 | agents(n)%origin_y |
---|
2220 | |
---|
2221 | ELSEIF ( ibc_mas_ns == 1 ) THEN |
---|
2222 | ! |
---|
2223 | !-- Agent absorption |
---|
2224 | agents(n)%agent_mask = .FALSE. |
---|
2225 | deleted_agents = deleted_agents + 1 |
---|
2226 | ENDIF |
---|
2227 | |
---|
2228 | ELSEIF ( agents(n)%y >= ( ny + 0.5_wp ) * dy ) THEN |
---|
2229 | |
---|
2230 | IF ( ibc_mas_ns == 0 ) THEN |
---|
2231 | ! |
---|
2232 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
2233 | agents(n)%y = agents(n)%y - ( ny + 1 ) * dy |
---|
2234 | |
---|
2235 | ELSEIF ( ibc_mas_ns == 1 ) THEN |
---|
2236 | ! |
---|
2237 | !-- Agent absorption |
---|
2238 | agents(n)%agent_mask = .FALSE. |
---|
2239 | deleted_agents = deleted_agents + 1 |
---|
2240 | ENDIF |
---|
2241 | |
---|
2242 | ENDIF |
---|
2243 | |
---|
2244 | ENDDO |
---|
2245 | ENDDO |
---|
2246 | ENDDO |
---|
2247 | #endif |
---|
2248 | |
---|
2249 | END SUBROUTINE mas_eh_exchange_horiz |
---|
2250 | |
---|
2251 | |
---|
2252 | #if defined( __parallel ) |
---|
2253 | !--------------------------------------------------------------------------------------------------! |
---|
2254 | ! Description: |
---|
2255 | ! ------------ |
---|
2256 | !> Sends the agents from the three gridcells closest to the north/south/left/right border of a PE to |
---|
2257 | !> the corresponding neighbors ghost layer (which is three grid boxes deep) |
---|
2258 | !--------------------------------------------------------------------------------------------------! |
---|
2259 | SUBROUTINE mas_eh_ghost_exchange |
---|
2260 | |
---|
2261 | IMPLICIT NONE |
---|
2262 | |
---|
2263 | INTEGER(iwp) :: agt_size !< Bit size of agent datatype |
---|
2264 | INTEGER(iwp) :: ghla_count !< ghost points left agent |
---|
2265 | INTEGER(iwp) :: ghna_count !< ghost points north agent |
---|
2266 | INTEGER(iwp) :: ghra_count !< ghost points right agent |
---|
2267 | INTEGER(iwp) :: ghsa_count !< ghost points south agent |
---|
2268 | INTEGER(iwp) :: ip !< index variable along x |
---|
2269 | INTEGER(iwp) :: jp !< index variable along y |
---|
2270 | |
---|
2271 | LOGICAL :: ghla_empty !< ghost points left agent |
---|
2272 | LOGICAL :: ghla_empty_rcv !< ghost points left agent |
---|
2273 | LOGICAL :: ghna_empty !< ghost points north agent |
---|
2274 | LOGICAL :: ghna_empty_rcv !< ghost points north agent |
---|
2275 | LOGICAL :: ghra_empty !< ghost points right agent |
---|
2276 | LOGICAL :: ghra_empty_rcv !< ghost points right agent |
---|
2277 | LOGICAL :: ghsa_empty !< ghost points south agent |
---|
2278 | LOGICAL :: ghsa_empty_rcv !< ghost points south agent |
---|
2279 | |
---|
2280 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: ghla !< agents received from right PE |
---|
2281 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: ghna !< agents received from south PE |
---|
2282 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: ghra !< agents received from left PE |
---|
2283 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: ghsa !< agents received from north PE |
---|
2284 | |
---|
2285 | ghla_empty = .TRUE. |
---|
2286 | ghna_empty = .TRUE. |
---|
2287 | ghra_empty = .TRUE. |
---|
2288 | ghsa_empty = .TRUE. |
---|
2289 | ! |
---|
2290 | !-- Reset ghost layer |
---|
2291 | DO ip = nxlg, nxl-1 |
---|
2292 | DO jp = nysg, nyng |
---|
2293 | agt_count(jp,ip) = 0 |
---|
2294 | ENDDO |
---|
2295 | ENDDO |
---|
2296 | DO ip = nxr+1, nxrg |
---|
2297 | DO jp = nysg, nyng |
---|
2298 | agt_count(jp,ip) = 0 |
---|
2299 | ENDDO |
---|
2300 | ENDDO |
---|
2301 | DO ip = nxl, nxr |
---|
2302 | DO jp = nysg, nys-1 |
---|
2303 | agt_count(jp,ip) = 0 |
---|
2304 | ENDDO |
---|
2305 | ENDDO |
---|
2306 | DO ip = nxl, nxr |
---|
2307 | DO jp = nyn+1, nyng |
---|
2308 | agt_count(jp,ip) = 0 |
---|
2309 | ENDDO |
---|
2310 | ENDDO |
---|
2311 | ! |
---|
2312 | !-- Transfer of agents from left to right and vice versa |
---|
2313 | IF ( pdims(1) /= 1 ) THEN |
---|
2314 | ! |
---|
2315 | !-- Reset left and right ghost layers |
---|
2316 | ghla_count = 0 |
---|
2317 | ghra_count = 0 |
---|
2318 | ! |
---|
2319 | !-- First calculate the storage necessary for sending and receiving the data. |
---|
2320 | ghla_count = SUM(agt_count(nys:nyn,nxl:nxl+2)) |
---|
2321 | ghra_count = SUM(agt_count(nys:nyn,nxr-2:nxr)) |
---|
2322 | ! |
---|
2323 | !-- No cyclic boundaries for agents |
---|
2324 | IF ( nxl == 0 .OR. ghla_count == 0 ) THEN |
---|
2325 | ghla_count = 1 |
---|
2326 | ELSE |
---|
2327 | ghla_empty = .FALSE. |
---|
2328 | ENDIF |
---|
2329 | IF ( nxr == nx .OR. ghra_count == 0 ) THEN |
---|
2330 | ghra_count = 1 |
---|
2331 | ELSE |
---|
2332 | ghra_empty = .FALSE. |
---|
2333 | ENDIF |
---|
2334 | ALLOCATE( ghla(1:ghla_count), ghra(1:ghra_count) ) |
---|
2335 | ghla = zero_agent |
---|
2336 | ghra = zero_agent |
---|
2337 | ! |
---|
2338 | !-- Get all agents that will be sent left into one array |
---|
2339 | ghla_count = 0 |
---|
2340 | IF ( nxl /= 0 ) THEN |
---|
2341 | DO ip = nxl, nxl+2 |
---|
2342 | DO jp = nys, nyn |
---|
2343 | |
---|
2344 | number_of_agents = agt_count(jp,ip) |
---|
2345 | IF ( number_of_agents <= 0 ) CYCLE |
---|
2346 | ghla(ghla_count+1:ghla_count+number_of_agents) & |
---|
2347 | = grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
2348 | ghla_count = ghla_count + number_of_agents |
---|
2349 | |
---|
2350 | ENDDO |
---|
2351 | ENDDO |
---|
2352 | ENDIF |
---|
2353 | IF ( ghla_count == 0 ) ghla_count = 1 |
---|
2354 | ! |
---|
2355 | !-- Get all agents that will be sent right into one array |
---|
2356 | ghra_count = 0 |
---|
2357 | IF ( nxr /= nx ) THEN |
---|
2358 | DO ip = nxr-2, nxr |
---|
2359 | DO jp = nys, nyn |
---|
2360 | |
---|
2361 | number_of_agents = agt_count(jp,ip) |
---|
2362 | IF ( number_of_agents <= 0 ) CYCLE |
---|
2363 | ghra(ghra_count+1:ghra_count+number_of_agents) & |
---|
2364 | = grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
2365 | ghra_count = ghra_count + number_of_agents |
---|
2366 | |
---|
2367 | ENDDO |
---|
2368 | ENDDO |
---|
2369 | ENDIF |
---|
2370 | IF ( ghra_count == 0 ) ghra_count = 1 |
---|
2371 | ! |
---|
2372 | !-- Send/receive number of agents that will be transferred to/from left/right neighbor. |
---|
2373 | CALL MPI_SENDRECV( ghla_count, 1, MPI_INTEGER, pleft, 0, & |
---|
2374 | ghra_count_recv, 1, MPI_INTEGER, pright, 0, & |
---|
2375 | comm2d, status, ierr ) |
---|
2376 | ALLOCATE ( agt_gh_r(1:ghra_count_recv) ) |
---|
2377 | ! |
---|
2378 | !-- Send/receive number of agents that will be transferred to/from right/left neighbor |
---|
2379 | CALL MPI_SENDRECV( ghra_count, 1, MPI_INTEGER, pright, 0, & |
---|
2380 | ghla_count_recv, 1, MPI_INTEGER, pleft, 0, & |
---|
2381 | comm2d, status, ierr ) |
---|
2382 | ! |
---|
2383 | !-- Send/receive flag that indicates if there are actually any agents in ghost layer |
---|
2384 | CALL MPI_SENDRECV( ghla_empty, 1, MPI_LOGICAL, pleft, 1, & |
---|
2385 | ghra_empty_rcv, 1, MPI_LOGICAL, pright,1, & |
---|
2386 | comm2d, status, ierr ) |
---|
2387 | CALL MPI_SENDRECV( ghra_empty, 1, MPI_LOGICAL, pright,1, & |
---|
2388 | ghla_empty_rcv, 1, MPI_LOGICAL, pleft, 1, & |
---|
2389 | comm2d, status, ierr ) |
---|
2390 | |
---|
2391 | |
---|
2392 | ALLOCATE ( agt_gh_l(1:ghla_count_recv) ) |
---|
2393 | ! |
---|
2394 | !-- Get bit size of one agent |
---|
2395 | agt_size = STORAGE_SIZE(zero_agent)/8 |
---|
2396 | ! |
---|
2397 | !-- Send/receive agents to/from left/right neighbor |
---|
2398 | CALL MPI_SENDRECV( ghla, ghla_count * agt_size, MPI_BYTE, pleft, 1, & |
---|
2399 | agt_gh_r, ghra_count_recv * agt_size, MPI_BYTE, pright,1, & |
---|
2400 | comm2d, status, ierr ) |
---|
2401 | ! |
---|
2402 | !-- Send/receive agents to/from left/right neighbor |
---|
2403 | CALL MPI_SENDRECV( ghra, ghra_count * agt_size, MPI_BYTE, pright,1, & |
---|
2404 | agt_gh_l, ghla_count_recv * agt_size, MPI_BYTE, pleft, 1, & |
---|
2405 | comm2d, status, ierr ) |
---|
2406 | ! |
---|
2407 | !-- If agents were received, add them to the respective ghost layer cells |
---|
2408 | IF ( .NOT. ghra_empty_rcv ) THEN |
---|
2409 | CALL mas_eh_add_ghost_agents_to_gridcell(agt_gh_r) |
---|
2410 | ENDIF |
---|
2411 | |
---|
2412 | IF ( .NOT. ghla_empty_rcv ) THEN |
---|
2413 | CALL mas_eh_add_ghost_agents_to_gridcell(agt_gh_l) |
---|
2414 | ENDIF |
---|
2415 | |
---|
2416 | DEALLOCATE( ghla, ghra, agt_gh_l, agt_gh_r ) |
---|
2417 | |
---|
2418 | ENDIF |
---|
2419 | |
---|
2420 | ! |
---|
2421 | !-- Transfer of agents from south to north and vice versa |
---|
2422 | IF ( pdims(2) /= 1 ) THEN |
---|
2423 | ! |
---|
2424 | !-- Reset south and north ghost layers |
---|
2425 | ghsa_count = 0 |
---|
2426 | ghna_count = 0 |
---|
2427 | ! |
---|
2428 | !-- First calculate the storage necessary for sending and receiving the data. |
---|
2429 | ghsa_count = SUM( agt_count(nys:nys+2,nxlg:nxrg) ) |
---|
2430 | ghna_count = SUM( agt_count(nyn-2:nyn,nxlg:nxrg) ) |
---|
2431 | ! |
---|
2432 | !-- No cyclic boundaries for agents |
---|
2433 | IF ( nys == 0 .OR. ghsa_count == 0 ) THEN |
---|
2434 | ghsa_count = 1 |
---|
2435 | ELSE |
---|
2436 | ghsa_empty = .FALSE. |
---|
2437 | ENDIF |
---|
2438 | IF ( nyn == ny .OR. ghna_count == 0 ) THEN |
---|
2439 | ghna_count = 1 |
---|
2440 | ELSE |
---|
2441 | ghna_empty = .FALSE. |
---|
2442 | ENDIF |
---|
2443 | ALLOCATE( ghsa(1:ghsa_count), ghna(1:ghna_count) ) |
---|
2444 | ghsa = zero_agent |
---|
2445 | ghna = zero_agent |
---|
2446 | ! |
---|
2447 | !-- Get all agents that will be sent south into one array |
---|
2448 | ghsa_count = 0 |
---|
2449 | IF ( nys /= 0 ) THEN |
---|
2450 | DO ip = nxlg, nxrg |
---|
2451 | DO jp = nys, nys+2 |
---|
2452 | |
---|
2453 | number_of_agents = agt_count(jp,ip) |
---|
2454 | IF ( number_of_agents <= 0 ) CYCLE |
---|
2455 | ghsa(ghsa_count+1:ghsa_count+number_of_agents) & |
---|
2456 | = grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
2457 | ghsa_count = ghsa_count + number_of_agents |
---|
2458 | |
---|
2459 | ENDDO |
---|
2460 | ENDDO |
---|
2461 | ENDIF |
---|
2462 | IF ( ghsa_count == 0 ) ghsa_count = 1 |
---|
2463 | ! |
---|
2464 | !-- Get all agents that will be sent north into one array |
---|
2465 | ghna_count = 0 |
---|
2466 | IF ( nyn /= ny ) THEN |
---|
2467 | DO ip = nxlg, nxrg |
---|
2468 | DO jp = nyn-2, nyn |
---|
2469 | |
---|
2470 | number_of_agents = agt_count(jp,ip) |
---|
2471 | IF ( number_of_agents <= 0 ) CYCLE |
---|
2472 | ghna(ghna_count+1:ghna_count+number_of_agents) & |
---|
2473 | = grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
2474 | ghna_count = ghna_count + number_of_agents |
---|
2475 | |
---|
2476 | ENDDO |
---|
2477 | ENDDO |
---|
2478 | ENDIF |
---|
2479 | IF ( ghna_count == 0 ) ghna_count = 1 |
---|
2480 | ! |
---|
2481 | !-- Send/receive number of agents that will be transferred to/from south/north neighbor |
---|
2482 | CALL MPI_SENDRECV( ghsa_count, 1, MPI_INTEGER, psouth, 0, & |
---|
2483 | ghna_count_recv, 1, MPI_INTEGER, pnorth, 0, & |
---|
2484 | comm2d, status, ierr ) |
---|
2485 | ALLOCATE ( agt_gh_n(1:ghna_count_recv) ) |
---|
2486 | ! |
---|
2487 | !-- Send/receive number of agents that will be transferred to/from north/south neighbor |
---|
2488 | CALL MPI_SENDRECV( ghna_count, 1, MPI_INTEGER, pnorth, 0, & |
---|
2489 | ghsa_count_recv, 1, MPI_INTEGER, psouth, 0, & |
---|
2490 | comm2d, status, ierr ) |
---|
2491 | ! |
---|
2492 | !-- Send/receive flag that indicates if there are actually any agents in ghost layer |
---|
2493 | CALL MPI_SENDRECV( ghsa_empty, 1, MPI_LOGICAL, psouth, 1, & |
---|
2494 | ghna_empty_rcv, 1, MPI_LOGICAL, pnorth, 1, & |
---|
2495 | comm2d, status, ierr ) |
---|
2496 | CALL MPI_SENDRECV( ghna_empty, 1, MPI_LOGICAL, pnorth, 1, & |
---|
2497 | ghsa_empty_rcv, 1, MPI_LOGICAL, psouth, 1, & |
---|
2498 | comm2d, status, ierr ) |
---|
2499 | |
---|
2500 | |
---|
2501 | ALLOCATE ( agt_gh_s(1:ghsa_count_recv) ) |
---|
2502 | ! |
---|
2503 | !-- Get bit size of one agent |
---|
2504 | agt_size = STORAGE_SIZE(zero_agent)/8 |
---|
2505 | ! |
---|
2506 | !-- Send/receive agents to/from south/north neighbor |
---|
2507 | CALL MPI_SENDRECV( ghsa, ghsa_count * agt_size, MPI_BYTE, psouth,1, & |
---|
2508 | agt_gh_n, ghna_count_recv * agt_size, MPI_BYTE, pnorth,1, & |
---|
2509 | comm2d, status, ierr ) |
---|
2510 | ! |
---|
2511 | !-- Send/receive agents to/from south/north neighbor |
---|
2512 | CALL MPI_SENDRECV( ghna, ghna_count * agt_size, MPI_BYTE, pnorth,1, & |
---|
2513 | agt_gh_s, ghsa_count_recv * agt_size, MPI_BYTE, psouth,1, & |
---|
2514 | comm2d, status, ierr ) |
---|
2515 | ! |
---|
2516 | !-- If agents were received, add them to the respective ghost layer cells |
---|
2517 | IF ( .NOT. ghna_empty_rcv ) THEN |
---|
2518 | CALL mas_eh_add_ghost_agents_to_gridcell(agt_gh_n) |
---|
2519 | ENDIF |
---|
2520 | |
---|
2521 | IF ( .NOT. ghsa_empty_rcv ) THEN |
---|
2522 | CALL mas_eh_add_ghost_agents_to_gridcell(agt_gh_s) |
---|
2523 | ENDIF |
---|
2524 | |
---|
2525 | DEALLOCATE( ghna, ghsa, agt_gh_n, agt_gh_s ) |
---|
2526 | |
---|
2527 | ENDIF |
---|
2528 | |
---|
2529 | END SUBROUTINE mas_eh_ghost_exchange |
---|
2530 | #endif |
---|
2531 | |
---|
2532 | !--------------------------------------------------------------------------------------------------! |
---|
2533 | ! Description: |
---|
2534 | ! ------------ |
