1 | !> @file microphysics_mod.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: microphysics_mod.f90 2156 2017-02-21 10:01:49Z hellstea $ |
---|
27 | ! |
---|
28 | ! 2155 2017-02-21 09:57:40Z hoffmann |
---|
29 | ! Bugfix in the calculation of microphysical quantities on ghost points. |
---|
30 | ! |
---|
31 | ! 2031 2016-10-21 15:11:58Z knoop |
---|
32 | ! renamed variable rho to rho_ocean |
---|
33 | ! |
---|
34 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
35 | ! Forced header and separation lines into 80 columns |
---|
36 | ! |
---|
37 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
38 | ! Module renamed |
---|
39 | ! Adapted for modularization of microphysics. |
---|
40 | ! |
---|
41 | ! 1845 2016-04-08 08:29:13Z raasch |
---|
42 | ! nzb_2d replaced by nzb_s_inner, Kessler precipitation is stored at surface |
---|
43 | ! point (instead of one point above surface) |
---|
44 | ! |
---|
45 | ! 1831 2016-04-07 13:15:51Z hoffmann |
---|
46 | ! turbulence renamed collision_turbulence, |
---|
47 | ! drizzle renamed cloud_water_sedimentation. cloud_water_sedimentation also |
---|
48 | ! avaialble for microphysics_kessler. |
---|
49 | ! |
---|
50 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
51 | ! Unused variables removed. |
---|
52 | ! Kessler scheme integrated. |
---|
53 | ! |
---|
54 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
55 | ! Added new routine calc_precipitation_amount. The routine now allows to account |
---|
56 | ! for precipitation due to sedimenation of cloud (fog) droplets |
---|
57 | ! |
---|
58 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
59 | ! Code annotations made doxygen readable |
---|
60 | ! |
---|
61 | ! 1646 2015-09-02 16:00:10Z hoffmann |
---|
62 | ! Bugfix: Wrong computation of d_mean. |
---|
63 | ! |
---|
64 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
65 | ! Bugfix in sedimentation_rain: Index corrected. |
---|
66 | ! Vectorized version of adjust_cloud added. |
---|
67 | ! Little reformatting of the code. |
---|
68 | ! |
---|
69 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
70 | ! REAL constants provided with KIND-attribute |
---|
71 | ! |
---|
72 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
73 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
74 | ! intrinsic function like MAX, MIN, SIGN |
---|
75 | ! |
---|
76 | ! 1334 2014-03-25 12:21:40Z heinze |
---|
77 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
78 | ! |
---|
79 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
80 | ! REAL constants defined as wp-kind |
---|
81 | ! |
---|
82 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
83 | ! ONLY-attribute added to USE-statements, |
---|
84 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
85 | ! kinds are defined in new module kinds, |
---|
86 | ! comment fields (!:) to be used for variable explanations added to |
---|
87 | ! all variable declaration statements |
---|
88 | ! |
---|
89 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
90 | ! hyp and rho_ocean have to be calculated at each time step if data from external |
---|
91 | ! file LSF_DATA are used |
---|
92 | ! |
---|
93 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
94 | ! microphyical tendencies are calculated in microphysics_control in an optimized |
---|
95 | ! way; unrealistic values are prevented; bugfix in evaporation; some reformatting |
---|
96 | ! |
---|
97 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
98 | ! small changes in code formatting |
---|
99 | ! |
---|
100 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
101 | ! unused variables removed |
---|
102 | ! file put under GPL |
---|
103 | ! |
---|
104 | ! 1065 2012-11-22 17:42:36Z hoffmann |
---|
105 | ! Sedimentation process implemented according to Stevens and Seifert (2008). |
---|
106 | ! Turbulence effects on autoconversion and accretion added (Seifert, Nuijens |
---|
107 | ! and Stevens, 2010). |
---|
108 | ! |
---|
109 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
110 | ! initial revision |
---|
111 | ! |
---|
112 | ! Description: |
---|
113 | ! ------------ |
---|
114 | !> Calculate bilk cloud microphysics. |
---|
115 | !------------------------------------------------------------------------------! |
---|
116 | MODULE microphysics_mod |
---|
117 | |
---|
118 | USE kinds |
---|
119 | |
---|
120 | IMPLICIT NONE |
---|
121 | |
---|
122 | LOGICAL :: cloud_water_sedimentation = .FALSE. !< cloud water sedimentation |
---|
123 | LOGICAL :: limiter_sedimentation = .TRUE. !< sedimentation limiter |
---|
124 | LOGICAL :: collision_turbulence = .FALSE. !< turbulence effects |
---|
125 | LOGICAL :: ventilation_effect = .TRUE. !< ventilation effect |
---|
126 | |
---|
127 | REAL(wp) :: a_1 = 8.69E-4_wp !< coef. in turb. parametrization (cm-2 s3) |
---|
128 | REAL(wp) :: a_2 = -7.38E-5_wp !< coef. in turb. parametrization (cm-2 s3) |
---|
129 | REAL(wp) :: a_3 = -1.40E-2_wp !< coef. in turb. parametrization |
---|
130 | REAL(wp) :: a_term = 9.65_wp !< coef. for terminal velocity (m s-1) |
---|
131 | REAL(wp) :: a_vent = 0.78_wp !< coef. for ventilation effect |
---|
132 | REAL(wp) :: b_1 = 11.45E-6_wp !< coef. in turb. parametrization (m) |
---|
133 | REAL(wp) :: b_2 = 9.68E-6_wp !< coef. in turb. parametrization (m) |
---|
134 | REAL(wp) :: b_3 = 0.62_wp !< coef. in turb. parametrization |
---|
135 | REAL(wp) :: b_term = 9.8_wp !< coef. for terminal velocity (m s-1) |
---|
136 | REAL(wp) :: b_vent = 0.308_wp !< coef. for ventilation effect |
---|
137 | REAL(wp) :: beta_cc = 3.09E-4_wp !< coef. in turb. parametrization (cm-2 s3) |
---|
138 | REAL(wp) :: c_1 = 4.82E-6_wp !< coef. in turb. parametrization (m) |
---|
139 | REAL(wp) :: c_2 = 4.8E-6_wp !< coef. in turb. parametrization (m) |
---|
140 | REAL(wp) :: c_3 = 0.76_wp !< coef. in turb. parametrization |
---|
141 | REAL(wp) :: c_const = 0.93_wp !< const. in Taylor-microscale Reynolds number |
---|
142 | REAL(wp) :: c_evap = 0.7_wp !< constant in evaporation |
---|
143 | REAL(wp) :: c_term = 600.0_wp !< coef. for terminal velocity (m-1) |
---|
144 | REAL(wp) :: diff_coeff_l = 0.23E-4_wp !< diffusivity of water vapor (m2 s-1) |
---|
145 | REAL(wp) :: eps_sb = 1.0E-10_wp !< threshold in two-moments scheme |
---|
146 | REAL(wp) :: k_cc = 9.44E09_wp !< const. cloud-cloud kernel (m3 kg-2 s-1) |
---|
147 | REAL(wp) :: k_cr0 = 4.33_wp !< const. cloud-rain kernel (m3 kg-1 s-1) |
---|
148 | REAL(wp) :: k_rr = 7.12_wp !< const. rain-rain kernel (m3 kg-1 s-1) |
---|
149 | REAL(wp) :: k_br = 1000.0_wp !< const. in breakup parametrization (m-1) |
---|
150 | REAL(wp) :: k_st = 1.2E8_wp !< const. in drizzle parametrization (m-1 s-1) |
---|
151 | REAL(wp) :: kappa_rr = 60.7_wp !< const. in collision kernel (kg-1/3) |
---|
152 | REAL(wp) :: kin_vis_air = 1.4086E-5_wp !< kin. viscosity of air (m2 s-1) |
---|
153 | REAL(wp) :: prec_time_const = 0.001_wp !< coef. in Kessler scheme (s-1) |
---|
154 | REAL(wp) :: ql_crit = 0.0005_wp !< coef. in Kessler scheme (kg kg-1) |
---|
155 | REAL(wp) :: schmidt_p_1d3=0.8921121_wp !< Schmidt number**0.33333, 0.71**0.33333 |
---|
156 | REAL(wp) :: sigma_gc = 1.3_wp !< geometric standard deviation cloud droplets |
---|
157 | REAL(wp) :: thermal_conductivity_l = 2.43E-2_wp !< therm. cond. air (J m-1 s-1 K-1) |
---|
158 | REAL(wp) :: w_precipitation = 9.65_wp !< maximum terminal velocity (m s-1) |
---|
159 | REAL(wp) :: x0 = 2.6E-10_wp !< separating drop mass (kg) |
---|
160 | REAL(wp) :: xrmin = 2.6E-10_wp !< minimum rain drop size (kg) |
---|
161 | REAL(wp) :: xrmax = 5.0E-6_wp !< maximum rain drop site (kg) |
---|
162 | |
---|
163 | REAL(wp) :: c_sedimentation = 2.0_wp !< Courant number of sedimentation process |
---|
164 | REAL(wp) :: dpirho_l !< 6.0 / ( pi * rho_l ) |
---|
165 | REAL(wp) :: dt_micro !< microphysics time step |
---|
166 | REAL(wp) :: nc_const = 70.0E6_wp !< cloud droplet concentration |
---|
167 | REAL(wp) :: dt_precipitation = 100.0_wp !< timestep precipitation (s) |
---|
168 | REAL(wp) :: sed_qc_const !< const. for sedimentation of cloud water |
---|
169 | REAL(wp) :: pirho_l !< pi * rho_l / 6.0; |
---|
170 | |
---|
171 | REAL(wp), DIMENSION(:), ALLOCATABLE :: nc_1d !< |
---|
172 | REAL(wp), DIMENSION(:), ALLOCATABLE :: nr_1d !< |
---|
173 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pt_1d !< |
---|
174 | REAL(wp), DIMENSION(:), ALLOCATABLE :: qc_1d !< |
---|
175 | REAL(wp), DIMENSION(:), ALLOCATABLE :: qr_1d !< |
---|
176 | REAL(wp), DIMENSION(:), ALLOCATABLE :: q_1d !< |
---|
177 | |
---|
178 | SAVE |
---|
179 | |
---|
180 | PRIVATE |
---|
181 | PUBLIC microphysics_control, microphysics_init |
---|
182 | |
---|
183 | PUBLIC cloud_water_sedimentation, collision_turbulence, c_sedimentation, & |
---|
184 | dt_precipitation, limiter_sedimentation, nc_const, sigma_gc, & |
---|
185 | ventilation_effect |
---|
186 | |
---|
187 | INTERFACE microphysics_control |
---|
188 | MODULE PROCEDURE microphysics_control |
---|
189 | MODULE PROCEDURE microphysics_control_ij |
---|
190 | END INTERFACE microphysics_control |
---|
191 | |
---|
192 | INTERFACE adjust_cloud |
---|
193 | MODULE PROCEDURE adjust_cloud |
---|
194 | MODULE PROCEDURE adjust_cloud_ij |
---|
195 | END INTERFACE adjust_cloud |
---|
196 | |
---|
197 | INTERFACE autoconversion |
---|
198 | MODULE PROCEDURE autoconversion |
---|
199 | MODULE PROCEDURE autoconversion_ij |
---|
200 | END INTERFACE autoconversion |
---|
201 | |
---|
202 | INTERFACE autoconversion_kessler |
---|
203 | MODULE PROCEDURE autoconversion_kessler |
---|
204 | MODULE PROCEDURE autoconversion_kessler_ij |
---|
205 | END INTERFACE autoconversion_kessler |
---|
206 | |
---|
207 | INTERFACE accretion |
---|
208 | MODULE PROCEDURE accretion |
---|
209 | MODULE PROCEDURE accretion_ij |
---|
210 | END INTERFACE accretion |
---|
211 | |
---|
212 | INTERFACE selfcollection_breakup |
---|
213 | MODULE PROCEDURE selfcollection_breakup |
---|
214 | MODULE PROCEDURE selfcollection_breakup_ij |
---|
215 | END INTERFACE selfcollection_breakup |
---|
216 | |
---|
217 | INTERFACE evaporation_rain |
---|
218 | MODULE PROCEDURE evaporation_rain |
---|
219 | MODULE PROCEDURE evaporation_rain_ij |
---|
220 | END INTERFACE evaporation_rain |
---|
221 | |
---|
222 | INTERFACE sedimentation_cloud |
---|
223 | MODULE PROCEDURE sedimentation_cloud |
---|
224 | MODULE PROCEDURE sedimentation_cloud_ij |
---|
225 | END INTERFACE sedimentation_cloud |
---|
226 | |
---|
227 | INTERFACE sedimentation_rain |
---|
228 | MODULE PROCEDURE sedimentation_rain |
---|
229 | MODULE PROCEDURE sedimentation_rain_ij |
---|
230 | END INTERFACE sedimentation_rain |
---|
231 | |
---|
232 | INTERFACE calc_precipitation_amount |
---|
233 | MODULE PROCEDURE calc_precipitation_amount |
---|
234 | MODULE PROCEDURE calc_precipitation_amount_ij |
---|
235 | END INTERFACE calc_precipitation_amount |
---|
236 | |
