1 | !> @file microphysics_mod.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: microphysics_mod.f90 2318 2017-07-20 17:27:44Z suehring $ |
---|
27 | ! Get topography top index via Function call |
---|
28 | ! |
---|
29 | ! 2317 2017-07-20 17:27:19Z suehring |
---|
30 | ! s1 changed to log_sigma |
---|
31 | ! |
---|
32 | ! 2292 2017-06-20 09:51:42Z schwenkel |
---|
33 | ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' |
---|
34 | ! includes two more prognostic equations for cloud drop concentration (nc) |
---|
35 | ! and cloud water content (qc). |
---|
36 | ! - The process of activation is parameterized with a simple Twomey |
---|
37 | ! activion scheme or with considering solution and curvature |
---|
38 | ! effects (Khvorostyanov and Curry ,2006). |
---|
39 | ! - The saturation adjustment scheme is replaced by the parameterization |
---|
40 | ! of condensation rates (Khairoutdinov and Kogan, 2000, Mon. Wea. Rev.,128). |
---|
41 | ! - All other microphysical processes of Seifert and Beheng are used. |
---|
42 | ! Additionally, in those processes the reduction of cloud number concentration |
---|
43 | ! is considered. |
---|
44 | ! |
---|
45 | ! 2233 2017-05-30 18:08:54Z suehring |
---|
46 | ! |
---|
47 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
48 | ! Adjustments to new topography and surface concept |
---|
49 | ! |
---|
50 | ! 2155 2017-02-21 09:57:40Z hoffmann |
---|
51 | ! Bugfix in the calculation of microphysical quantities on ghost points. |
---|
52 | ! |
---|
53 | ! 2031 2016-10-21 15:11:58Z knoop |
---|
54 | ! renamed variable rho to rho_ocean |
---|
55 | ! |
---|
56 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
57 | ! Forced header and separation lines into 80 columns |
---|
58 | ! |
---|
59 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
60 | ! Module renamed |
---|
61 | ! Adapted for modularization of microphysics. |
---|
62 | ! |
---|
63 | ! 1845 2016-04-08 08:29:13Z raasch |
---|
64 | ! nzb_2d replaced by nzb_s_inner, Kessler precipitation is stored at surface |
---|
65 | ! point (instead of one point above surface) |
---|
66 | ! |
---|
67 | ! 1831 2016-04-07 13:15:51Z hoffmann |
---|
68 | ! turbulence renamed collision_turbulence, |
---|
69 | ! drizzle renamed cloud_water_sedimentation. cloud_water_sedimentation also |
---|
70 | ! avaialble for microphysics_kessler. |
---|
71 | ! |
---|
72 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
73 | ! Unused variables removed. |
---|
74 | ! Kessler scheme integrated. |
---|
75 | ! |
---|
76 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
77 | ! Added new routine calc_precipitation_amount. The routine now allows to account |
---|
78 | ! for precipitation due to sedimenation of cloud (fog) droplets |
---|
79 | ! |
---|
80 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
81 | ! Code annotations made doxygen readable |
---|
82 | ! |
---|
83 | ! 1646 2015-09-02 16:00:10Z hoffmann |
---|
84 | ! Bugfix: Wrong computation of d_mean. |
---|
85 | ! |
---|
86 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
87 | ! Bugfix in sedimentation_rain: Index corrected. |
---|
88 | ! Vectorized version of adjust_cloud added. |
---|
89 | ! Little reformatting of the code. |
---|
90 | ! |
---|
91 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
92 | ! REAL constants provided with KIND-attribute |
---|
93 | ! |
---|
94 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
95 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
96 | ! intrinsic function like MAX, MIN, SIGN |
---|
97 | ! |
---|
98 | ! 1334 2014-03-25 12:21:40Z heinze |
---|
99 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
100 | ! |
---|
101 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
102 | ! REAL constants defined as wp-kind |
---|
103 | ! |
---|
104 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
105 | ! ONLY-attribute added to USE-statements, |
---|
106 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
107 | ! kinds are defined in new module kinds, |
---|
108 | ! comment fields (!:) to be used for variable explanations added to |
---|
109 | ! all variable declaration statements |
---|
110 | ! |
---|
111 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
112 | ! hyp and rho_ocean have to be calculated at each time step if data from external |
---|
113 | ! file LSF_DATA are used |
---|
114 | ! |
---|
115 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
116 | ! microphyical tendencies are calculated in microphysics_control in an optimized |
---|
117 | ! way; unrealistic values are prevented; bugfix in evaporation; some reformatting |
---|
118 | ! |
---|
119 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
120 | ! small changes in code formatting |
---|
121 | ! |
---|
122 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
123 | ! unused variables removed |
---|
124 | ! file put under GPL |
---|
125 | ! |
---|
126 | ! 1065 2012-11-22 17:42:36Z hoffmann |
---|
127 | ! Sedimentation process implemented according to Stevens and Seifert (2008). |
---|
128 | ! Turbulence effects on autoconversion and accretion added (Seifert, Nuijens |
---|
129 | ! and Stevens, 2010). |
---|
130 | ! |
---|
131 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
132 | ! initial revision |
---|
133 | ! |
---|
134 | ! Description: |
---|
135 | ! ------------ |
---|
136 | !> Calculate bilk cloud microphysics. |
---|
137 | !------------------------------------------------------------------------------! |
---|
138 | MODULE microphysics_mod |
---|
139 | |
---|
140 | USE kinds |
---|
141 | |
---|
142 | IMPLICIT NONE |
---|
143 | |
---|
144 | LOGICAL :: cloud_water_sedimentation = .FALSE. !< cloud water sedimentation |
---|
145 | LOGICAL :: curvature_solution_effects_bulk = .FALSE. !< flag for considering koehler theory |
---|
146 | LOGICAL :: limiter_sedimentation = .TRUE. !< sedimentation limiter |
---|
147 | LOGICAL :: collision_turbulence = .FALSE. !< turbulence effects |
---|
148 | LOGICAL :: ventilation_effect = .TRUE. !< ventilation effect |
---|
149 | |
---|
150 | REAL(wp) :: a_1 = 8.69E-4_wp !< coef. in turb. parametrization (cm-2 s3) |
---|
151 | REAL(wp) :: a_2 = -7.38E-5_wp !< coef. in turb. parametrization (cm-2 s3) |
---|
152 | REAL(wp) :: a_3 = -1.40E-2_wp !< coef. in turb. parametrization |
---|
153 | REAL(wp) :: a_term = 9.65_wp !< coef. for terminal velocity (m s-1) |
---|
154 | REAL(wp) :: a_vent = 0.78_wp !< coef. for ventilation effect |
---|
155 | REAL(wp) :: b_1 = 11.45E-6_wp !< coef. in turb. parametrization (m) |
---|
156 | REAL(wp) :: b_2 = 9.68E-6_wp !< coef. in turb. parametrization (m) |
---|
157 | REAL(wp) :: b_3 = 0.62_wp !< coef. in turb. parametrization |
---|
158 | REAL(wp) :: b_term = 9.8_wp !< coef. for terminal velocity (m s-1) |
---|
159 | REAL(wp) :: b_vent = 0.308_wp !< coef. for ventilation effect |
---|
160 | REAL(wp) :: beta_cc = 3.09E-4_wp !< coef. in turb. parametrization (cm-2 s3) |
---|
161 | REAL(wp) :: c_1 = 4.82E-6_wp !< coef. in turb. parametrization (m) |
---|
162 | REAL(wp) :: c_2 = 4.8E-6_wp !< coef. in turb. parametrization (m) |
---|
163 | REAL(wp) :: c_3 = 0.76_wp !< coef. in turb. parametrization |
---|
164 | REAL(wp) :: c_const = 0.93_wp !< const. in Taylor-microscale Reynolds number |
---|
165 | REAL(wp) :: c_evap = 0.7_wp !< constant in evaporation |
---|
166 | REAL(wp) :: c_term = 600.0_wp !< coef. for terminal velocity (m-1) |
---|
167 | REAL(wp) :: diff_coeff_l = 0.23E-4_wp !< diffusivity of water vapor (m2 s-1) |
---|
168 | REAL(wp) :: eps_sb = 1.0E-10_wp !< threshold in two-moments scheme |
---|
169 | REAL(wp) :: eps_mr = 0.0_wp !< threshold for morrison scheme |
---|
170 | REAL(wp) :: k_cc = 9.44E09_wp !< const. cloud-cloud kernel (m3 kg-2 s-1) |
---|
171 | REAL(wp) :: k_cr0 = 4.33_wp !< const. cloud-rain kernel (m3 kg-1 s-1) |
---|