---|
2535 | !> If an agent moves from one grid cell to another (on the current processor!), this subroutine |
---|
2536 | !> moves the corresponding element from the agent array of the old grid cell to the agent array of |
---|
2537 | !> the new grid cell. |
---|
2538 | !--------------------------------------------------------------------------------------------------! |
---|
2539 | SUBROUTINE mas_eh_move_agent |
---|
2540 | |
---|
2541 | IMPLICIT NONE |
---|
2542 | |
---|
2543 | INTEGER(iwp) :: aindex !< dummy argument for number of new agent per grid box |
---|
2544 | INTEGER(iwp) :: i !< grid index (x) of agent position |
---|
2545 | INTEGER(iwp) :: ip !< index variable along x |
---|
2546 | INTEGER(iwp) :: j !< grid index (y) of agent position |
---|
2547 | INTEGER(iwp) :: jp !< index variable along y |
---|
2548 | INTEGER(iwp) :: n !< index variable for agent array |
---|
2549 | INTEGER(iwp) :: na_before_move !< number of agents per grid box before moving |
---|
2550 | |
---|
2551 | TYPE(agent_type), DIMENSION(:), POINTER :: agents_before_move !< agents before moving |
---|
2552 | |
---|
2553 | DO ip = nxl, nxr |
---|
2554 | DO jp = nys, nyn |
---|
2555 | |
---|
2556 | na_before_move = agt_count(jp,ip) |
---|
2557 | IF ( na_before_move <= 0 ) CYCLE |
---|
2558 | agents_before_move => grid_agents(jp,ip)%agents(1:na_before_move) |
---|
2559 | |
---|
2560 | DO n = 1, na_before_move |
---|
2561 | i = agents_before_move(n)%x * ddx |
---|
2562 | j = agents_before_move(n)%y * ddy |
---|
2563 | |
---|
2564 | !-- For mas_eh_exchange_horiz to work properly agents need to be moved to the outermost |
---|
2565 | !-- gridboxes of the respective processor. |
---|
2566 | !-- If the agent index is inside the processor the following lines will not change the |
---|
2567 | !-- index. |
---|
2568 | i = MIN ( i , nxr ) |
---|
2569 | i = MAX ( i , nxl ) |
---|
2570 | j = MIN ( j , nyn ) |
---|
2571 | j = MAX ( j , nys ) |
---|
2572 | |
---|
2573 | ! |
---|
2574 | !-- Check if agent has moved to another grid cell. |
---|
2575 | IF ( i /= ip .OR. j /= jp ) THEN |
---|
2576 | ! |
---|
2577 | !-- If the agent stays on the same processor, the agent will be added to the agent |
---|
2578 | !-- array of the new processor. |
---|
2579 | number_of_agents = agt_count(j,i) |
---|
2580 | agents => grid_agents(j,i)%agents(1:number_of_agents) |
---|
2581 | |
---|
2582 | aindex = number_of_agents+1 |
---|
2583 | IF ( aindex > SIZE(grid_agents(j,i)%agents) ) THEN |
---|
2584 | CALL mas_eh_realloc_agents_array(i,j) |
---|
2585 | ENDIF |
---|
2586 | |
---|
2587 | grid_agents(j,i)%agents(aindex) = agents_before_move(n) |
---|
2588 | agt_count(j,i) = aindex |
---|
2589 | |
---|
2590 | agents_before_move(n)%agent_mask = .FALSE. |
---|
2591 | ENDIF |
---|
2592 | ENDDO |
---|
2593 | |
---|
2594 | ENDDO |
---|
2595 | ENDDO |
---|
2596 | |
---|
2597 | RETURN |
---|
2598 | |
---|
2599 | END SUBROUTINE mas_eh_move_agent |
---|
2600 | |
---|
2601 | !--------------------------------------------------------------------------------------------------! |
---|
2602 | ! Description: |
---|
2603 | ! ------------ |
---|
2604 | !> If the allocated memory for the agent array does not suffice to add arriving agents from |
---|
2605 | !> neighbour grid cells, this subrouting reallocates the agent array to assure enough memory is |
---|
2606 | !> available. |
---|
2607 | !--------------------------------------------------------------------------------------------------! |
---|
2608 | SUBROUTINE mas_eh_realloc_agents_array (i,j,size_in) |
---|
2609 | |
---|
2610 | IMPLICIT NONE |
---|
2611 | |
---|
2612 | INTEGER(iwp) :: new_size !< new array size |
---|
2613 | INTEGER(iwp) :: old_size !< old array size |
---|
2614 | |
---|
2615 | INTEGER(iwp), INTENT(in) :: i !< grid index (y) |
---|
2616 | INTEGER(iwp), INTENT(in) :: j !< grid index (y) |
---|
2617 | |
---|
2618 | INTEGER(iwp), INTENT(in), OPTIONAL :: size_in !< size of input array |
---|
2619 | |
---|
2620 | TYPE(agent_type), DIMENSION(10) :: tmp_agents_s !< temporary static agent array |
---|
2621 | |
---|
2622 | TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: tmp_agents_d !< temporary dynamic agent array |
---|
2623 | |
---|
2624 | old_size = SIZE(grid_agents(j,i)%agents) |
---|
2625 | |
---|
2626 | IF ( PRESENT( size_in ) ) THEN |
---|
2627 | new_size = size_in |
---|
2628 | ELSE |
---|
2629 | new_size = old_size * ( 1.0_wp + alloc_factor_mas / 100.0_wp ) |
---|
2630 | ENDIF |
---|
2631 | |
---|
2632 | new_size = MAX( new_size, min_nr_agent, old_size + 1 ) |
---|
2633 | |
---|
2634 | IF ( old_size <= 10 ) THEN |
---|
2635 | |
---|
2636 | tmp_agents_s(1:old_size) = grid_agents(j,i)%agents(1:old_size) |
---|
2637 | |
---|
2638 | DEALLOCATE( grid_agents(j,i)%agents ) |
---|
2639 | ALLOCATE( grid_agents(j,i)%agents(new_size) ) |
---|
2640 | |
---|
2641 | grid_agents(j,i)%agents(1:old_size) = tmp_agents_s(1:old_size) |
---|
2642 | grid_agents(j,i)%agents(old_size+1:new_size) = zero_agent |
---|
2643 | |
---|
2644 | ELSE |
---|
2645 | |
---|
2646 | ALLOCATE( tmp_agents_d(new_size) ) |
---|
2647 | tmp_agents_d(1:old_size) = grid_agents(j,i)%agents |
---|
2648 | |
---|
2649 | DEALLOCATE( grid_agents(j,i)%agents ) |
---|
2650 | ALLOCATE( grid_agents(j,i)%agents(new_size) ) |
---|
2651 | |
---|
2652 | grid_agents(j,i)%agents(1:old_size) = tmp_agents_d(1:old_size) |
---|
2653 | grid_agents(j,i)%agents(old_size+1:new_size) = zero_agent |
---|
2654 | |
---|
2655 | DEALLOCATE( tmp_agents_d ) |
---|
2656 | |
---|
2657 | ENDIF |
---|
2658 | agents => grid_agents(j,i)%agents(1:number_of_agents) |
---|
2659 | |
---|
2660 | RETURN |
---|
2661 | END SUBROUTINE mas_eh_realloc_agents_array |
---|
2662 | |
---|
2663 | !--------------------------------------------------------------------------------------------------! |
---|
2664 | ! Description: |
---|
2665 | ! ------------ |
---|
2666 | !> Inquires prognostic model quantities at the position of each agent and stores them in that agent |
---|
2667 | !> for later output |
---|
2668 | !--------------------------------------------------------------------------------------------------! |
---|
2669 | SUBROUTINE mas_get_prognostic_quantities |
---|
2670 | |
---|
2671 | USE arrays_3d, & |
---|
2672 | ONLY: exner, pt, u, v |
---|
2673 | |
---|
2674 | IMPLICIT NONE |
---|
2675 | |
---|
2676 | INTEGER(iwp) :: i_offset !< index offset for windspeed measurement |
---|
2677 | INTEGER(iwp) :: il !< x-index |
---|
2678 | INTEGER(iwp) :: is !< subgrid box counter |
---|
2679 | INTEGER(iwp) :: j_offset !< index offset for windspeed measurement |
---|
2680 | INTEGER(iwp) :: jl !< y-index |
---|
2681 | INTEGER(iwp) :: kl !< z-index |
---|
2682 | INTEGER(iwp) :: nl !< agent counter |
---|
2683 | INTEGER(iwp) :: se !< subgrid box end index |
---|
2684 | INTEGER(iwp) :: si !< subgrid box start index |
---|
2685 | |
---|
2686 | REAL(wp) :: u_a !< windspeed at agent position (x) |
---|
2687 | REAL(wp) :: v_a !< windspeed at agent position (y) |
---|
2688 | |
---|
2689 | DO il = nxl, nxr |
---|
2690 | DO jl = nys, nyn |
---|
2691 | |
---|
2692 | number_of_agents = agt_count(jl,il) |
---|
2693 | ! |
---|
2694 | !-- If grid cell is empty, cycle |
---|
2695 | IF ( number_of_agents <= 0 ) CYCLE |
---|
2696 | kl = s_measure_height(jl,il) |
---|
2697 | |
---|
2698 | agents => grid_agents(jl,il)%agents(1:number_of_agents) |
---|
2699 | ! |
---|
2700 | !-- Loop over the four subgrid boxes |
---|
2701 | DO is = 0,3 |
---|
2702 | ! |
---|
2703 | !-- Set indices |
---|
2704 | si = grid_agents(jl,il)%start_index(is) |
---|
2705 | se = grid_agents(jl,il)%end_index(is) |
---|
2706 | DO nl = si, se |
---|
2707 | ! |
---|
2708 | !-- Calculate index offset in x-direction: |
---|
2709 | !-- Left value if wall right of grid box |
---|
2710 | !-- Right value if wall left of grid box |
---|
2711 | !-- Else the one that is closer to the agent |
---|
2712 | IF ( BTEST( obstacle_flags( jl, il+1 ), 6 ) ) THEN |
---|
2713 | i_offset = 0 |
---|
2714 | ELSEIF ( BTEST( obstacle_flags( jl, il-1 ), 2 ) ) THEN |
---|
2715 | i_offset = 1 |
---|
2716 | ELSE |
---|
2717 | i_offset = MERGE( 0, 1, BTEST(is,1) ) |
---|
2718 | ENDIF |
---|
2719 | u_a = u( kl, jl, il + i_offset ) |
---|
2720 | ! |
---|
2721 | !-- Calculate index offset in y-direction: |
---|
2722 | !-- South value if wall north of grid box |
---|
2723 | !-- North value if wall south of grid box |
---|
2724 | !-- Else the one that is closer to the agent |
---|
2725 | IF ( BTEST( obstacle_flags( jl+1, il ), 4 ) ) THEN |
---|
2726 | j_offset = 0 |
---|
2727 | ELSEIF ( BTEST( obstacle_flags( jl-1, il ), 0 ) ) THEN |
---|
2728 | j_offset = 1 |
---|
2729 | ELSE |
---|
2730 | j_offset = MERGE( 0, 1, BTEST(is,0) ) |
---|
2731 | ENDIF |
---|
2732 | v_a = v( kl, jl + j_offset, il ) |
---|
2733 | ! |
---|
2734 | !-- Calculate windspeed at agent postion |
---|
2735 | agents(nl)%windspeed = SQRT(u_a**2 + v_a**2) |
---|
2736 | ! |
---|
2737 | !-- Calculate temperature at agent position |
---|
2738 | agents(nl)%t = pt(kl,jl,il) * exner(kl) |
---|
2739 | |
---|
2740 | ENDDO |
---|
2741 | |
---|
2742 | ENDDO |
---|
2743 | |
---|
2744 | ENDDO |
---|
2745 | ENDDO |
---|
2746 | |
---|
2747 | END SUBROUTINE mas_get_prognostic_quantities |
---|
2748 | |
---|
2749 | !--------------------------------------------------------------------------------------------------! |
---|
2750 | ! Description: |
---|
2751 | ! ------------ |
---|
2752 | !> Adds an item to the priority queue (binary heap) at the correct position |
---|
2753 | !--------------------------------------------------------------------------------------------------! |
---|
2754 | SUBROUTINE mas_heap_insert_item( id, priority ) |
---|
2755 | |
---|
2756 | IMPLICIT NONE |
---|
2757 | |
---|
2758 | INTEGER(iwp) :: cur_pos !< current position |
---|
2759 | INTEGER(iwp) :: id !< mesh ID of item |
---|
2760 | |
---|
2761 | REAL(wp) :: priority !< item priority |
---|
2762 | |
---|
2763 | TYPE(heap_item) :: item !< heap item |
---|
2764 | |
---|
2765 | item%mesh_id = id |
---|
2766 | item%priority = priority |
---|
2767 | ! |
---|
2768 | !-- Extend heap, if necessary |
---|
2769 | IF ( heap_count + 1 > SIZE( queue ) ) THEN |
---|
2770 | CALL mas_heap_extend |
---|
2771 | ENDIF |
---|
2772 | ! |
---|
2773 | !-- Insert item at first unoccupied postion (highest index) of heap |
---|
2774 | cur_pos = heap_count |
---|
2775 | queue(cur_pos) = item |
---|
2776 | ! |
---|
2777 | !-- Sort while inserted item is not at top of heap |
---|
2778 | DO WHILE ( cur_pos /= 0 ) |
---|
2779 | ! |
---|
2780 | !-- If priority < its parent's priority, swap them. |
---|
2781 | !-- Else, sorting is done. |
---|
2782 | IF ( queue(cur_pos)%priority < queue(FLOOR( (cur_pos) / 2.0_wp ))%priority ) THEN |
---|
2783 | item = queue(cur_pos) |
---|
2784 | queue(cur_pos) = queue(FLOOR( ( cur_pos ) / 2.0_wp )) |
---|
2785 | queue(FLOOR( ( cur_pos ) / 2.0_wp )) = item |
---|
2786 | cur_pos = FLOOR( ( cur_pos ) / 2.0_wp ) |
---|
2787 | ELSE |
---|
2788 | EXIT |
---|
2789 | ENDIF |
---|
2790 | ENDDO |
---|
2791 | ! |
---|
2792 | !-- Item was added to heap, so the heap count increases |
---|
2793 | heap_count = heap_count + 1 |
---|
2794 | |
---|
2795 | END SUBROUTINE mas_heap_insert_item |
---|
2796 | |
---|
2797 | !--------------------------------------------------------------------------------------------------! |
---|
2798 | ! Description: |
---|
2799 | ! ------------ |
---|
2800 | !> Extends the size of the priority queue (binary heap) |
---|
2801 | !--------------------------------------------------------------------------------------------------! |
---|
2802 | SUBROUTINE mas_heap_extend |
---|
2803 | |
---|
2804 | IMPLICIT NONE |
---|
2805 | |
---|
2806 | INTEGER(iwp) :: soh !< size of heap |
---|
2807 | |
---|
2808 | TYPE(heap_item), DIMENSION(:), ALLOCATABLE :: dummy_heap !< dummy heap |
---|
2809 | |
---|
2810 | soh = SIZE( queue ) - 1 |
---|
2811 | ALLOCATE( dummy_heap(0:soh) ) |
---|
2812 | dummy_heap = queue |
---|
2813 | DEALLOCATE( queue ) |
---|
2814 | ALLOCATE( queue(0:2*soh+1) ) |
---|
2815 | queue(0:soh) = dummy_heap(0:soh) |
---|
2816 | |
---|
2817 | END SUBROUTINE mas_heap_extend |
---|
2818 | |
---|
2819 | !--------------------------------------------------------------------------------------------------! |
---|
2820 | ! Description: |
---|
2821 | ! ------------ |
---|
2822 | !> Removes first (smallest) element from the priority queue, reorders the rest and returns the ID of |
---|
2823 | !> the removed mesh point |
---|
2824 | !--------------------------------------------------------------------------------------------------! |
---|
2825 | SUBROUTINE mas_heap_extract_item ( id ) |
---|
2826 | |
---|
2827 | IMPLICIT NONE |
---|
2828 | |
---|
2829 | INTEGER(iwp) :: child !< child of item in heap |
---|
2830 | INTEGER(iwp) :: cur_pos !< current position of item in heap |
---|
2831 | INTEGER(iwp) :: id !< ID of item extracted item |
---|
2832 | |
---|
2833 | TYPE(heap_item) :: dummy |
---|
2834 | ! |
---|
2835 | !-- Get ID of mesh point with lowest priority (extracted item: top of heap) |
---|
2836 | id = queue(0)%mesh_id |
---|
2837 | ! |
---|
2838 | !-- Put last item in heap at first position |
---|
2839 | queue(0) = queue(heap_count-1) |
---|
2840 | cur_pos = 0 |
---|
2841 | DO |
---|