---|
237 | CONTAINS |
---|
238 | !------------------------------------------------------------------------------! |
---|
239 | ! Description: |
---|
240 | ! ------------ |
---|
241 | !> Initialization of bulk microphysics |
---|
242 | !------------------------------------------------------------------------------! |
---|
243 | SUBROUTINE microphysics_init |
---|
244 | |
---|
245 | USE arrays_3d, & |
---|
246 | ONLY: dzu |
---|
247 | |
---|
248 | USE constants, & |
---|
249 | ONLY: pi |
---|
250 | |
---|
251 | USE cloud_parameters, & |
---|
252 | ONLY: rho_l |
---|
253 | |
---|
254 | USE control_parameters, & |
---|
255 | ONLY: microphysics_seifert |
---|
256 | |
---|
257 | USE indices, & |
---|
258 | ONLY: nzb, nzt |
---|
259 | |
---|
260 | IMPLICIT NONE |
---|
261 | |
---|
262 | ! |
---|
263 | !-- constant for the sedimentation of cloud water (2-moment cloud physics) |
---|
264 | sed_qc_const = k_st * ( 3.0_wp / ( 4.0_wp * pi * rho_l ) & |
---|
265 | )**( 2.0_wp / 3.0_wp ) * & |
---|
266 | EXP( 5.0_wp * LOG( sigma_gc )**2 ) |
---|
267 | |
---|
268 | ! |
---|
269 | !-- Calculate timestep according to precipitation |
---|
270 | IF ( microphysics_seifert ) THEN |
---|
271 | dt_precipitation = c_sedimentation * MINVAL( dzu(nzb+2:nzt) ) / & |
---|
272 | w_precipitation |
---|
273 | ENDIF |
---|
274 | |
---|
275 | ! |
---|
276 | !-- Pre-calculate frequently calculated fractions of pi and rho_l |
---|
277 | pirho_l = pi * rho_l / 6.0_wp |
---|
278 | dpirho_l = 1.0_wp / pirho_l |
---|
279 | |
---|
280 | ! |
---|
281 | !-- Allocate 1D microphysics arrays |
---|
282 | ALLOCATE ( nc_1d(nzb:nzt+1), pt_1d(nzb:nzt+1), q_1d(nzb:nzt+1), & |
---|
283 | qc_1d(nzb:nzt+1) ) |
---|
284 | |
---|
285 | IF ( microphysics_seifert ) THEN |
---|
286 | ALLOCATE ( nr_1d(nzb:nzt+1), qr_1d(nzb:nzt+1) ) |
---|
287 | ENDIF |
---|
288 | |
---|
289 | ! |
---|
290 | !-- Initialze nc_1d with nc_const |
---|
291 | nc_1d = nc_const |
---|
292 | |
---|
293 | END SUBROUTINE microphysics_init |
---|
294 | |
---|
295 | |
---|
296 | !------------------------------------------------------------------------------! |
---|
297 | ! Description: |
---|
298 | ! ------------ |
---|
299 | !> Control of microphysics for all grid points |
---|
300 | !------------------------------------------------------------------------------! |
---|
301 | SUBROUTINE microphysics_control |
---|
302 | |
---|
303 | USE arrays_3d, & |
---|
304 | ONLY: hyp, pt_init, prr, zu |
---|
305 | |
---|
306 | USE cloud_parameters, & |
---|
307 | ONLY: cp, hyrho, pt_d_t, r_d, t_d_pt |
---|
308 | |
---|
309 | USE control_parameters, & |
---|
310 | ONLY: call_microphysics_at_all_substeps, dt_3d, g, & |
---|
311 | intermediate_timestep_count, large_scale_forcing, & |
---|
312 | lsf_surf, microphysics_kessler, microphysics_seifert, & |
---|
313 | pt_surface, rho_surface,surface_pressure |
---|
314 | |
---|
315 | USE indices, & |
---|
316 | ONLY: nzb, nzt |
---|
317 | |
---|
318 | USE kinds |
---|
319 | |
---|
320 | USE statistics, & |
---|
321 | ONLY: weight_pres |
---|
322 | |
---|
323 | IMPLICIT NONE |
---|
324 | |
---|
325 | INTEGER(iwp) :: k !< |
---|
326 | |
---|
327 | REAL(wp) :: t_surface !< |
---|
328 | |
---|
329 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
330 | ! |
---|
331 | !-- Calculate: |
---|
332 | !-- pt / t : ratio of potential and actual temperature (pt_d_t) |
---|
333 | !-- t / pt : ratio of actual and potential temperature (t_d_pt) |
---|
334 | !-- p_0(z) : vertical profile of the hydrostatic pressure (hyp) |
---|
335 | t_surface = pt_surface * ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
336 | DO k = nzb, nzt+1 |
---|
337 | hyp(k) = surface_pressure * 100.0_wp * & |
---|
338 | ( ( t_surface - g / cp * zu(k) ) / & |
---|
339 | t_surface )**(1.0_wp / 0.286_wp) |
---|
340 | pt_d_t(k) = ( 100000.0_wp / hyp(k) )**0.286_wp |
---|
341 | t_d_pt(k) = 1.0_wp / pt_d_t(k) |
---|
342 | hyrho(k) = hyp(k) / ( r_d * t_d_pt(k) * pt_init(k) ) |
---|
343 | ENDDO |
---|
344 | |
---|
345 | ! |
---|
346 | !-- Compute reference density |
---|
347 | rho_surface = surface_pressure * 100.0_wp / ( r_d * t_surface ) |
---|
348 | ENDIF |
---|
349 | |
---|
350 | ! |
---|
351 | !-- Compute length of time step |
---|
352 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
353 | dt_micro = dt_3d * weight_pres(intermediate_timestep_count) |
---|
354 | ELSE |
---|
355 | dt_micro = dt_3d |
---|
356 | ENDIF |
---|
357 | |
---|
358 | ! |
---|
359 | !-- Reset precipitation rate |
---|
360 | IF ( intermediate_timestep_count == 1 ) prr = 0.0_wp |
---|
361 | |
---|
362 | ! |
---|
363 | !-- Compute cloud physics |
---|
364 | IF ( microphysics_kessler ) THEN |
---|
365 | |
---|
366 | CALL autoconversion_kessler |
---|
367 | IF ( cloud_water_sedimentation ) CALL sedimentation_cloud |
---|
368 | |
---|
369 | ELSEIF ( microphysics_seifert ) THEN |
---|
370 | |
---|
371 | CALL adjust_cloud |
---|
372 | CALL autoconversion |
---|
373 | CALL accretion |
---|
374 | CALL selfcollection_breakup |
---|
375 | CALL evaporation_rain |
---|
376 | CALL sedimentation_rain |
---|
377 | IF ( cloud_water_sedimentation ) CALL sedimentation_cloud |
---|
378 | |
---|
379 | ENDIF |
---|
380 | |
---|
381 | CALL calc_precipitation_amount |
---|
382 | |
---|
383 | END SUBROUTINE microphysics_control |
---|
384 | |
---|
385 | !------------------------------------------------------------------------------! |
---|
386 | ! Description: |
---|
387 | ! ------------ |
---|
388 | !> Adjust number of raindrops to avoid nonlinear effects in sedimentation and |
---|
389 | !> evaporation of rain drops due to too small or too big weights |
---|
390 | !> of rain drops (Stevens and Seifert, 2008). |
---|
391 | !------------------------------------------------------------------------------! |
---|
392 | SUBROUTINE adjust_cloud |
---|
393 | |
---|
394 | USE arrays_3d, & |
---|
395 | ONLY: qr, nr |
---|
396 | |
---|
397 | USE cloud_parameters, & |
---|
398 | ONLY: hyrho |
---|
399 | |
---|
400 | USE cpulog, & |
---|
401 | ONLY: cpu_log, log_point_s |
---|
402 | |
---|
403 | USE indices, & |
---|
404 | ONLY: nxlg, nxrg, nysg, nyng, nzb_s_inner, nzt |
---|
405 | |
---|
406 | USE kinds |
---|
407 | |
---|
408 | IMPLICIT NONE |
---|
409 | |
---|
410 | INTEGER(iwp) :: i !< |
---|
411 | INTEGER(iwp) :: j !< |
---|
412 | INTEGER(iwp) :: k !< |
---|
413 | |
---|
414 | CALL cpu_log( log_point_s(54), 'adjust_cloud', 'start' ) |
---|
415 | |
---|
416 | DO i = nxlg, nxrg |
---|
417 | DO j = nysg, nyng |
---|
418 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
419 | IF ( qr(k,j,i) <= eps_sb ) THEN |
---|
420 | qr(k,j,i) = 0.0_wp |
---|
421 | nr(k,j,i) = 0.0_wp |
---|
422 | ELSE |
---|
423 | IF ( nr(k,j,i) * xrmin > qr(k,j,i) * hyrho(k) ) THEN |
---|
424 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmin |
---|
425 | ELSEIF ( nr(k,j,i) * xrmax < qr(k,j,i) * hyrho(k) ) THEN |
---|
426 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmax |
---|
427 | ENDIF |
---|
428 | ENDIF |
---|
429 | ENDDO |
---|
430 | ENDDO |
---|
431 | ENDDO |
---|
432 | |
---|
433 | CALL cpu_log( log_point_s(54), 'adjust_cloud', 'stop' ) |
---|
434 | |
---|
435 | END SUBROUTINE adjust_cloud |
---|
436 | |
---|
437 | |
---|
438 | !------------------------------------------------------------------------------! |
---|
439 | ! Description: |
---|
440 | ! ------------ |
---|
441 | !> Autoconversion rate (Seifert and Beheng, 2006). |
---|
442 | !------------------------------------------------------------------------------! |
---|
443 | SUBROUTINE autoconversion |
---|
444 | |
---|
445 | USE arrays_3d, & |
---|
446 | ONLY: diss, dzu, nr, qc, qr |
---|
447 | |
---|
448 | USE cloud_parameters, & |
---|
449 | ONLY: hyrho |
---|
450 | |
---|
451 | USE control_parameters, & |
---|
452 | ONLY: rho_surface |
---|
453 | |
---|
454 | USE cpulog, & |
---|
455 | ONLY: cpu_log, log_point_s |
---|
456 | |
---|
457 | USE grid_variables, & |
---|
458 | ONLY: dx, dy |
---|
459 | |
---|
460 | USE indices, & |
---|
461 | ONLY: nxlg, nxrg, nysg, nyng, nzb_s_inner, nzt |
---|
462 | |
---|
463 | USE kinds |
---|
464 | |
---|
465 | IMPLICIT NONE |
---|
466 | |
---|
467 | INTEGER(iwp) :: i !< |
---|
468 | INTEGER(iwp) :: j !< |
---|
469 | INTEGER(iwp) :: k !< |
---|
470 | |
---|
471 | REAL(wp) :: alpha_cc !< |
---|
472 | REAL(wp) :: autocon !< |
---|
473 | REAL(wp) :: dissipation !< |
---|
474 | REAL(wp) :: k_au !< |
---|
475 | REAL(wp) :: l_mix !< |
---|
476 | REAL(wp) :: nu_c !< |
---|
477 | REAL(wp) :: phi_au !< |
---|
478 | REAL(wp) :: r_cc !< |
---|
479 | REAL(wp) :: rc !< |
---|
480 | REAL(wp) :: re_lambda !< |
---|
481 | REAL(wp) :: sigma_cc !< |
---|
482 | REAL(wp) :: tau_cloud !< |
---|
483 | REAL(wp) :: xc !< |
---|
484 | |
---|
485 | CALL cpu_log( log_point_s(55), 'autoconversion', 'start' ) |
---|
486 | |
---|
487 | DO i = nxlg, nxrg |
---|
488 | DO j = nysg, nyng |
---|
489 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
490 | |
---|
491 | IF ( qc(k,j,i) > eps_sb ) THEN |
---|
492 | |
---|
493 | k_au = k_cc / ( 20.0_wp * x0 ) |
---|
494 | ! |
---|
495 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
496 | !-- (1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr(k,j,i) )) |
---|
497 | tau_cloud = 1.0_wp - qc(k,j,i) / ( qr(k,j,i) + qc(k,j,i) ) |
---|
498 | ! |
---|
499 | !-- Universal function for autoconversion process |
---|
500 | !-- (Seifert and Beheng, 2006): |
---|
501 | phi_au = 600.0_wp * tau_cloud**0.68_wp * & |
---|
502 | ( 1.0_wp - tau_cloud**0.68_wp )**3 |
---|
503 | ! |
---|
504 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
505 | !-- (Use constant nu_c = 1.0_wp instead?) |
---|
506 | nu_c = 1.0_wp !MAX( 0.0_wp, 1580.0_wp * hyrho(k) * qc(k,j,i) - 0.28_wp ) |
---|
507 | ! |
---|
508 | !-- Mean weight of cloud droplets: |
---|
509 | xc = hyrho(k) * qc(k,j,i) / nc_const |
---|
510 | ! |
---|
511 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
512 | !-- Nuijens and Stevens, 2010) |
---|
513 | IF ( collision_turbulence ) THEN |
---|
514 | ! |
---|
515 | !-- Weight averaged radius of cloud droplets: |
---|
516 | rc = 0.5_wp * ( xc * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
517 | |
---|
518 | alpha_cc = ( a_1 + a_2 * nu_c ) / ( 1.0_wp + a_3 * nu_c ) |
---|
519 | r_cc = ( b_1 + b_2 * nu_c ) / ( 1.0_wp + b_3 * nu_c ) |
---|
520 | sigma_cc = ( c_1 + c_2 * nu_c ) / ( 1.0_wp + c_3 * nu_c ) |
---|
521 | ! |
---|
522 | !-- Mixing length (neglecting distance to ground and |
---|
523 | !-- stratification) |
---|
524 | l_mix = ( dx * dy * dzu(k) )**( 1.0_wp / 3.0_wp ) |
---|
525 | ! |
---|
526 | !-- Limit dissipation rate according to Seifert, Nuijens and |
---|
527 | !-- Stevens (2010) |
---|
528 | dissipation = MIN( 0.06_wp, diss(k,j,i) ) |
---|
529 | ! |
---|
530 | !-- Compute Taylor-microscale Reynolds number: |
---|
531 | re_lambda = 6.0_wp / 11.0_wp * & |
---|