172 | REAL(wp) :: k_rr = 7.12_wp !< const. rain-rain kernel (m3 kg-1 s-1) |
---|
173 | REAL(wp) :: k_br = 1000.0_wp !< const. in breakup parametrization (m-1) |
---|
174 | REAL(wp) :: k_st = 1.2E8_wp !< const. in drizzle parametrization (m-1 s-1) |
---|
175 | REAL(wp) :: kappa_rr = 60.7_wp !< const. in collision kernel (kg-1/3) |
---|
176 | REAL(wp) :: kin_vis_air = 1.4086E-5_wp !< kin. viscosity of air (m2 s-1) |
---|
177 | REAL(wp) :: prec_time_const = 0.001_wp !< coef. in Kessler scheme (s-1) |
---|
178 | REAL(wp) :: ql_crit = 0.0005_wp !< coef. in Kessler scheme (kg kg-1) |
---|
179 | REAL(wp) :: schmidt_p_1d3=0.8921121_wp !< Schmidt number**0.33333, 0.71**0.33333 |
---|
180 | REAL(wp) :: sigma_gc = 1.3_wp !< geometric standard deviation cloud droplets |
---|
181 | REAL(wp) :: thermal_conductivity_l = 2.43E-2_wp !< therm. cond. air (J m-1 s-1 K-1) |
---|
182 | REAL(wp) :: w_precipitation = 9.65_wp !< maximum terminal velocity (m s-1) |
---|
183 | REAL(wp) :: x0 = 2.6E-10_wp !< separating drop mass (kg) |
---|
184 | REAL(wp) :: xamin = 5.24E-19_wp !< average aerosol mass (kg) (~ 0.05µm) |
---|
185 | REAL(wp) :: xcmin = 4.18E-15_wp !< minimum cloud drop size (kg) (~ 1µm) |
---|
186 | REAL(wp) :: xcmax = 2.6E-10_wp !< maximum cloud drop size (kg) (~ 40µm) |
---|
187 | REAL(wp) :: xrmin = 2.6E-10_wp !< minimum rain drop size (kg) |
---|
188 | REAL(wp) :: xrmax = 5.0E-6_wp !< maximum rain drop site (kg) |
---|
189 | |
---|
190 | REAL(wp) :: c_sedimentation = 2.0_wp !< Courant number of sedimentation process |
---|
191 | REAL(wp) :: dpirho_l !< 6.0 / ( pi * rho_l ) |
---|
192 | REAL(wp) :: dt_micro !< microphysics time step |
---|
193 | REAL(wp) :: na_init = 100.0E6_wp !< Total particle/aerosol concentration (cm-3) |
---|
194 | REAL(wp) :: nc_const = 70.0E6_wp !< cloud droplet concentration |
---|
195 | REAL(wp) :: dt_precipitation = 100.0_wp !< timestep precipitation (s) |
---|
196 | REAL(wp) :: sed_qc_const !< const. for sedimentation of cloud water |
---|
197 | REAL(wp) :: pirho_l !< pi * rho_l / 6.0; |
---|
198 | |
---|
199 | REAL(wp), DIMENSION(:), ALLOCATABLE :: nc_1d !< |
---|
200 | REAL(wp), DIMENSION(:), ALLOCATABLE :: nr_1d !< |
---|
201 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pt_1d !< |
---|
202 | REAL(wp), DIMENSION(:), ALLOCATABLE :: qc_1d !< |
---|
203 | REAL(wp), DIMENSION(:), ALLOCATABLE :: qr_1d !< |
---|
204 | REAL(wp), DIMENSION(:), ALLOCATABLE :: q_1d !< |
---|
205 | |
---|
206 | SAVE |
---|
207 | |
---|
208 | PRIVATE |
---|
209 | PUBLIC microphysics_control, microphysics_init |
---|
210 | |
---|
211 | PUBLIC cloud_water_sedimentation, collision_turbulence, & |
---|
212 | curvature_solution_effects_bulk, c_sedimentation, dt_precipitation, & |
---|
213 | limiter_sedimentation, na_init, nc_const, sigma_gc, & |
---|
214 | ventilation_effect |
---|
215 | |
---|
216 | |
---|
217 | INTERFACE microphysics_control |
---|
218 | MODULE PROCEDURE microphysics_control |
---|
219 | MODULE PROCEDURE microphysics_control_ij |
---|
220 | END INTERFACE microphysics_control |
---|
221 | |
---|
222 | INTERFACE adjust_cloud |
---|
223 | MODULE PROCEDURE adjust_cloud |
---|
224 | MODULE PROCEDURE adjust_cloud_ij |
---|
225 | END INTERFACE adjust_cloud |
---|
226 | |
---|
227 | INTERFACE activation |
---|
228 | MODULE PROCEDURE activation |
---|
229 | MODULE PROCEDURE activation_ij |
---|
230 | END INTERFACE activation |
---|
231 | |
---|
232 | INTERFACE condensation |
---|
233 | MODULE PROCEDURE condensation |
---|
234 | MODULE PROCEDURE condensation_ij |
---|
235 | END INTERFACE condensation |
---|
236 | |
---|
237 | INTERFACE autoconversion |
---|
238 | MODULE PROCEDURE autoconversion |
---|
239 | MODULE PROCEDURE autoconversion_ij |
---|
240 | END INTERFACE autoconversion |
---|
241 | |
---|
242 | INTERFACE autoconversion_kessler |
---|
243 | MODULE PROCEDURE autoconversion_kessler |
---|
244 | MODULE PROCEDURE autoconversion_kessler_ij |
---|
245 | END INTERFACE autoconversion_kessler |
---|
246 | |
---|
247 | INTERFACE accretion |
---|
248 | MODULE PROCEDURE accretion |
---|
249 | MODULE PROCEDURE accretion_ij |
---|
250 | END INTERFACE accretion |
---|
251 | |
---|
252 | INTERFACE selfcollection_breakup |
---|
253 | MODULE PROCEDURE selfcollection_breakup |
---|
254 | MODULE PROCEDURE selfcollection_breakup_ij |
---|
255 | END INTERFACE selfcollection_breakup |
---|
256 | |
---|
257 | INTERFACE evaporation_rain |
---|
258 | MODULE PROCEDURE evaporation_rain |
---|
259 | MODULE PROCEDURE evaporation_rain_ij |
---|
260 | END INTERFACE evaporation_rain |
---|
261 | |
---|
262 | INTERFACE sedimentation_cloud |
---|
263 | MODULE PROCEDURE sedimentation_cloud |
---|
264 | MODULE PROCEDURE sedimentation_cloud_ij |
---|
265 | END INTERFACE sedimentation_cloud |
---|
266 | |
---|
267 | INTERFACE sedimentation_rain |
---|
268 | MODULE PROCEDURE sedimentation_rain |
---|
269 | MODULE PROCEDURE sedimentation_rain_ij |
---|
270 | END INTERFACE sedimentation_rain |
---|
271 | |
---|
272 | INTERFACE calc_precipitation_amount |
---|
273 | MODULE PROCEDURE calc_precipitation_amount |
---|
274 | MODULE PROCEDURE calc_precipitation_amount_ij |
---|
275 | END INTERFACE calc_precipitation_amount |
---|
276 | |
---|
277 | CONTAINS |
---|
278 | !------------------------------------------------------------------------------! |
---|
279 | ! Description: |
---|
280 | ! ------------ |
---|
281 | !> Initialization of bulk microphysics |
---|
282 | !------------------------------------------------------------------------------! |
---|
283 | SUBROUTINE microphysics_init |
---|
284 | |
---|
285 | USE arrays_3d, & |
---|
286 | ONLY: dzu |
---|
287 | |
---|
288 | USE constants, & |
---|
289 | ONLY: pi |
---|
290 | |
---|
291 | USE cloud_parameters, & |
---|
292 | ONLY: rho_l |
---|
293 | |
---|
294 | USE control_parameters, & |
---|
295 | ONLY: microphysics_morrison, microphysics_seifert |
---|
296 | |
---|
297 | USE indices, & |
---|
298 | ONLY: nzb, nzt |
---|
299 | |
---|
300 | IMPLICIT NONE |
---|
301 | |
---|
302 | ! |
---|
303 | !-- constant for the sedimentation of cloud water (2-moment cloud physics) |
---|
304 | sed_qc_const = k_st * ( 3.0_wp / ( 4.0_wp * pi * rho_l ) & |
---|
305 | )**( 2.0_wp / 3.0_wp ) * & |
---|
306 | EXP( 5.0_wp * LOG( sigma_gc )**2 ) |
---|
307 | |
---|
308 | ! |
---|
309 | !-- Calculate timestep according to precipitation |
---|
310 | IF ( microphysics_seifert ) THEN |
---|
311 | dt_precipitation = c_sedimentation * MINVAL( dzu(nzb+2:nzt) ) / & |
---|
312 | w_precipitation |
---|
313 | ENDIF |
---|
314 | |
---|
315 | ! |
---|
316 | !-- Pre-calculate frequently calculated fractions of pi and rho_l |
---|
317 | pirho_l = pi * rho_l / 6.0_wp |
---|
318 | dpirho_l = 1.0_wp / pirho_l |
---|
319 | |
---|
320 | ! |
---|
321 | !-- Allocate 1D microphysics arrays |
---|
322 | ALLOCATE ( pt_1d(nzb:nzt+1), q_1d(nzb:nzt+1), & |
---|
323 | qc_1d(nzb:nzt+1) ) |
---|
324 | |
---|
325 | IF ( microphysics_morrison .OR. microphysics_seifert ) THEN |
---|
326 | ALLOCATE ( nc_1d(nzb:nzt+1) ) |
---|
327 | ENDIF |
---|
328 | |
---|
329 | IF ( microphysics_seifert ) THEN |
---|
330 | ALLOCATE ( nr_1d(nzb:nzt+1), qr_1d(nzb:nzt+1) ) |
---|
331 | ENDIF |
---|
332 | |
---|
333 | END SUBROUTINE microphysics_init |
---|
334 | |
---|
335 | |
---|
336 | !------------------------------------------------------------------------------! |
---|
337 | ! Description: |
---|
338 | ! ------------ |
---|
339 | !> Control of microphysics for all grid points |
---|
340 | !------------------------------------------------------------------------------! |
---|
341 | SUBROUTINE microphysics_control |
---|
342 | |
---|
343 | USE arrays_3d, & |
---|
344 | ONLY: hyp, pt_init, prr, zu |
---|
345 | |
---|
346 | USE cloud_parameters, & |
---|
347 | ONLY: cp, hyrho, pt_d_t, r_d, t_d_pt |
---|
348 | |
---|