2842 | ! |
---|
2843 | !-- If current item has no children, sorting is done |
---|
2844 | IF( 2*cur_pos+1 > heap_count - 1 ) THEN |
---|
2845 | EXIT |
---|
2846 | ! |
---|
2847 | !-- If current item has only one child, check if item and its child are ordered correctly. Else, |
---|
2848 | !-- swap them. |
---|
2849 | ELSEIF ( 2*cur_pos+2 > heap_count - 1 ) THEN |
---|
2850 | IF ( queue(cur_pos)%priority > queue(2*cur_pos+1)%priority ) THEN |
---|
2851 | dummy = queue(cur_pos) |
---|
2852 | queue(cur_pos) = queue(2*cur_pos+1) |
---|
2853 | queue(2*cur_pos+1) = dummy |
---|
2854 | cur_pos = 2*cur_pos+1 |
---|
2855 | ELSE |
---|
2856 | EXIT |
---|
2857 | ENDIF |
---|
2858 | ELSE |
---|
2859 | ! |
---|
2860 | !-- Determine the smaller child |
---|
2861 | IF ( queue(2*cur_pos+1)%priority >= queue(2*cur_pos+2)%priority ) THEN |
---|
2862 | child = 2 |
---|
2863 | ELSE |
---|
2864 | child = 1 |
---|
2865 | ENDIF |
---|
2866 | ! |
---|
2867 | !-- Check if item and its smaller child are ordered falsely. If so, swap them. Else, sorting |
---|
2868 | !-- is done. |
---|
2869 | IF ( queue(cur_pos)%priority > queue(2*cur_pos+child )%priority ) THEN |
---|
2870 | dummy = queue(cur_pos) |
---|
2871 | queue(cur_pos) = queue(2*cur_pos+child) |
---|
2872 | queue(2*cur_pos+child) = dummy |
---|
2873 | cur_pos = 2*cur_pos+child |
---|
2874 | ELSE |
---|
2875 | EXIT |
---|
2876 | ENDIF |
---|
2877 | ENDIF |
---|
2878 | ENDDO |
---|
2879 | ! |
---|
2880 | !-- Top item was removed from heap, thus, heap_cout decreases by one |
---|
2881 | heap_count = heap_count-1 |
---|
2882 | |
---|
2883 | END SUBROUTINE mas_heap_extract_item |
---|
2884 | |
---|
2885 | !--------------------------------------------------------------------------------------------------! |
---|
2886 | ! Description: |
---|
2887 | ! ------------ |
---|
2888 | !> Initialization of Multi Agent System |
---|
2889 | !--------------------------------------------------------------------------------------------------! |
---|
2890 | SUBROUTINE mas_init |
---|
2891 | |
---|
2892 | USE control_parameters, & |
---|
2893 | ONLY: coupling_char, initializing_actions, io_blocks, io_group |
---|
2894 | |
---|
2895 | USE arrays_3d, & |
---|
2896 | ONLY: zu, zw |
---|
2897 | |
---|
2898 | USE indices, & |
---|
2899 | ONLY: nzt |
---|
2900 | |
---|
2901 | IMPLICIT NONE |
---|
2902 | |
---|
2903 | INTEGER(iwp) :: i !< grid cell (x) |
---|
2904 | INTEGER(iwp) :: ii !< io-block counter |
---|
2905 | INTEGER(iwp) :: il !< io-block counter |
---|
2906 | INTEGER(iwp) :: ioerr !< IOSTAT flag for IO-commands ( 0 = no error ) |
---|
2907 | INTEGER(iwp) :: j !< grid cell (y) |
---|
2908 | INTEGER(iwp) :: jl !< io-block counter |
---|
2909 | INTEGER(iwp) :: kl !< io-block counter |
---|
2910 | INTEGER(iwp) :: kdum !< io-block counter |
---|
2911 | INTEGER(iwp) :: locdum !< io-block counter |
---|
2912 | INTEGER(iwp) :: size_of_mesh !< temporary value for read |
---|
2913 | INTEGER(iwp) :: size_of_pols !< temporary value for read |
---|
2914 | |
---|
2915 | LOGICAL :: navigation_data_present !< Flag: check for input file |
---|
2916 | |
---|
2917 | REAL(wp) :: zdum !< dummy for measurement height |
---|
2918 | REAL(wp) :: avg_agt_height = 1.8_wp |
---|
2919 | |
---|
2920 | |
---|
2921 | ! |
---|
2922 | !-- Check the number of agent groups. |
---|
2923 | IF ( number_of_agent_groups > max_number_of_agent_groups ) THEN |
---|
2924 | WRITE( message_string, * ) 'max_number_of_agent_groups =', max_number_of_agent_groups , & |
---|
2925 | '&number_of_agent_groups reset to ', max_number_of_agent_groups |
---|
2926 | CALL message( 'mas_init', 'PA0072', 0, 1, 0, 6, 0 ) |
---|
2927 | number_of_agent_groups = max_number_of_agent_groups |
---|
2928 | ENDIF |
---|
2929 | |
---|
2930 | ! |
---|
2931 | !-- Set some parameters |
---|
2932 | d_sigma_rep_agent = 1.0_wp/sigma_rep_agent |
---|
2933 | d_sigma_rep_wall = 1.0_wp/sigma_rep_wall |
---|
2934 | d_tau_accel_agent = 1.0_wp/tau_accel_agent |
---|
2935 | IF ( dt_agent /= 999.0_wp ) THEN |
---|
2936 | agent_own_timestep = .TRUE. |
---|
2937 | ENDIF |
---|
2938 | |
---|
2939 | ! |
---|
2940 | !-- Get index of first grid box above topography |
---|
2941 | ALLOCATE( top_top_s(nysg:nyng,nxlg:nxrg), & |
---|
2942 | top_top_w(nysg:nyng,nxlg:nxrg), & |
---|
2943 | s_measure_height(nys:nyn,nxl:nxr) ) |
---|
2944 | ! |
---|
2945 | !-- Get first index above topography for scalar grid and last index in topography for z-component of |
---|
2946 | !-- wind. |
---|
2947 | DO il = nxlg, nxrg |
---|
2948 | DO jl = nysg, nyng |
---|
2949 | top_top_s(jl,il) = topo_top_ind(jl,il,0) + 1 |
---|
2950 | top_top_w(jl,il) = topo_top_ind(jl,il,3) |
---|
2951 | ENDDO |
---|
2952 | ENDDO |
---|
2953 | ! |
---|
2954 | !-- Create 2D array containing the index at which measurements are done by agents. The height of |
---|
2955 | !-- this measurement is given by avg_agt_height. |
---|
2956 | DO il = nxl, nxr |
---|
2957 | DO jl = nys, nyn |
---|
2958 | |
---|
2959 | kdum = top_top_w(jl,il) |
---|
2960 | zdum = zw(kdum) |
---|
2961 | zdum = zdum + avg_agt_height |
---|
2962 | locdum = 0 |
---|
2963 | ! |
---|
2964 | !-- Locate minimum distance from u-grid to measurement height (zdum) |
---|
2965 | DO kl = 1, nzt |
---|
2966 | IF ( ABS(zu(kl)-zdum) < ABS(zu(locdum)-zdum) ) locdum = kl |
---|
2967 | ENDDO |
---|
2968 | s_measure_height(jl,il) = locdum |
---|
2969 | |
---|
2970 | ENDDO |
---|
2971 | ENDDO |
---|
2972 | |
---|
2973 | CALL mas_create_obstacle_flags |
---|
2974 | |
---|
2975 | ! |
---|
2976 | !-- Set default start positions, if necessary |
---|
2977 | IF ( asl(1) == 9999999.9_wp ) asl(1) = 0.0_wp |
---|
2978 | IF ( asr(1) == 9999999.9_wp ) asr(1) = ( nx + 1 ) * dx |
---|
2979 | IF ( ass(1) == 9999999.9_wp ) ass(1) = 0.0_wp |
---|
2980 | IF ( asn(1) == 9999999.9_wp ) asn(1) = ( ny + 1 ) * dy |
---|
2981 | IF ( adx(1) == 9999999.9_wp .OR. adx(1) == 0.0_wp ) adx(1) = dx |
---|
2982 | IF ( ady(1) == 9999999.9_wp .OR. ady(1) == 0.0_wp ) ady(1) = dy |
---|
2983 | |
---|
2984 | DO j = 2, number_of_agent_groups |
---|
2985 | IF ( asl(j) == 9999999.9_wp ) asl(j) = asl(j-1) |
---|
2986 | IF ( asr(j) == 9999999.9_wp ) asr(j) = asr(j-1) |
---|
2987 | IF ( ass(j) == 9999999.9_wp ) ass(j) = ass(j-1) |
---|
2988 | IF ( asn(j) == 9999999.9_wp ) asn(j) = asn(j-1) |
---|
2989 | IF ( adx(j) == 9999999.9_wp .OR. adx(j) == 0.0_wp ) adx(j) = adx(j-1) |
---|
2990 | IF ( ady(j) == 9999999.9_wp .OR. ady(j) == 0.0_wp ) ady(j) = ady(j-1) |
---|
2991 | ENDDO |
---|
2992 | |
---|
2993 | ! |
---|
2994 | !-- Check boundary condition and set internal variables |
---|
2995 | SELECT CASE ( bc_mas_lr ) |
---|
2996 | |
---|
2997 | CASE ( 'cyclic' ) |
---|
2998 | ibc_mas_lr = 0 |
---|
2999 | |
---|
3000 | CASE ( 'absorb' ) |
---|
3001 | ibc_mas_lr = 1 |
---|
3002 | |
---|
3003 | CASE DEFAULT |
---|
3004 | WRITE( message_string, * ) 'unknown boundary condition ', & |
---|
3005 | 'bc_mas_lr = "', TRIM( bc_mas_lr ), '"' |
---|
3006 | CALL message( 'mas_init', 'PA0073', 1, 2, 0, 6, 0 ) |
---|
3007 | |
---|
3008 | END SELECT |
---|
3009 | SELECT CASE ( bc_mas_ns ) |
---|
3010 | |
---|
3011 | CASE ( 'cyclic' ) |
---|
3012 | ibc_mas_ns = 0 |
---|
3013 | |
---|
3014 | CASE ( 'absorb' ) |
---|
3015 | ibc_mas_ns = 1 |
---|
3016 | |
---|
3017 | CASE DEFAULT |
---|
3018 | WRITE( message_string, * ) 'unknown boundary condition ', & |
---|
3019 | 'bc_mas_ns = "', TRIM( bc_mas_ns ), '"' |
---|
3020 | CALL message( 'mas_init', 'PA0074', 1, 2, 0, 6, 0 ) |
---|
3021 | |
---|
3022 | END SELECT |
---|
3023 | |
---|
3024 | ! |
---|
3025 | !-- For the first model run of a possible job chain initialize the agents, otherwise read the agent |
---|
3026 | !-- data from restart file. |
---|
3027 | IF ( TRIM( initializing_actions ) == 'read_restart_data' .AND. read_agents_from_restartfile )& |
---|
3028 | THEN |
---|
3029 | |
---|
3030 | ! CALL mas_read_restart_file |
---|
3031 | |
---|
3032 | ELSE |
---|
3033 | ! |
---|
3034 | !-- Read preprocessed data of navigation mesh and building polygons for agent pathfinding |
---|
3035 | DO ii = 0, io_blocks-1 |
---|
3036 | IF ( ii == io_group ) THEN |
---|
3037 | ! |
---|
3038 | !-- Check for naviation input file and open it |
---|
3039 | INQUIRE( FILE='NAVIGATION_DATA' // TRIM( coupling_char ), & |
---|
3040 | EXIST=navigation_data_present ) |
---|
3041 | IF ( .NOT. navigation_data_present ) THEN |
---|
3042 | message_string = 'Input file NAVIGATION_DATA' // & |
---|
3043 | TRIM( coupling_char ) // ' for MAS missing. ' // & |
---|
3044 | '&Please run agent_preprocessing before the job to create it.' |
---|
3045 | CALL message( 'mas_init', 'PA0525', 1, 2, 0, 6, 0 ) |
---|
3046 | ENDIF |
---|
3047 | OPEN ( 119, FILE='NAVIGATION_DATA'//TRIM( coupling_char ), FORM='UNFORMATTED', & |
---|
3048 | IOSTAT=ioerr ) |
---|
3049 | ! |
---|
3050 | !-- Read mesh data |
---|
3051 | READ( 119 ) size_of_mesh |
---|
3052 | ALLOCATE( mesh(1:size_of_mesh) ) |
---|
3053 | DO i = 1, size_of_mesh |
---|
3054 | READ( 119 ) mesh(i)%polygon_id, mesh(i)%vertex_id, & |
---|
3055 | mesh(i)%noc, mesh(i)%origin_id, & |
---|
3056 | mesh(i)%cost_so_far, mesh(i)%x, & |
---|
3057 | mesh(i)%y, mesh(i)%x_s, mesh(i)%y_s |
---|
3058 | ALLOCATE( mesh(i)%connected_vertices(1:mesh(i)%noc), & |
---|
3059 | mesh(i)%distance_to_vertex(1:mesh(i)%noc) ) |
---|
3060 | DO j = 1, mesh(i)%noc |
---|
3061 | READ( 119 ) mesh(i)%connected_vertices(j), & |
---|
3062 | mesh(i)%distance_to_vertex(j) |
---|
3063 | ENDDO |
---|
3064 | ENDDO |
---|
3065 | ! |
---|
3066 | !-- Read polygon data |
---|
3067 | READ( 119 ) size_of_pols |
---|
3068 | ALLOCATE( polygons(1:size_of_pols) ) |
---|
3069 | DO i = 1, size_of_pols |
---|
3070 | READ( 119 ) polygons(i)%nov |
---|
3071 | ALLOCATE( polygons(i)%vertices(0:polygons(i)%nov+1) ) |
---|
3072 | DO j = 0, polygons(i)%nov+1 |
---|
3073 | READ( 119 ) polygons(i)%vertices(j)%delete, & |
---|
3074 | polygons(i)%vertices(j)%x, & |
---|
3075 | polygons(i)%vertices(j)%y |
---|
3076 | ENDDO |
---|
3077 | ENDDO |
---|
3078 | CLOSE(119) |
---|
3079 | |
---|
3080 | ENDIF |
---|
3081 | #if defined( __parallel ) && ! defined ( __check ) |
---|
3082 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
3083 | #endif |
---|
3084 | ENDDO |
---|
3085 | |
---|
3086 | ! |
---|
3087 | !-- Allocate agent arrays and set attributes of the initial set of agents, which can be also |
---|
3088 | !-- periodically released at later times. |
---|
3089 | ALLOCATE( agt_count (nysg:nyng,nxlg:nxrg), & |
---|
3090 | grid_agents(nysg:nyng,nxlg:nxrg) ) |
---|
3091 | ! |
---|
3092 | !-- Allocate dummy arrays for pathfinding |
---|
3093 | ALLOCATE( dummy_path_x(0:agt_path_size), & |
---|
3094 | dummy_path_y(0:agt_path_size) ) |
---|
3095 | |
---|
3096 | number_of_agents = 0 |
---|
3097 | sort_count_mas = 0 |
---|
3098 | agt_count = 0 |
---|
3099 | |
---|
3100 | ! |
---|
3101 | !-- Initialize counter for agent IDs |
---|
3102 | grid_agents%id_counter = 1 |
---|
3103 | |
---|
3104 | ! |
---|
3105 | !-- Initialize all agents with dummy values (otherwise errors may occur within restart runs). |
---|
3106 | !-- The reason for this is still not clear and may be presumably caused by errors in the |
---|
3107 | !-- respective user-interface. |
---|
3108 | zero_agent%agent_mask = .FALSE. |
---|
3109 | zero_agent%block_nr = -1 |
---|
3110 | zero_agent%group = 0 |
---|
3111 | zero_agent%id = 0_idp |
---|
3112 | zero_agent%path_counter = agt_path_size |
---|
3113 | zero_agent%age = 0.0_wp |
---|
3114 | zero_agent%age_m = 0.0_wp |
---|
3115 | zero_agent%dt_sum = 0.0_wp |
---|
3116 | zero_agent%clo = 0.0_wp |
---|
3117 | zero_agent%energy_storage= 0.0_wp |
---|
3118 | zero_agent%force_x = 0.0_wp |
---|
3119 | zero_agent%force_y = 0.0_wp |
---|
3120 | zero_agent%origin_x = 0.0_wp |
---|
3121 | zero_agent%origin_y = 0.0_wp |
---|
3122 | zero_agent%speed_abs = 0.0_wp |
---|
3123 | zero_agent%speed_e_x = 0.0_wp |
---|
3124 | zero_agent%speed_e_y = 0.0_wp |
---|
3125 | zero_agent%speed_des = random_normal(desired_speed, des_sp_sig) |
---|
3126 | zero_agent%speed_x = 0.0_wp |
---|
3127 | zero_agent%speed_y = 0.0_wp |
---|
3128 | zero_agent%ipt = 0.0_wp |
---|
3129 | zero_agent%x = 0.0_wp |
---|
3130 | zero_agent%y = 0.0_wp |
---|
3131 | zero_agent%path_x = 0.0_wp |
---|
3132 | zero_agent%path_y = 0.0_wp |
---|
3133 | zero_agent%t_x = 0.0_wp |
---|
3134 | zero_agent%t_y = 0.0_wp |
---|
3135 | |
---|
3136 | ! |
---|
3137 | !-- Set a seed value for the random number generator to be exclusively used for the agent code. |
---|
3138 | !-- The generated random numbers should be different on the different PEs. |
---|
3139 | iran_agent = iran_agent + myid |
---|
3140 | |
---|
3141 | CALL mas_create_agent( phase_init ) |
---|
3142 | |
---|
3143 | ENDIF |
---|
3144 | |
---|
3145 | ! |
---|
3146 | !-- To avoid programm abort, assign agents array to the local version of first grid cell. |
---|
3147 | number_of_agents = agt_count(nys,nxl) |
---|
3148 | agents => grid_agents(nys,nxl)%agents(1:number_of_agents) |
---|
3149 | |
---|
3150 | END SUBROUTINE mas_init |
---|
3151 | |
---|
3152 | !--------------------------------------------------------------------------------------------------! |
---|
3153 | ! Description: |
---|
3154 | ! ------------ |
---|
3155 | !> Output of informative message about maximum agent number |
---|