532 | ( l_mix / c_const )**( 2.0_wp / 3.0_wp ) * & |
---|
533 | SQRT( 15.0_wp / kin_vis_air ) * & |
---|
534 | dissipation**( 1.0_wp / 6.0_wp ) |
---|
535 | ! |
---|
536 | !-- The factor of 1.0E4 is needed to convert the dissipation |
---|
537 | !-- rate from m2 s-3 to cm2 s-3. |
---|
538 | k_au = k_au * ( 1.0_wp + & |
---|
539 | dissipation * 1.0E4_wp * & |
---|
540 | ( re_lambda * 1.0E-3_wp )**0.25_wp * & |
---|
541 | ( alpha_cc * EXP( -1.0_wp * ( ( rc - & |
---|
542 | r_cc ) / & |
---|
543 | sigma_cc )**2 & |
---|
544 | ) + beta_cc & |
---|
545 | ) & |
---|
546 | ) |
---|
547 | ENDIF |
---|
548 | ! |
---|
549 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
550 | autocon = k_au * ( nu_c + 2.0_wp ) * ( nu_c + 4.0_wp ) / & |
---|
551 | ( nu_c + 1.0_wp )**2 * qc(k,j,i)**2 * xc**2 * & |
---|
552 | ( 1.0_wp + phi_au / ( 1.0_wp - tau_cloud )**2 ) * & |
---|
553 | rho_surface |
---|
554 | autocon = MIN( autocon, qc(k,j,i) / dt_micro ) |
---|
555 | |
---|
556 | qr(k,j,i) = qr(k,j,i) + autocon * dt_micro |
---|
557 | qc(k,j,i) = qc(k,j,i) - autocon * dt_micro |
---|
558 | nr(k,j,i) = nr(k,j,i) + autocon / x0 * hyrho(k) * dt_micro |
---|
559 | |
---|
560 | ENDIF |
---|
561 | |
---|
562 | ENDDO |
---|
563 | ENDDO |
---|
564 | ENDDO |
---|
565 | |
---|
566 | CALL cpu_log( log_point_s(55), 'autoconversion', 'stop' ) |
---|
567 | |
---|
568 | END SUBROUTINE autoconversion |
---|
569 | |
---|
570 | |
---|
571 | !------------------------------------------------------------------------------! |
---|
572 | ! Description: |
---|
573 | ! ------------ |
---|
574 | !> Autoconversion process (Kessler, 1969). |
---|
575 | !------------------------------------------------------------------------------! |
---|
576 | SUBROUTINE autoconversion_kessler |
---|
577 | |
---|
578 | USE arrays_3d, & |
---|
579 | ONLY: dzw, pt, prr, q, qc |
---|
580 | |
---|
581 | USE cloud_parameters, & |
---|
582 | ONLY: l_d_cp, pt_d_t |
---|
583 | |
---|
584 | USE indices, & |
---|
585 | ONLY: nxlg, nxrg, nyng, nysg, nzb_s_inner, nzt |
---|
586 | |
---|
587 | USE kinds |
---|
588 | |
---|
589 | |
---|
590 | IMPLICIT NONE |
---|
591 | |
---|
592 | INTEGER(iwp) :: i !< |
---|
593 | INTEGER(iwp) :: j !< |
---|
594 | INTEGER(iwp) :: k !< |
---|
595 | |
---|
596 | REAL(wp) :: dqdt_precip !< |
---|
597 | |
---|
598 | DO i = nxlg, nxrg |
---|
599 | DO j = nysg, nyng |
---|
600 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
601 | |
---|
602 | IF ( qc(k,j,i) > ql_crit ) THEN |
---|
603 | dqdt_precip = prec_time_const * ( qc(k,j,i) - ql_crit ) |
---|
604 | ELSE |
---|
605 | dqdt_precip = 0.0_wp |
---|
606 | ENDIF |
---|
607 | |
---|
608 | qc(k,j,i) = qc(k,j,i) - dqdt_precip * dt_micro |
---|
609 | q(k,j,i) = q(k,j,i) - dqdt_precip * dt_micro |
---|
610 | pt(k,j,i) = pt(k,j,i) + dqdt_precip * dt_micro * l_d_cp * & |
---|
611 | pt_d_t(k) |
---|
612 | |
---|
613 | ! |
---|
614 | !-- Compute the rain rate (stored on surface grid point) |
---|
615 | prr(nzb_s_inner(j,i),j,i) = prr(nzb_s_inner(j,i),j,i) + & |
---|
616 | dqdt_precip * dzw(k) |
---|
617 | |
---|
618 | ENDDO |
---|
619 | ENDDO |
---|
620 | ENDDO |
---|
621 | |
---|
622 | END SUBROUTINE autoconversion_kessler |
---|
623 | |
---|
624 | |
---|
625 | !------------------------------------------------------------------------------! |
---|
626 | ! Description: |
---|
627 | ! ------------ |
---|
628 | !> Accretion rate (Seifert and Beheng, 2006). |
---|
629 | !------------------------------------------------------------------------------! |
---|
630 | SUBROUTINE accretion |
---|
631 | |
---|
632 | USE arrays_3d, & |
---|
633 | ONLY: diss, qc, qr |
---|
634 | |
---|
635 | USE cloud_parameters, & |
---|
636 | ONLY: hyrho |
---|
637 | |
---|
638 | USE control_parameters, & |
---|
639 | ONLY: rho_surface |
---|
640 | |
---|
641 | USE cpulog, & |
---|
642 | ONLY: cpu_log, log_point_s |
---|
643 | |
---|
644 | USE indices, & |
---|
645 | ONLY: nxlg, nxrg, nysg, nyng, nzb_s_inner, nzt |
---|
646 | |
---|
647 | USE kinds |
---|
648 | |
---|
649 | IMPLICIT NONE |
---|
650 | |
---|
651 | INTEGER(iwp) :: i !< |
---|
652 | INTEGER(iwp) :: j !< |
---|
653 | INTEGER(iwp) :: k !< |
---|
654 | |
---|
655 | REAL(wp) :: accr !< |
---|
656 | REAL(wp) :: k_cr !< |
---|
657 | REAL(wp) :: phi_ac !< |
---|
658 | REAL(wp) :: tau_cloud !< |
---|
659 | |
---|
660 | CALL cpu_log( log_point_s(56), 'accretion', 'start' ) |
---|
661 | |
---|
662 | DO i = nxlg, nxrg |
---|
663 | DO j = nysg, nyng |
---|
664 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
665 | |
---|
666 | IF ( ( qc(k,j,i) > eps_sb ) .AND. ( qr(k,j,i) > eps_sb ) ) THEN |
---|
667 | ! |
---|
668 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
669 | tau_cloud = 1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr(k,j,i) ) |
---|
670 | ! |
---|
671 | !-- Universal function for accretion process (Seifert and |
---|
672 | !-- Beheng, 2001): |
---|
673 | phi_ac = ( tau_cloud / ( tau_cloud + 5.0E-5_wp ) )**4 |
---|
674 | ! |
---|
675 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
676 | !-- Nuijens and Stevens, 2010). The factor of 1.0E4 is needed to |
---|
677 | !-- convert the dissipation rate (diss) from m2 s-3 to cm2 s-3. |
---|
678 | IF ( collision_turbulence ) THEN |
---|
679 | k_cr = k_cr0 * ( 1.0_wp + 0.05_wp * & |
---|
680 | MIN( 600.0_wp, & |
---|
681 | diss(k,j,i) * 1.0E4_wp )**0.25_wp & |
---|
682 | ) |
---|
683 | ELSE |
---|
684 | k_cr = k_cr0 |
---|
685 | ENDIF |
---|
686 | ! |
---|
687 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
688 | accr = k_cr * qc(k,j,i) * qr(k,j,i) * phi_ac * & |
---|
689 | SQRT( rho_surface * hyrho(k) ) |
---|
690 | accr = MIN( accr, qc(k,j,i) / dt_micro ) |
---|
691 | |
---|
692 | qr(k,j,i) = qr(k,j,i) + accr * dt_micro |
---|
693 | qc(k,j,i) = qc(k,j,i) - accr * dt_micro |
---|
694 | |
---|
695 | ENDIF |
---|
696 | |
---|
697 | ENDDO |
---|
698 | ENDDO |
---|
699 | ENDDO |
---|
700 | |
---|
701 | CALL cpu_log( log_point_s(56), 'accretion', 'stop' ) |
---|
702 | |
---|
703 | END SUBROUTINE accretion |
---|
704 | |
---|
705 | |
---|
706 | !------------------------------------------------------------------------------! |
---|
707 | ! Description: |
---|
708 | ! ------------ |
---|
709 | !> Collisional breakup rate (Seifert, 2008). |
---|
710 | !------------------------------------------------------------------------------! |
---|
711 | SUBROUTINE selfcollection_breakup |
---|
712 | |
---|
713 | USE arrays_3d, & |
---|
714 | ONLY: nr, qr |
---|
715 | |
---|
716 | USE cloud_parameters, & |
---|
717 | ONLY: hyrho |
---|
718 | |
---|
719 | USE control_parameters, & |
---|
720 | ONLY: rho_surface |
---|
721 | |
---|
722 | USE cpulog, & |
---|
723 | ONLY: cpu_log, log_point_s |
---|
724 | |
---|
725 | USE indices, & |
---|
726 | ONLY: nxlg, nxrg, nysg, nyng, nzb_s_inner, nzt |
---|
727 | |
---|
728 | USE kinds |
---|
729 | |
---|
730 | IMPLICIT NONE |
---|
731 | |
---|
732 | INTEGER(iwp) :: i !< |
---|
733 | INTEGER(iwp) :: j !< |
---|
734 | INTEGER(iwp) :: k !< |
---|
735 | |
---|
736 | REAL(wp) :: breakup !< |
---|
737 | REAL(wp) :: dr !< |
---|
738 | REAL(wp) :: phi_br !< |
---|
739 | REAL(wp) :: selfcoll !< |
---|
740 | |
---|
741 | CALL cpu_log( log_point_s(57), 'selfcollection', 'start' ) |
---|
742 | |
---|
743 | DO i = nxlg, nxrg |
---|
744 | DO j = nysg, nyng |
---|
745 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
746 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
747 | ! |
---|
748 | !-- Selfcollection rate (Seifert and Beheng, 2001): |
---|
749 | selfcoll = k_rr * nr(k,j,i) * qr(k,j,i) * & |
---|
750 | SQRT( hyrho(k) * rho_surface ) |
---|
751 | ! |
---|
752 | !-- Weight averaged diameter of rain drops: |
---|
753 | dr = ( hyrho(k) * qr(k,j,i) / & |
---|
754 | nr(k,j,i) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
755 | ! |
---|
756 | !-- Collisional breakup rate (Seifert, 2008): |
---|
757 | IF ( dr >= 0.3E-3_wp ) THEN |
---|
758 | phi_br = k_br * ( dr - 1.1E-3_wp ) |
---|
759 | breakup = selfcoll * ( phi_br + 1.0_wp ) |
---|
760 | ELSE |
---|
761 | breakup = 0.0_wp |
---|
762 | ENDIF |
---|
763 | |
---|
764 | selfcoll = MAX( breakup - selfcoll, -nr(k,j,i) / dt_micro ) |
---|
765 | nr(k,j,i) = nr(k,j,i) + selfcoll * dt_micro |
---|
766 | |
---|
767 | ENDIF |
---|
768 | ENDDO |
---|
769 | ENDDO |
---|
770 | ENDDO |
---|
771 | |
---|
772 | CALL cpu_log( log_point_s(57), 'selfcollection', 'stop' ) |
---|
773 | |
---|
774 | END SUBROUTINE selfcollection_breakup |
---|
775 | |
---|
776 | |
---|
777 | !------------------------------------------------------------------------------! |
---|
778 | ! Description: |
---|
779 | ! ------------ |
---|
780 | !> Evaporation of precipitable water. Condensation is neglected for |
---|
781 | !> precipitable water. |
---|
782 | !------------------------------------------------------------------------------! |
---|
783 | SUBROUTINE evaporation_rain |
---|
784 | |
---|
785 | USE arrays_3d, & |
---|
786 | ONLY: hyp, nr, pt, q, qc, qr |
---|
787 | |
---|
788 | USE cloud_parameters, & |
---|
789 | ONLY: hyrho, l_d_cp, l_d_r, l_v, r_v, t_d_pt |
---|
790 | |
---|
791 | USE constants, & |
---|
792 | ONLY: pi |
---|
793 | |
---|
794 | USE cpulog, & |
---|
795 | ONLY: cpu_log, log_point_s |
---|
796 | |
---|
797 | USE indices, & |
---|
798 | ONLY: nxlg, nxrg, nysg, nyng, nzb_s_inner, nzt |
---|
799 | |
---|
800 | USE kinds |
---|
801 | |
---|
802 | IMPLICIT NONE |
---|
803 | |
---|
804 | INTEGER(iwp) :: i !< |
---|
805 | INTEGER(iwp) :: j !< |
---|
806 | INTEGER(iwp) :: k !< |
---|
807 | |
---|
808 | REAL(wp) :: alpha !< |
---|
809 | REAL(wp) :: dr !< |
---|
810 | REAL(wp) :: e_s !< |
---|
811 | REAL(wp) :: evap !< |
---|
812 | REAL(wp) :: evap_nr !< |
---|
813 | REAL(wp) :: f_vent !< |
---|
814 | REAL(wp) :: g_evap !< |
---|
815 | REAL(wp) :: lambda_r !< |
---|
816 | REAL(wp) :: mu_r !< |
---|
817 | REAL(wp) :: mu_r_2 !< |
---|
818 | REAL(wp) :: mu_r_5d2 !< |
---|
819 | REAL(wp) :: nr_0 !< |
---|
820 | REAL(wp) :: q_s !< |
---|
821 | REAL(wp) :: sat !< |
---|
822 | REAL(wp) :: t_l !< |
---|
823 | REAL(wp) :: temp !< |
---|
824 | REAL(wp) :: xr !< |
---|
825 | |
---|
826 | CALL cpu_log( log_point_s(58), 'evaporation', 'start' ) |
---|
827 | |
---|
828 | DO i = nxlg, nxrg |
---|
829 | DO j = nysg, nyng |
---|
830 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
831 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
832 | ! |
---|
833 | !-- Actual liquid water temperature: |
---|
834 | t_l = t_d_pt(k) * pt(k,j,i) |
---|
835 | ! |
---|
836 | !-- Saturation vapor pressure at t_l: |
---|
837 | e_s = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
838 | ( t_l - 35.86_wp ) & |
---|
839 | ) |
---|
840 | ! |
---|
841 | !-- Computation of saturation humidity: |
---|
842 | q_s = 0.622_wp * e_s / ( hyp(k) - 0.378_wp * e_s ) |
---|
843 | alpha = 0.622_wp * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