349 | USE control_parameters, & |
---|
350 | ONLY: call_microphysics_at_all_substeps, dt_3d, g, & |
---|
351 | intermediate_timestep_count, large_scale_forcing, & |
---|
352 | lsf_surf, microphysics_kessler, microphysics_morrison, & |
---|
353 | microphysics_seifert, pt_surface, & |
---|
354 | rho_surface,surface_pressure |
---|
355 | |
---|
356 | USE indices, & |
---|
357 | ONLY: nzb, nzt |
---|
358 | |
---|
359 | USE kinds |
---|
360 | |
---|
361 | USE statistics, & |
---|
362 | ONLY: weight_pres |
---|
363 | |
---|
364 | IMPLICIT NONE |
---|
365 | |
---|
366 | INTEGER(iwp) :: k !< |
---|
367 | |
---|
368 | REAL(wp) :: t_surface !< |
---|
369 | |
---|
370 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
371 | ! |
---|
372 | !-- Calculate: |
---|
373 | !-- pt / t : ratio of potential and actual temperature (pt_d_t) |
---|
374 | !-- t / pt : ratio of actual and potential temperature (t_d_pt) |
---|
375 | !-- p_0(z) : vertical profile of the hydrostatic pressure (hyp) |
---|
376 | t_surface = pt_surface * ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
377 | DO k = nzb, nzt+1 |
---|
378 | hyp(k) = surface_pressure * 100.0_wp * & |
---|
379 | ( ( t_surface - g / cp * zu(k) ) / & |
---|
380 | t_surface )**(1.0_wp / 0.286_wp) |
---|
381 | pt_d_t(k) = ( 100000.0_wp / hyp(k) )**0.286_wp |
---|
382 | t_d_pt(k) = 1.0_wp / pt_d_t(k) |
---|
383 | hyrho(k) = hyp(k) / ( r_d * t_d_pt(k) * pt_init(k) ) |
---|
384 | ENDDO |
---|
385 | |
---|
386 | ! |
---|
387 | !-- Compute reference density |
---|
388 | rho_surface = surface_pressure * 100.0_wp / ( r_d * t_surface ) |
---|
389 | ENDIF |
---|
390 | |
---|
391 | ! |
---|
392 | !-- Compute length of time step |
---|
393 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
394 | dt_micro = dt_3d * weight_pres(intermediate_timestep_count) |
---|
395 | ELSE |
---|
396 | dt_micro = dt_3d |
---|
397 | ENDIF |
---|
398 | |
---|
399 | ! |
---|
400 | !-- Reset precipitation rate |
---|
401 | IF ( intermediate_timestep_count == 1 ) prr = 0.0_wp |
---|
402 | |
---|
403 | ! |
---|
404 | !-- Compute cloud physics |
---|
405 | IF ( microphysics_kessler ) THEN |
---|
406 | |
---|
407 | CALL autoconversion_kessler |
---|
408 | IF ( cloud_water_sedimentation ) CALL sedimentation_cloud |
---|
409 | |
---|
410 | ELSEIF ( microphysics_seifert ) THEN |
---|
411 | |
---|
412 | CALL adjust_cloud |
---|
413 | IF ( microphysics_morrison ) CALL activation |
---|
414 | IF ( microphysics_morrison ) CALL condensation |
---|
415 | CALL autoconversion |
---|
416 | CALL accretion |
---|
417 | CALL selfcollection_breakup |
---|
418 | CALL evaporation_rain |
---|
419 | CALL sedimentation_rain |
---|
420 | IF ( cloud_water_sedimentation ) CALL sedimentation_cloud |
---|
421 | |
---|
422 | ENDIF |
---|
423 | |
---|
424 | CALL calc_precipitation_amount |
---|
425 | |
---|
426 | END SUBROUTINE microphysics_control |
---|
427 | |
---|
428 | !------------------------------------------------------------------------------! |
---|
429 | ! Description: |
---|
430 | ! ------------ |
---|
431 | !> Adjust number of raindrops to avoid nonlinear effects in sedimentation and |
---|
432 | !> evaporation of rain drops due to too small or too big weights |
---|
433 | !> of rain drops (Stevens and Seifert, 2008). |
---|
434 | !------------------------------------------------------------------------------! |
---|
435 | SUBROUTINE adjust_cloud |
---|
436 | |
---|
437 | USE arrays_3d, & |
---|
438 | ONLY: qc, nc, qr, nr |
---|
439 | |
---|
440 | USE cloud_parameters, & |
---|
441 | ONLY: hyrho |
---|
442 | |
---|
443 | USE control_parameters, & |
---|
444 | ONLY: microphysics_morrison |
---|
445 | |
---|
446 | USE cpulog, & |
---|
447 | ONLY: cpu_log, log_point_s |
---|
448 | |
---|
449 | USE indices, & |
---|
450 | ONLY: nxlg, nxrg, nyng, nysg, nzb, nzt, wall_flags_0 |
---|
451 | |
---|
452 | USE kinds |
---|
453 | |
---|
454 | IMPLICIT NONE |
---|
455 | |
---|
456 | INTEGER(iwp) :: i !< |
---|
457 | INTEGER(iwp) :: j !< |
---|
458 | INTEGER(iwp) :: k !< |
---|
459 | |
---|
460 | CALL cpu_log( log_point_s(54), 'adjust_cloud', 'start' ) |
---|
461 | |
---|
462 | DO i = nxlg, nxrg |
---|
463 | DO j = nysg, nyng |
---|
464 | DO k = nzb+1, nzt |
---|
465 | IF ( qr(k,j,i) <= eps_sb ) THEN |
---|
466 | qr(k,j,i) = 0.0_wp |
---|
467 | nr(k,j,i) = 0.0_wp |
---|
468 | ELSE |
---|
469 | IF ( nr(k,j,i) * xrmin > qr(k,j,i) * hyrho(k) ) THEN |
---|
470 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmin * & |
---|
471 | MERGE( 1.0_wp, 0.0_wp, & |
---|
472 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
473 | ELSEIF ( nr(k,j,i) * xrmax < qr(k,j,i) * hyrho(k) ) THEN |
---|
474 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmax * & |
---|
475 | MERGE( 1.0_wp, 0.0_wp, & |
---|
476 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
477 | ENDIF |
---|
478 | ENDIF |
---|
479 | IF ( microphysics_morrison ) THEN |
---|
480 | IF ( qc(k,j,i) <= eps_sb ) THEN |
---|
481 | qc(k,j,i) = 0.0_wp |
---|
482 | nc(k,j,i) = 0.0_wp |
---|
483 | ELSE |
---|
484 | IF ( nc(k,j,i) * xcmin > qc(k,j,i) * hyrho(k) ) THEN |
---|
485 | nc(k,j,i) = qc(k,j,i) * hyrho(k) / xcmin * & |
---|
486 | MERGE( 1.0_wp, 0.0_wp, & |
---|
487 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
488 | ENDIF |
---|
489 | ENDIF |
---|
490 | ENDIF |
---|
491 | ENDDO |
---|
492 | ENDDO |
---|
493 | ENDDO |
---|
494 | |
---|
495 | CALL cpu_log( log_point_s(54), 'adjust_cloud', 'stop' ) |
---|
496 | |
---|
497 | END SUBROUTINE adjust_cloud |
---|
498 | |
---|
499 | !------------------------------------------------------------------------------! |
---|
500 | ! Description: |
---|
501 | ! ------------ |
---|
502 | !> Calculate number of activated condensation nucleii after simple activation |
---|
503 | !> scheme of Twomey, 1959. |
---|
504 | !------------------------------------------------------------------------------! |
---|
505 | SUBROUTINE activation |
---|
506 | |
---|
507 | USE arrays_3d, & |
---|
508 | ONLY: hyp, nc, nr, pt, q, qc, qr |
---|
509 | |
---|
510 | USE cloud_parameters, & |
---|
511 | ONLY: hyrho, l_d_cp, l_d_r, l_v, rho_l, r_v, t_d_pt |
---|
512 | |
---|
513 | USE constants, & |
---|
514 | ONLY: pi |
---|
515 | |
---|
516 | USE cpulog, & |
---|
517 | ONLY: cpu_log, log_point_s |
---|
518 | |
---|
519 | USE indices, & |
---|
520 | ONLY: nxlg, nxrg, nysg, nyng, nzb, nzt |
---|
521 | |
---|
522 | USE kinds |
---|
523 | |
---|
524 | USE control_parameters, & |
---|
525 | ONLY: simulated_time |
---|
526 | |
---|
527 | USE particle_attributes, & |
---|
528 | ONLY: molecular_weight_of_solute, molecular_weight_of_water, rho_s, & |
---|
529 | log_sigma, vanthoff |
---|
530 | |
---|
531 | IMPLICIT NONE |
---|
532 | |
---|
533 | INTEGER(iwp) :: i !< |
---|
534 | INTEGER(iwp) :: j !< |
---|
535 | INTEGER(iwp) :: k !< |
---|
536 | |
---|
537 | REAL(wp) :: activ !< |
---|
538 | REAL(wp) :: afactor !< |
---|
539 | REAL(wp) :: alpha !< |
---|
540 | REAL(wp) :: beta_act !< |
---|
541 | REAL(wp) :: bfactor !< |
---|
542 | REAL(wp) :: e_s !< |
---|
543 | REAL(wp) :: k_act !< |
---|
544 | REAL(wp) :: n_act !< |
---|
545 | REAL(wp) :: n_ccn !< |
---|
546 | REAL(wp) :: q_s !< |
---|
547 | REAL(wp) :: rd0 !< |
---|
548 | REAL(wp) :: s_0 !< |
---|
549 | REAL(wp) :: sat !< |
---|
550 | REAL(wp) :: sat_max !< |
---|
551 | REAL(wp) :: sigma !< |
---|
552 | REAL(wp) :: t_int !< |
---|
553 | REAL(wp) :: t_l !< |
---|
554 | |
---|
555 | CALL cpu_log( log_point_s(65), 'activation', 'start' ) |
---|
556 | |
---|
557 | DO i = nxlg, nxrg |
---|
558 | DO j = nysg, nyng |
---|
559 | DO k = nzb+1, nzt |
---|
560 | |
---|
561 | ! |
---|
562 | !-- Actual liquid water temperature: |
---|
563 | t_l = t_d_pt(k) * pt(k,j,i) |
---|
564 | |
---|
565 | ! |
---|
566 | !-- Calculate actual temperature |
---|
567 | t_int = pt(k,j,i) * ( hyp(k) / 100000.0_wp )**0.286_wp |