3156 | !--------------------------------------------------------------------------------------------------! |
---|
3157 | SUBROUTINE mas_last_actions |
---|
3158 | |
---|
3159 | USE control_parameters, & |
---|
3160 | ONLY: message_string |
---|
3161 | |
---|
3162 | IMPLICIT NONE |
---|
3163 | |
---|
3164 | WRITE(message_string,'(A,I8,A)') 'The maximumn number of agents during this run was', & |
---|
3165 | maximum_number_of_agents, & |
---|
3166 | '&Consider adjusting the INPUT parameter'// & |
---|
3167 | '&dim_size_agtnum_manual accordingly for the next run.' |
---|
3168 | |
---|
3169 | CALL message( 'mas_data_output_agents', 'PA0457', 0, 0, 0, 6, 0 ) |
---|
3170 | |
---|
3171 | END SUBROUTINE mas_last_actions |
---|
3172 | |
---|
3173 | !--------------------------------------------------------------------------------------------------! |
---|
3174 | ! Description: |
---|
3175 | ! ------------ |
---|
3176 | !> Finds the shortest path from a start position to a target position using the A*-algorithm |
---|
3177 | !--------------------------------------------------------------------------------------------------! |
---|
3178 | SUBROUTINE mas_nav_a_star( start_x, start_y, target_x, target_y, nsteps ) |
---|
3179 | |
---|
3180 | IMPLICIT NONE |
---|
3181 | |
---|
3182 | INTEGER(iwp) :: cur_node !< current node of binary heap |
---|
3183 | INTEGER(iwp) :: il !< counter (x) |
---|
3184 | INTEGER(iwp) :: neigh_node !< neighbor node |
---|
3185 | INTEGER(iwp) :: node_counter !< binary heap node counter |
---|
3186 | INTEGER(iwp) :: nsteps !< number of steps |
---|
3187 | INTEGER(iwp) :: path_ag !< index of agent path |
---|
3188 | INTEGER(iwp) :: som !< size of mesh |
---|
3189 | INTEGER(iwp) :: steps !< steps along the path |
---|
3190 | |
---|
3191 | LOGICAL :: target_reached !< flag |
---|
3192 | |
---|
3193 | REAL(wp) :: new_cost !< updated cost to reach node |
---|
3194 | REAL(wp) :: new_priority !< priority of node to be added to queue |
---|
3195 | REAL(wp) :: start_x !< x-coordinate agent |
---|
3196 | REAL(wp) :: start_y !< y-coordinate agent |
---|
3197 | REAL(wp) :: rn_gate !< random number for corner gate |
---|
3198 | REAL(wp) :: target_x !< x-coordinate target |
---|
3199 | REAL(wp) :: target_y !< y-coordinate target |
---|
3200 | ! |
---|
3201 | !-- Coordinate Type |
---|
3202 | TYPE coord |
---|
3203 | REAL(wp) :: x !< x-coordinate |
---|
3204 | REAL(wp) :: x_s !< x-coordinate (shifted) |
---|
3205 | REAL(wp) :: y !< y-coordinate |
---|
3206 | REAL(wp) :: y_s !< y-coordinate (shifted) |
---|
3207 | END TYPE coord |
---|
3208 | |
---|
3209 | TYPE(coord), DIMENSION(:), ALLOCATABLE, TARGET :: path !< path array |
---|
3210 | TYPE(coord), DIMENSION(:), ALLOCATABLE, TARGET :: tmp_path !< temporary path for resizing |
---|
3211 | |
---|
3212 | node_counter = 0 |
---|
3213 | ! |
---|
3214 | !-- Create temporary navigation mesh including agent and target positions |
---|
3215 | CALL mas_nav_create_tmp_mesh( start_x, start_y, target_x, target_y, som ) |
---|
3216 | tmp_mesh(som)%cost_so_far = 0.0_wp |
---|
3217 | ! |
---|
3218 | !-- Initialize priority queue |
---|
3219 | heap_count = 0_iwp |
---|
3220 | ALLOCATE( queue(0:100) ) |
---|
3221 | target_reached = .FALSE. |
---|
3222 | ! |
---|
3223 | !-- Add starting point (agent position) to frontier (the frontier consists of all the nodes that |
---|
3224 | !-- are to be visited. The node with the smallest priority will be visited first. The priority |
---|
3225 | !-- consists of the distance from the start node to this node plus a minimal guess (direct |
---|
3226 | !-- distance) from this node to the goal). For the starting node, the priority is set to 0, as it's |
---|
3227 | !-- the only node thus far. |
---|
3228 | CALL mas_heap_insert_item( som, 0.0_wp ) |
---|
3229 | cur_node = som |
---|
3230 | DO WHILE ( heap_count > 0 ) |
---|
3231 | ! |
---|
3232 | !-- Step one: Pick lowest priority item from queue |
---|
3233 | node_counter = node_counter + 1 |
---|
3234 | CALL mas_heap_extract_item(cur_node) |
---|
3235 | ! |
---|
3236 | !-- Node 0 is the goal node |
---|
3237 | IF ( cur_node == 0 ) THEN |
---|
3238 | EXIT |
---|
3239 | ENDIF |
---|
3240 | ! |
---|
3241 | !-- Loop over all of cur_node's neighbors |
---|
3242 | DO il = 1, tmp_mesh(cur_node)%noc |
---|
3243 | neigh_node = tmp_mesh(cur_node)%connected_vertices(il) |
---|
3244 | ! |
---|
3245 | !-- Check, if the way from the start node to this neigh_node via cur_node is shorter than the |
---|
3246 | !-- previously found shortest path to it. |
---|
3247 | !-- If so, replace said cost and add neigh_node to the frontier. |
---|
3248 | !-- cost_so_far is initialized as 1.d12 so that all found distances should be smaller. |
---|
3249 | new_cost = tmp_mesh(cur_node)%cost_so_far + tmp_mesh(cur_node)%distance_to_vertex(il) |
---|
3250 | IF ( new_cost < tmp_mesh(neigh_node)%cost_so_far ) THEN |
---|
3251 | tmp_mesh(neigh_node)%cost_so_far = new_cost |
---|
3252 | tmp_mesh(neigh_node)%origin_id = cur_node |
---|
3253 | ! |
---|
3254 | !-- Priority in the queue is cost_so_far + heuristic to goal |
---|
3255 | new_priority = new_cost & |
---|
3256 | + heuristic(tmp_mesh(neigh_node)%x, & |
---|
3257 | tmp_mesh(neigh_node)%y, tmp_mesh(0)%x, & |
---|
3258 | tmp_mesh(0)%y) |
---|
3259 | CALL mas_heap_insert_item(neigh_node,new_priority) |
---|
3260 | ENDIF |
---|
3261 | ENDDO |
---|
3262 | ENDDO |
---|
3263 | ! |
---|
3264 | !-- Add nodes to a path array. To do this, we must backtrack from the target node to its origin and |
---|
3265 | !-- so on until a node is reached that has no origin (%origin_id == -1). This is the starting node. |
---|
3266 | DEALLOCATE( queue ) |
---|
3267 | cur_node = 0 |
---|
3268 | steps = 0 |
---|
3269 | ALLOCATE( path(1:100) ) |
---|
3270 | DO WHILE ( cur_node /= -1 ) |
---|
3271 | steps = steps + 1 |
---|
3272 | ! |
---|
3273 | !-- Resize path array if necessary |
---|
3274 | IF ( steps > SIZE(path) ) THEN |
---|
3275 | ALLOCATE( tmp_path(1:steps-1) ) |
---|
3276 | tmp_path(1:steps-1) = path(1:steps-1) |
---|
3277 | DEALLOCATE( path ) |
---|
3278 | ALLOCATE( path(1:2*(steps-1)) ) |
---|
3279 | path(1:steps-1) = tmp_path(1:steps-1) |
---|
3280 | DEALLOCATE( tmp_path ) |
---|
3281 | ENDIF |
---|
3282 | path(steps)%x = tmp_mesh(cur_node)%x |
---|
3283 | path(steps)%y = tmp_mesh(cur_node)%y |
---|
3284 | path(steps)%x_s = tmp_mesh(cur_node)%x_s |
---|
3285 | path(steps)%y_s = tmp_mesh(cur_node)%y_s |
---|
3286 | cur_node = tmp_mesh(cur_node)%origin_id |
---|
3287 | ENDDO |
---|
3288 | ! |
---|
3289 | !-- Add calculated intermittent targets to the path until either the target or the maximum number of |
---|
3290 | !-- intermittent targets is reached. |
---|
3291 | !-- Ignore starting point (reduce index by one), it is agent position. |
---|
3292 | dummy_path_x = -1 |
---|
3293 | dummy_path_y = -1 |
---|
3294 | path_ag = 1 |
---|
3295 | steps = steps - 1 |
---|
3296 | nsteps = 0 |
---|
3297 | DO WHILE( steps > 0 .AND. path_ag <= agt_path_size ) |
---|
3298 | ! |
---|
3299 | !-- Each target point is randomly chosen along a line target along the bisector of the building |
---|
3300 | !-- corner that starts at corner_gate_start and has a width of corner_gate_width. This is to |
---|
3301 | !-- avoid clustering when opposing agent groups try to reach the same corner target. |
---|
3302 | rn_gate = random_function(iran_agent) * corner_gate_width + corner_gate_start |
---|
3303 | dummy_path_x(path_ag) = path(steps)%x + rn_gate * (path(steps)%x_s - path(steps)%x) |
---|
3304 | dummy_path_y(path_ag) = path(steps)%y + rn_gate * (path(steps)%y_s - path(steps)%y) |
---|
3305 | steps = steps - 1 |
---|
3306 | path_ag = path_ag + 1 |
---|
3307 | nsteps = nsteps + 1 |
---|
3308 | ENDDO |
---|
3309 | ! |
---|
3310 | !-- Set current intermittent target of this agent |
---|
3311 | DEALLOCATE( tmp_mesh, path ) |
---|
3312 | |
---|
3313 | END SUBROUTINE mas_nav_a_star |
---|
3314 | |
---|
3315 | !--------------------------------------------------------------------------------------------------! |
---|
3316 | ! Description: |
---|
3317 | ! ------------ |
---|
3318 | !> Adds a connection between two points of the navigation mesh (one-way: in_mp1 to in_mp2) |
---|
3319 | !--------------------------------------------------------------------------------------------------! |
---|
3320 | SUBROUTINE mas_nav_add_connection ( in_mp1, id2, in_mp2 ) |
---|
3321 | |
---|
3322 | IMPLICIT NONE |
---|
3323 | |
---|
3324 | LOGICAL :: connection_established !< Flag to indicate if connection has already been established |
---|
3325 | |
---|
3326 | INTEGER(iwp) :: id2 !< ID of in_mp2 |
---|
3327 | INTEGER(iwp) :: il !< local counter |
---|
3328 | INTEGER(iwp) :: noc1 !< number of connections in in_mp1 |
---|
3329 | |
---|
3330 | INTEGER, DIMENSION(:), ALLOCATABLE :: dum_cv !< dummy array for connected_vertices |
---|
3331 | |
---|
3332 | REAL(wp) :: dist !< Distance between the two points |
---|
3333 | |
---|
3334 | REAL(wp), DIMENSION(:), ALLOCATABLE :: dum_dtv |
---|
3335 | |
---|
3336 | TYPE(mesh_point) :: in_mp1 !< mesh point that gets a new connection |
---|
3337 | TYPE(mesh_point) :: in_mp2 !< mesh point in_mp1 will be connected to |
---|
3338 | |
---|
3339 | connection_established = .FALSE. |
---|
3340 | ! |
---|
3341 | !-- Check if connection has already been established |
---|
3342 | noc1 = SIZE( in_mp1%connected_vertices ) |
---|
3343 | DO il = 1, in_mp1%noc |
---|
3344 | IF ( in_mp1%connected_vertices(il) == id2 ) THEN |
---|
3345 | connection_established = .TRUE. |
---|
3346 | EXIT |
---|
3347 | ENDIF |
---|
3348 | ENDDO |
---|
3349 | |
---|
3350 | IF ( .NOT. connection_established ) THEN |
---|
3351 | ! |
---|
3352 | !-- Resize arrays, if necessary |
---|
3353 | IF ( in_mp1%noc >= noc1 ) THEN |
---|
3354 | ALLOCATE( dum_cv(1:noc1),dum_dtv(1:noc1) ) |
---|
3355 | dum_cv = in_mp1%connected_vertices |
---|
3356 | dum_dtv = in_mp1%distance_to_vertex |
---|
3357 | DEALLOCATE( in_mp1%connected_vertices, in_mp1%distance_to_vertex ) |
---|
3358 | ALLOCATE( in_mp1%connected_vertices(1:2*noc1), & |
---|
3359 | in_mp1%distance_to_vertex(1:2*noc1) ) |
---|
3360 | in_mp1%connected_vertices = -999 |
---|
3361 | in_mp1%distance_to_vertex = -999. |
---|
3362 | in_mp1%connected_vertices(1:noc1) = dum_cv |
---|
3363 | in_mp1%distance_to_vertex(1:noc1) = dum_dtv |
---|
3364 | ENDIF |
---|
3365 | |
---|
3366 | ! |
---|
3367 | !-- Add connection |
---|
3368 | in_mp1%noc = in_mp1%noc+1 |
---|
3369 | dist = SQRT( (in_mp1%x - in_mp2%x)**2 + (in_mp1%y - in_mp2%y)**2 ) |
---|
3370 | in_mp1%connected_vertices(in_mp1%noc) = id2 |
---|
3371 | in_mp1%distance_to_vertex(in_mp1%noc) = dist |
---|
3372 | ENDIF |
---|
3373 | |
---|
3374 | END SUBROUTINE mas_nav_add_connection |
---|
3375 | |
---|
3376 | !--------------------------------------------------------------------------------------------------! |
---|
3377 | ! Description: |
---|
3378 | ! ------------ |
---|
3379 | !> Adds a vertex (curren position of agent or target) to the existing tmp_mesh |
---|
3380 | !--------------------------------------------------------------------------------------------------! |
---|
3381 | SUBROUTINE mas_nav_add_vertex_to_mesh ( in_mp, in_id ) |
---|
3382 | |
---|
3383 | IMPLICIT NONE |
---|
3384 | |
---|
3385 | |
---|
3386 | INTEGER(iwp) :: in_id !< vertex id of tested mesh point |
---|
3387 | INTEGER(iwp) :: jl !< mesh point counter |
---|
3388 | INTEGER(iwp) :: pl !< polygon counter |
---|
3389 | INTEGER(iwp) :: vl !< vertex counter |
---|
3390 | INTEGER(iwp) :: pid_t !< polygon id of tested mesh point |
---|
3391 | INTEGER(iwp) :: vid_t !< vertex id of tested mesh point |
---|
3392 | |
---|
3393 | LOGICAL :: intersection_found !< flag |
---|
3394 | LOGICAL :: is_left_n !< local switch |
---|
3395 | LOGICAL :: is_left_p !< local switch |
---|
3396 | LOGICAL :: is_right_n !< local switch |
---|
3397 | LOGICAL :: is_right_p !< local switch |
---|
3398 | |
---|
3399 | REAL(wp) :: v1x !< x-coordinate of test vertex 1 for intersection test |
---|
3400 | REAL(wp) :: v1y !< y-coordinate of test vertex 1 for intersection test |
---|
3401 | REAL(wp) :: v2x !< x-coordinate of test vertex 2 for intersection test |
---|
3402 | REAL(wp) :: v2y !< y-coordinate of test vertex 2 for intersection test |
---|
3403 | REAL(wp) :: x !< x-coordinate of current mesh point |
---|
3404 | REAL(wp) :: x_t !< x-coordinate of tested mesh point |
---|
3405 | REAL(wp) :: y !< y-coordinate of current mesh point |
---|
3406 | REAL(wp) :: y_t !< y-coordinate of tested mesh point |
---|
3407 | |
---|
3408 | TYPE(mesh_point) :: in_mp !< Input mesh point |
---|
3409 | ! |
---|
3410 | !-- |
---|
3411 | x = in_mp%x |
---|
3412 | y = in_mp%y |
---|
3413 | DO jl = 0, SIZE( tmp_mesh )-2 |
---|
3414 | IF ( in_id == jl ) CYCLE |
---|
3415 | ! |
---|
3416 | !-- Ignore mesh points with 0 connections |
---|
3417 | IF ( tmp_mesh(jl)%polygon_id /= -1 ) THEN |
---|
3418 | IF ( tmp_mesh(jl)%noc == 0 ) CYCLE |
---|
3419 | ENDIF |
---|
3420 | x_t = tmp_mesh(jl)%x |
---|
3421 | y_t = tmp_mesh(jl)%y |
---|
3422 | pid_t = tmp_mesh(jl)%polygon_id |
---|
3423 | vid_t = tmp_mesh(jl)%vertex_id |
---|
3424 | ! |
---|
3425 | !-- If the connecting line between the target and a mesh point points into the mesh point's |
---|