844 | q_s = q_s * ( 1.0_wp + alpha * q(k,j,i) ) / & |
---|
845 | ( 1.0_wp + alpha * q_s ) |
---|
846 | ! |
---|
847 | !-- Supersaturation: |
---|
848 | sat = ( q(k,j,i) - qr(k,j,i) - qc(k,j,i) ) / q_s - 1.0_wp |
---|
849 | ! |
---|
850 | !-- Evaporation needs only to be calculated in subsaturated regions |
---|
851 | IF ( sat < 0.0_wp ) THEN |
---|
852 | ! |
---|
853 | !-- Actual temperature: |
---|
854 | temp = t_l + l_d_cp * ( qc(k,j,i) + qr(k,j,i) ) |
---|
855 | |
---|
856 | g_evap = 1.0_wp / ( ( l_v / ( r_v * temp ) - 1.0_wp ) * & |
---|
857 | l_v / ( thermal_conductivity_l * temp ) & |
---|
858 | + r_v * temp / ( diff_coeff_l * e_s ) & |
---|
859 | ) |
---|
860 | ! |
---|
861 | !-- Mean weight of rain drops |
---|
862 | xr = hyrho(k) * qr(k,j,i) / nr(k,j,i) |
---|
863 | ! |
---|
864 | !-- Weight averaged diameter of rain drops: |
---|
865 | dr = ( xr * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
866 | ! |
---|
867 | !-- Compute ventilation factor and intercept parameter |
---|
868 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
869 | IF ( ventilation_effect ) THEN |
---|
870 | ! |
---|
871 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, |
---|
872 | !-- 2005; Stevens and Seifert, 2008): |
---|
873 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * & |
---|
874 | ( dr - 1.4E-3_wp ) ) ) |
---|
875 | ! |
---|
876 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
877 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
878 | ( mu_r + 1.0_wp ) & |
---|
879 | )**( 1.0_wp / 3.0_wp ) / dr |
---|
880 | |
---|
881 | mu_r_2 = mu_r + 2.0_wp |
---|
882 | mu_r_5d2 = mu_r + 2.5_wp |
---|
883 | |
---|
884 | f_vent = a_vent * gamm( mu_r_2 ) * & |
---|
885 | lambda_r**( -mu_r_2 ) + b_vent * & |
---|
886 | schmidt_p_1d3 * SQRT( a_term / kin_vis_air ) *& |
---|
887 | gamm( mu_r_5d2 ) * lambda_r**( -mu_r_5d2 ) * & |
---|
888 | ( 1.0_wp - & |
---|
889 | 0.5_wp * ( b_term / a_term ) * & |
---|
890 | ( lambda_r / ( c_term + lambda_r ) & |
---|
891 | )**mu_r_5d2 - & |
---|
892 | 0.125_wp * ( b_term / a_term )**2 * & |
---|
893 | ( lambda_r / ( 2.0_wp * c_term + lambda_r ) & |
---|
894 | )**mu_r_5d2 - & |
---|
895 | 0.0625_wp * ( b_term / a_term )**3 * & |
---|
896 | ( lambda_r / ( 3.0_wp * c_term + lambda_r ) & |
---|
897 | )**mu_r_5d2 - & |
---|
898 | 0.0390625_wp * ( b_term / a_term )**4 * & |
---|
899 | ( lambda_r / ( 4.0_wp * c_term + lambda_r ) & |
---|
900 | )**mu_r_5d2 & |
---|
901 | ) |
---|
902 | |
---|
903 | nr_0 = nr(k,j,i) * lambda_r**( mu_r + 1.0_wp ) / & |
---|
904 | gamm( mu_r + 1.0_wp ) |
---|
905 | ELSE |
---|
906 | f_vent = 1.0_wp |
---|
907 | nr_0 = nr(k,j,i) * dr |
---|
908 | ENDIF |
---|
909 | ! |
---|
910 | !-- Evaporation rate of rain water content (Seifert and |
---|
911 | !-- Beheng, 2006): |
---|
912 | evap = 2.0_wp * pi * nr_0 * g_evap * f_vent * sat / & |
---|
913 | hyrho(k) |
---|
914 | evap = MAX( evap, -qr(k,j,i) / dt_micro ) |
---|
915 | evap_nr = MAX( c_evap * evap / xr * hyrho(k), & |
---|
916 | -nr(k,j,i) / dt_micro ) |
---|
917 | |
---|
918 | qr(k,j,i) = qr(k,j,i) + evap * dt_micro |
---|
919 | nr(k,j,i) = nr(k,j,i) + evap_nr * dt_micro |
---|
920 | |
---|
921 | ENDIF |
---|
922 | ENDIF |
---|
923 | |
---|
924 | ENDDO |
---|
925 | ENDDO |
---|
926 | ENDDO |
---|
927 | |
---|
928 | CALL cpu_log( log_point_s(58), 'evaporation', 'stop' ) |
---|
929 | |
---|
930 | END SUBROUTINE evaporation_rain |
---|
931 | |
---|
932 | |
---|
933 | !------------------------------------------------------------------------------! |
---|
934 | ! Description: |
---|
935 | ! ------------ |
---|
936 | !> Sedimentation of cloud droplets (Ackermann et al., 2009, MWR). |
---|
937 | !------------------------------------------------------------------------------! |
---|
938 | SUBROUTINE sedimentation_cloud |
---|
939 | |
---|
940 | USE arrays_3d, & |
---|
941 | ONLY: ddzu, dzu, pt, prr, q, qc |
---|
942 | |
---|
943 | USE cloud_parameters, & |
---|
944 | ONLY: hyrho, l_d_cp, pt_d_t |
---|
945 | |
---|
946 | USE control_parameters, & |
---|
947 | ONLY: call_microphysics_at_all_substeps, intermediate_timestep_count |
---|
948 | |
---|
949 | USE cpulog, & |
---|
950 | ONLY: cpu_log, log_point_s |
---|
951 | |
---|
952 | USE indices, & |
---|
953 | ONLY: nxlg, nxrg, nysg, nyng, nzb, nzb_s_inner, nzt |
---|
954 | |
---|
955 | USE kinds |
---|
956 | |
---|
957 | USE statistics, & |
---|
958 | ONLY: weight_substep |
---|
959 | |
---|
960 | |
---|
961 | IMPLICIT NONE |
---|
962 | |
---|
963 | INTEGER(iwp) :: i !< |
---|
964 | INTEGER(iwp) :: j !< |
---|
965 | INTEGER(iwp) :: k !< |
---|
966 | |
---|
967 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qc !< |
---|
968 | |
---|
969 | CALL cpu_log( log_point_s(59), 'sed_cloud', 'start' ) |
---|
970 | |
---|
971 | sed_qc(nzt+1) = 0.0_wp |
---|
972 | |
---|
973 | DO i = nxlg, nxrg |
---|
974 | DO j = nysg, nyng |
---|
975 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
976 | |
---|
977 | IF ( qc(k,j,i) > eps_sb ) THEN |
---|
978 | sed_qc(k) = sed_qc_const * nc_const**( -2.0_wp / 3.0_wp ) * & |
---|
979 | ( qc(k,j,i) * hyrho(k) )**( 5.0_wp / 3.0_wp ) |
---|
980 | ELSE |
---|
981 | sed_qc(k) = 0.0_wp |
---|
982 | ENDIF |
---|
983 | |
---|
984 | sed_qc(k) = MIN( sed_qc(k), hyrho(k) * dzu(k+1) * q(k,j,i) / & |
---|
985 | dt_micro + sed_qc(k+1) & |
---|
986 | ) |
---|
987 | |
---|
988 | q(k,j,i) = q(k,j,i) + ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
989 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
990 | qc(k,j,i) = qc(k,j,i) + ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
991 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
992 | pt(k,j,i) = pt(k,j,i) - ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
993 | ddzu(k+1) / hyrho(k) * l_d_cp * & |
---|
994 | pt_d_t(k) * dt_micro |
---|
995 | |
---|
996 | ! |
---|
997 | !-- Compute the precipitation rate due to cloud (fog) droplets |
---|
998 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
999 | prr(k,j,i) = prr(k,j,i) + sed_qc(k) / hyrho(k) & |
---|
1000 | * weight_substep(intermediate_timestep_count) |
---|
1001 | ELSE |
---|
1002 | prr(k,j,i) = prr(k,j,i) + sed_qc(k) / hyrho(k) |
---|
1003 | ENDIF |
---|
1004 | |
---|
1005 | ENDDO |
---|
1006 | ENDDO |
---|
1007 | ENDDO |
---|
1008 | |
---|
1009 | CALL cpu_log( log_point_s(59), 'sed_cloud', 'stop' ) |
---|
1010 | |
---|
1011 | END SUBROUTINE sedimentation_cloud |
---|
1012 | |
---|
1013 | |
---|
1014 | !------------------------------------------------------------------------------! |
---|
1015 | ! Description: |
---|
1016 | ! ------------ |
---|
1017 | !> Computation of sedimentation flux. Implementation according to Stevens |
---|
1018 | !> and Seifert (2008). Code is based on UCLA-LES. |
---|
1019 | !------------------------------------------------------------------------------! |
---|
1020 | SUBROUTINE sedimentation_rain |
---|
1021 | |
---|
1022 | USE arrays_3d, & |
---|
1023 | ONLY: ddzu, dzu, nr, pt, prr, q, qr |
---|
1024 | |
---|
1025 | USE cloud_parameters, & |
---|
1026 | ONLY: hyrho, l_d_cp, pt_d_t |
---|
1027 | |
---|
1028 | USE control_parameters, & |
---|
1029 | ONLY: call_microphysics_at_all_substeps, intermediate_timestep_count |
---|
1030 | USE cpulog, & |
---|
1031 | ONLY: cpu_log, log_point_s |
---|
1032 | |
---|
1033 | USE indices, & |
---|
1034 | ONLY: nxlg, nxrg, nysg, nyng, nzb, nzb_s_inner, nzt |
---|
1035 | |
---|
1036 | USE kinds |
---|
1037 | |
---|
1038 | USE statistics, & |
---|
1039 | ONLY: weight_substep |
---|
1040 | |
---|
1041 | IMPLICIT NONE |
---|
1042 | |
---|
1043 | INTEGER(iwp) :: i !< |
---|
1044 | INTEGER(iwp) :: j !< |
---|
1045 | INTEGER(iwp) :: k !< |
---|
1046 | INTEGER(iwp) :: k_run !< |
---|
1047 | |
---|
1048 | REAL(wp) :: c_run !< |
---|
1049 | REAL(wp) :: d_max !< |
---|
1050 | REAL(wp) :: d_mean !< |
---|
1051 | REAL(wp) :: d_min !< |
---|
1052 | REAL(wp) :: dr !< |
---|
1053 | REAL(wp) :: flux !< |
---|
1054 | REAL(wp) :: lambda_r !< |
---|
1055 | REAL(wp) :: mu_r !< |
---|
1056 | REAL(wp) :: z_run !< |
---|
1057 | |
---|
1058 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_nr !< |
---|
1059 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_qr !< |
---|
1060 | REAL(wp), DIMENSION(nzb:nzt+1) :: nr_slope !< |
---|
1061 | REAL(wp), DIMENSION(nzb:nzt+1) :: qr_slope !< |
---|
1062 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_nr !< |
---|
1063 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qr !< |
---|
1064 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_nr !< |
---|
1065 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_qr !< |
---|
1066 | |
---|
1067 | CALL cpu_log( log_point_s(60), 'sed_rain', 'start' ) |
---|
1068 | |
---|
1069 | ! |
---|
1070 | !-- Compute velocities |
---|
1071 | DO i = nxlg, nxrg |
---|
1072 | DO j = nysg, nyng |
---|
1073 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1074 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
1075 | ! |
---|
1076 | !-- Weight averaged diameter of rain drops: |
---|
1077 | dr = ( hyrho(k) * qr(k,j,i) / & |
---|
1078 | nr(k,j,i) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
1079 | ! |
---|
1080 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
1081 | !-- Stevens and Seifert, 2008): |
---|
1082 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * & |
---|
1083 | ( dr - 1.4E-3_wp ) ) ) |
---|
1084 | ! |
---|
1085 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
1086 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
1087 | ( mu_r + 1.0_wp ) )**( 1.0_wp / 3.0_wp ) / dr |
---|
1088 | |
---|
1089 | w_nr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
1090 | a_term - b_term * ( 1.0_wp + & |
---|
1091 | c_term / & |
---|
1092 | lambda_r )**( -1.0_wp * & |
---|
1093 | ( mu_r + 1.0_wp ) ) & |
---|
1094 | ) & |
---|
1095 | ) |
---|
1096 | |
---|
1097 | w_qr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
1098 | a_term - b_term * ( 1.0_wp + & |
---|
1099 | c_term / & |
---|
1100 | lambda_r )**( -1.0_wp * & |
---|
1101 | ( mu_r + 4.0_wp ) ) & |
---|
1102 | ) & |
---|
1103 | ) |
---|
1104 | ELSE |
---|
1105 | w_nr(k) = 0.0_wp |
---|
1106 | w_qr(k) = 0.0_wp |
---|
1107 | ENDIF |
---|
1108 | ENDDO |
---|
1109 | ! |
---|
1110 | !-- Adjust boundary values |
---|
1111 | w_nr(nzb_s_inner(j,i)) = w_nr(nzb_s_inner(j,i)+1) |
---|
1112 | w_qr(nzb_s_inner(j,i)) = w_qr(nzb_s_inner(j,i)+1) |
---|
1113 | w_nr(nzt+1) = 0.0_wp |
---|
1114 | w_qr(nzt+1) = 0.0_wp |
---|
1115 | ! |
---|
1116 | !-- Compute Courant number |
---|
1117 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1118 | c_nr(k) = 0.25_wp * ( w_nr(k-1) + & |
---|
1119 | 2.0_wp * w_nr(k) + w_nr(k+1) ) * & |
---|
1120 | dt_micro * ddzu(k) |
---|
1121 | c_qr(k) = 0.25_wp * ( w_qr(k-1) + & |
---|
1122 | 2.0_wp * w_qr(k) + w_qr(k+1) ) * & |
---|
1123 | dt_micro * ddzu(k) |
---|
1124 | ENDDO |
---|
1125 | ! |
---|