---|
568 | ! |
---|
569 | !-- Saturation vapor pressure at t_l: |
---|
570 | e_s = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
571 | ( t_l - 35.86_wp ) & |
---|
572 | ) |
---|
573 | ! |
---|
574 | !-- Computation of saturation humidity: |
---|
575 | q_s = 0.622_wp * e_s / ( hyp(k) - 0.378_wp * e_s ) |
---|
576 | alpha = 0.622_wp * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
577 | q_s = q_s * ( 1.0_wp + alpha * q(k,j,i) ) / & |
---|
578 | ( 1.0_wp + alpha * q_s ) |
---|
579 | |
---|
580 | !-- Supersaturation: |
---|
581 | sat = ( q(k,j,i) - qr(k,j,i) - qc(k,j,i) ) / q_s - 1.0_wp |
---|
582 | |
---|
583 | ! |
---|
584 | !-- Prescribe parameters for activation |
---|
585 | !-- (see: Bott + Trautmann, 2002, Atm. Res., 64) |
---|
586 | k_act = 0.7_wp |
---|
587 | |
---|
588 | IF ( sat >= 0.0 .AND. .NOT. curvature_solution_effects_bulk ) THEN |
---|
589 | ! |
---|
590 | !-- Compute the number of activated Aerosols |
---|
591 | !-- (see: Twomey, 1959, Pure and applied Geophysics, 43) |
---|
592 | n_act = na_init * sat**k_act |
---|
593 | ! |
---|
594 | !-- Compute the number of cloud droplets |
---|
595 | !-- (see: Morrison + Grabowski, 2007, JAS, 64) |
---|
596 | ! activ = MAX( n_act - nc(k,j,i), 0.0_wp) / dt_micro |
---|
597 | |
---|
598 | ! |
---|
599 | !-- Compute activation rate after Khairoutdinov and Kogan |
---|
600 | !-- (see: Khairoutdinov + Kogan, 2000, Mon. Wea. Rev., 128) |
---|
601 | sat_max = 1.0_wp / 100.0_wp |
---|
602 | activ = MAX( 0.0_wp, ( (na_init + nc(k,j,i) ) * MIN & |
---|
603 | ( 1.0_wp, ( sat / sat_max )**k_act) - nc(k,j,i) ) ) / & |
---|
604 | dt_micro |
---|
605 | ELSEIF ( sat >= 0.0 .AND. curvature_solution_effects_bulk ) THEN |
---|
606 | ! |
---|
607 | !-- Curvature effect (afactor) with surface tension |
---|
608 | !-- parameterization by Straka (2009) |
---|
609 | sigma = 0.0761_wp - 0.000155_wp * ( t_int - 273.15_wp ) |
---|
610 | afactor = 2.0_wp * sigma / ( rho_l * r_v * t_int ) |
---|
611 | ! |
---|
612 | !-- Solute effect (bfactor) |
---|
613 | bfactor = vanthoff * molecular_weight_of_water * & |
---|
614 | rho_s / ( molecular_weight_of_solute * rho_l ) |
---|
615 | |
---|
616 | ! |
---|
617 | !-- Prescribe power index that describes the soluble fraction |
---|
618 | !-- of an aerosol particle (beta) and mean geometric radius of |
---|
619 | !-- dry aerosol spectrum |
---|
620 | !-- (see: Morrison + Grabowski, 2007, JAS, 64) |
---|
621 | beta_act = 0.5_wp |
---|
622 | rd0 = 0.05E-6_wp |
---|
623 | ! |
---|
624 | !-- Calculate mean geometric supersaturation (s_0) with |
---|
625 | !-- parameterization by Khvorostyanov and Curry (2006) |
---|
626 | s_0 = rd0 **(- ( 1.0_wp + beta_act ) ) * & |
---|
627 | ( 4.0_wp * afactor**3 / ( 27.0_wp * bfactor ) )**0.5_wp |
---|
628 | |
---|
629 | ! |
---|
630 | !-- Calculate number of activated CCN as a function of |
---|
631 | !-- supersaturation and taking Koehler theory into account |
---|
632 | !-- (see: Khvorostyanov + Curry, 2006, J. Geo. Res., 111) |
---|
633 | n_ccn = ( na_init / 2.0_wp ) * ( 1.0_wp - ERF( & |
---|
634 | LOG( s_0 / sat ) / ( SQRT(2.0_wp) * log_sigma(1) ) ) ) |
---|
635 | activ = MAX( ( n_ccn - nc(k,j,i) ) / dt_micro, 0.0_wp ) |
---|
636 | ENDIF |
---|
637 | |
---|
638 | nc(k,j,i) = MIN( (nc(k,j,i) + activ * dt_micro), na_init) |
---|
639 | |
---|
640 | ENDDO |
---|
641 | ENDDO |
---|
642 | ENDDO |
---|
643 | |
---|
644 | CALL cpu_log( log_point_s(65), 'activation', 'stop' ) |
---|
645 | |
---|
646 | END SUBROUTINE activation |
---|
647 | |
---|
648 | |
---|
649 | !------------------------------------------------------------------------------! |
---|
650 | ! Description: |
---|
651 | ! ------------ |
---|
652 | !> Calculate condensation rate for cloud water content (after Khairoutdinov and |
---|
653 | !> Kogan, 2000). |
---|
654 | !------------------------------------------------------------------------------! |
---|
655 | SUBROUTINE condensation |
---|
656 | |
---|
657 | USE arrays_3d, & |
---|
658 | ONLY: hyp, nr, pt, q, qc, qr, nc |
---|
659 | |
---|
660 | USE cloud_parameters, & |
---|
661 | ONLY: hyrho, l_d_cp, l_d_r, l_v, r_v, t_d_pt |
---|
662 | |
---|
663 | USE constants, & |
---|
664 | ONLY: pi |
---|
665 | |
---|
666 | USE cpulog, & |
---|
667 | ONLY: cpu_log, log_point_s |
---|
668 | |
---|
669 | USE indices, & |
---|
670 | ONLY: nxlg, nxrg, nysg, nyng, nzb, nzt |
---|
671 | |
---|
672 | USE kinds |
---|
673 | |
---|
674 | USE control_parameters, & |
---|
675 | ONLY: simulated_time |
---|
676 | |
---|
677 | IMPLICIT NONE |
---|
678 | |
---|
679 | INTEGER(iwp) :: i !< |
---|
680 | INTEGER(iwp) :: j !< |
---|
681 | INTEGER(iwp) :: k !< |
---|
682 | |
---|
683 | REAL(wp) :: alpha !< |
---|
684 | REAL(wp) :: cond !< |
---|
685 | REAL(wp) :: cond_max !< |
---|
686 | REAL(wp) :: dc !< |
---|
687 | REAL(wp) :: e_s !< |
---|
688 | REAL(wp) :: evap !< |
---|
689 | REAL(wp) :: evap_nc !< |
---|
690 | REAL(wp) :: g_fac !< |
---|
691 | REAL(wp) :: nc_0 !< |
---|
692 | REAL(wp) :: q_s !< |
---|
693 | REAL(wp) :: sat !< |
---|
694 | REAL(wp) :: t_l !< |
---|
695 | REAL(wp) :: temp !< |
---|
696 | REAL(wp) :: xc !< |
---|
697 | |
---|
698 | CALL cpu_log( log_point_s(66), 'condensation', 'start' ) |
---|
699 | |
---|
700 | DO i = nxlg, nxrg |
---|
701 | DO j = nysg, nyng |
---|
702 | DO k = nzb+1, nzt |
---|
703 | ! |
---|
704 | !-- Actual liquid water temperature: |
---|
705 | t_l = t_d_pt(k) * pt(k,j,i) |
---|
706 | ! |
---|
707 | !-- Saturation vapor pressure at t_l: |
---|
708 | e_s = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
709 | ( t_l - 35.86_wp ) & |
---|
710 | ) |
---|
711 | ! |
---|
712 | !-- Computation of saturation humidity: |
---|
713 | q_s = 0.622_wp * e_s / ( hyp(k) - 0.378_wp * e_s ) |
---|
714 | alpha = 0.622_wp * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
715 | q_s = q_s * ( 1.0_wp + alpha * q(k,j,i) ) / & |
---|
716 | ( 1.0_wp + alpha * q_s ) |
---|
717 | |
---|
718 | !-- Supersaturation: |
---|
719 | sat = ( q(k,j,i) - qr(k,j,i) - qc(k,j,i) ) / q_s - 1.0_wp |
---|
720 | |
---|
721 | ! |
---|
722 | !-- Actual temperature: |
---|
723 | temp = t_l + l_d_cp * ( qc(k,j,i) + qr(k,j,i) ) |
---|
724 | |
---|
725 | g_fac = 1.0_wp / ( ( l_v / ( r_v * temp ) - 1.0_wp ) * & |
---|
726 | l_v / ( thermal_conductivity_l * temp ) & |
---|
727 | + r_v * temp / ( diff_coeff_l * e_s ) & |
---|
728 | ) |
---|
729 | ! |
---|
730 | !-- Mean weight of cloud drops |
---|
731 | IF ( nc(k,j,i) <= 0.0_wp) CYCLE |
---|
732 | xc = MAX( (hyrho(k) * qc(k,j,i) / nc(k,j,i)), xcmin) |
---|
733 | ! |
---|
734 | !-- Weight averaged diameter of cloud drops: |
---|
735 | dc = ( xc * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
736 | ! |
---|
737 | !-- Integral diameter of cloud drops |
---|
738 | nc_0 = nc(k,j,i) * dc |
---|
739 | ! |
---|
740 | !-- Condensation needs only to be calculated in supersaturated regions |
---|
741 | IF ( sat > 0.0_wp ) THEN |
---|
742 | ! |
---|
743 | !-- Condensation rate of cloud water content |
---|
744 | !-- after KK scheme. |
---|
745 | !-- (see: Khairoutdinov + Kogan, 2000, Mon. Wea. Rev.,128) |
---|
746 | cond = 2.0_wp * pi * nc_0 * g_fac * sat / hyrho(k) |
---|
747 | cond_max = q(k,j,i) - q_s - qc(k,j,i) - qr(k,j,i) |
---|
748 | cond = MIN( cond, cond_max / dt_micro ) |
---|
749 | |
---|
750 | qc(k,j,i) = qc(k,j,i) + cond * dt_micro |
---|
751 | ELSEIF ( sat < 0.0_wp ) THEN |
---|
752 | evap = 2.0_wp * pi * nc_0 * g_fac * sat / hyrho(k) |
---|
753 | evap = MAX( evap, -qc(k,j,i) / dt_micro ) |
---|
754 | |
---|
755 | qc(k,j,i) = qc(k,j,i) + evap * dt_micro |
---|
756 | ENDIF |
---|
757 | IF ( nc(k,j,i) * xcmin > qc(k,j,i) * hyrho(k) ) THEN |
---|
758 | nc(k,j,i) = qc(k,j,i) * hyrho(k) / xcmin |
---|
759 | ENDIF |
---|
760 | ENDDO |
---|
761 | ENDDO |
---|
762 | ENDDO |
---|
763 | |
---|
764 | CALL cpu_log( log_point_s(66), 'condensation', 'stop' ) |