3426 | !-- polygon, no connection will be established between the two points. This is the case if the |
---|
3427 | !-- previous (next, n) vertex of the polygon is right of the connecting line and the next |
---|
3428 | !-- (previous, p) vertex of the polygon is left of the connecting line. |
---|
3429 | IF ( pid_t > 0 .AND. pid_t <= SIZE( polygons ) ) THEN |
---|
3430 | is_left_p = is_left( x, y, x_t, y_t, polygons(pid_t)%vertices(vid_t-1)%x, & |
---|
3431 | polygons(pid_t)%vertices(vid_t-1)%y ) |
---|
3432 | is_left_n = is_left( x, y, x_t, y_t, polygons(pid_t)%vertices(vid_t+1)%x, & |
---|
3433 | polygons(pid_t)%vertices(vid_t+1)%y ) |
---|
3434 | is_right_p = is_right( x, y, x_t, y_t, polygons(pid_t)%vertices(vid_t-1)%x, & |
---|
3435 | polygons(pid_t)%vertices(vid_t-1)%y ) |
---|
3436 | is_right_n = is_right( x, y, x_t, y_t, polygons(pid_t)%vertices(vid_t+1)%x, & |
---|
3437 | polygons(pid_t)%vertices(vid_t+1)%y ) |
---|
3438 | IF ( ( is_left_p .AND. is_right_n ) .OR. ( is_right_p .AND. is_left_n ) ) CYCLE |
---|
3439 | ENDIF |
---|
3440 | ! |
---|
3441 | !-- For each edge of each polygon, check if it intersects with the potential connection. If at |
---|
3442 | !-- least one intersection is found, no connection can be made. |
---|
3443 | intersection_found = .FALSE. |
---|
3444 | DO pl = 1, SIZE( polygons ) |
---|
3445 | DO vl = 1, polygons(pl)%nov |
---|
3446 | v1x = polygons(pl)%vertices(vl)%x |
---|
3447 | v1y = polygons(pl)%vertices(vl)%y |
---|
3448 | v2x = polygons(pl)%vertices(vl+1)%x |
---|
3449 | v2y = polygons(pl)%vertices(vl+1)%y |
---|
3450 | intersection_found = intersect(x,y,x_t,y_t,v1x,v1y,v2x,v2y) |
---|
3451 | IF ( intersection_found ) THEN |
---|
3452 | EXIT |
---|
3453 | ENDIF |
---|
3454 | ENDDO |
---|
3455 | IF ( intersection_found ) EXIT |
---|
3456 | ENDDO |
---|
3457 | IF ( intersection_found ) CYCLE |
---|
3458 | ! |
---|
3459 | !-- If neither of the above two tests was true, a connection will be established between the two |
---|
3460 | !-- mesh points. |
---|
3461 | CALL mas_nav_add_connection(in_mp,jl, tmp_mesh(jl)) |
---|
3462 | CALL mas_nav_add_connection(tmp_mesh(jl),in_id, in_mp) |
---|
3463 | ENDDO |
---|
3464 | CALL mas_nav_reduce_connections(in_mp) |
---|
3465 | |
---|
3466 | END SUBROUTINE mas_nav_add_vertex_to_mesh |
---|
3467 | |
---|
3468 | !--------------------------------------------------------------------------------------------------! |
---|
3469 | ! Description: |
---|
3470 | ! ------------ |
---|
3471 | !> Creates a temporary copy of the navigation mesh to be used for pathfinding |
---|
3472 | !--------------------------------------------------------------------------------------------------! |
---|
3473 | SUBROUTINE mas_nav_create_tmp_mesh( a_x, a_y, t_x, t_y, som ) |
---|
3474 | |
---|
3475 | IMPLICIT NONE |
---|
3476 | |
---|
3477 | INTEGER(iwp) :: im !< local mesh point counter |
---|
3478 | INTEGER(iwp) :: noc !< number of connetions |
---|
3479 | INTEGER(iwp) :: som !< size of mesh |
---|
3480 | |
---|
3481 | REAL(wp) :: a_x !< x-coordinate agent |
---|
3482 | REAL(wp) :: a_y !< y-coordinate agent |
---|
3483 | REAL(wp) :: t_x !< x-coordinate target |
---|
3484 | REAL(wp) :: t_y !< y-coordinate target |
---|
3485 | ! |
---|
3486 | !-- Give tmp_mesh the size of mesh |
---|
3487 | som = SIZE( mesh ) + 1 |
---|
3488 | ALLOCATE( tmp_mesh(0:som) ) |
---|
3489 | ! |
---|
3490 | !-- Give the allocatable variables in tmp_mesh their respctive sizes |
---|
3491 | DO im = 1, som-1 |
---|
3492 | noc = mesh(im)%noc |
---|
3493 | ALLOCATE( tmp_mesh(im)%connected_vertices(1:noc) ) |
---|
3494 | ALLOCATE( tmp_mesh(im)%distance_to_vertex(1:noc) ) |
---|
3495 | ENDDO |
---|
3496 | ! |
---|
3497 | !-- Copy mesh to tmp_mesh |
---|
3498 | tmp_mesh(1:som-1) = mesh(1:som-1) |
---|
3499 | ! |
---|
3500 | !-- Add target point ... |
---|
3501 | CALL mas_nav_init_mesh_point(tmp_mesh(0),-1_iwp,-1_iwp,t_x, t_y) |
---|
3502 | CALL mas_nav_add_vertex_to_mesh(tmp_mesh(0),0_iwp) |
---|
3503 | ! |
---|
3504 | !-- ... and start point to temp mesh |
---|
3505 | CALL mas_nav_init_mesh_point(tmp_mesh(som),-1_iwp,-1_iwp,a_x, a_y) |
---|
3506 | CALL mas_nav_add_vertex_to_mesh(tmp_mesh(som),som) |
---|
3507 | |
---|
3508 | END SUBROUTINE mas_nav_create_tmp_mesh |
---|
3509 | |
---|
3510 | |
---|
3511 | !--------------------------------------------------------------------------------------------------! |
---|
3512 | ! Description: |
---|
3513 | ! ------------ |
---|
3514 | !> Finds the shortest path from an agents' position to her target. As the actual pathfinding |
---|
3515 | !> algorithm uses the obstacle corners and then shifts them outward after pathfinding, cases can |
---|
3516 | !> occur in which the connection between these intermittent targets then intersect with obstacles. |
---|
3517 | !> To remedy this the pathfinding algorithm is then run on every two subsequent intermittent targets |
---|
3518 | !> iteratively and new intermittent targets may be added to the path this way. |
---|
3519 | !--------------------------------------------------------------------------------------------------! |
---|
3520 | SUBROUTINE mas_nav_find_path( nl ) |
---|
3521 | |
---|
3522 | IMPLICIT NONE |
---|
3523 | |
---|
3524 | INTEGER(iwp) :: il !< local counter |
---|
3525 | INTEGER(iwp) :: jl !< local counter |
---|
3526 | INTEGER(iwp) :: kl !< local counter |
---|
3527 | INTEGER(iwp) :: nl !< local agent counter |
---|
3528 | INTEGER(iwp) :: nsteps_dummy !< number of steps on path |
---|
3529 | INTEGER(iwp) :: nsteps_total !< number of steps on path |
---|
3530 | |
---|
3531 | REAL(wp), DIMENSION(0:30) :: ld_path_x !< local dummy agent path to target (x) |
---|
3532 | REAL(wp), DIMENSION(0:30) :: ld_path_y !< local dummy agent path to target (y) |
---|
3533 | ! |
---|
3534 | !-- Initialize agent path arrays |
---|
3535 | agents(nl)%path_x = -1 |
---|
3536 | agents(nl)%path_y = -1 |
---|
3537 | agents(nl)%path_x(0) = agents(nl)%x |
---|
3538 | agents(nl)%path_y(0) = agents(nl)%y |
---|
3539 | ! |
---|
3540 | !-- Calculate initial path |
---|
3541 | CALL mas_nav_a_star( agents(nl)%x, agents(nl)%y, agents(nl)%t_x, agents(nl)%t_y, nsteps_total ) |
---|
3542 | ! |
---|
3543 | !-- Set the rest of the agent path that was just calculated |
---|
3544 | agents(nl)%path_x(1:nsteps_total) = dummy_path_x(1:nsteps_total) |
---|
3545 | agents(nl)%path_y(1:nsteps_total) = dummy_path_y(1:nsteps_total) |
---|
3546 | ! |
---|
3547 | !-- Iterate through found path and check more intermittent targets need to be added. For this, run |
---|
3548 | !-- pathfinding between every two consecutive intermittent targets. |
---|
3549 | DO il = 0, MIN( agt_path_size-1, nsteps_total-1 ) |
---|
3550 | ! |
---|
3551 | !-- Pathfinding between two consecutive intermittent targets |
---|
3552 | CALL mas_nav_a_star( agents(nl)%path_x(il), agents(nl)%path_y(il), & |
---|
3553 | agents(nl)%path_x(il+1), agents(nl)%path_y(il+1), & |
---|
3554 | nsteps_dummy ) |
---|
3555 | nsteps_dummy = nsteps_dummy - 1 |
---|
3556 | ! |
---|
3557 | !-- If additional intermittent targets are found, add them to the path |
---|
3558 | IF ( nsteps_dummy > 0 ) THEN |
---|
3559 | ld_path_x = -1 |
---|
3560 | ld_path_y = -1 |
---|
3561 | ld_path_x(il+1:il+nsteps_dummy) = dummy_path_x(1:nsteps_dummy) |
---|
3562 | ld_path_y(il+1:il+nsteps_dummy) = dummy_path_y(1:nsteps_dummy) |
---|
3563 | kl = 1 |
---|
3564 | DO jl = il+1,nsteps_total |
---|
3565 | ld_path_x( il+nsteps_dummy+kl ) = agents(nl)%path_x(jl) |
---|
3566 | ld_path_y( il+nsteps_dummy+kl ) = agents(nl)%path_y(jl) |
---|
3567 | kl = kl + 1 |
---|
3568 | IF ( kl > agt_path_size ) EXIT |
---|
3569 | ENDDO |
---|
3570 | nsteps_total = MIN( nsteps_total + nsteps_dummy, agt_path_size ) |
---|
3571 | agents(nl)%path_x(il+1:nsteps_total) = ld_path_x(il+1:nsteps_total) |
---|
3572 | agents(nl)%path_y(il+1:nsteps_total) = ld_path_y(il+1:nsteps_total) |
---|
3573 | ENDIF |
---|
3574 | |
---|
3575 | ENDDO |
---|
3576 | ! |
---|
3577 | !-- Reset path counter to first intermittent target |
---|
3578 | agents(nl)%path_counter = 1 |
---|
3579 | |
---|
3580 | END SUBROUTINE mas_nav_find_path |
---|
3581 | |
---|
3582 | !--------------------------------------------------------------------------------------------------! |
---|
3583 | ! Description: |
---|
3584 | ! ------------ |
---|
3585 | !> Reduces the size of connection array to the amount of actual connections after all connetions |
---|
3586 | !> were added to a mesh point |
---|
3587 | !--------------------------------------------------------------------------------------------------! |
---|
3588 | SUBROUTINE mas_nav_reduce_connections ( in_mp ) |
---|
3589 | |
---|
3590 | IMPLICIT NONE |
---|
3591 | |
---|
3592 | INTEGER(iwp) :: noc !< number of connections |
---|
3593 | |
---|
3594 | INTEGER, DIMENSION(:), ALLOCATABLE :: dum_cv !< dummy connected_vertices |
---|
3595 | |
---|
3596 | REAL(wp), DIMENSION(:), ALLOCATABLE :: dum_dtv !< dummy distance_to_vertex |
---|
3597 | |
---|
3598 | TYPE(mesh_point) :: in_mp |
---|
3599 | |
---|
3600 | noc = in_mp%noc |
---|
3601 | ALLOCATE( dum_cv(1:noc),dum_dtv(1:noc) ) |
---|
3602 | dum_cv = in_mp%connected_vertices(1:noc) |
---|
3603 | dum_dtv = in_mp%distance_to_vertex(1:noc) |
---|
3604 | DEALLOCATE( in_mp%connected_vertices, in_mp%distance_to_vertex ) |
---|
3605 | ALLOCATE( in_mp%connected_vertices(1:noc), & |
---|
3606 | in_mp%distance_to_vertex(1:noc) ) |
---|
3607 | in_mp%connected_vertices(1:noc) = dum_cv(1:noc) |
---|
3608 | in_mp%distance_to_vertex(1:noc) = dum_dtv(1:noc) |
---|
3609 | |
---|
3610 | END SUBROUTINE mas_nav_reduce_connections |
---|
3611 | |
---|
3612 | !--------------------------------------------------------------------------------------------------! |
---|
3613 | ! Description: |
---|
3614 | ! ------------ |
---|
3615 | !> Initializes a point of the navigation mesh |
---|
3616 | !--------------------------------------------------------------------------------------------------! |
---|
3617 | SUBROUTINE mas_nav_init_mesh_point ( in_mp, pid, vid, x, y ) |
---|
3618 | |
---|
3619 | IMPLICIT NONE |
---|
3620 | |
---|
3621 | INTEGER(iwp) :: pid !< polygon ID |
---|
3622 | INTEGER(iwp) :: vid !< vertex ID |
---|
3623 | |
---|
3624 | REAL(wp) :: x !< x-coordinate |
---|
3625 | REAL(wp) :: y !< y-coordinate |
---|
3626 | |
---|
3627 | TYPE(mesh_point) :: in_mp !< mesh point to be initialized |
---|
3628 | |
---|
3629 | in_mp%origin_id = -1 |
---|
3630 | in_mp%polygon_id = pid |
---|
3631 | in_mp%vertex_id = vid |
---|
3632 | in_mp%cost_so_far = 1.d12 |
---|
3633 | in_mp%x = x |
---|
3634 | in_mp%y = y |
---|
3635 | in_mp%x_s = x |
---|
3636 | in_mp%y_s = y |
---|
3637 | ALLOCATE( in_mp%connected_vertices(1:100), & |
---|
3638 | in_mp%distance_to_vertex(1:100) ) |
---|
3639 | in_mp%connected_vertices = -999 |
---|
3640 | in_mp%distance_to_vertex = -999. |
---|
3641 | in_mp%noc = 0 |
---|
3642 | |
---|
3643 | END SUBROUTINE mas_nav_init_mesh_point |
---|
3644 | |
---|
3645 | !--------------------------------------------------------------------------------------------------! |
---|
3646 | ! Description: |
---|
3647 | ! ------------ |
---|
3648 | !> Reading of namlist from parin file |
---|
3649 | !--------------------------------------------------------------------------------------------------! |
---|
3650 | SUBROUTINE mas_parin |
---|
3651 | |
---|
3652 | USE control_parameters, & |
---|
3653 | ONLY: agent_time_unlimited, multi_agent_system_end, multi_agent_system_start |
---|
3654 | |
---|
3655 | IMPLICIT NONE |
---|
3656 | |
---|
3657 | CHARACTER (LEN=80) :: line !< |
---|
3658 | |
---|
3659 | NAMELIST /agent_parameters/ a_rand_target, & |
---|
3660 | adx, & |
---|
3661 | ady, & |
---|
3662 | agent_maximum_age, & |
---|
3663 | agent_time_unlimited, & |
---|
3664 | alloc_factor_mas, & |
---|
3665 | asl, & |
---|
3666 | asn, & |
---|
3667 | asr, & |
---|
3668 | ass, & |
---|
3669 | at_x, & |
---|
3670 | at_y, & |
---|
3671 | bc_mas_lr, & |
---|
3672 | bc_mas_ns, & |
---|
3673 | coll_t_0, & |
---|
3674 | corner_gate_start, & |
---|
3675 | corner_gate_width, & |
---|
3676 | deallocate_memory_mas, & |
---|
3677 | dim_size_agtnum_manual, & |
---|
3678 | dim_size_factor_agtnum, & |
---|
3679 | dist_to_int_target, & |
---|
3680 | dt_agent, & |
---|
3681 | dt_arel, & |
---|
3682 | dt_write_agent_data, & |
---|
3683 | end_time_arel, & |
---|
3684 | max_dist_from_path, & |
---|
3685 | min_nr_agent, & |
---|
3686 | multi_agent_system_end, & |
---|
3687 | multi_agent_system_start, & |
---|
3688 | number_of_agent_groups, & |
---|
3689 | radius_agent, & |
---|
3690 | random_start_position_agents, & |
---|
3691 | read_agents_from_restartfile, & |
---|
3692 | repuls_agent, & |
---|
3693 | repuls_wall, & |
---|
3694 | scan_radius_agent, & |
---|
3695 | sigma_rep_agent, & |
---|
3696 | sigma_rep_wall, & |
---|
3697 | step_dealloc_mas, & |
---|
3698 | tau_accel_agent |
---|
3699 | |
---|
3700 | ! |
---|
3701 | !-- Try to find agent package |
---|
3702 | REWIND ( 11 ) |
---|
3703 | line = ' ' |
---|
3704 | DO WHILE ( INDEX( line, '&agent_parameters' ) == 0 ) |
---|
3705 | READ ( 11, '(A)', END=20 ) line |
---|
3706 | ENDDO |
---|
3707 | BACKSPACE ( 11 ) |
---|
3708 | |
---|
3709 | ! |
---|
3710 | !-- Read user-defined namelist |
---|
3711 | READ ( 11, agent_parameters, ERR = 10, END = 20 ) |