1126 | !-- Limit slopes with monotonized centered (MC) limiter (van Leer, 1977): |
---|
1127 | IF ( limiter_sedimentation ) THEN |
---|
1128 | |
---|
1129 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1130 | d_mean = 0.5_wp * ( qr(k+1,j,i) - qr(k-1,j,i) ) |
---|
1131 | d_min = qr(k,j,i) - MIN( qr(k+1,j,i), qr(k,j,i), qr(k-1,j,i) ) |
---|
1132 | d_max = MAX( qr(k+1,j,i), qr(k,j,i), qr(k-1,j,i) ) - qr(k,j,i) |
---|
1133 | |
---|
1134 | qr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
1135 | 2.0_wp * d_max, & |
---|
1136 | ABS( d_mean ) ) |
---|
1137 | |
---|
1138 | d_mean = 0.5_wp * ( nr(k+1,j,i) - nr(k-1,j,i) ) |
---|
1139 | d_min = nr(k,j,i) - MIN( nr(k+1,j,i), nr(k,j,i), nr(k-1,j,i) ) |
---|
1140 | d_max = MAX( nr(k+1,j,i), nr(k,j,i), nr(k-1,j,i) ) - nr(k,j,i) |
---|
1141 | |
---|
1142 | nr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
1143 | 2.0_wp * d_max, & |
---|
1144 | ABS( d_mean ) ) |
---|
1145 | ENDDO |
---|
1146 | |
---|
1147 | ELSE |
---|
1148 | |
---|
1149 | nr_slope = 0.0_wp |
---|
1150 | qr_slope = 0.0_wp |
---|
1151 | |
---|
1152 | ENDIF |
---|
1153 | |
---|
1154 | sed_nr(nzt+1) = 0.0_wp |
---|
1155 | sed_qr(nzt+1) = 0.0_wp |
---|
1156 | ! |
---|
1157 | !-- Compute sedimentation flux |
---|
1158 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
1159 | ! |
---|
1160 | !-- Sum up all rain drop number densities which contribute to the flux |
---|
1161 | !-- through k-1/2 |
---|
1162 | flux = 0.0_wp |
---|
1163 | z_run = 0.0_wp ! height above z(k) |
---|
1164 | k_run = k |
---|
1165 | c_run = MIN( 1.0_wp, c_nr(k) ) |
---|
1166 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
1167 | flux = flux + hyrho(k_run) * & |
---|
1168 | ( nr(k_run,j,i) + nr_slope(k_run) * & |
---|
1169 | ( 1.0_wp - c_run ) * 0.5_wp ) * c_run * dzu(k_run) |
---|
1170 | z_run = z_run + dzu(k_run) |
---|
1171 | k_run = k_run + 1 |
---|
1172 | c_run = MIN( 1.0_wp, c_nr(k_run) - z_run * ddzu(k_run) ) |
---|
1173 | ENDDO |
---|
1174 | ! |
---|
1175 | !-- It is not allowed to sediment more rain drop number density than |
---|
1176 | !-- available |
---|
1177 | flux = MIN( flux, & |
---|
1178 | hyrho(k) * dzu(k+1) * nr(k,j,i) + sed_nr(k+1) * & |
---|
1179 | dt_micro & |
---|
1180 | ) |
---|
1181 | |
---|
1182 | sed_nr(k) = flux / dt_micro |
---|
1183 | nr(k,j,i) = nr(k,j,i) + ( sed_nr(k+1) - sed_nr(k) ) * & |
---|
1184 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
1185 | ! |
---|
1186 | !-- Sum up all rain water content which contributes to the flux |
---|
1187 | !-- through k-1/2 |
---|
1188 | flux = 0.0_wp |
---|
1189 | z_run = 0.0_wp ! height above z(k) |
---|
1190 | k_run = k |
---|
1191 | c_run = MIN( 1.0_wp, c_qr(k) ) |
---|
1192 | |
---|
1193 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
1194 | |
---|
1195 | flux = flux + hyrho(k_run) * ( qr(k_run,j,i) + & |
---|
1196 | qr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
1197 | 0.5_wp ) * c_run * dzu(k_run) |
---|
1198 | z_run = z_run + dzu(k_run) |
---|
1199 | k_run = k_run + 1 |
---|
1200 | c_run = MIN( 1.0_wp, c_qr(k_run) - z_run * ddzu(k_run) ) |
---|
1201 | |
---|
1202 | ENDDO |
---|
1203 | ! |
---|
1204 | !-- It is not allowed to sediment more rain water content than |
---|
1205 | !-- available |
---|
1206 | flux = MIN( flux, & |
---|
1207 | hyrho(k) * dzu(k) * qr(k,j,i) + sed_qr(k+1) * & |
---|
1208 | dt_micro & |
---|
1209 | ) |
---|
1210 | |
---|
1211 | sed_qr(k) = flux / dt_micro |
---|
1212 | |
---|
1213 | qr(k,j,i) = qr(k,j,i) + ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
1214 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
1215 | q(k,j,i) = q(k,j,i) + ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
1216 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
1217 | pt(k,j,i) = pt(k,j,i) - ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
1218 | ddzu(k+1) / hyrho(k) * l_d_cp * & |
---|
1219 | pt_d_t(k) * dt_micro |
---|
1220 | ! |
---|
1221 | !-- Compute the rain rate |
---|
1222 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
1223 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) & |
---|
1224 | * weight_substep(intermediate_timestep_count) |
---|
1225 | ELSE |
---|
1226 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) |
---|
1227 | ENDIF |
---|
1228 | |
---|
1229 | ENDDO |
---|
1230 | ENDDO |
---|
1231 | ENDDO |
---|
1232 | |
---|
1233 | CALL cpu_log( log_point_s(60), 'sed_rain', 'stop' ) |
---|
1234 | |
---|
1235 | END SUBROUTINE sedimentation_rain |
---|
1236 | |
---|
1237 | |
---|
1238 | !------------------------------------------------------------------------------! |
---|
1239 | ! Description: |
---|
1240 | ! ------------ |
---|
1241 | !> Computation of the precipitation amount due to gravitational settling of |
---|
1242 | !> rain and cloud (fog) droplets |
---|
1243 | !------------------------------------------------------------------------------! |
---|
1244 | SUBROUTINE calc_precipitation_amount |
---|
1245 | |
---|
1246 | USE arrays_3d, & |
---|
1247 | ONLY: precipitation_amount, prr |
---|
1248 | |
---|
1249 | USE cloud_parameters, & |
---|
1250 | ONLY: hyrho |
---|
1251 | |
---|
1252 | USE control_parameters, & |
---|
1253 | ONLY: call_microphysics_at_all_substeps, dt_do2d_xy, dt_3d, & |
---|
1254 | intermediate_timestep_count, intermediate_timestep_count_max,& |
---|
1255 | precipitation_amount_interval, time_do2d_xy |
---|
1256 | |
---|
1257 | USE indices, & |
---|
1258 | ONLY: nxl, nxr, nys, nyn, nzb_s_inner |
---|
1259 | |
---|
1260 | USE kinds |
---|
1261 | |
---|
1262 | IMPLICIT NONE |
---|
1263 | |
---|
1264 | INTEGER(iwp) :: i !: |
---|
1265 | INTEGER(iwp) :: j !: |
---|
1266 | |
---|
1267 | |
---|
1268 | IF ( ( dt_do2d_xy - time_do2d_xy ) < precipitation_amount_interval .AND.& |
---|
1269 | ( .NOT. call_microphysics_at_all_substeps .OR. & |
---|
1270 | intermediate_timestep_count == intermediate_timestep_count_max ) ) & |
---|
1271 | THEN |
---|
1272 | |
---|
1273 | DO i = nxl, nxr |
---|
1274 | DO j = nys, nyn |
---|
1275 | |
---|
1276 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
1277 | prr(nzb_s_inner(j,i)+1,j,i) * & |
---|
1278 | hyrho(nzb_s_inner(j,i)+1) * dt_3d |
---|
1279 | |
---|
1280 | ENDDO |
---|
1281 | ENDDO |
---|
1282 | ENDIF |
---|
1283 | |
---|
1284 | END SUBROUTINE calc_precipitation_amount |
---|
1285 | |
---|
1286 | |
---|
1287 | !------------------------------------------------------------------------------! |
---|
1288 | ! Description: |
---|
1289 | ! ------------ |
---|
1290 | !> Control of microphysics for grid points i,j |
---|
1291 | !------------------------------------------------------------------------------! |
---|
1292 | |
---|
1293 | SUBROUTINE microphysics_control_ij( i, j ) |
---|
1294 | |
---|
1295 | USE arrays_3d, & |
---|
1296 | ONLY: hyp, nr, pt, pt_init, prr, q, qc, qr, zu |
---|
1297 | |
---|
1298 | USE cloud_parameters, & |
---|
1299 | ONLY: cp, hyrho, pt_d_t, r_d, t_d_pt |
---|
1300 | |
---|
1301 | USE control_parameters, & |
---|
1302 | ONLY: call_microphysics_at_all_substeps, dt_3d, g, & |
---|
1303 | intermediate_timestep_count, large_scale_forcing, & |
---|
1304 | lsf_surf, microphysics_seifert, microphysics_kessler, & |
---|
1305 | pt_surface, rho_surface, surface_pressure |
---|
1306 | |
---|
1307 | USE indices, & |
---|
1308 | ONLY: nzb, nzt |
---|
1309 | |
---|
1310 | USE kinds |
---|
1311 | |
---|
1312 | USE statistics, & |
---|
1313 | ONLY: weight_pres |
---|
1314 | |
---|
1315 | IMPLICIT NONE |
---|
1316 | |
---|
1317 | INTEGER(iwp) :: i !< |
---|
1318 | INTEGER(iwp) :: j !< |
---|
1319 | INTEGER(iwp) :: k !< |
---|
1320 | |
---|
1321 | REAL(wp) :: t_surface !< |
---|
1322 | |
---|
1323 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
1324 | ! |
---|
1325 | !-- Calculate: |
---|
1326 | !-- pt / t : ratio of potential and actual temperature (pt_d_t) |
---|
1327 | !-- t / pt : ratio of actual and potential temperature (t_d_pt) |
---|
1328 | !-- p_0(z) : vertical profile of the hydrostatic pressure (hyp) |
---|
1329 | t_surface = pt_surface * ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
1330 | DO k = nzb, nzt+1 |
---|
1331 | hyp(k) = surface_pressure * 100.0_wp * & |
---|
1332 | ( ( t_surface - g / cp * zu(k) ) / t_surface )**(1.0_wp / 0.286_wp) |
---|
1333 | pt_d_t(k) = ( 100000.0_wp / hyp(k) )**0.286_wp |
---|
1334 | t_d_pt(k) = 1.0_wp / pt_d_t(k) |
---|
1335 | hyrho(k) = hyp(k) / ( r_d * t_d_pt(k) * pt_init(k) ) |
---|
1336 | ENDDO |
---|
1337 | ! |
---|
1338 | !-- Compute reference density |
---|
1339 | rho_surface = surface_pressure * 100.0_wp / ( r_d * t_surface ) |
---|
1340 | ENDIF |
---|
1341 | |
---|
1342 | ! |
---|
1343 | !-- Compute length of time step |
---|
1344 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
1345 | dt_micro = dt_3d * weight_pres(intermediate_timestep_count) |
---|
1346 | ELSE |
---|
1347 | dt_micro = dt_3d |
---|
1348 | ENDIF |
---|
1349 | |
---|
1350 | ! |
---|
1351 | !-- Use 1d arrays |
---|
1352 | q_1d(:) = q(:,j,i) |
---|
1353 | pt_1d(:) = pt(:,j,i) |
---|
1354 | qc_1d(:) = qc(:,j,i) |
---|
1355 | nc_1d(:) = nc_const |
---|
1356 | IF ( microphysics_seifert ) THEN |
---|
1357 | qr_1d(:) = qr(:,j,i) |
---|
1358 | nr_1d(:) = nr(:,j,i) |
---|
1359 | ENDIF |
---|
1360 | |
---|
1361 | ! |
---|
1362 | !-- Reset precipitation rate |
---|
1363 | IF ( intermediate_timestep_count == 1 ) prr(:,j,i) = 0.0_wp |
---|
1364 | |
---|
1365 | ! |
---|
1366 | !-- Compute cloud physics |
---|
1367 | IF( microphysics_kessler ) THEN |
---|
1368 | |
---|
1369 | CALL autoconversion_kessler( i,j ) |
---|
1370 | IF ( cloud_water_sedimentation ) CALL sedimentation_cloud( i,j ) |
---|
1371 | |
---|
1372 | ELSEIF ( microphysics_seifert ) THEN |
---|
1373 | |
---|
1374 | CALL adjust_cloud( i,j ) |
---|
1375 | CALL autoconversion( i,j ) |
---|
1376 | CALL accretion( i,j ) |
---|
1377 | CALL selfcollection_breakup( i,j ) |
---|
1378 | CALL evaporation_rain( i,j ) |
---|
1379 | CALL sedimentation_rain( i,j ) |
---|
1380 | IF ( cloud_water_sedimentation ) CALL sedimentation_cloud( i,j ) |
---|
1381 | |
---|
1382 | ENDIF |
---|
1383 | |
---|
1384 | CALL calc_precipitation_amount( i,j ) |
---|
1385 | |
---|
1386 | ! |
---|
1387 | !-- Store results on the 3d arrays |
---|
1388 | q(:,j,i) = q_1d(:) |
---|
1389 | pt(:,j,i) = pt_1d(:) |
---|
1390 | IF ( microphysics_seifert ) THEN |
---|
1391 | qr(:,j,i) = qr_1d(:) |
---|
1392 | nr(:,j,i) = nr_1d(:) |
---|
1393 | ENDIF |
---|
1394 | |
---|
1395 | END SUBROUTINE microphysics_control_ij |
---|
1396 | |
---|
1397 | !------------------------------------------------------------------------------! |
---|
1398 | ! Description: |
---|
1399 | ! ------------ |
---|
1400 | !> Adjust number of raindrops to avoid nonlinear effects in |
---|
1401 | !> sedimentation and evaporation of rain drops due to too small or |
---|
1402 | !> too big weights of rain drops (Stevens and Seifert, 2008). |
---|