---|
765 | |
---|
766 | END SUBROUTINE condensation |
---|
767 | |
---|
768 | |
---|
769 | !------------------------------------------------------------------------------! |
---|
770 | ! Description: |
---|
771 | ! ------------ |
---|
772 | !> Autoconversion rate (Seifert and Beheng, 2006). |
---|
773 | !------------------------------------------------------------------------------! |
---|
774 | SUBROUTINE autoconversion |
---|
775 | |
---|
776 | USE arrays_3d, & |
---|
777 | ONLY: diss, dzu, nc, nr, qc, qr |
---|
778 | |
---|
779 | USE cloud_parameters, & |
---|
780 | ONLY: hyrho |
---|
781 | |
---|
782 | USE control_parameters, & |
---|
783 | ONLY: microphysics_morrison, rho_surface |
---|
784 | |
---|
785 | USE cpulog, & |
---|
786 | ONLY: cpu_log, log_point_s |
---|
787 | |
---|
788 | USE grid_variables, & |
---|
789 | ONLY: dx, dy |
---|
790 | |
---|
791 | USE indices, & |
---|
792 | ONLY: nxlg, nxrg, nyng, nysg, nzb, nzt, wall_flags_0 |
---|
793 | |
---|
794 | USE kinds |
---|
795 | |
---|
796 | IMPLICIT NONE |
---|
797 | |
---|
798 | INTEGER(iwp) :: i !< |
---|
799 | INTEGER(iwp) :: j !< |
---|
800 | INTEGER(iwp) :: k !< |
---|
801 | |
---|
802 | REAL(wp) :: alpha_cc !< |
---|
803 | REAL(wp) :: autocon !< |
---|
804 | REAL(wp) :: dissipation !< |
---|
805 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
806 | REAL(wp) :: k_au !< |
---|
807 | REAL(wp) :: l_mix !< |
---|
808 | REAL(wp) :: nc_auto !< |
---|
809 | REAL(wp) :: nu_c !< |
---|
810 | REAL(wp) :: phi_au !< |
---|
811 | REAL(wp) :: r_cc !< |
---|
812 | REAL(wp) :: rc !< |
---|
813 | REAL(wp) :: re_lambda !< |
---|
814 | REAL(wp) :: sigma_cc !< |
---|
815 | REAL(wp) :: tau_cloud !< |
---|
816 | REAL(wp) :: xc !< |
---|
817 | |
---|
818 | CALL cpu_log( log_point_s(55), 'autoconversion', 'start' ) |
---|
819 | |
---|
820 | DO i = nxlg, nxrg |
---|
821 | DO j = nysg, nyng |
---|
822 | DO k = nzb+1, nzt |
---|
823 | ! |
---|
824 | !-- Predetermine flag to mask topography |
---|
825 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
826 | |
---|
827 | nc_auto = MERGE( nc(k,j,i), nc_const, microphysics_morrison ) |
---|
828 | |
---|
829 | IF ( qc(k,j,i) > eps_sb ) THEN |
---|
830 | |
---|
831 | k_au = k_cc / ( 20.0_wp * x0 ) |
---|
832 | ! |
---|
833 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
834 | !-- (1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr(k,j,i) )) |
---|
835 | tau_cloud = 1.0_wp - qc(k,j,i) / ( qr(k,j,i) + qc(k,j,i) ) |
---|
836 | ! |
---|
837 | !-- Universal function for autoconversion process |
---|
838 | !-- (Seifert and Beheng, 2006): |
---|
839 | phi_au = 600.0_wp * tau_cloud**0.68_wp * & |
---|
840 | ( 1.0_wp - tau_cloud**0.68_wp )**3 |
---|
841 | ! |
---|
842 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
843 | !-- (Use constant nu_c = 1.0_wp instead?) |
---|
844 | nu_c = 1.0_wp !MAX( 0.0_wp, 1580.0_wp * hyrho(k) * qc(k,j,i) - 0.28_wp ) |
---|
845 | ! |
---|
846 | !-- Mean weight of cloud droplets: |
---|
847 | xc = hyrho(k) * qc(k,j,i) / nc_auto |
---|
848 | ! |
---|
849 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
850 | !-- Nuijens and Stevens, 2010) |
---|
851 | IF ( collision_turbulence ) THEN |
---|
852 | ! |
---|
853 | !-- Weight averaged radius of cloud droplets: |
---|
854 | rc = 0.5_wp * ( xc * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
855 | |
---|
856 | alpha_cc = ( a_1 + a_2 * nu_c ) / ( 1.0_wp + a_3 * nu_c ) |
---|
857 | r_cc = ( b_1 + b_2 * nu_c ) / ( 1.0_wp + b_3 * nu_c ) |
---|
858 | sigma_cc = ( c_1 + c_2 * nu_c ) / ( 1.0_wp + c_3 * nu_c ) |
---|
859 | ! |
---|
860 | !-- Mixing length (neglecting distance to ground and |
---|
861 | !-- stratification) |
---|
862 | l_mix = ( dx * dy * dzu(k) )**( 1.0_wp / 3.0_wp ) |
---|
863 | ! |
---|
864 | !-- Limit dissipation rate according to Seifert, Nuijens and |
---|
865 | !-- Stevens (2010) |
---|
866 | dissipation = MIN( 0.06_wp, diss(k,j,i) ) |
---|
867 | ! |
---|
868 | !-- Compute Taylor-microscale Reynolds number: |
---|
869 | re_lambda = 6.0_wp / 11.0_wp * & |
---|
870 | ( l_mix / c_const )**( 2.0_wp / 3.0_wp ) * & |
---|
871 | SQRT( 15.0_wp / kin_vis_air ) * & |
---|
872 | dissipation**( 1.0_wp / 6.0_wp ) |
---|
873 | ! |
---|
874 | !-- The factor of 1.0E4 is needed to convert the dissipation |
---|
875 | !-- rate from m2 s-3 to cm2 s-3. |
---|
876 | k_au = k_au * ( 1.0_wp + & |
---|
877 | dissipation * 1.0E4_wp * & |
---|
878 | ( re_lambda * 1.0E-3_wp )**0.25_wp * & |
---|
879 | ( alpha_cc * EXP( -1.0_wp * ( ( rc - & |
---|
880 | r_cc ) / & |
---|
881 | sigma_cc )**2 & |
---|
882 | ) + beta_cc & |
---|
883 | ) & |
---|
884 | ) |
---|
885 | ENDIF |
---|
886 | ! |
---|
887 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
888 | autocon = k_au * ( nu_c + 2.0_wp ) * ( nu_c + 4.0_wp ) / & |
---|
889 | ( nu_c + 1.0_wp )**2 * qc(k,j,i)**2 * xc**2 * & |
---|
890 | ( 1.0_wp + phi_au / ( 1.0_wp - tau_cloud )**2 ) * & |
---|
891 | rho_surface |
---|
892 | autocon = MIN( autocon, qc(k,j,i) / dt_micro ) |
---|
893 | |
---|
894 | qr(k,j,i) = qr(k,j,i) + autocon * dt_micro * flag |
---|
895 | qc(k,j,i) = qc(k,j,i) - autocon * dt_micro * flag |
---|
896 | nr(k,j,i) = nr(k,j,i) + autocon / x0 * hyrho(k) * dt_micro & |
---|
897 | * flag |
---|
898 | IF ( microphysics_morrison ) THEN |
---|
899 | nc(k,j,i) = nc(k,j,i) - MIN( nc(k,j,i), 2.0_wp * & |
---|
900 | autocon / x0 * hyrho(k) * dt_micro * flag ) |
---|
901 | ENDIF |
---|
902 | |
---|
903 | ENDIF |
---|
904 | |
---|
905 | ENDDO |
---|
906 | ENDDO |
---|
907 | ENDDO |
---|
908 | |
---|
909 | CALL cpu_log( log_point_s(55), 'autoconversion', 'stop' ) |
---|
910 | |
---|
911 | END SUBROUTINE autoconversion |
---|
912 | |
---|
913 | |
---|
914 | !------------------------------------------------------------------------------! |
---|
915 | ! Description: |
---|
916 | ! ------------ |
---|
917 | !> Autoconversion process (Kessler, 1969). |
---|
918 | !------------------------------------------------------------------------------! |
---|
919 | SUBROUTINE autoconversion_kessler |
---|
920 | |
---|
921 | USE arrays_3d, & |
---|
922 | ONLY: dzw, pt, prr, q, qc |
---|
923 | |
---|
924 | USE cloud_parameters, & |
---|
925 | ONLY: l_d_cp, pt_d_t |
---|
926 | |
---|
927 | USE indices, & |
---|
928 | ONLY: nxlg, nxrg, nyng, nysg, nzb, nzt, wall_flags_0 |
---|
929 | |
---|
930 | USE kinds |
---|
931 | |
---|
932 | USE surface_mod, & |
---|
933 | ONLY: get_topography_top_index |
---|
934 | |
---|
935 | |
---|
936 | IMPLICIT NONE |
---|
937 | |
---|
938 | INTEGER(iwp) :: i !< |
---|
939 | INTEGER(iwp) :: j !< |
---|
940 | INTEGER(iwp) :: k !< |
---|
941 | INTEGER(iwp) :: k_wall !< topgraphy top index |
---|
942 | |
---|
943 | REAL(wp) :: dqdt_precip !< |
---|
944 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
945 | |
---|
946 | DO i = nxlg, nxrg |
---|
947 | DO j = nysg, nyng |
---|
948 | ! |
---|
949 | !-- Determine vertical index of topography top |
---|
950 | k_wall = get_topography_top_index( j, i, 's' ) |
---|
951 | DO k = nzb+1, nzt |
---|
952 | ! |
---|
953 | !-- Predetermine flag to mask topography |
---|
954 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
955 | |
---|
956 | IF ( qc(k,j,i) > ql_crit ) THEN |
---|
957 | dqdt_precip = prec_time_const * ( qc(k,j,i) - ql_crit ) |
---|
958 | ELSE |
---|
959 | dqdt_precip = 0.0_wp |
---|
960 | ENDIF |
---|
961 | |
---|
962 | qc(k,j,i) = qc(k,j,i) - dqdt_precip * dt_micro * flag |
---|
963 | q(k,j,i) = q(k,j,i) - dqdt_precip * dt_micro * flag |
---|
964 | pt(k,j,i) = pt(k,j,i) + dqdt_precip * dt_micro * l_d_cp * & |
---|
965 | pt_d_t(k) * flag |
---|
966 | |
---|
967 | ! |
---|
968 | !-- Compute the rain rate (stored on surface grid point) |
---|
969 | prr(k_wall,j,i) = prr(k_wall,j,i) + dqdt_precip * dzw(k) * flag |
---|
970 | |
---|
971 | ENDDO |
---|
972 | ENDDO |
---|