---|
3712 | |
---|
3713 | ! |
---|
3714 | !-- Set flag that indicates that agents are switched on |
---|
3715 | agents_active = .TRUE. |
---|
3716 | GOTO 20 |
---|
3717 | |
---|
3718 | 10 BACKSPACE( 11 ) |
---|
3719 | READ( 11 , '(A)') line |
---|
3720 | CALL parin_fail_message( 'agent_parameters', line ) |
---|
3721 | |
---|
3722 | 20 CONTINUE |
---|
3723 | |
---|
3724 | END SUBROUTINE mas_parin |
---|
3725 | |
---|
3726 | !--------------------------------------------------------------------------------------------------! |
---|
3727 | ! Description: |
---|
3728 | ! ------------ |
---|
3729 | !> Routine for the whole processor |
---|
3730 | !> Sort all agents into the 4 respective subgrid boxes |
---|
3731 | !--------------------------------------------------------------------------------------------------! |
---|
3732 | SUBROUTINE mas_ps_sort_in_subboxes |
---|
3733 | |
---|
3734 | IMPLICIT NONE |
---|
3735 | |
---|
3736 | INTEGER(iwp) :: i !< grid box (x) |
---|
3737 | INTEGER(iwp) :: ip !< counter (x) |
---|
3738 | INTEGER(iwp) :: is !< box counter |
---|
3739 | INTEGER(iwp) :: j !< grid box (y) |
---|
3740 | INTEGER(iwp) :: jp !< counter (y) |
---|
3741 | INTEGER(iwp) :: m !< sorting index |
---|
3742 | INTEGER(iwp) :: n !< agent index |
---|
3743 | INTEGER(iwp) :: nn !< agent counter |
---|
3744 | INTEGER(iwp) :: sort_index !< sorting index |
---|
3745 | |
---|
3746 | INTEGER(iwp), DIMENSION(0:3) :: sort_count !< number of agents in one subbox |
---|
3747 | |
---|
3748 | TYPE(agent_type), DIMENSION(:,:), ALLOCATABLE :: sort_agents !< sorted agent array |
---|
3749 | |
---|
3750 | DO ip = nxl, nxr |
---|
3751 | DO jp = nys, nyn |
---|
3752 | number_of_agents = agt_count(jp,ip) |
---|
3753 | IF ( number_of_agents <= 0 ) CYCLE |
---|
3754 | agents => grid_agents(jp,ip)%agents(1:number_of_agents) |
---|
3755 | |
---|
3756 | nn = 0 |
---|
3757 | sort_count = 0 |
---|
3758 | ALLOCATE( sort_agents(number_of_agents, 0:3) ) |
---|
3759 | |
---|
3760 | DO n = 1, number_of_agents |
---|
3761 | sort_index = 0 |
---|
3762 | |
---|
3763 | IF ( agents(n)%agent_mask ) THEN |
---|
3764 | nn = nn + 1 |
---|
3765 | ! |
---|
3766 | !-- Sorting agents with a binary scheme |
---|
3767 | !-- sort_index=11_2=3_10 -> agent at the left,south subgridbox |
---|
3768 | !-- sort_index=10_2=2_10 -> agent at the left,north subgridbox |
---|
3769 | !-- sort_index=01_2=1_10 -> agent at the right,south subgridbox |
---|
3770 | !-- sort_index=00_2=0_10 -> agent at the right,north subgridbox |
---|
3771 | !-- For this the center of the gridbox is calculated |
---|
3772 | i = (agents(n)%x + 0.5_wp * dx) * ddx |
---|
3773 | j = (agents(n)%y + 0.5_wp * dy) * ddy |
---|
3774 | |
---|
3775 | IF ( i == ip ) sort_index = sort_index + 2 |
---|
3776 | IF ( j == jp ) sort_index = sort_index + 1 |
---|
3777 | |
---|
3778 | sort_count(sort_index) = sort_count(sort_index) + 1 |
---|
3779 | m = sort_count(sort_index) |
---|
3780 | sort_agents(m,sort_index) = agents(n) |
---|
3781 | sort_agents(m,sort_index)%block_nr = sort_index |
---|
3782 | ENDIF |
---|
3783 | ENDDO |
---|
3784 | |
---|
3785 | nn = 0 |
---|
3786 | DO is = 0,3 |
---|
3787 | grid_agents(jp,ip)%start_index(is) = nn + 1 |
---|
3788 | DO n = 1,sort_count(is) |
---|
3789 | nn = nn + 1 |
---|
3790 | agents(nn) = sort_agents(n,is) |
---|
3791 | ENDDO |
---|
3792 | grid_agents(jp,ip)%end_index(is) = nn |
---|
3793 | ENDDO |
---|
3794 | |
---|
3795 | number_of_agents = nn |
---|
3796 | agt_count(jp,ip) = number_of_agents |
---|
3797 | DEALLOCATE( sort_agents ) |
---|
3798 | ENDDO |
---|
3799 | ENDDO |
---|
3800 | |
---|
3801 | END SUBROUTINE mas_ps_sort_in_subboxes |
---|
3802 | |
---|
3803 | #if defined( __parallel ) |
---|
3804 | !--------------------------------------------------------------------------------------------------! |
---|
3805 | ! Description: |
---|
3806 | ! ------------ |
---|
3807 | !> Move all agents not marked for deletion to lowest indices (packing) |
---|
3808 | !--------------------------------------------------------------------------------------------------! |
---|
3809 | SUBROUTINE mas_ps_pack |
---|
3810 | |
---|
3811 | IMPLICIT NONE |
---|
3812 | |
---|
3813 | INTEGER(iwp) :: n !< agent counter |
---|
3814 | INTEGER(iwp) :: nn !< number of agents |
---|
3815 | ! |
---|
3816 | !-- Find out elements marked for deletion and move data from highest index values to these free |
---|
3817 | !-- indices. |
---|
3818 | nn = number_of_agents |
---|
3819 | |
---|
3820 | DO WHILE ( .NOT. agents(nn)%agent_mask ) |
---|
3821 | nn = nn-1 |
---|
3822 | IF ( nn == 0 ) EXIT |
---|
3823 | ENDDO |
---|
3824 | |
---|
3825 | IF ( nn > 0 ) THEN |
---|
3826 | DO n = 1, number_of_agents |
---|
3827 | IF ( .NOT. agents(n)%agent_mask ) THEN |
---|
3828 | agents(n) = agents(nn) |
---|
3829 | nn = nn - 1 |
---|
3830 | DO WHILE ( .NOT. agents(nn)%agent_mask ) |
---|
3831 | nn = nn-1 |
---|
3832 | IF ( n == nn ) EXIT |
---|
3833 | ENDDO |
---|
3834 | ENDIF |
---|
3835 | IF ( n == nn ) EXIT |
---|
3836 | ENDDO |
---|
3837 | ENDIF |
---|
3838 | |
---|
3839 | ! |
---|
3840 | !-- The number of deleted agents has been determined in routines mas_boundary_conds, |
---|
3841 | !-- mas_droplet_collision, and mas_eh_exchange_horiz. |
---|
3842 | number_of_agents = nn |
---|
3843 | |
---|
3844 | END SUBROUTINE mas_ps_pack |
---|
3845 | #endif |
---|
3846 | |
---|
3847 | !--------------------------------------------------------------------------------------------------! |
---|
3848 | ! Description: |
---|
3849 | ! ------------ |
---|
3850 | !> Sort agents in each sub-grid box into two groups: agents that already completed the LES |
---|
3851 | !> timestep, and agents that need further timestepping to complete the LES timestep. |
---|
3852 | !--------------------------------------------------------------------------------------------------! |
---|
3853 | ! SUBROUTINE mas_ps_sort_timeloop_done |
---|
3854 | ! |
---|
3855 | ! IMPLICIT NONE |
---|
3856 | ! |
---|
3857 | ! INTEGER(iwp) :: end_index !< agent end index for each sub-box |
---|
3858 | ! INTEGER(iwp) :: i !< index of agent grid box in x-direction |
---|
3859 | ! INTEGER(iwp) :: j !< index of agent grid box in y-direction |
---|
3860 | ! INTEGER(iwp) :: n !< running index for number of agents |
---|
3861 | ! INTEGER(iwp) :: nb !< index of subgrid boux |
---|
3862 | ! INTEGER(iwp) :: nf !< indices for agents in each sub-box that already finalized their substeps |
---|
3863 | ! INTEGER(iwp) :: nnf !< indices for agents in each sub-box that need further treatment |
---|
3864 | ! INTEGER(iwp) :: num_finalized !< number of agents in each sub-box that already finalized their substeps |
---|
3865 | ! INTEGER(iwp) :: start_index !< agent start index for each sub-box |
---|
3866 | ! |
---|
3867 | ! TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: sort_agents !< temporary agent array |
---|
3868 | ! |
---|
3869 | ! DO i = nxl, nxr |
---|
3870 | ! DO j = nys, nyn |
---|
3871 | ! |
---|
3872 | ! number_of_agents = agt_count(j,i) |
---|
3873 | ! IF ( number_of_agents <= 0 ) CYCLE |
---|
3874 | ! |
---|
3875 | ! agents => grid_agents(j,i)%agents(1:number_of_agents) |
---|
3876 | ! |
---|
3877 | ! DO nb = 0, 3 |
---|
3878 | ! |
---|
3879 | !-- Obtain start and end index for each subgrid box |
---|
3880 | ! start_index = grid_agents(j,i)%start_index(nb) |
---|
3881 | ! end_index = grid_agents(j,i)%end_index(nb) |
---|
3882 | ! |
---|
3883 | !-- Allocate temporary array used for sorting |
---|
3884 | ! ALLOCATE( sort_agents(start_index:end_index) ) |
---|
3885 | ! |
---|
3886 | !-- Determine number of agents already completed the LES |
---|
3887 | !-- timestep, and write them into a temporary array |
---|
3888 | ! nf = start_index |
---|
3889 | ! num_finalized = 0 |
---|
3890 | ! DO n = start_index, end_index |
---|
3891 | ! IF ( dt_3d - agents(n)%dt_sum < 1E-8_wp ) THEN |
---|
3892 | ! sort_agents(nf) = agents(n) |
---|
3893 | ! nf = nf + 1 |
---|
3894 | ! num_finalized = num_finalized + 1 |
---|
3895 | ! ENDIF |
---|
3896 | ! ENDDO |
---|
3897 | ! |
---|
3898 | !-- Determine number of agents that not completed the LES |
---|
3899 | !-- timestep, and write them into a temporary array |
---|
3900 | ! nnf = nf |
---|
3901 | ! DO n = start_index, end_index |
---|
3902 | ! IF ( dt_3d - agents(n)%dt_sum > 1E-8_wp ) THEN |
---|
3903 | ! sort_agents(nnf) = agents(n) |
---|
3904 | ! nnf = nnf + 1 |
---|
3905 | ! ENDIF |
---|
3906 | ! ENDDO |
---|
3907 | ! |
---|
3908 | !-- Write back sorted agents |
---|
3909 | ! agents(start_index:end_index) = & |
---|
3910 | ! sort_agents(start_index:end_index) |
---|
3911 | ! |
---|
3912 | !-- Determine updated start_index, used to masked already |
---|
3913 | !-- completed agents. |
---|
3914 | ! grid_agents(j,i)%start_index(nb) = & |
---|
3915 | ! grid_agents(j,i)%start_index(nb) & |
---|
3916 | ! + num_finalized |
---|
3917 | ! |
---|
3918 | !-- Deallocate dummy array |
---|
3919 | ! DEALLOCATE ( sort_agents ) |
---|
3920 | ! |
---|
3921 | !-- Finally, if number of non-completed agents is non zero |
---|
3922 | !-- in any of the sub-boxes, set control flag appropriately. |
---|
3923 | ! IF ( nnf > nf ) & |
---|
3924 | ! grid_agents(j,i)%time_loop_done = .FALSE. |
---|
3925 | ! |
---|
3926 | ! ENDDO |
---|
3927 | ! ENDDO |
---|
3928 | ! ENDDO |
---|
3929 | ! |
---|
3930 | ! END SUBROUTINE mas_ps_sort_timeloop_done |
---|
3931 | |
---|
3932 | !--------------------------------------------------------------------------------------------------! |
---|
3933 | ! Description: |
---|
3934 | ! ------------ |
---|
3935 | !> Calls social forces calculations |
---|
3936 | !--------------------------------------------------------------------------------------------------! |
---|
3937 | SUBROUTINE mas_timestep_forces_call ( ip, jp ) |
---|
3938 | |
---|
3939 | IMPLICIT NONE |
---|
3940 | |
---|
3941 | INTEGER(iwp) :: ip !< counter, x-direction |
---|
3942 | INTEGER(iwp) :: jp !< counter, y-direction |
---|
3943 | INTEGER(iwp) :: n !< loop variable over all agents in a grid box |
---|
3944 | |
---|
3945 | ! |
---|
3946 | !-- Get direction for all agents in current grid cell |
---|
3947 | CALL mas_agent_direction |
---|
3948 | |
---|
3949 | DO n = 1, number_of_agents |
---|
3950 | |
---|
3951 | force_x = 0.0_wp |
---|
3952 | force_y = 0.0_wp |
---|
3953 | |
---|
3954 | CALL mas_timestep_social_forces ( 'acceleration', n, ip, jp ) |
---|
3955 | |
---|
3956 | CALL mas_timestep_social_forces ( 'other_agents', n, ip, jp ) |
---|
3957 | |
---|
3958 | CALL mas_timestep_social_forces ( 'walls', n, ip, jp ) |
---|
3959 | ! |
---|
3960 | !-- Update forces |
---|
3961 | agents(n)%force_x = force_x |
---|
3962 | agents(n)%force_y = force_y |
---|
3963 | ENDDO |
---|
3964 | |
---|
3965 | END SUBROUTINE mas_timestep_forces_call |
---|
3966 | |
---|
3967 | !--------------------------------------------------------------------------------------------------! |
---|
3968 | ! Description: |
---|
3969 | ! ------------ |
---|
3970 | !> Euler timestep of agent transport |
---|
3971 | !--------------------------------------------------------------------------------------------------! |
---|
3972 | SUBROUTINE mas_timestep |
---|
3973 | |
---|
3974 | IMPLICIT NONE |
---|
3975 | |
---|
3976 | INTEGER(iwp) :: n !< loop variable over all agents in a grid box |
---|
3977 | |
---|
3978 | REAL(wp) :: abs_v !< absolute value of velocity |
---|
3979 | REAL(wp) :: abs_f !< absolute value of force |
---|
3980 | |
---|
3981 | DO n = 1, number_of_agents |
---|
3982 | ! |
---|
3983 | !-- Limit absolute force to a maximum to prevent unrealistic acceleration |
---|
3984 | abs_f = SQRT( ( agents(n)%force_x )**2 + ( agents(n)%force_y )**2 ) |
---|
3985 | IF ( abs_f > 20. ) THEN |
---|
3986 | agents(n)%force_x = agents(n)%force_x * 20. / abs_f |
---|
3987 | agents(n)%force_y = agents(n)%force_y * 20. / abs_f |
---|
3988 | ENDIF |
---|
3989 | ! |
---|
3990 | !-- Update agent speed |
---|
3991 | agents(n)%speed_x = agents(n)%speed_x + agents(n)%force_x * dt_agent |
---|
3992 | agents(n)%speed_y = agents(n)%speed_y + agents(n)%force_y * dt_agent |
---|
3993 | ! |
---|
3994 | !-- Reduction of agent speed to maximum agent speed |
---|
3995 | abs_v = SQRT( ( agents(n)%speed_x )**2 + ( agents(n)%speed_y )**2 ) |
---|
3996 | IF ( abs_v > v_max_agent ) THEN |
---|
3997 | agents(n)%speed_x = agents(n)%speed_x * v_max_agent / abs_v |
---|
3998 | agents(n)%speed_y = agents(n)%speed_y * v_max_agent / abs_v |
---|
3999 | ENDIF |
---|
4000 | ! |
---|
4001 | !-- Update agent position |
---|
4002 | agents(n)%x = agents(n)%x + agents(n)%speed_x * dt_agent |
---|
4003 | agents(n)%y = agents(n)%y + agents(n)%speed_y * dt_agent |
---|
4004 | ! |
---|
4005 | !-- Update absolute value of agent speed |
---|
4006 | agents(n)%speed_abs = abs_v |
---|
4007 | ! |
---|
4008 | !-- Increment the agent age and the total time that the agent has advanced within the agent |
---|
4009 | !-- timestep procedure |
---|
4010 | agents(n)%age_m = agents(n)%age |
---|
4011 | agents(n)%age = agents(n)%age + dt_agent |
---|
4012 | agents(n)%dt_sum = agents(n)%dt_sum + dt_agent |
---|
4013 | ! |
---|
4014 | !-- Check whether there is still an agent that has not yet completed the total LES timestep |
---|
4015 | IF ( ( dt_3d - agents(n)%dt_sum ) > 1E-8_wp ) THEN |