1403 | !> The same procedure is applied to cloud droplets if they are determined |
---|
1404 | !> prognostically. Call for grid point i,j |
---|
1405 | !------------------------------------------------------------------------------! |
---|
1406 | SUBROUTINE adjust_cloud_ij( i, j ) |
---|
1407 | |
---|
1408 | USE cloud_parameters, & |
---|
1409 | ONLY: hyrho |
---|
1410 | |
---|
1411 | USE indices, & |
---|
1412 | ONLY: nzb_s_inner, nzt |
---|
1413 | |
---|
1414 | USE kinds |
---|
1415 | |
---|
1416 | IMPLICIT NONE |
---|
1417 | |
---|
1418 | INTEGER(iwp) :: i !< |
---|
1419 | INTEGER(iwp) :: j !< |
---|
1420 | INTEGER(iwp) :: k !< |
---|
1421 | |
---|
1422 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1423 | |
---|
1424 | IF ( qr_1d(k) <= eps_sb ) THEN |
---|
1425 | qr_1d(k) = 0.0_wp |
---|
1426 | nr_1d(k) = 0.0_wp |
---|
1427 | ELSE |
---|
1428 | ! |
---|
1429 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
1430 | !-- sedimentation and evaporation of rain drops due to too small or |
---|
1431 | !-- too big weights of rain drops (Stevens and Seifert, 2008). |
---|
1432 | IF ( nr_1d(k) * xrmin > qr_1d(k) * hyrho(k) ) THEN |
---|
1433 | nr_1d(k) = qr_1d(k) * hyrho(k) / xrmin |
---|
1434 | ELSEIF ( nr_1d(k) * xrmax < qr_1d(k) * hyrho(k) ) THEN |
---|
1435 | nr_1d(k) = qr_1d(k) * hyrho(k) / xrmax |
---|
1436 | ENDIF |
---|
1437 | |
---|
1438 | ENDIF |
---|
1439 | |
---|
1440 | ENDDO |
---|
1441 | |
---|
1442 | END SUBROUTINE adjust_cloud_ij |
---|
1443 | |
---|
1444 | |
---|
1445 | !------------------------------------------------------------------------------! |
---|
1446 | ! Description: |
---|
1447 | ! ------------ |
---|
1448 | !> Autoconversion rate (Seifert and Beheng, 2006). Call for grid point i,j |
---|
1449 | !------------------------------------------------------------------------------! |
---|
1450 | SUBROUTINE autoconversion_ij( i, j ) |
---|
1451 | |
---|
1452 | USE arrays_3d, & |
---|
1453 | ONLY: diss, dzu |
---|
1454 | |
---|
1455 | USE cloud_parameters, & |
---|
1456 | ONLY: hyrho |
---|
1457 | |
---|
1458 | USE control_parameters, & |
---|
1459 | ONLY: rho_surface |
---|
1460 | |
---|
1461 | USE grid_variables, & |
---|
1462 | ONLY: dx, dy |
---|
1463 | |
---|
1464 | USE indices, & |
---|
1465 | ONLY: nzb_s_inner, nzt |
---|
1466 | |
---|
1467 | USE kinds |
---|
1468 | |
---|
1469 | IMPLICIT NONE |
---|
1470 | |
---|
1471 | INTEGER(iwp) :: i !< |
---|
1472 | INTEGER(iwp) :: j !< |
---|
1473 | INTEGER(iwp) :: k !< |
---|
1474 | |
---|
1475 | REAL(wp) :: alpha_cc !< |
---|
1476 | REAL(wp) :: autocon !< |
---|
1477 | REAL(wp) :: dissipation !< |
---|
1478 | REAL(wp) :: k_au !< |
---|
1479 | REAL(wp) :: l_mix !< |
---|
1480 | REAL(wp) :: nu_c !< |
---|
1481 | REAL(wp) :: phi_au !< |
---|
1482 | REAL(wp) :: r_cc !< |
---|
1483 | REAL(wp) :: rc !< |
---|
1484 | REAL(wp) :: re_lambda !< |
---|
1485 | REAL(wp) :: sigma_cc !< |
---|
1486 | REAL(wp) :: tau_cloud !< |
---|
1487 | REAL(wp) :: xc !< |
---|
1488 | |
---|
1489 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1490 | |
---|
1491 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
1492 | |
---|
1493 | k_au = k_cc / ( 20.0_wp * x0 ) |
---|
1494 | ! |
---|
1495 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
1496 | !-- (1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr_1d(k) )) |
---|
1497 | tau_cloud = 1.0_wp - qc_1d(k) / ( qr_1d(k) + qc_1d(k) ) |
---|
1498 | ! |
---|
1499 | !-- Universal function for autoconversion process |
---|
1500 | !-- (Seifert and Beheng, 2006): |
---|
1501 | phi_au = 600.0_wp * tau_cloud**0.68_wp * ( 1.0_wp - tau_cloud**0.68_wp )**3 |
---|
1502 | ! |
---|
1503 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
1504 | !-- (Use constant nu_c = 1.0_wp instead?) |
---|
1505 | nu_c = 1.0_wp !MAX( 0.0_wp, 1580.0_wp * hyrho(k) * qc_1d(k) - 0.28_wp ) |
---|
1506 | ! |
---|
1507 | !-- Mean weight of cloud droplets: |
---|
1508 | xc = hyrho(k) * qc_1d(k) / nc_1d(k) |
---|
1509 | ! |
---|
1510 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
1511 | !-- Nuijens and Stevens, 2010) |
---|
1512 | IF ( collision_turbulence ) THEN |
---|
1513 | ! |
---|
1514 | !-- Weight averaged radius of cloud droplets: |
---|
1515 | rc = 0.5_wp * ( xc * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
1516 | |
---|
1517 | alpha_cc = ( a_1 + a_2 * nu_c ) / ( 1.0_wp + a_3 * nu_c ) |
---|
1518 | r_cc = ( b_1 + b_2 * nu_c ) / ( 1.0_wp + b_3 * nu_c ) |
---|
1519 | sigma_cc = ( c_1 + c_2 * nu_c ) / ( 1.0_wp + c_3 * nu_c ) |
---|
1520 | ! |
---|
1521 | !-- Mixing length (neglecting distance to ground and stratification) |
---|
1522 | l_mix = ( dx * dy * dzu(k) )**( 1.0_wp / 3.0_wp ) |
---|
1523 | ! |
---|
1524 | !-- Limit dissipation rate according to Seifert, Nuijens and |
---|
1525 | !-- Stevens (2010) |
---|
1526 | dissipation = MIN( 0.06_wp, diss(k,j,i) ) |
---|
1527 | ! |
---|
1528 | !-- Compute Taylor-microscale Reynolds number: |
---|
1529 | re_lambda = 6.0_wp / 11.0_wp * & |
---|
1530 | ( l_mix / c_const )**( 2.0_wp / 3.0_wp ) * & |
---|
1531 | SQRT( 15.0_wp / kin_vis_air ) * & |
---|
1532 | dissipation**( 1.0_wp / 6.0_wp ) |
---|
1533 | ! |
---|
1534 | !-- The factor of 1.0E4 is needed to convert the dissipation rate |
---|
1535 | !-- from m2 s-3 to cm2 s-3. |
---|
1536 | k_au = k_au * ( 1.0_wp + & |
---|
1537 | dissipation * 1.0E4_wp * & |
---|
1538 | ( re_lambda * 1.0E-3_wp )**0.25_wp * & |
---|
1539 | ( alpha_cc * EXP( -1.0_wp * ( ( rc - r_cc ) / & |
---|
1540 | sigma_cc )**2 & |
---|
1541 | ) + beta_cc & |
---|
1542 | ) & |
---|
1543 | ) |
---|
1544 | ENDIF |
---|
1545 | ! |
---|
1546 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
1547 | autocon = k_au * ( nu_c + 2.0_wp ) * ( nu_c + 4.0_wp ) / & |
---|
1548 | ( nu_c + 1.0_wp )**2 * qc_1d(k)**2 * xc**2 * & |
---|
1549 | ( 1.0_wp + phi_au / ( 1.0_wp - tau_cloud )**2 ) * & |
---|
1550 | rho_surface |
---|
1551 | autocon = MIN( autocon, qc_1d(k) / dt_micro ) |
---|
1552 | |
---|
1553 | qr_1d(k) = qr_1d(k) + autocon * dt_micro |
---|
1554 | qc_1d(k) = qc_1d(k) - autocon * dt_micro |
---|
1555 | nr_1d(k) = nr_1d(k) + autocon / x0 * hyrho(k) * dt_micro |
---|
1556 | |
---|
1557 | ENDIF |
---|
1558 | |
---|
1559 | ENDDO |
---|
1560 | |
---|
1561 | END SUBROUTINE autoconversion_ij |
---|
1562 | |
---|
1563 | !------------------------------------------------------------------------------! |
---|
1564 | ! Description: |
---|
1565 | ! ------------ |
---|
1566 | !> Autoconversion process (Kessler, 1969). |
---|
1567 | !------------------------------------------------------------------------------! |
---|
1568 | SUBROUTINE autoconversion_kessler_ij( i, j ) |
---|
1569 | |
---|
1570 | USE arrays_3d, & |
---|
1571 | ONLY: dzw, prr |
---|
1572 | |
---|
1573 | USE cloud_parameters, & |
---|
1574 | ONLY: l_d_cp, pt_d_t |
---|
1575 | |
---|
1576 | USE indices, & |
---|
1577 | ONLY: nzb_s_inner, nzt |
---|
1578 | |
---|
1579 | USE kinds |
---|
1580 | |
---|
1581 | |
---|
1582 | IMPLICIT NONE |
---|
1583 | |
---|
1584 | INTEGER(iwp) :: i !< |
---|
1585 | INTEGER(iwp) :: j !< |
---|
1586 | INTEGER(iwp) :: k !< |
---|
1587 | |
---|
1588 | REAL(wp) :: dqdt_precip !< |
---|
1589 | |
---|
1590 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1591 | |
---|
1592 | IF ( qc_1d(k) > ql_crit ) THEN |
---|
1593 | dqdt_precip = prec_time_const * ( qc_1d(k) - ql_crit ) |
---|
1594 | ELSE |
---|
1595 | dqdt_precip = 0.0_wp |
---|
1596 | ENDIF |
---|
1597 | |
---|
1598 | qc_1d(k) = qc_1d(k) - dqdt_precip * dt_micro |
---|
1599 | q_1d(k) = q_1d(k) - dqdt_precip * dt_micro |
---|
1600 | pt_1d(k) = pt_1d(k) + dqdt_precip * dt_micro * l_d_cp * pt_d_t(k) |
---|
1601 | |
---|
1602 | ! |
---|
1603 | !-- Compute the rain rate (stored on surface grid point) |
---|
1604 | prr(nzb_s_inner(j,i),j,i) = prr(nzb_s_inner(j,i),j,i) + & |
---|
1605 | dqdt_precip * dzw(k) |
---|
1606 | |
---|
1607 | ENDDO |
---|
1608 | |
---|
1609 | END SUBROUTINE autoconversion_kessler_ij |
---|
1610 | |
---|
1611 | !------------------------------------------------------------------------------! |
---|
1612 | ! Description: |
---|
1613 | ! ------------ |
---|
1614 | !> Accretion rate (Seifert and Beheng, 2006). Call for grid point i,j |
---|
1615 | !------------------------------------------------------------------------------! |
---|
1616 | SUBROUTINE accretion_ij( i, j ) |
---|
1617 | |
---|
1618 | USE arrays_3d, & |
---|
1619 | ONLY: diss |
---|
1620 | |
---|
1621 | USE cloud_parameters, & |
---|
1622 | ONLY: hyrho |
---|
1623 | |
---|
1624 | USE control_parameters, & |
---|
1625 | ONLY: rho_surface |
---|
1626 | |
---|
1627 | USE indices, & |
---|
1628 | ONLY: nzb_s_inner, nzt |
---|
1629 | |
---|
1630 | USE kinds |
---|
1631 | |
---|
1632 | IMPLICIT NONE |
---|
1633 | |
---|
1634 | INTEGER(iwp) :: i !< |
---|
1635 | INTEGER(iwp) :: j !< |
---|
1636 | INTEGER(iwp) :: k !< |
---|
1637 | |
---|
1638 | REAL(wp) :: accr !< |
---|
1639 | REAL(wp) :: k_cr !< |
---|
1640 | REAL(wp) :: phi_ac !< |
---|
1641 | REAL(wp) :: tau_cloud !< |
---|
1642 | |
---|
1643 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1644 | IF ( ( qc_1d(k) > eps_sb ) .AND. ( qr_1d(k) > eps_sb ) ) THEN |
---|
1645 | ! |
---|
1646 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
1647 | tau_cloud = 1.0_wp - qc_1d(k) / ( qc_1d(k) + qr_1d(k) ) |
---|
1648 | ! |
---|
1649 | !-- Universal function for accretion process |
---|
1650 | !-- (Seifert and Beheng, 2001): |
---|
1651 | phi_ac = ( tau_cloud / ( tau_cloud + 5.0E-5_wp ) )**4 |
---|
1652 | ! |
---|
1653 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
1654 | !-- Nuijens and Stevens, 2010). The factor of 1.0E4 is needed to |
---|
1655 | !-- convert the dissipation rate (diss) from m2 s-3 to cm2 s-3. |
---|
1656 | IF ( collision_turbulence ) THEN |
---|
1657 | k_cr = k_cr0 * ( 1.0_wp + 0.05_wp * & |
---|
1658 | MIN( 600.0_wp, & |
---|
1659 | diss(k,j,i) * 1.0E4_wp )**0.25_wp & |
---|
1660 | ) |
---|
1661 | ELSE |
---|
1662 | k_cr = k_cr0 |
---|
1663 | ENDIF |
---|
1664 | ! |
---|
1665 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
1666 | accr = k_cr * qc_1d(k) * qr_1d(k) * phi_ac * SQRT( rho_surface * hyrho(k) ) |
---|
1667 | accr = MIN( accr, qc_1d(k) / dt_micro ) |
---|
1668 | |
---|
1669 | qr_1d(k) = qr_1d(k) + accr * dt_micro |
---|
1670 | qc_1d(k) = qc_1d(k) - accr * dt_micro |
---|
1671 | |
---|
1672 | ENDIF |
---|
1673 | |
---|
1674 | ENDDO |
---|
1675 | |
---|
1676 | END SUBROUTINE accretion_ij |
---|
1677 | |
---|
1678 | |
---|
1679 | !------------------------------------------------------------------------------! |
---|
1680 | ! Description: |
---|
1681 | ! ------------ |
---|
1682 | !> Collisional breakup rate (Seifert, 2008). Call for grid point i,j |
---|
1683 | !------------------------------------------------------------------------------! |
---|
1684 | SUBROUTINE selfcollection_breakup_ij( i, j ) |
---|
1685 | |