973 | ENDDO |
---|
974 | |
---|
975 | END SUBROUTINE autoconversion_kessler |
---|
976 | |
---|
977 | |
---|
978 | !------------------------------------------------------------------------------! |
---|
979 | ! Description: |
---|
980 | ! ------------ |
---|
981 | !> Accretion rate (Seifert and Beheng, 2006). |
---|
982 | !------------------------------------------------------------------------------! |
---|
983 | SUBROUTINE accretion |
---|
984 | |
---|
985 | USE arrays_3d, & |
---|
986 | ONLY: diss, qc, qr, nc |
---|
987 | |
---|
988 | USE cloud_parameters, & |
---|
989 | ONLY: hyrho |
---|
990 | |
---|
991 | USE control_parameters, & |
---|
992 | ONLY: microphysics_morrison, rho_surface |
---|
993 | |
---|
994 | USE cpulog, & |
---|
995 | ONLY: cpu_log, log_point_s |
---|
996 | |
---|
997 | USE indices, & |
---|
998 | ONLY: nxlg, nxrg, nyng, nysg, nzb, nzt, wall_flags_0 |
---|
999 | |
---|
1000 | USE kinds |
---|
1001 | |
---|
1002 | IMPLICIT NONE |
---|
1003 | |
---|
1004 | INTEGER(iwp) :: i !< |
---|
1005 | INTEGER(iwp) :: j !< |
---|
1006 | INTEGER(iwp) :: k !< |
---|
1007 | |
---|
1008 | REAL(wp) :: accr !< |
---|
1009 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
1010 | REAL(wp) :: k_cr !< |
---|
1011 | REAL(wp) :: nc_accr !< |
---|
1012 | REAL(wp) :: phi_ac !< |
---|
1013 | REAL(wp) :: tau_cloud !< |
---|
1014 | REAL(wp) :: xc !< |
---|
1015 | |
---|
1016 | |
---|
1017 | CALL cpu_log( log_point_s(56), 'accretion', 'start' ) |
---|
1018 | |
---|
1019 | DO i = nxlg, nxrg |
---|
1020 | DO j = nysg, nyng |
---|
1021 | DO k = nzb+1, nzt |
---|
1022 | ! |
---|
1023 | !-- Predetermine flag to mask topography |
---|
1024 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1025 | |
---|
1026 | nc_accr = MERGE( nc(k,j,i), nc_const, microphysics_morrison ) |
---|
1027 | |
---|
1028 | IF ( ( qc(k,j,i) > eps_sb ) .AND. ( qr(k,j,i) > eps_sb ) & |
---|
1029 | .AND. ( nc_accr > eps_mr ) ) THEN |
---|
1030 | ! |
---|
1031 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
1032 | tau_cloud = 1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr(k,j,i) ) |
---|
1033 | ! |
---|
1034 | !-- Universal function for accretion process (Seifert and |
---|
1035 | !-- Beheng, 2001): |
---|
1036 | phi_ac = ( tau_cloud / ( tau_cloud + 5.0E-5_wp ) )**4 |
---|
1037 | |
---|
1038 | ! |
---|
1039 | !-- Mean weight of cloud drops |
---|
1040 | xc = MAX( (hyrho(k) * qc(k,j,i) / nc_accr), xcmin) |
---|
1041 | ! |
---|
1042 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
1043 | !-- Nuijens and Stevens, 2010). The factor of 1.0E4 is needed to |
---|
1044 | !-- convert the dissipation rate (diss) from m2 s-3 to cm2 s-3. |
---|
1045 | IF ( collision_turbulence ) THEN |
---|
1046 | k_cr = k_cr0 * ( 1.0_wp + 0.05_wp * & |
---|
1047 | MIN( 600.0_wp, & |
---|
1048 | diss(k,j,i) * 1.0E4_wp )**0.25_wp & |
---|
1049 | ) |
---|
1050 | ELSE |
---|
1051 | k_cr = k_cr0 |
---|
1052 | ENDIF |
---|
1053 | ! |
---|
1054 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
1055 | accr = k_cr * qc(k,j,i) * qr(k,j,i) * phi_ac * & |
---|
1056 | SQRT( rho_surface * hyrho(k) ) |
---|
1057 | accr = MIN( accr, qc(k,j,i) / dt_micro ) |
---|
1058 | |
---|
1059 | qr(k,j,i) = qr(k,j,i) + accr * dt_micro * flag |
---|
1060 | qc(k,j,i) = qc(k,j,i) - accr * dt_micro * flag |
---|
1061 | IF ( microphysics_morrison ) THEN |
---|
1062 | nc(k,j,i) = nc(k,j,i) - MIN( nc(k,j,i), & |
---|
1063 | accr / xc * hyrho(k) * dt_micro * flag) |
---|
1064 | ENDIF |
---|
1065 | |
---|
1066 | ENDIF |
---|
1067 | |
---|
1068 | ENDDO |
---|
1069 | ENDDO |
---|
1070 | ENDDO |
---|
1071 | |
---|
1072 | CALL cpu_log( log_point_s(56), 'accretion', 'stop' ) |
---|
1073 | |
---|
1074 | END SUBROUTINE accretion |
---|
1075 | |
---|
1076 | |
---|
1077 | !------------------------------------------------------------------------------! |
---|
1078 | ! Description: |
---|
1079 | ! ------------ |
---|
1080 | !> Collisional breakup rate (Seifert, 2008). |
---|
1081 | !------------------------------------------------------------------------------! |
---|
1082 | SUBROUTINE selfcollection_breakup |
---|
1083 | |
---|
1084 | USE arrays_3d, & |
---|
1085 | ONLY: nr, qr |
---|
1086 | |
---|
1087 | USE cloud_parameters, & |
---|
1088 | ONLY: hyrho |
---|
1089 | |
---|
1090 | USE control_parameters, & |
---|
1091 | ONLY: rho_surface |
---|
1092 | |
---|
1093 | USE cpulog, & |
---|
1094 | ONLY: cpu_log, log_point_s |
---|
1095 | |
---|
1096 | USE indices, & |
---|
1097 | ONLY: nxlg, nxrg, nyng, nysg, nzb, nzt, wall_flags_0 |
---|
1098 | |
---|
1099 | USE kinds |
---|
1100 | |
---|
1101 | IMPLICIT NONE |
---|
1102 | |
---|
1103 | INTEGER(iwp) :: i !< |
---|
1104 | INTEGER(iwp) :: j !< |
---|
1105 | INTEGER(iwp) :: k !< |
---|
1106 | |
---|
1107 | REAL(wp) :: breakup !< |
---|
1108 | REAL(wp) :: dr !< |
---|
1109 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
1110 | REAL(wp) :: phi_br !< |
---|
1111 | REAL(wp) :: selfcoll !< |
---|
1112 | |
---|
1113 | CALL cpu_log( log_point_s(57), 'selfcollection', 'start' ) |
---|
1114 | |
---|
1115 | DO i = nxlg, nxrg |
---|
1116 | DO j = nysg, nyng |
---|
1117 | DO k = nzb+1, nzt |
---|
1118 | ! |
---|
1119 | !-- Predetermine flag to mask topography |
---|
1120 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1121 | |
---|
1122 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
1123 | ! |
---|
1124 | !-- Selfcollection rate (Seifert and Beheng, 2001): |
---|
1125 | selfcoll = k_rr * nr(k,j,i) * qr(k,j,i) * & |
---|
1126 | SQRT( hyrho(k) * rho_surface ) |
---|
1127 | ! |
---|
1128 | !-- Weight averaged diameter of rain drops: |
---|
1129 | dr = ( hyrho(k) * qr(k,j,i) / & |
---|
1130 | nr(k,j,i) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
1131 | ! |
---|
1132 | !-- Collisional breakup rate (Seifert, 2008): |
---|
1133 | IF ( dr >= 0.3E-3_wp ) THEN |
---|
1134 | phi_br = k_br * ( dr - 1.1E-3_wp ) |
---|
1135 | breakup = selfcoll * ( phi_br + 1.0_wp ) |
---|
1136 | ELSE |
---|
1137 | breakup = 0.0_wp |
---|
1138 | ENDIF |
---|
1139 | |
---|
1140 | selfcoll = MAX( breakup - selfcoll, -nr(k,j,i) / dt_micro ) |
---|
1141 | nr(k,j,i) = nr(k,j,i) + selfcoll * dt_micro * flag |
---|
1142 | |
---|
1143 | ENDIF |
---|
1144 | ENDDO |
---|
1145 | ENDDO |
---|
1146 | ENDDO |
---|
1147 | |
---|
1148 | CALL cpu_log( log_point_s(57), 'selfcollection', 'stop' ) |
---|
1149 | |
---|
1150 | END SUBROUTINE selfcollection_breakup |
---|
1151 | |
---|
1152 | |
---|
1153 | !------------------------------------------------------------------------------! |
---|
1154 | ! Description: |
---|
1155 | ! ------------ |
---|
1156 | !> Evaporation of precipitable water. Condensation is neglected for |
---|
1157 | !> precipitable water. |
---|
1158 | !------------------------------------------------------------------------------! |
---|
1159 | SUBROUTINE evaporation_rain |
---|
1160 | |
---|
1161 | USE arrays_3d, & |
---|
1162 | ONLY: hyp, nr, pt, q, qc, qr |
---|
1163 | |
---|
1164 | USE cloud_parameters, & |
---|
1165 | ONLY: hyrho, l_d_cp, l_d_r, l_v, r_v, t_d_pt |
---|
1166 | |
---|
1167 | USE constants, & |
---|
1168 | ONLY: pi |
---|
1169 | |
---|
1170 | USE cpulog, & |
---|
1171 | ONLY: cpu_log, log_point_s |
---|
1172 | |
---|
1173 | USE indices, & |
---|
1174 | ONLY: nxlg, nxrg, nyng, nysg, nzb, nzt, wall_flags_0 |
---|
1175 | |
---|
1176 | USE kinds |
---|
1177 | |
---|
1178 | IMPLICIT NONE |
---|
1179 | |
---|
1180 | INTEGER(iwp) :: i !< |
---|
1181 | INTEGER(iwp) :: j !< |
---|
1182 | INTEGER(iwp) :: k !< |
---|
1183 | |
---|
1184 | REAL(wp) :: alpha !< |
---|
1185 | REAL(wp) :: dr !< |
---|
1186 | REAL(wp) :: e_s !< |
---|
1187 | REAL(wp) :: evap !< |
---|
1188 | REAL(wp) :: evap_nr !< |
---|
1189 | REAL(wp) :: f_vent !< |
---|
1190 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
1191 | REAL(wp) :: g_evap !< |
---|