---|
4016 | dt_3d_reached_l_mas = .FALSE. |
---|
4017 | ENDIF |
---|
4018 | |
---|
4019 | ENDDO |
---|
4020 | |
---|
4021 | END SUBROUTINE mas_timestep |
---|
4022 | |
---|
4023 | !--------------------------------------------------------------------------------------------------! |
---|
4024 | ! Description: |
---|
4025 | ! ------------ |
---|
4026 | !> Calculates the Social Forces (Helbing and Molnar, 1995) that the agent experiences due to |
---|
4027 | !> acceleration towards target and repulsion by obstacles |
---|
4028 | !--------------------------------------------------------------------------------------------------! |
---|
4029 | SUBROUTINE mas_timestep_social_forces ( mode, nl, ip, jp ) |
---|
4030 | |
---|
4031 | IMPLICIT NONE |
---|
4032 | |
---|
4033 | REAL(wp), PARAMETER :: k_pl = 1.5 !< factor for collision avoidance |
---|
4034 | |
---|
4035 | CHARACTER (LEN=*) :: mode !< identifier for the mode of calculation |
---|
4036 | |
---|
4037 | INTEGER(iwp) :: ij_dum !< index of nearest wall |
---|
4038 | INTEGER(iwp) :: il !< index variable along x |
---|
4039 | INTEGER(iwp) :: ip !< index variable along x |
---|
4040 | INTEGER(iwp) :: jl !< index variable along y |
---|
4041 | INTEGER(iwp) :: jp !< index variable along y |
---|
4042 | INTEGER(iwp) :: nl !< loop variable over all agents in a grid box |
---|
4043 | INTEGER(iwp) :: no !< loop variable over all agents in a grid box |
---|
4044 | INTEGER(iwp) :: noa !< amount of agents in a grid box |
---|
4045 | INTEGER(iwp) :: sc_x_end !< index for scan for topography/other agents |
---|
4046 | INTEGER(iwp) :: sc_x_start !< index for scan for topography/other agents |
---|
4047 | INTEGER(iwp) :: sc_y_end !< index for scan for topography/other agents |
---|
4048 | INTEGER(iwp) :: sc_y_start !< index for scan for topography/other agents |
---|
4049 | |
---|
4050 | LOGICAL :: corner_found !< flag that indicates a corner has been found near agent |
---|
4051 | |
---|
4052 | REAL(wp) :: a_pl !< factor for collision avoidance |
---|
4053 | REAL(wp) :: ax_semimaj !< semiminor axis of repulsive ellipse |
---|
4054 | REAL(wp) :: b_pl !< factor for collision avoidance |
---|
4055 | REAL(wp) :: c_pl !< factor for collision avoidance |
---|
4056 | REAL(wp) :: coll_t !< time at which the next collision would happen |
---|
4057 | REAL(wp) :: d_coll_t_0 !< inverse of collision cutoff time |
---|
4058 | REAL(wp) :: d_pl !< factor for collision avoidance |
---|
4059 | REAL(wp) :: ddum_f !< dummy devisor collision avoidance |
---|
4060 | REAL(wp) :: dist !< distance to obstacle |
---|
4061 | REAL(wp) :: dist_sq !< distance to obstacle squared |
---|
4062 | REAL(wp) :: pos_rel_x !< relative position of two agents (x) |
---|
4063 | REAL(wp) :: pos_rel_y !< relative position of two agents (y) |
---|
4064 | REAL(wp) :: r_sq !< y-position |
---|
4065 | REAL(wp) :: sra !< scan radius (agents) |
---|
4066 | REAL(wp) :: srw !< local variable for scan radius (walls) |
---|
4067 | REAL(wp) :: v_rel_x !< relative velocity (x); collision avoidance |
---|
4068 | REAL(wp) :: v_rel_y !< relative velocity (y); collision avoidance |
---|
4069 | REAL(wp) :: x_a !< x-position |
---|
4070 | REAL(wp) :: x_wall !< x-position of wall |
---|
4071 | REAL(wp) :: y_a !< y-position |
---|
4072 | REAL(wp) :: y_wall !< y-position of wall |
---|
4073 | |
---|
4074 | TYPE(agent_type), DIMENSION(:), POINTER :: l_agts !< agents that repulse current agent |
---|
4075 | |
---|
4076 | ! |
---|
4077 | !-- Initialization |
---|
4078 | x_a = agents(nl)%x |
---|
4079 | y_a = agents(nl)%y |
---|
4080 | |
---|
4081 | SELECT CASE ( TRIM( mode ) ) |
---|
4082 | ! |
---|
4083 | !-- Calculation of force due to agent trying to approach desired velocity |
---|
4084 | CASE ( 'acceleration' ) |
---|
4085 | |
---|
4086 | force_x = force_x + d_tau_accel_agent & |
---|
4087 | * ( agents(nl)%speed_des*agents(nl)%speed_e_x - agents(nl)%speed_x ) |
---|
4088 | |
---|
4089 | force_y = force_y + d_tau_accel_agent & |
---|
4090 | * ( agents(nl)%speed_des*agents(nl)%speed_e_y - agents(nl)%speed_y ) |
---|
4091 | |
---|
4092 | ! |
---|
4093 | !-- Calculation of repulsive forces by other agents in a radius around the current one |
---|
4094 | CASE ( 'other_agents' ) |
---|
4095 | |
---|
4096 | sra = scan_radius_agent |
---|
4097 | d_coll_t_0 = 1./coll_t_0 |
---|
4098 | ! |
---|
4099 | !-- Find relevant gridboxes (those that could contain agents within scan radius) |
---|
4100 | sc_x_start = FLOOR( (x_a - sra) * ddx ) |
---|
4101 | sc_x_end = FLOOR( (x_a + sra) * ddx ) |
---|
4102 | sc_y_start = FLOOR( (y_a - sra) * ddx ) |
---|
4103 | sc_y_end = FLOOR( (y_a + sra) * ddx ) |
---|
4104 | IF ( sc_x_start < nxlg ) sc_x_start = nxlg |
---|
4105 | IF ( sc_x_end > nxrg ) sc_x_end = nxrg |
---|
4106 | IF ( sc_y_start < nysg ) sc_y_start = nysg |
---|
4107 | IF ( sc_y_end > nyng ) sc_y_end = nyng |
---|
4108 | |
---|
4109 | sra = sra**2 |
---|
4110 | ! |
---|
4111 | !-- Loop over all previously found relevant gridboxes |
---|
4112 | DO il = sc_x_start, sc_x_end |
---|
4113 | DO jl = sc_y_start, sc_y_end |
---|
4114 | noa = agt_count(jl,il) |
---|
4115 | IF ( noa <= 0 ) CYCLE |
---|
4116 | l_agts => grid_agents(jl,il)%agents(1:noa) |
---|
4117 | DO no = 1, noa |
---|
4118 | ! |
---|
4119 | !-- Skip self |
---|
4120 | IF ( jl == jp .AND. il == ip .AND. no == nl ) CYCLE |
---|
4121 | pos_rel_x = l_agts(no)%x - x_a |
---|
4122 | pos_rel_y = l_agts(no)%y - y_a |
---|
4123 | dist_sq = pos_rel_x**2 + pos_rel_y**2 |
---|
4124 | IF ( dist_sq > sra ) CYCLE |
---|
4125 | r_sq = (2*radius_agent)**2 |
---|
4126 | v_rel_x = agents(nl)%speed_x - l_agts(no)%speed_x |
---|
4127 | v_rel_y = agents(nl)%speed_y - l_agts(no)%speed_y |
---|
4128 | ! |
---|
4129 | !-- Collision is already occuring, default to standard social forces. |
---|
4130 | IF ( dist_sq <= r_sq ) THEN |
---|
4131 | dist = SQRT( dist_sq ) + 1.0d-12 |
---|
4132 | ax_semimaj = 0.5_wp * SQRT( dist ) |
---|
4133 | |
---|
4134 | force_x = force_x - 0.125_wp * repuls_agent & |
---|
4135 | * d_sigma_rep_agent / ax_semimaj & |
---|
4136 | * EXP( - ax_semimaj * d_sigma_rep_agent ) & |
---|
4137 | * ( pos_rel_x / dist ) |
---|
4138 | |
---|
4139 | force_y = force_y - 0.125_wp * repuls_agent & |
---|
4140 | * d_sigma_rep_agent / ax_semimaj & |
---|
4141 | * EXP( - ax_semimaj * d_sigma_rep_agent ) & |
---|
4142 | * ( pos_rel_y / dist ) |
---|
4143 | ! |
---|
4144 | !-- Currently no collision, calculate collision avoidance force according to |
---|
4145 | !-- Karamouzas et al (2014, PRL 113,238701) |
---|
4146 | ELSE |
---|
4147 | ! |
---|
4148 | !-- Factors |
---|
4149 | a_pl = v_rel_x**2 + v_rel_y**2 |
---|
4150 | b_pl = pos_rel_x*v_rel_x + pos_rel_y*v_rel_y |
---|
4151 | c_pl = dist_sq - r_sq |
---|
4152 | d_pl = b_pl**2 - a_pl*c_pl |
---|
4153 | ! |
---|
4154 | !-- If the two agents are moving non-parallel, calculate collision avoidance |
---|
4155 | !-- social force |
---|
4156 | IF ( d_pl > 0.0_wp .AND. ( a_pl < -0.00001 .OR. a_pl > 0.00001 ) ) THEN |
---|
4157 | |
---|
4158 | d_pl = SQRT( d_pl ) |
---|
4159 | coll_t = ( b_pl - d_pl ) / a_pl |
---|
4160 | IF ( coll_t > 0.0_wp ) THEN |
---|
4161 | ! |
---|
4162 | !-- Dummy factor |
---|
4163 | ddum_f = 1. / ( a_pl * coll_t**2 ) * ( 2. / coll_t + 1.0 * d_coll_t_0 ) |
---|
4164 | ! |
---|
4165 | !-- x-component of social force |
---|
4166 | force_x = force_x - k_pl * EXP( -coll_t * d_coll_t_0 ) * & |
---|
4167 | ( v_rel_x - ( b_pl * v_rel_x - a_pl * pos_rel_x ) / d_pl ) * & |
---|
4168 | ddum_f |
---|
4169 | ! |
---|
4170 | !-- y-component of social force |
---|
4171 | force_y = force_y - k_pl * EXP( -coll_t * d_coll_t_0 ) * & |
---|
4172 | ( v_rel_y - ( b_pl * v_rel_y - a_pl * pos_rel_y ) / d_pl ) * & |
---|
4173 | ddum_f |
---|
4174 | |
---|
4175 | ENDIF |
---|
4176 | ENDIF |
---|
4177 | ENDIF |
---|
4178 | ENDDO |
---|
4179 | ENDDO |
---|
4180 | ENDDO |
---|
4181 | |
---|
4182 | CASE ( 'walls' ) |
---|
4183 | |
---|
4184 | srw = scan_radius_wall |
---|
4185 | corner_found = .FALSE. |
---|
4186 | ! |
---|
4187 | !-- Find relevant grid boxes (those that could contain topography within radius) |
---|
4188 | sc_x_start = (x_a - srw) * ddx |
---|
4189 | sc_x_end = (x_a + srw) * ddx |
---|
4190 | sc_y_start = (y_a - srw) * ddx |
---|
4191 | sc_y_end = (y_a + srw) * ddx |
---|
4192 | IF ( sc_x_start < nxlg ) sc_x_start = nxlg |
---|
4193 | IF ( sc_x_end > nxrg ) sc_x_end = nxrg |
---|
4194 | IF ( sc_y_start < nysg ) sc_y_start = nysg |
---|
4195 | IF ( sc_y_end > nyng ) sc_y_end = nyng |
---|
4196 | ! |
---|
4197 | !-- Find "walls" ( i.e. topography steps (up or down) higher than one grid box ) that are |
---|
4198 | !-- perpendicular to the agent within the defined search radius. Such obstacles cannot be |
---|
4199 | !-- passed and a social force to that effect is applied. |
---|
4200 | !-- Walls only apply a force perpendicular to the wall to the agent. |
---|
4201 | !-- There is therefore a search for walls directly right, left, south and north of the agent. |
---|
4202 | !-- All other walls are ignored. |
---|
4203 | !-- |
---|
4204 | !-- Check for wall left of current agent |
---|
4205 | ij_dum = 0 |
---|
4206 | IF ( sc_x_start < ip ) THEN |
---|
4207 | DO il = ip - 1, sc_x_start, -1 |
---|
4208 | ! |
---|
4209 | !-- Going left from the agent, check for a right wall |
---|
4210 | IF ( BTEST( obstacle_flags(jp,il), 2 ) ) THEN |
---|
4211 | ! |
---|
4212 | !-- Obstacle found in grid box il, wall at right side |
---|
4213 | x_wall = (il+1)*dx |
---|
4214 | ! |
---|
4215 | !-- Calculate force of found wall on agent |
---|
4216 | CALL mas_timestep_wall_corner_force( x_a, x_wall, y_a, y_a ) |
---|
4217 | ! |
---|
4218 | !-- Calculate new x starting index for later scan for corners |
---|
4219 | ij_dum = il + 1 |
---|
4220 | EXIT |
---|
4221 | ENDIF |
---|
4222 | ENDDO |
---|
4223 | ENDIF |
---|
4224 | IF ( ij_dum /= 0 ) sc_x_start = ij_dum |
---|
4225 | |
---|
4226 | ! |
---|
4227 | !-- Check for wall right of current agent |
---|
4228 | ij_dum = 0 |
---|
4229 | IF ( sc_x_end > ip ) THEN |
---|
4230 | DO il = ip + 1, sc_x_end |
---|
4231 | ! |
---|
4232 | !-- Going right from the agent, check for a left wall |
---|
4233 | IF ( BTEST( obstacle_flags(jp,il), 6 ) ) THEN |
---|
4234 | ! |
---|
4235 | !-- Obstacle found in grid box il, wall at left side |
---|
4236 | x_wall = il*dx |
---|
4237 | ! |
---|
4238 | !-- Calculate force of found wall on agent |
---|
4239 | CALL mas_timestep_wall_corner_force( x_a, x_wall, y_a, y_a ) |
---|
4240 | ! |
---|
4241 | !-- Calculate new x end index for later scan for corners |
---|
4242 | ij_dum = il - 1 |
---|
4243 | EXIT |
---|
4244 | ENDIF |
---|
4245 | ENDDO |
---|
4246 | ENDIF |
---|
4247 | IF ( ij_dum /= 0 ) sc_x_end = ij_dum |
---|
4248 | |
---|
4249 | ! |
---|
4250 | !-- Check for wall south of current agent |
---|
4251 | ij_dum = 0 |
---|
4252 | IF ( sc_y_start < jp ) THEN |
---|
4253 | DO jl = jp - 1, sc_y_start, -1 |
---|
4254 | ! |
---|
4255 | !-- Going south from the agent, check for a north wall |
---|
4256 | IF ( BTEST( obstacle_flags(jl,ip), 0 ) ) THEN |
---|
4257 | ! |
---|
4258 | !-- Obstacle found in grid box jl, wall at left side |
---|
4259 | y_wall = ( jl + 1 ) * dy |
---|
4260 | |
---|
4261 | CALL mas_timestep_wall_corner_force( x_a, x_a, y_a, y_wall ) |
---|
4262 | ! |
---|
4263 | !-- Calculate new y starting index for later scan for corners |
---|
4264 | ij_dum = jl + 1 |
---|
4265 | EXIT |
---|
4266 | ENDIF |
---|
4267 | ENDDO |
---|
4268 | ENDIF |
---|
4269 | IF ( ij_dum /= 0 ) sc_y_start = ij_dum |
---|
4270 | |
---|
4271 | ! |
---|
4272 | !-- Check for wall north of current agent |
---|
4273 | ij_dum = 0 |
---|
4274 | IF ( sc_y_end > jp ) THEN |
---|
4275 | DO jl = jp + 1, sc_y_end |
---|
4276 | ! |
---|
4277 | !-- Going north from the agent, check for a south wall |
---|
4278 | IF ( BTEST( obstacle_flags(jl,ip), 4 ) ) THEN |
---|
4279 | ! |
---|
4280 | !-- obstacle found in grid box jl, wall at left side |
---|
4281 | y_wall = jl * dy |
---|
4282 | |
---|
4283 | CALL mas_timestep_wall_corner_force( x_a, x_a, y_a, y_wall ) |
---|
4284 | ! |
---|
4285 | !-- Calculate new y end index for later scan for corners |
---|
4286 | ij_dum = jl - 1 |
---|
4287 | ENDIF |
---|
4288 | ENDDO |
---|
4289 | ENDIF |
---|
4290 | IF ( ij_dum /= 0 ) sc_y_end = ij_dum |
---|
4291 | |
---|
4292 | ! |
---|
4293 | !-- Scan for corners surrounding current agent. |
---|
4294 | !-- Only gridcells that are closer than the closest wall in each direction (n,s,r,l) are |
---|
4295 | !-- considered in the search since those further away would have a significantly smaller |
---|
4296 | !-- resulting force than the closer wall. |
---|
4297 | DO il = sc_x_start, sc_x_end |
---|
4298 | DO jl = sc_y_start, sc_y_end |
---|
4299 | IF ( il == ip .OR. jl == jp ) CYCLE |
---|
4300 | ! |
---|
4301 | !-- Corners left of agent |
---|
4302 | IF ( il < ip ) THEN |
---|
4303 | ! |
---|
4304 | !-- South left quadrant: look for north right corner |
---|
4305 | IF ( jl < jp ) THEN |
---|
4306 | IF ( BTEST( obstacle_flags(jl,il), 1 ) ) THEN |
---|
4307 | ! |
---|
4308 | !-- Calculate coordinates of the found corner |
---|
4309 | x_wall = ( il + 1 ) * dx |
---|
4310 | y_wall = ( jl + 1 ) * dy |
---|
4311 | |
---|
4312 | CALL mas_timestep_wall_corner_force( x_a, x_wall, y_a, y_wall ) |