---|
1686 | USE cloud_parameters, & |
---|
1687 | ONLY: hyrho |
---|
1688 | |
---|
1689 | USE control_parameters, & |
---|
1690 | ONLY: rho_surface |
---|
1691 | |
---|
1692 | USE indices, & |
---|
1693 | ONLY: nzb_s_inner, nzt |
---|
1694 | |
---|
1695 | USE kinds |
---|
1696 | |
---|
1697 | IMPLICIT NONE |
---|
1698 | |
---|
1699 | INTEGER(iwp) :: i !< |
---|
1700 | INTEGER(iwp) :: j !< |
---|
1701 | INTEGER(iwp) :: k !< |
---|
1702 | |
---|
1703 | REAL(wp) :: breakup !< |
---|
1704 | REAL(wp) :: dr !< |
---|
1705 | REAL(wp) :: phi_br !< |
---|
1706 | REAL(wp) :: selfcoll !< |
---|
1707 | |
---|
1708 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1709 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
1710 | ! |
---|
1711 | !-- Selfcollection rate (Seifert and Beheng, 2001): |
---|
1712 | selfcoll = k_rr * nr_1d(k) * qr_1d(k) * SQRT( hyrho(k) * rho_surface ) |
---|
1713 | ! |
---|
1714 | !-- Weight averaged diameter of rain drops: |
---|
1715 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
1716 | ! |
---|
1717 | !-- Collisional breakup rate (Seifert, 2008): |
---|
1718 | IF ( dr >= 0.3E-3_wp ) THEN |
---|
1719 | phi_br = k_br * ( dr - 1.1E-3_wp ) |
---|
1720 | breakup = selfcoll * ( phi_br + 1.0_wp ) |
---|
1721 | ELSE |
---|
1722 | breakup = 0.0_wp |
---|
1723 | ENDIF |
---|
1724 | |
---|
1725 | selfcoll = MAX( breakup - selfcoll, -nr_1d(k) / dt_micro ) |
---|
1726 | nr_1d(k) = nr_1d(k) + selfcoll * dt_micro |
---|
1727 | |
---|
1728 | ENDIF |
---|
1729 | ENDDO |
---|
1730 | |
---|
1731 | END SUBROUTINE selfcollection_breakup_ij |
---|
1732 | |
---|
1733 | |
---|
1734 | !------------------------------------------------------------------------------! |
---|
1735 | ! Description: |
---|
1736 | ! ------------ |
---|
1737 | !> Evaporation of precipitable water. Condensation is neglected for |
---|
1738 | !> precipitable water. Call for grid point i,j |
---|
1739 | !------------------------------------------------------------------------------! |
---|
1740 | SUBROUTINE evaporation_rain_ij( i, j ) |
---|
1741 | |
---|
1742 | USE arrays_3d, & |
---|
1743 | ONLY: hyp |
---|
1744 | |
---|
1745 | USE cloud_parameters, & |
---|
1746 | ONLY: hyrho, l_d_cp, l_d_r, l_v, r_v, t_d_pt |
---|
1747 | |
---|
1748 | USE constants, & |
---|
1749 | ONLY: pi |
---|
1750 | |
---|
1751 | USE indices, & |
---|
1752 | ONLY: nzb_s_inner, nzt |
---|
1753 | |
---|
1754 | USE kinds |
---|
1755 | |
---|
1756 | IMPLICIT NONE |
---|
1757 | |
---|
1758 | INTEGER(iwp) :: i !< |
---|
1759 | INTEGER(iwp) :: j !< |
---|
1760 | INTEGER(iwp) :: k !< |
---|
1761 | |
---|
1762 | REAL(wp) :: alpha !< |
---|
1763 | REAL(wp) :: dr !< |
---|
1764 | REAL(wp) :: e_s !< |
---|
1765 | REAL(wp) :: evap !< |
---|
1766 | REAL(wp) :: evap_nr !< |
---|
1767 | REAL(wp) :: f_vent !< |
---|
1768 | REAL(wp) :: g_evap !< |
---|
1769 | REAL(wp) :: lambda_r !< |
---|
1770 | REAL(wp) :: mu_r !< |
---|
1771 | REAL(wp) :: mu_r_2 !< |
---|
1772 | REAL(wp) :: mu_r_5d2 !< |
---|
1773 | REAL(wp) :: nr_0 !< |
---|
1774 | REAL(wp) :: q_s !< |
---|
1775 | REAL(wp) :: sat !< |
---|
1776 | REAL(wp) :: t_l !< |
---|
1777 | REAL(wp) :: temp !< |
---|
1778 | REAL(wp) :: xr !< |
---|
1779 | |
---|
1780 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1781 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
1782 | ! |
---|
1783 | !-- Actual liquid water temperature: |
---|
1784 | t_l = t_d_pt(k) * pt_1d(k) |
---|
1785 | ! |
---|
1786 | !-- Saturation vapor pressure at t_l: |
---|
1787 | e_s = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
1788 | ( t_l - 35.86_wp ) & |
---|
1789 | ) |
---|
1790 | ! |
---|
1791 | !-- Computation of saturation humidity: |
---|
1792 | q_s = 0.622_wp * e_s / ( hyp(k) - 0.378_wp * e_s ) |
---|
1793 | alpha = 0.622_wp * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
1794 | q_s = q_s * ( 1.0_wp + alpha * q_1d(k) ) / ( 1.0_wp + alpha * q_s ) |
---|
1795 | ! |
---|
1796 | !-- Supersaturation: |
---|
1797 | sat = ( q_1d(k) - qr_1d(k) - qc_1d(k) ) / q_s - 1.0_wp |
---|
1798 | ! |
---|
1799 | !-- Evaporation needs only to be calculated in subsaturated regions |
---|
1800 | IF ( sat < 0.0_wp ) THEN |
---|
1801 | ! |
---|
1802 | !-- Actual temperature: |
---|
1803 | temp = t_l + l_d_cp * ( qc_1d(k) + qr_1d(k) ) |
---|
1804 | |
---|
1805 | g_evap = 1.0_wp / ( ( l_v / ( r_v * temp ) - 1.0_wp ) * l_v / & |
---|
1806 | ( thermal_conductivity_l * temp ) + & |
---|
1807 | r_v * temp / ( diff_coeff_l * e_s ) & |
---|
1808 | ) |
---|
1809 | ! |
---|
1810 | !-- Mean weight of rain drops |
---|
1811 | xr = hyrho(k) * qr_1d(k) / nr_1d(k) |
---|
1812 | ! |
---|
1813 | !-- Weight averaged diameter of rain drops: |
---|
1814 | dr = ( xr * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
1815 | ! |
---|
1816 | !-- Compute ventilation factor and intercept parameter |
---|
1817 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
1818 | IF ( ventilation_effect ) THEN |
---|
1819 | ! |
---|
1820 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
1821 | !-- Stevens and Seifert, 2008): |
---|
1822 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * ( dr - 1.4E-3_wp ) ) ) |
---|
1823 | ! |
---|
1824 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
1825 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
1826 | ( mu_r + 1.0_wp ) & |
---|
1827 | )**( 1.0_wp / 3.0_wp ) / dr |
---|
1828 | |
---|
1829 | mu_r_2 = mu_r + 2.0_wp |
---|
1830 | mu_r_5d2 = mu_r + 2.5_wp |
---|
1831 | |
---|
1832 | f_vent = a_vent * gamm( mu_r_2 ) * lambda_r**( -mu_r_2 ) + & |
---|
1833 | b_vent * schmidt_p_1d3 * & |
---|
1834 | SQRT( a_term / kin_vis_air ) * gamm( mu_r_5d2 ) * & |
---|
1835 | lambda_r**( -mu_r_5d2 ) * & |
---|
1836 | ( 1.0_wp - & |
---|
1837 | 0.5_wp * ( b_term / a_term ) * & |
---|
1838 | ( lambda_r / ( c_term + lambda_r ) & |
---|
1839 | )**mu_r_5d2 - & |
---|
1840 | 0.125_wp * ( b_term / a_term )**2 * & |
---|
1841 | ( lambda_r / ( 2.0_wp * c_term + lambda_r ) & |
---|
1842 | )**mu_r_5d2 - & |
---|
1843 | 0.0625_wp * ( b_term / a_term )**3 * & |
---|
1844 | ( lambda_r / ( 3.0_wp * c_term + lambda_r ) & |
---|
1845 | )**mu_r_5d2 - & |
---|
1846 | 0.0390625_wp * ( b_term / a_term )**4 * & |
---|
1847 | ( lambda_r / ( 4.0_wp * c_term + lambda_r ) & |
---|
1848 | )**mu_r_5d2 & |
---|
1849 | ) |
---|
1850 | |
---|
1851 | nr_0 = nr_1d(k) * lambda_r**( mu_r + 1.0_wp ) / & |
---|
1852 | gamm( mu_r + 1.0_wp ) |
---|
1853 | ELSE |
---|
1854 | f_vent = 1.0_wp |
---|
1855 | nr_0 = nr_1d(k) * dr |
---|
1856 | ENDIF |
---|
1857 | ! |
---|
1858 | !-- Evaporation rate of rain water content (Seifert and Beheng, 2006): |
---|
1859 | evap = 2.0_wp * pi * nr_0 * g_evap * f_vent * sat / hyrho(k) |
---|
1860 | evap = MAX( evap, -qr_1d(k) / dt_micro ) |
---|
1861 | evap_nr = MAX( c_evap * evap / xr * hyrho(k), & |
---|
1862 | -nr_1d(k) / dt_micro ) |
---|
1863 | |
---|
1864 | qr_1d(k) = qr_1d(k) + evap * dt_micro |
---|
1865 | nr_1d(k) = nr_1d(k) + evap_nr * dt_micro |
---|
1866 | |
---|
1867 | ENDIF |
---|
1868 | ENDIF |
---|
1869 | |
---|
1870 | ENDDO |
---|
1871 | |
---|
1872 | END SUBROUTINE evaporation_rain_ij |
---|
1873 | |
---|
1874 | |
---|
1875 | !------------------------------------------------------------------------------! |
---|
1876 | ! Description: |
---|
1877 | ! ------------ |
---|
1878 | !> Sedimentation of cloud droplets (Ackermann et al., 2009, MWR). |
---|
1879 | !> Call for grid point i,j |
---|
1880 | !------------------------------------------------------------------------------! |
---|
1881 | SUBROUTINE sedimentation_cloud_ij( i, j ) |
---|
1882 | |
---|
1883 | USE arrays_3d, & |
---|
1884 | ONLY: ddzu, dzu, prr |
---|
1885 | |
---|
1886 | USE cloud_parameters, & |
---|
1887 | ONLY: hyrho, l_d_cp, pt_d_t |
---|
1888 | |
---|
1889 | USE control_parameters, & |
---|
1890 | ONLY: call_microphysics_at_all_substeps, intermediate_timestep_count |
---|
1891 | |
---|
1892 | USE indices, & |
---|
1893 | ONLY: nzb, nzb_s_inner, nzt |
---|
1894 | |
---|
1895 | USE kinds |
---|
1896 | |
---|
1897 | USE statistics, & |
---|
1898 | ONLY: weight_substep |
---|
1899 | |
---|
1900 | IMPLICIT NONE |
---|
1901 | |
---|
1902 | INTEGER(iwp) :: i !< |
---|
1903 | INTEGER(iwp) :: j !< |
---|
1904 | INTEGER(iwp) :: k !< |
---|
1905 | |
---|
1906 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qc !< |
---|
1907 | |
---|
1908 | sed_qc(nzt+1) = 0.0_wp |
---|
1909 | |
---|
1910 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
1911 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
1912 | sed_qc(k) = sed_qc_const * nc_1d(k)**( -2.0_wp / 3.0_wp ) * & |
---|
1913 | ( qc_1d(k) * hyrho(k) )**( 5.0_wp / 3.0_wp ) |
---|
1914 | ELSE |
---|
1915 | sed_qc(k) = 0.0_wp |
---|
1916 | ENDIF |
---|
1917 | |
---|
1918 | sed_qc(k) = MIN( sed_qc(k), hyrho(k) * dzu(k+1) * q_1d(k) / & |
---|
1919 | dt_micro + sed_qc(k+1) & |
---|
1920 | ) |
---|
1921 | |
---|
1922 | q_1d(k) = q_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
1923 | hyrho(k) * dt_micro |
---|
1924 | qc_1d(k) = qc_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
1925 | hyrho(k) * dt_micro |
---|
1926 | pt_1d(k) = pt_1d(k) - ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
1927 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro |
---|
1928 | |
---|
1929 | ! |
---|
1930 | !-- Compute the precipitation rate of cloud (fog) droplets |
---|
1931 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
1932 | prr(k,j,i) = prr(k,j,i) + sed_qc(k) / hyrho(k) * & |
---|
1933 | weight_substep(intermediate_timestep_count) |
---|
1934 | ELSE |
---|
1935 | prr(k,j,i) = prr(k,j,i) + sed_qc(k) / hyrho(k) |
---|
1936 | ENDIF |
---|
1937 | |
---|
1938 | ENDDO |
---|
1939 | |
---|
1940 | END SUBROUTINE sedimentation_cloud_ij |
---|
1941 | |
---|
1942 | |
---|
1943 | !------------------------------------------------------------------------------! |
---|
1944 | ! Description: |
---|
1945 | ! ------------ |
---|
1946 | !> Computation of sedimentation flux. Implementation according to Stevens |
---|
1947 | !> and Seifert (2008). Code is based on UCLA-LES. Call for grid point i,j |
---|
1948 | !------------------------------------------------------------------------------! |
---|
1949 | SUBROUTINE sedimentation_rain_ij( i, j ) |
---|
1950 | |
---|
1951 | USE arrays_3d, & |
---|
1952 | ONLY: ddzu, dzu, prr |
---|
1953 | |
---|
1954 | USE cloud_parameters, & |
---|
1955 | ONLY: hyrho, l_d_cp, pt_d_t |
---|
1956 | |
---|
1957 | USE control_parameters, & |
---|
1958 | ONLY: call_microphysics_at_all_substeps, intermediate_timestep_count |
---|
1959 | |
---|
1960 | USE indices, & |
---|
1961 | ONLY: nzb, nzb_s_inner, nzt |
---|
1962 | |
---|
1963 | USE kinds |
---|
1964 | |
---|
1965 | USE statistics, & |
---|
1966 | ONLY: weight_substep |
---|
1967 | |
---|
1968 | IMPLICIT NONE |
---|
1969 | |
---|
1970 | INTEGER(iwp) :: i !< |
---|
1971 | INTEGER(iwp) :: j !< |