1192 | REAL(wp) :: lambda_r !< |
---|
1193 | REAL(wp) :: mu_r !< |
---|
1194 | REAL(wp) :: mu_r_2 !< |
---|
1195 | REAL(wp) :: mu_r_5d2 !< |
---|
1196 | REAL(wp) :: nr_0 !< |
---|
1197 | REAL(wp) :: q_s !< |
---|
1198 | REAL(wp) :: sat !< |
---|
1199 | REAL(wp) :: t_l !< |
---|
1200 | REAL(wp) :: temp !< |
---|
1201 | REAL(wp) :: xr !< |
---|
1202 | |
---|
1203 | CALL cpu_log( log_point_s(58), 'evaporation', 'start' ) |
---|
1204 | |
---|
1205 | DO i = nxlg, nxrg |
---|
1206 | DO j = nysg, nyng |
---|
1207 | DO k = nzb+1, nzt |
---|
1208 | ! |
---|
1209 | !-- Predetermine flag to mask topography |
---|
1210 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1211 | |
---|
1212 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
1213 | ! |
---|
1214 | !-- Actual liquid water temperature: |
---|
1215 | t_l = t_d_pt(k) * pt(k,j,i) |
---|
1216 | ! |
---|
1217 | !-- Saturation vapor pressure at t_l: |
---|
1218 | e_s = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
1219 | ( t_l - 35.86_wp ) & |
---|
1220 | ) |
---|
1221 | ! |
---|
1222 | !-- Computation of saturation humidity: |
---|
1223 | q_s = 0.622_wp * e_s / ( hyp(k) - 0.378_wp * e_s ) |
---|
1224 | alpha = 0.622_wp * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
1225 | q_s = q_s * ( 1.0_wp + alpha * q(k,j,i) ) / & |
---|
1226 | ( 1.0_wp + alpha * q_s ) |
---|
1227 | ! |
---|
1228 | !-- Supersaturation: |
---|
1229 | sat = ( q(k,j,i) - qr(k,j,i) - qc(k,j,i) ) / q_s - 1.0_wp |
---|
1230 | ! |
---|
1231 | !-- Evaporation needs only to be calculated in subsaturated regions |
---|
1232 | IF ( sat < 0.0_wp ) THEN |
---|
1233 | ! |
---|
1234 | !-- Actual temperature: |
---|
1235 | temp = t_l + l_d_cp * ( qc(k,j,i) + qr(k,j,i) ) |
---|
1236 | |
---|
1237 | g_evap = 1.0_wp / ( ( l_v / ( r_v * temp ) - 1.0_wp ) * & |
---|
1238 | l_v / ( thermal_conductivity_l * temp ) & |
---|
1239 | + r_v * temp / ( diff_coeff_l * e_s ) & |
---|
1240 | ) |
---|
1241 | ! |
---|
1242 | !-- Mean weight of rain drops |
---|
1243 | xr = hyrho(k) * qr(k,j,i) / nr(k,j,i) |
---|
1244 | ! |
---|
1245 | !-- Weight averaged diameter of rain drops: |
---|
1246 | dr = ( xr * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
1247 | ! |
---|
1248 | !-- Compute ventilation factor and intercept parameter |
---|
1249 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
1250 | IF ( ventilation_effect ) THEN |
---|
1251 | ! |
---|
1252 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, |
---|
1253 | !-- 2005; Stevens and Seifert, 2008): |
---|
1254 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * & |
---|
1255 | ( dr - 1.4E-3_wp ) ) ) |
---|
1256 | ! |
---|
1257 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
1258 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
1259 | ( mu_r + 1.0_wp ) & |
---|
1260 | )**( 1.0_wp / 3.0_wp ) / dr |
---|
1261 | |
---|
1262 | mu_r_2 = mu_r + 2.0_wp |
---|
1263 | mu_r_5d2 = mu_r + 2.5_wp |
---|
1264 | |
---|
1265 | f_vent = a_vent * gamm( mu_r_2 ) * & |
---|
1266 | lambda_r**( -mu_r_2 ) + b_vent * & |
---|
1267 | schmidt_p_1d3 * SQRT( a_term / kin_vis_air ) *& |
---|
1268 | gamm( mu_r_5d2 ) * lambda_r**( -mu_r_5d2 ) * & |
---|
1269 | ( 1.0_wp - & |
---|
1270 | 0.5_wp * ( b_term / a_term ) * & |
---|
1271 | ( lambda_r / ( c_term + lambda_r ) & |
---|
1272 | )**mu_r_5d2 - & |
---|
1273 | 0.125_wp * ( b_term / a_term )**2 * & |
---|
1274 | ( lambda_r / ( 2.0_wp * c_term + lambda_r ) & |
---|
1275 | )**mu_r_5d2 - & |
---|
1276 | 0.0625_wp * ( b_term / a_term )**3 * & |
---|
1277 | ( lambda_r / ( 3.0_wp * c_term + lambda_r ) & |
---|
1278 | )**mu_r_5d2 - & |
---|
1279 | 0.0390625_wp * ( b_term / a_term )**4 * & |
---|
1280 | ( lambda_r / ( 4.0_wp * c_term + lambda_r ) & |
---|
1281 | )**mu_r_5d2 & |
---|
1282 | ) |
---|
1283 | |
---|
1284 | nr_0 = nr(k,j,i) * lambda_r**( mu_r + 1.0_wp ) / & |
---|
1285 | gamm( mu_r + 1.0_wp ) |
---|
1286 | ELSE |
---|
1287 | f_vent = 1.0_wp |
---|
1288 | nr_0 = nr(k,j,i) * dr |
---|
1289 | ENDIF |
---|
1290 | ! |
---|
1291 | !-- Evaporation rate of rain water content (Seifert and |
---|
1292 | !-- Beheng, 2006): |
---|
1293 | evap = 2.0_wp * pi * nr_0 * g_evap * f_vent * sat / & |
---|
1294 | hyrho(k) |
---|
1295 | evap = MAX( evap, -qr(k,j,i) / dt_micro ) |
---|
1296 | evap_nr = MAX( c_evap * evap / xr * hyrho(k), & |
---|
1297 | -nr(k,j,i) / dt_micro ) |
---|
1298 | |
---|
1299 | qr(k,j,i) = qr(k,j,i) + evap * dt_micro * flag |
---|
1300 | nr(k,j,i) = nr(k,j,i) + evap_nr * dt_micro * flag |
---|
1301 | |
---|
1302 | ENDIF |
---|
1303 | ENDIF |
---|
1304 | |
---|
1305 | ENDDO |
---|
1306 | ENDDO |
---|
1307 | ENDDO |
---|
1308 | |
---|
1309 | CALL cpu_log( log_point_s(58), 'evaporation', 'stop' ) |
---|
1310 | |
---|
1311 | END SUBROUTINE evaporation_rain |
---|
1312 | |
---|
1313 | |
---|
1314 | !------------------------------------------------------------------------------! |
---|
1315 | ! Description: |
---|
1316 | ! ------------ |
---|
1317 | !> Sedimentation of cloud droplets (Ackermann et al., 2009, MWR). |
---|
1318 | !------------------------------------------------------------------------------! |
---|
1319 | SUBROUTINE sedimentation_cloud |
---|
1320 | |
---|
1321 | USE arrays_3d, & |
---|
1322 | ONLY: ddzu, dzu, nc, pt, prr, q, qc |
---|
1323 | |
---|
1324 | USE cloud_parameters, & |
---|
1325 | ONLY: hyrho, l_d_cp, pt_d_t |
---|
1326 | |
---|
1327 | USE control_parameters, & |
---|
1328 | ONLY: call_microphysics_at_all_substeps, & |
---|
1329 | intermediate_timestep_count, microphysics_morrison |
---|
1330 | |
---|
1331 | USE cpulog, & |
---|
1332 | ONLY: cpu_log, log_point_s |
---|
1333 | |
---|
1334 | USE indices, & |
---|
1335 | ONLY: nxlg, nxrg, nyng, nysg, nzb, nzt, wall_flags_0 |
---|
1336 | |
---|
1337 | USE kinds |
---|
1338 | |
---|
1339 | USE statistics, & |
---|
1340 | ONLY: weight_substep |
---|
1341 | |
---|
1342 | |
---|
1343 | IMPLICIT NONE |
---|
1344 | |
---|
1345 | INTEGER(iwp) :: i !< |
---|
1346 | INTEGER(iwp) :: j !< |
---|
1347 | INTEGER(iwp) :: k !< |
---|
1348 | |
---|
1349 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
1350 | REAL(wp) :: nc_sedi !< |
---|
1351 | |
---|
1352 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qc !< |
---|
1353 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_nc !< |
---|
1354 | |
---|
1355 | |
---|
1356 | CALL cpu_log( log_point_s(59), 'sed_cloud', 'start' ) |
---|
1357 | |
---|
1358 | sed_qc(nzt+1) = 0.0_wp |
---|
1359 | |
---|
1360 | DO i = nxlg, nxrg |
---|
1361 | DO j = nysg, nyng |
---|
1362 | DO k = nzt, nzb+1, -1 |
---|
1363 | ! |
---|
1364 | !-- Predetermine flag to mask topography |
---|
1365 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1366 | nc_sedi = MERGE ( nc(k,j,i), nc_const, microphysics_morrison ) |
---|
1367 | |
---|
1368 | ! |
---|
1369 | !-- Sedimentation fluxes for number concentration are only calculated |
---|
1370 | !-- for cloud_scheme = 'morrison' |
---|
1371 | IF ( microphysics_morrison ) THEN |
---|
1372 | IF ( qc(k,j,i) > eps_sb .AND. nc(k,j,i) > eps_mr ) THEN |
---|
1373 | sed_nc(k) = sed_qc_const * & |
---|
1374 | ( qc(k,j,i) * hyrho(k) )**( 2.0_wp / 3.0_wp ) * & |
---|
1375 | ( nc(k,j,i) )**( 1.0_wp / 3.0_wp ) |
---|
1376 | ELSE |
---|
1377 | sed_nc(k) = 0.0_wp |
---|
1378 | ENDIF |
---|
1379 | |
---|
1380 | sed_nc(k) = MIN( sed_nc(k), hyrho(k) * dzu(k+1) * & |
---|
1381 | nc(k,j,i) / dt_micro + sed_nc(k+1) & |
---|
1382 | ) * flag |
---|
1383 | |
---|
1384 | nc(k,j,i) = nc(k,j,i) + ( sed_nc(k+1) - sed_nc(k) ) * & |
---|
1385 | ddzu(k+1) / hyrho(k) * dt_micro * flag |
---|
1386 | ENDIF |
---|
1387 | |
---|
1388 | IF ( qc(k,j,i) > eps_sb ) THEN |
---|
1389 | sed_qc(k) = sed_qc_const * nc_sedi**( -2.0_wp / 3.0_wp ) * & |
---|
1390 | ( qc(k,j,i) * hyrho(k) )**( 5.0_wp / 3.0_wp ) * & |
---|
1391 | flag |
---|
1392 | ELSE |
---|
1393 | sed_qc(k) = 0.0_wp |