---|
4313 | |
---|
4314 | ENDIF |
---|
4315 | ! |
---|
4316 | !-- North left quadrant: look for south right corner |
---|
4317 | ELSEIF ( jl > jp ) THEN |
---|
4318 | IF ( BTEST( obstacle_flags(jl,il), 3 ) ) THEN |
---|
4319 | ! |
---|
4320 | !-- Calculate coordinates of the corner of mentioned gridcell that is closest |
---|
4321 | !-- to the current agent. |
---|
4322 | x_wall = ( il + 1 ) * dx |
---|
4323 | y_wall = jl * dy |
---|
4324 | |
---|
4325 | CALL mas_timestep_wall_corner_force( x_a, x_wall, y_a, y_wall ) |
---|
4326 | |
---|
4327 | ENDIF |
---|
4328 | ENDIF |
---|
4329 | ELSEIF ( il > ip ) THEN |
---|
4330 | ! |
---|
4331 | !-- South right quadrant: look for north left corner |
---|
4332 | IF ( jl < jp ) THEN |
---|
4333 | IF ( BTEST( obstacle_flags(jl,il), 7 ) ) THEN |
---|
4334 | ! |
---|
4335 | !-- Calculate coordinates of the corner of mentioned gridcell that is closest |
---|
4336 | !-- to the current agent. |
---|
4337 | x_wall = il * dx |
---|
4338 | y_wall = ( jl + 1 ) * dy |
---|
4339 | |
---|
4340 | CALL mas_timestep_wall_corner_force( x_a, x_wall, y_a, y_wall ) |
---|
4341 | |
---|
4342 | ENDIF |
---|
4343 | ! |
---|
4344 | !-- North right quadrant: look for south left corner |
---|
4345 | ELSEIF ( jl > jp ) THEN |
---|
4346 | IF ( BTEST( obstacle_flags(jl,il), 5 ) ) THEN |
---|
4347 | ! |
---|
4348 | !-- Calculate coordinates of the corner of mentioned gridcell that is closest |
---|
4349 | !-- to the current agent. |
---|
4350 | x_wall = il * dx |
---|
4351 | y_wall = jl * dy |
---|
4352 | |
---|
4353 | CALL mas_timestep_wall_corner_force( x_a, x_wall, y_a, y_wall ) |
---|
4354 | |
---|
4355 | ENDIF |
---|
4356 | ENDIF |
---|
4357 | ENDIF |
---|
4358 | ENDDO |
---|
4359 | ENDDO |
---|
4360 | |
---|
4361 | CASE DEFAULT |
---|
4362 | |
---|
4363 | END SELECT |
---|
4364 | |
---|
4365 | END SUBROUTINE mas_timestep_social_forces |
---|
4366 | |
---|
4367 | !--------------------------------------------------------------------------------------------------! |
---|
4368 | ! Description: |
---|
4369 | ! ------------ |
---|
4370 | !> Given a distance to the current agent, calculates the force a found corner or wall exerts on that |
---|
4371 | !> agent |
---|
4372 | !--------------------------------------------------------------------------------------------------! |
---|
4373 | SUBROUTINE mas_timestep_wall_corner_force( xa, xw, ya, yw ) |
---|
4374 | |
---|
4375 | IMPLICIT NONE |
---|
4376 | |
---|
4377 | REAL(wp) :: dist_l !< distance to obstacle |
---|
4378 | REAL(wp) :: force_d_x !< increment of social force, x-direction |
---|
4379 | REAL(wp) :: force_d_y !< increment of social force, x-direction |
---|
4380 | REAL(wp) :: xa !< x-position of agent |
---|
4381 | REAL(wp) :: xw !< x-position of wall |
---|
4382 | REAL(wp) :: ya !< x-position of agent |
---|
4383 | REAL(wp) :: yw !< y-position of wall |
---|
4384 | |
---|
4385 | force_d_x = 0.0_wp |
---|
4386 | force_d_y = 0.0_wp |
---|
4387 | ! |
---|
4388 | !-- Calculate coordinates of corner relative to agent postion and distance between corner and agent. |
---|
4389 | xw = xa - xw |
---|
4390 | yw = ya - yw |
---|
4391 | dist_l = SQRT( ( xw )**2 + ( yw )**2 ) |
---|
4392 | ! |
---|
4393 | !-- Calculate x and y component of repulsive force induced by previously found corner |
---|
4394 | IF ( dist_l > 0 ) THEN |
---|
4395 | force_d_x = repuls_wall * d_sigma_rep_wall & |
---|
4396 | * EXP( -dist_l * d_sigma_rep_wall ) & |
---|
4397 | * xw / (dist_l) |
---|
4398 | force_d_y = repuls_wall * d_sigma_rep_wall & |
---|
4399 | * EXP( -dist_l * d_sigma_rep_wall ) & |
---|
4400 | * yw / (dist_l) |
---|
4401 | ENDIF |
---|
4402 | |
---|
4403 | ! !-- forces that are located outside of a sight radius of |
---|
4404 | ! !-- 200 degrees (-> COS(100./180.*pi) = COS(.555*pi)) of |
---|
4405 | ! !-- current agent are considered to have an effect of 50% |
---|
4406 | ! IF ( force_d_x * agents(nl)%speed_e_x + & |
---|
4407 | ! force_d_y * agents(nl)%speed_e_y < & |
---|
4408 | ! SQRT(force_d_x**2 + force_d_y**2) * & |
---|
4409 | ! COS( .55555555 * 3.1415 ) ) & |
---|
4410 | ! THEN |
---|
4411 | ! force_d_x = force_d_x * .5_wp |
---|
4412 | ! force_d_y = force_d_y * .5_wp |
---|
4413 | ! ENDIF |
---|
4414 | |
---|
4415 | ! |
---|
4416 | !-- Add force increment to total force of current agent |
---|
4417 | force_x = force_x + force_d_x |
---|
4418 | force_y = force_y + force_d_y |
---|
4419 | |
---|
4420 | END SUBROUTINE mas_timestep_wall_corner_force |
---|
4421 | |
---|
4422 | |
---|
4423 | ! |
---|
4424 | !-- Calculates distance of point P to edge (A,B). If A = B, calculates point-to-point distance from |
---|
4425 | !-- A/B to P. |
---|
4426 | FUNCTION dist_point_to_edge( a_x, a_y, b_x, b_y, p_x, p_y ) |
---|
4427 | |
---|
4428 | IMPLICIT NONE |
---|
4429 | |
---|
4430 | REAL(wp) :: a_x !< x-coordinate of point A of edge |
---|
4431 | REAL(wp) :: a_y !< y-coordinate of point A of edge |
---|
4432 | REAL(wp) :: ab_x !< x-coordinate of vector from A to B |
---|
4433 | REAL(wp) :: ab_y !< y-coordinate of vector from A to B |
---|
4434 | REAL(wp) :: ab_d !< inverse length of vector from A to B |
---|
4435 | REAL(wp) :: ab_u_x !< x-coordinate of vector with direction of ab and length 1 |
---|
4436 | REAL(wp) :: ab_u_y !< y-coordinate of vector with direction of ab and length 1 |
---|
4437 | REAL(wp) :: ap_x !< x-coordinate of vector from A to P |
---|
4438 | REAL(wp) :: ap_y !< y-coordinate of vector from A to P |
---|
4439 | REAL(wp) :: b_x !< x-coordinate of point B of edge |
---|
4440 | REAL(wp) :: b_y !< y-coordinate of point B of edge |
---|
4441 | REAL(wp) :: ba_x !< x-coordinate of vector from B to A |
---|
4442 | REAL(wp) :: ba_y !< y-coordinate of vector from B to A |
---|
4443 | REAL(wp) :: bp_x !< x-coordinate of vector from B to P |
---|
4444 | REAL(wp) :: bp_y !< y-coordinate of vector from B to P |
---|
4445 | REAL(wp) :: dist_x !< x-coordinate of point P |
---|
4446 | REAL(wp) :: dist_y !< y-coordinate of point P |
---|
4447 | REAL(wp) :: dist_point_to_edge !< y-coordinate of point P |
---|
4448 | REAL(wp) :: p_x !< x-coordinate of point P |
---|
4449 | REAL(wp) :: p_y !< y-coordinate of point P |
---|
4450 | |
---|
4451 | ab_x = - a_x + b_x |
---|
4452 | ab_y = - a_y + b_y |
---|
4453 | ba_x = - b_x + a_x |
---|
4454 | ba_y = - b_y + a_y |
---|
4455 | ap_x = - a_x + p_x |
---|
4456 | ap_y = - a_y + p_y |
---|
4457 | bp_x = - b_x + p_x |
---|
4458 | bp_y = - b_y + p_y |
---|
4459 | |
---|
4460 | IF ( ab_x * ap_x + ab_y * ap_y <= 0. ) THEN |
---|
4461 | dist_point_to_edge = SQRT( ( a_x - p_x )**2 + ( a_y - p_y )**2 ) |
---|
4462 | ELSEIF ( ba_x * bp_x + ba_y * bp_y <= 0. ) THEN |
---|
4463 | dist_point_to_edge = SQRT( ( b_x - p_x )**2 + ( b_y - p_y )**2) |
---|
4464 | ELSE |
---|
4465 | ab_d = 1.0_wp / SQRT( ( ab_x )**2 + ( ab_y )**2 ) |
---|
4466 | ab_u_x = ab_x * ab_d |
---|
4467 | ab_u_y = ab_y * ab_d |
---|
4468 | dist_x = ap_x - ( ap_x * ab_u_x + ap_y * ab_u_y ) * ab_u_x |
---|
4469 | dist_y = ap_y - ( ap_x * ab_u_x + ap_y * ab_u_y ) * ab_u_y |
---|
4470 | dist_point_to_edge = SQRT( dist_x**2 + dist_y**2 ) |
---|
4471 | ENDIF |
---|
4472 | |
---|
4473 | END FUNCTION dist_point_to_edge |
---|
4474 | |
---|
4475 | ! |
---|
4476 | !-- Returns the heuristic between points A and B (currently the straight distance) |
---|
4477 | FUNCTION heuristic( ax, ay, bx, by ) |
---|
4478 | |
---|
4479 | IMPLICIT NONE |
---|
4480 | |
---|
4481 | REAL(wp) :: ax !< x-coordinate of point A |
---|
4482 | REAL(wp) :: ay !< y-coordinate of point A |
---|
4483 | REAL(wp) :: bx !< x-coordinate of point B |
---|
4484 | REAL(wp) :: by !< y-coordinate of point B |
---|
4485 | REAL(wp) :: heuristic !< return value |
---|
4486 | |
---|
4487 | heuristic = SQRT( ( ax - bx )**2 + ( ay - by )**2 ) |
---|
4488 | |
---|
4489 | END FUNCTION heuristic |
---|
4490 | |
---|
4491 | ! |
---|
4492 | !-- Calculates if point P is left of the infinite line that contains A and B (direction: A to B). |
---|
4493 | !-- Concept: 2D rotation of two vectors |
---|
4494 | FUNCTION is_left( ax, ay, bx, by, px, py ) |
---|
4495 | |
---|
4496 | IMPLICIT NONE |
---|
4497 | |
---|
4498 | LOGICAL :: is_left !< return value; TRUE if P is left of AB |
---|
4499 | |
---|
4500 | REAL(wp) :: ax !< x-coordinate of point A |
---|
4501 | REAL(wp) :: ay !< y-coordinate of point A |
---|
4502 | REAL(wp) :: bx !< x-coordinate of point B |
---|
4503 | REAL(wp) :: by !< y-coordinate of point B |
---|
4504 | REAL(wp) :: px !< x-coordinate of point P |
---|
4505 | REAL(wp) :: py !< y-coordinate of point P |
---|
4506 | |
---|
4507 | is_left = (bx-ax)*(py-ay)-(px-ax)*(by-ay) > 0 |
---|
4508 | IF ( ( ABS( ax - px ) < .001 .AND. ABS( ay - py ) < .001 ) .OR. & |
---|
4509 | ( ABS( bx - px ) < .001 .AND. ABS( by - py ) < .001) ) & |
---|
4510 | THEN |
---|
4511 | is_left = .FALSE. |
---|
4512 | ENDIF |
---|
4513 | |
---|
4514 | END FUNCTION is_left |
---|
4515 | |
---|
4516 | ! |
---|
4517 | !-- Calculates if point P is right of the infinite line that contains A and B (direction: A to B) |
---|
4518 | !-- Concept: 2D rotation of two vectors |
---|
4519 | FUNCTION is_right( ax, ay, bx, by, px, py ) |
---|
4520 | |
---|
4521 | IMPLICIT NONE |
---|
4522 | |
---|
4523 | LOGICAL :: is_right !< return value; TRUE if P is right of AB |
---|
4524 | |
---|
4525 | REAL(wp), INTENT(IN) :: ax !< x-coordinate of point A |
---|
4526 | REAL(wp), INTENT(IN) :: ay !< y-coordinate of point A |
---|
4527 | REAL(wp), INTENT(IN) :: bx !< x-coordinate of point B |
---|
4528 | REAL(wp), INTENT(IN) :: by !< y-coordinate of point B |
---|
4529 | REAL(wp), INTENT(IN) :: px !< x-coordinate of point P |
---|
4530 | REAL(wp), INTENT(IN) :: py !< y-coordinate of point P |
---|
4531 | |
---|
4532 | is_right = (bx-ax)*(py-ay)-(px-ax)*(by-ay) < 0 |
---|
4533 | IF ( ( ABS( ax - px ) < 0.001_wp .AND. ABS( ay - py ) < 0.001_wp ) .OR. & |
---|
4534 | ( ABS( bx - px ) < 0.001_wp .AND. ABS( by - py ) < 0.001_wp ) ) & |
---|
4535 | THEN |
---|
4536 | is_right = .FALSE. |
---|
4537 | ENDIF |
---|
4538 | |
---|
4539 | END FUNCTION is_right |
---|
4540 | |
---|
4541 | ! |
---|
4542 | !-- Returns true if the line segments AB and PQ share an intersection |
---|
4543 | FUNCTION intersect( ax, ay, bx, by, px, py, qx, qy ) |
---|
4544 | |
---|
4545 | IMPLICIT NONE |
---|
4546 | |
---|
4547 | LOGICAL :: intersect !< return value; TRUE if intersection was found |
---|
4548 | LOGICAL :: la !< T if a is left of PQ |
---|
4549 | LOGICAL :: lb !< T if b is left of PQ |
---|
4550 | LOGICAL :: lp !< T if p is left of AB |
---|
4551 | LOGICAL :: lq !< T if q is left of AB |
---|
4552 | LOGICAL :: poss !< flag that indicates if an intersection is still possible |
---|
4553 | LOGICAL :: ra !< T if a is right of PQ |
---|
4554 | LOGICAL :: rb !< T if b is right of PQ |
---|
4555 | LOGICAL :: rp !< T if p is right of AB |
---|
4556 | LOGICAL :: rq !< T if q is right of AB |
---|
4557 | |
---|
4558 | REAL(wp) :: ax !< x-coordinate of point A |
---|
4559 | REAL(wp) :: ay !< y-coordinate of point A |
---|
4560 | REAL(wp) :: bx !< x-coordinate of point B |
---|
4561 | REAL(wp) :: by !< y-coordinate of point B |
---|
4562 | REAL(wp) :: px !< x-coordinate of point P |
---|
4563 | REAL(wp) :: py !< y-coordinate of point P |
---|
4564 | REAL(wp) :: qx !< x-coordinate of point Q |
---|
4565 | REAL(wp) :: qy !< y-coordinate of point Q |
---|
4566 | |
---|
4567 | intersect = .FALSE. |
---|
4568 | poss = .FALSE. |
---|
4569 | ! |
---|
4570 | !-- Intersection is possible only if P and Q are on opposing sides of AB |
---|
4571 | lp = is_left(ax,ay,bx,by,px,py) |
---|
4572 | rq = is_right(ax,ay,bx,by,qx,qy) |
---|
4573 | IF ( lp .AND. rq ) poss = .TRUE. |
---|
4574 | IF ( .NOT. poss ) THEN |
---|
4575 | lq = is_left(ax,ay,bx,by,qx,qy) |
---|
4576 | rp = is_right(ax,ay,bx,by,px,py) |
---|
4577 | IF ( lq .AND. rp ) poss = .TRUE. |
---|
4578 | ENDIF |
---|
4579 | ! |
---|
4580 | !-- Intersection occurs only if above test (poss) was true AND A and B are on opposing sides of PQ. |
---|
4581 | IF ( poss ) THEN |
---|
4582 | la = is_left(px,py,qx,qy,ax,ay) |
---|
4583 | rb = is_right(px,py,qx,qy,bx,by) |
---|
4584 | IF ( la .AND. rb ) intersect = .TRUE. |
---|
4585 | IF ( .NOT. intersect ) THEN |
---|
4586 | lb = is_left(px,py,qx,qy,bx,by) |
---|
4587 | ra = is_right(px,py,qx,qy,ax,ay) |
---|
4588 | IF ( lb .AND. ra ) intersect = .TRUE. |
---|
4589 | ENDIF |
---|
4590 | ENDIF |
---|
4591 | |
---|
4592 | END FUNCTION intersect |
---|
4593 | |
---|
4594 | ! |
---|
4595 | !-- Gives a nuber randomly distributed around an average |
---|
4596 | FUNCTION random_normal( avg, variation ) |
---|
4597 | |
---|
4598 | IMPLICIT NONE |
---|
4599 | |
---|
4600 | REAL(wp) :: avg !< x-coordinate of vector from A to B |
---|
4601 | REAL(wp) :: random_normal !< y-coordinate of vector from A to B |
---|
4602 | REAL(wp) :: variation !< y-coordinate of vector from A to B |
---|
4603 | |
---|
4604 | REAL(wp), DIMENSION(12) :: random_arr !< inverse length of vector from A to B |
---|
4605 | |
---|
4606 | CALL RANDOM_NUMBER( random_arr ) |
---|
4607 | random_normal = avg + variation * ( SUM( random_arr ) - 6.0_wp ) |
---|
4608 | |
---|
4609 | END FUNCTION random_normal |
---|
4610 | |
---|
4611 | |
---|
4612 | END MODULE multi_agent_system_mod |
---|