---|
1972 | INTEGER(iwp) :: k !< |
---|
1973 | INTEGER(iwp) :: k_run !< |
---|
1974 | |
---|
1975 | REAL(wp) :: c_run !< |
---|
1976 | REAL(wp) :: d_max !< |
---|
1977 | REAL(wp) :: d_mean !< |
---|
1978 | REAL(wp) :: d_min !< |
---|
1979 | REAL(wp) :: dr !< |
---|
1980 | REAL(wp) :: flux !< |
---|
1981 | REAL(wp) :: lambda_r !< |
---|
1982 | REAL(wp) :: mu_r !< |
---|
1983 | REAL(wp) :: z_run !< |
---|
1984 | |
---|
1985 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_nr !< |
---|
1986 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_qr !< |
---|
1987 | REAL(wp), DIMENSION(nzb:nzt+1) :: nr_slope !< |
---|
1988 | REAL(wp), DIMENSION(nzb:nzt+1) :: qr_slope !< |
---|
1989 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_nr !< |
---|
1990 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qr !< |
---|
1991 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_nr !< |
---|
1992 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_qr !< |
---|
1993 | |
---|
1994 | ! |
---|
1995 | !-- Compute velocities |
---|
1996 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1997 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
1998 | ! |
---|
1999 | !-- Weight averaged diameter of rain drops: |
---|
2000 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
2001 | ! |
---|
2002 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
2003 | !-- Stevens and Seifert, 2008): |
---|
2004 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * ( dr - 1.4E-3_wp ) ) ) |
---|
2005 | ! |
---|
2006 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
2007 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
2008 | ( mu_r + 1.0_wp ) )**( 1.0_wp / 3.0_wp ) / dr |
---|
2009 | |
---|
2010 | w_nr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
2011 | a_term - b_term * ( 1.0_wp + & |
---|
2012 | c_term / lambda_r )**( -1.0_wp * & |
---|
2013 | ( mu_r + 1.0_wp ) ) & |
---|
2014 | ) & |
---|
2015 | ) |
---|
2016 | w_qr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
2017 | a_term - b_term * ( 1.0_wp + & |
---|
2018 | c_term / lambda_r )**( -1.0_wp * & |
---|
2019 | ( mu_r + 4.0_wp ) ) & |
---|
2020 | ) & |
---|
2021 | ) |
---|
2022 | ELSE |
---|
2023 | w_nr(k) = 0.0_wp |
---|
2024 | w_qr(k) = 0.0_wp |
---|
2025 | ENDIF |
---|
2026 | ENDDO |
---|
2027 | ! |
---|
2028 | !-- Adjust boundary values |
---|
2029 | w_nr(nzb_s_inner(j,i)) = w_nr(nzb_s_inner(j,i)+1) |
---|
2030 | w_qr(nzb_s_inner(j,i)) = w_qr(nzb_s_inner(j,i)+1) |
---|
2031 | w_nr(nzt+1) = 0.0_wp |
---|
2032 | w_qr(nzt+1) = 0.0_wp |
---|
2033 | ! |
---|
2034 | !-- Compute Courant number |
---|
2035 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2036 | c_nr(k) = 0.25_wp * ( w_nr(k-1) + 2.0_wp * w_nr(k) + w_nr(k+1) ) * & |
---|
2037 | dt_micro * ddzu(k) |
---|
2038 | c_qr(k) = 0.25_wp * ( w_qr(k-1) + 2.0_wp * w_qr(k) + w_qr(k+1) ) * & |
---|
2039 | dt_micro * ddzu(k) |
---|
2040 | ENDDO |
---|
2041 | ! |
---|
2042 | !-- Limit slopes with monotonized centered (MC) limiter (van Leer, 1977): |
---|
2043 | IF ( limiter_sedimentation ) THEN |
---|
2044 | |
---|
2045 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
2046 | d_mean = 0.5_wp * ( qr_1d(k+1) - qr_1d(k-1) ) |
---|
2047 | d_min = qr_1d(k) - MIN( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) |
---|
2048 | d_max = MAX( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) - qr_1d(k) |
---|
2049 | |
---|
2050 | qr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
2051 | 2.0_wp * d_max, & |
---|
2052 | ABS( d_mean ) ) |
---|
2053 | |
---|
2054 | d_mean = 0.5_wp * ( nr_1d(k+1) - nr_1d(k-1) ) |
---|
2055 | d_min = nr_1d(k) - MIN( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) |
---|
2056 | d_max = MAX( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) - nr_1d(k) |
---|
2057 | |
---|
2058 | nr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
2059 | 2.0_wp * d_max, & |
---|
2060 | ABS( d_mean ) ) |
---|
2061 | ENDDO |
---|
2062 | |
---|
2063 | ELSE |
---|
2064 | |
---|
2065 | nr_slope = 0.0_wp |
---|
2066 | qr_slope = 0.0_wp |
---|
2067 | |
---|
2068 | ENDIF |
---|
2069 | |
---|
2070 | sed_nr(nzt+1) = 0.0_wp |
---|
2071 | sed_qr(nzt+1) = 0.0_wp |
---|
2072 | ! |
---|
2073 | !-- Compute sedimentation flux |
---|
2074 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
2075 | ! |
---|
2076 | !-- Sum up all rain drop number densities which contribute to the flux |
---|
2077 | !-- through k-1/2 |
---|
2078 | flux = 0.0_wp |
---|
2079 | z_run = 0.0_wp ! height above z(k) |
---|
2080 | k_run = k |
---|
2081 | c_run = MIN( 1.0_wp, c_nr(k) ) |
---|
2082 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
2083 | flux = flux + hyrho(k_run) * & |
---|
2084 | ( nr_1d(k_run) + nr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
2085 | 0.5_wp ) * c_run * dzu(k_run) |
---|
2086 | z_run = z_run + dzu(k_run) |
---|
2087 | k_run = k_run + 1 |
---|
2088 | c_run = MIN( 1.0_wp, c_nr(k_run) - z_run * ddzu(k_run) ) |
---|
2089 | ENDDO |
---|
2090 | ! |
---|
2091 | !-- It is not allowed to sediment more rain drop number density than |
---|
2092 | !-- available |
---|
2093 | flux = MIN( flux, & |
---|
2094 | hyrho(k) * dzu(k+1) * nr_1d(k) + sed_nr(k+1) * dt_micro ) |
---|
2095 | |
---|
2096 | sed_nr(k) = flux / dt_micro |
---|
2097 | nr_1d(k) = nr_1d(k) + ( sed_nr(k+1) - sed_nr(k) ) * ddzu(k+1) / & |
---|
2098 | hyrho(k) * dt_micro |
---|
2099 | ! |
---|
2100 | !-- Sum up all rain water content which contributes to the flux |
---|
2101 | !-- through k-1/2 |
---|
2102 | flux = 0.0_wp |
---|
2103 | z_run = 0.0_wp ! height above z(k) |
---|
2104 | k_run = k |
---|
2105 | c_run = MIN( 1.0_wp, c_qr(k) ) |
---|
2106 | |
---|
2107 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
2108 | |
---|
2109 | flux = flux + hyrho(k_run) * & |
---|
2110 | ( qr_1d(k_run) + qr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
2111 | 0.5_wp ) * c_run * dzu(k_run) |
---|
2112 | z_run = z_run + dzu(k_run) |
---|
2113 | k_run = k_run + 1 |
---|
2114 | c_run = MIN( 1.0_wp, c_qr(k_run) - z_run * ddzu(k_run) ) |
---|
2115 | |
---|
2116 | ENDDO |
---|
2117 | ! |
---|
2118 | !-- It is not allowed to sediment more rain water content than available |
---|
2119 | flux = MIN( flux, & |
---|
2120 | hyrho(k) * dzu(k) * qr_1d(k) + sed_qr(k+1) * dt_micro ) |
---|
2121 | |
---|
2122 | sed_qr(k) = flux / dt_micro |
---|
2123 | |
---|
2124 | qr_1d(k) = qr_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
2125 | hyrho(k) * dt_micro |
---|
2126 | q_1d(k) = q_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
2127 | hyrho(k) * dt_micro |
---|
2128 | pt_1d(k) = pt_1d(k) - ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
2129 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro |
---|
2130 | ! |
---|
2131 | !-- Compute the rain rate |
---|
2132 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
2133 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) & |
---|
2134 | * weight_substep(intermediate_timestep_count) |
---|
2135 | ELSE |
---|
2136 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) |
---|
2137 | ENDIF |
---|
2138 | |
---|
2139 | ENDDO |
---|
2140 | |
---|
2141 | END SUBROUTINE sedimentation_rain_ij |
---|
2142 | |
---|
2143 | |
---|
2144 | !------------------------------------------------------------------------------! |
---|
2145 | ! Description: |
---|
2146 | ! ------------ |
---|
2147 | !> This subroutine computes the precipitation amount due to gravitational |
---|
2148 | !> settling of rain and cloud (fog) droplets |
---|
2149 | !------------------------------------------------------------------------------! |
---|
2150 | SUBROUTINE calc_precipitation_amount_ij( i, j ) |
---|
2151 | |
---|
2152 | USE arrays_3d, & |
---|
2153 | ONLY: precipitation_amount, prr |
---|
2154 | |
---|
2155 | USE cloud_parameters, & |
---|
2156 | ONLY: hyrho |
---|
2157 | |
---|
2158 | USE control_parameters, & |
---|
2159 | ONLY: call_microphysics_at_all_substeps, dt_do2d_xy, dt_3d, & |
---|
2160 | intermediate_timestep_count, intermediate_timestep_count_max,& |
---|
2161 | precipitation_amount_interval, time_do2d_xy |
---|
2162 | |
---|
2163 | USE indices, & |
---|
2164 | ONLY: nzb_s_inner |
---|
2165 | |
---|
2166 | USE kinds |
---|
2167 | |
---|
2168 | IMPLICIT NONE |
---|
2169 | |
---|
2170 | INTEGER(iwp) :: i !: |
---|
2171 | INTEGER(iwp) :: j !: |
---|
2172 | |
---|
2173 | |
---|
2174 | IF ( ( dt_do2d_xy - time_do2d_xy ) < precipitation_amount_interval .AND.& |
---|
2175 | ( .NOT. call_microphysics_at_all_substeps .OR. & |
---|
2176 | intermediate_timestep_count == intermediate_timestep_count_max ) ) & |
---|
2177 | THEN |
---|
2178 | |
---|
2179 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
2180 | prr(nzb_s_inner(j,i)+1,j,i) * & |
---|
2181 | hyrho(nzb_s_inner(j,i)+1) * dt_3d |
---|
2182 | ENDIF |
---|
2183 | |
---|
2184 | END SUBROUTINE calc_precipitation_amount_ij |
---|
2185 | |
---|
2186 | !------------------------------------------------------------------------------! |
---|
2187 | ! Description: |
---|
2188 | ! ------------ |
---|
2189 | !> This function computes the gamma function (Press et al., 1992). |
---|
2190 | !> The gamma function is needed for the calculation of the evaporation |
---|
2191 | !> of rain drops. |
---|
2192 | !------------------------------------------------------------------------------! |
---|
2193 | FUNCTION gamm( xx ) |
---|
2194 | |
---|
2195 | USE kinds |
---|
2196 | |
---|
2197 | IMPLICIT NONE |
---|
2198 | |
---|
2199 | INTEGER(iwp) :: j !< |
---|
2200 | |
---|
2201 | REAL(wp) :: gamm !< |
---|
2202 | REAL(wp) :: ser !< |
---|
2203 | REAL(wp) :: tmp !< |
---|
2204 | REAL(wp) :: x_gamm !< |
---|
2205 | REAL(wp) :: xx !< |
---|
2206 | REAL(wp) :: y_gamm !< |
---|
2207 | |
---|
2208 | |
---|
2209 | REAL(wp), PARAMETER :: stp = 2.5066282746310005_wp !< |
---|
2210 | REAL(wp), PARAMETER :: cof(6) = (/ 76.18009172947146_wp, & |
---|
2211 | -86.50532032941677_wp, & |
---|
2212 | 24.01409824083091_wp, & |
---|
2213 | -1.231739572450155_wp, & |
---|
2214 | 0.1208650973866179E-2_wp, & |
---|
2215 | -0.5395239384953E-5_wp /) !< |
---|
2216 | |
---|
2217 | x_gamm = xx |
---|
2218 | y_gamm = x_gamm |
---|
2219 | tmp = x_gamm + 5.5_wp |
---|
2220 | tmp = ( x_gamm + 0.5_wp ) * LOG( tmp ) - tmp |
---|
2221 | ser = 1.000000000190015_wp |
---|
2222 | |
---|
2223 | DO j = 1, 6 |
---|
2224 | y_gamm = y_gamm + 1.0_wp |
---|
2225 | ser = ser + cof( j ) / y_gamm |
---|
2226 | ENDDO |
---|
2227 | |
---|
2228 | ! |
---|
2229 | !-- Until this point the algorithm computes the logarithm of the gamma |
---|
2230 | !-- function. Hence, the exponential function is used. |
---|
2231 | ! gamm = EXP( tmp + LOG( stp * ser / x_gamm ) ) |
---|
2232 | gamm = EXP( tmp ) * stp * ser / x_gamm |
---|
2233 | |
---|
2234 | RETURN |
---|
2235 | |
---|
2236 | END FUNCTION gamm |
---|
2237 | |
---|
2238 | END MODULE microphysics_mod |
---|