---|
1394 | ENDIF |
---|
1395 | |
---|
1396 | sed_qc(k) = MIN( sed_qc(k), hyrho(k) * dzu(k+1) * q(k,j,i) / & |
---|
1397 | dt_micro + sed_qc(k+1) & |
---|
1398 | ) * flag |
---|
1399 | |
---|
1400 | q(k,j,i) = q(k,j,i) + ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
1401 | ddzu(k+1) / hyrho(k) * dt_micro * flag |
---|
1402 | qc(k,j,i) = qc(k,j,i) + ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
1403 | ddzu(k+1) / hyrho(k) * dt_micro * flag |
---|
1404 | pt(k,j,i) = pt(k,j,i) - ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
1405 | ddzu(k+1) / hyrho(k) * l_d_cp * & |
---|
1406 | pt_d_t(k) * dt_micro * flag |
---|
1407 | |
---|
1408 | ! |
---|
1409 | !-- Compute the precipitation rate due to cloud (fog) droplets |
---|
1410 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
1411 | prr(k,j,i) = prr(k,j,i) + sed_qc(k) / hyrho(k) & |
---|
1412 | * weight_substep(intermediate_timestep_count) & |
---|
1413 | * flag |
---|
1414 | ELSE |
---|
1415 | prr(k,j,i) = prr(k,j,i) + sed_qc(k) / hyrho(k) * flag |
---|
1416 | ENDIF |
---|
1417 | |
---|
1418 | ENDDO |
---|
1419 | ENDDO |
---|
1420 | ENDDO |
---|
1421 | |
---|
1422 | CALL cpu_log( log_point_s(59), 'sed_cloud', 'stop' ) |
---|
1423 | |
---|
1424 | END SUBROUTINE sedimentation_cloud |
---|
1425 | |
---|
1426 | |
---|
1427 | !------------------------------------------------------------------------------! |
---|
1428 | ! Description: |
---|
1429 | ! ------------ |
---|
1430 | !> Computation of sedimentation flux. Implementation according to Stevens |
---|
1431 | !> and Seifert (2008). Code is based on UCLA-LES. |
---|
1432 | !------------------------------------------------------------------------------! |
---|
1433 | SUBROUTINE sedimentation_rain |
---|
1434 | |
---|
1435 | USE arrays_3d, & |
---|
1436 | ONLY: ddzu, dzu, nr, pt, prr, q, qr |
---|
1437 | |
---|
1438 | USE cloud_parameters, & |
---|
1439 | ONLY: hyrho, l_d_cp, pt_d_t |
---|
1440 | |
---|
1441 | USE control_parameters, & |
---|
1442 | ONLY: call_microphysics_at_all_substeps, intermediate_timestep_count |
---|
1443 | USE cpulog, & |
---|
1444 | ONLY: cpu_log, log_point_s |
---|
1445 | |
---|
1446 | USE indices, & |
---|
1447 | ONLY: nxlg, nxrg, nyng, nysg, nzb, nzt, wall_flags_0 |
---|
1448 | |
---|
1449 | USE kinds |
---|
1450 | |
---|
1451 | USE statistics, & |
---|
1452 | ONLY: weight_substep |
---|
1453 | |
---|
1454 | USE surface_mod, & |
---|
1455 | ONLY : bc_h |
---|
1456 | |
---|
1457 | IMPLICIT NONE |
---|
1458 | |
---|
1459 | INTEGER(iwp) :: i !< running index x direction |
---|
1460 | INTEGER(iwp) :: j !< running index y direction |
---|
1461 | INTEGER(iwp) :: k !< running index z direction |
---|
1462 | INTEGER(iwp) :: k_run !< |
---|
1463 | INTEGER(iwp) :: l !< running index of surface type |
---|
1464 | INTEGER(iwp) :: m !< running index surface elements |
---|
1465 | INTEGER(iwp) :: surf_e !< End index of surface elements at (j,i)-gridpoint |
---|
1466 | INTEGER(iwp) :: surf_s !< Start index of surface elements at (j,i)-gridpoint |
---|
1467 | |
---|
1468 | REAL(wp) :: c_run !< |
---|
1469 | REAL(wp) :: d_max !< |
---|
1470 | REAL(wp) :: d_mean !< |
---|
1471 | REAL(wp) :: d_min !< |
---|
1472 | REAL(wp) :: dr !< |
---|
1473 | REAL(wp) :: flux !< |
---|
1474 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
1475 | REAL(wp) :: lambda_r !< |
---|
1476 | REAL(wp) :: mu_r !< |
---|
1477 | REAL(wp) :: z_run !< |
---|
1478 | |
---|
1479 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_nr !< |
---|
1480 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_qr !< |
---|
1481 | REAL(wp), DIMENSION(nzb:nzt+1) :: nr_slope !< |
---|
1482 | REAL(wp), DIMENSION(nzb:nzt+1) :: qr_slope !< |
---|
1483 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_nr !< |
---|
1484 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qr !< |
---|
1485 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_nr !< |
---|
1486 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_qr !< |
---|
1487 | |
---|
1488 | CALL cpu_log( log_point_s(60), 'sed_rain', 'start' ) |
---|
1489 | |
---|
1490 | ! |
---|
1491 | !-- Compute velocities |
---|
1492 | DO i = nxlg, nxrg |
---|
1493 | DO j = nysg, nyng |
---|
1494 | DO k = nzb+1, nzt |
---|
1495 | ! |
---|
1496 | !-- Predetermine flag to mask topography |
---|
1497 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1498 | |
---|
1499 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
1500 | ! |
---|
1501 | !-- Weight averaged diameter of rain drops: |
---|
1502 | dr = ( hyrho(k) * qr(k,j,i) / & |
---|
1503 | nr(k,j,i) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
1504 | ! |
---|
1505 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
1506 | !-- Stevens and Seifert, 2008): |
---|
1507 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * & |
---|
1508 | ( dr - 1.4E-3_wp ) ) ) |
---|
1509 | ! |
---|
1510 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
1511 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
1512 | ( mu_r + 1.0_wp ) )**( 1.0_wp / 3.0_wp ) / dr |
---|
1513 | |
---|
1514 | w_nr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
1515 | a_term - b_term * ( 1.0_wp + & |
---|
1516 | c_term / & |
---|
1517 | lambda_r )**( -1.0_wp * & |
---|
1518 | ( mu_r + 1.0_wp ) ) & |
---|
1519 | ) & |
---|
1520 | ) * flag |
---|
1521 | |
---|
1522 | w_qr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
1523 | a_term - b_term * ( 1.0_wp + & |
---|
1524 | c_term / & |
---|
1525 | lambda_r )**( -1.0_wp * & |
---|
1526 | ( mu_r + 4.0_wp ) ) & |
---|
1527 | ) & |
---|
1528 | ) * flag |
---|
1529 | ELSE |
---|
1530 | w_nr(k) = 0.0_wp |
---|
1531 | w_qr(k) = 0.0_wp |
---|
1532 | ENDIF |
---|
1533 | ENDDO |
---|
1534 | ! |
---|
1535 | !-- Adjust boundary values using surface data type. |
---|
1536 | !-- Upward-facing |
---|
1537 | surf_s = bc_h(0)%start_index(j,i) |
---|
1538 | surf_e = bc_h(0)%end_index(j,i) |
---|
1539 | DO m = surf_s, surf_e |
---|
1540 | k = bc_h(0)%k(m) |
---|
1541 | w_nr(k-1) = w_nr(k) |
---|
1542 | w_qr(k-1) = w_qr(k) |
---|
1543 | ENDDO |
---|
1544 | ! |
---|
1545 | !-- Downward-facing |
---|
1546 | surf_s = bc_h(1)%start_index(j,i) |
---|
1547 | surf_e = bc_h(1)%end_index(j,i) |
---|
1548 | DO m = surf_s, surf_e |
---|
1549 | k = bc_h(1)%k(m) |
---|
1550 | w_nr(k+1) = w_nr(k) |
---|
1551 | w_qr(k+1) = w_qr(k) |
---|
1552 | ENDDO |
---|
1553 | ! |
---|
1554 | !-- Model top boundary value |
---|
1555 | w_nr(nzt+1) = 0.0_wp |
---|
1556 | w_qr(nzt+1) = 0.0_wp |
---|
1557 | ! |
---|
1558 | !-- Compute Courant number |
---|
1559 | DO k = nzb+1, nzt |
---|
1560 | ! |
---|
1561 | !-- Predetermine flag to mask topography |
---|
1562 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1563 | |
---|
1564 | c_nr(k) = 0.25_wp * ( w_nr(k-1) + & |
---|
1565 | 2.0_wp * w_nr(k) + w_nr(k+1) ) * & |
---|
1566 | dt_micro * ddzu(k) * flag |
---|
1567 | c_qr(k) = 0.25_wp * ( w_qr(k-1) + & |
---|
1568 | 2.0_wp * w_qr(k) + w_qr(k+1) ) * & |
---|
1569 | dt_micro * ddzu(k) * flag |
---|
1570 | ENDDO |
---|
1571 | ! |
---|
1572 | !-- Limit slopes with monotonized centered (MC) limiter (van Leer, 1977): |
---|
1573 | IF ( limiter_sedimentation ) THEN |
---|
1574 | |
---|
1575 | DO k = nzb+1, nzt |
---|
1576 | ! |
---|
1577 | !-- Predetermine flag to mask topography |
---|
1578 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1579 | |
---|
1580 | d_mean = 0.5_wp * ( qr(k+1,j,i) - qr(k-1,j,i) ) |
---|
1581 | d_min = qr(k,j,i) - MIN( qr(k+1,j,i), qr(k,j,i), qr(k-1,j,i) ) |
---|
1582 | d_max = MAX( qr(k+1,j,i), qr(k,j,i), qr(k-1,j,i) ) - qr(k,j,i) |
---|
1583 | |
---|
1584 | qr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
1585 | 2.0_wp * d_max, & |
---|
1586 | ABS( d_mean ) ) & |
---|
1587 | * flag |
---|
1588 | |
---|
1589 | d_mean = 0.5_wp * ( nr(k+1,j,i) - nr(k-1,j,i) ) |
---|
1590 | d_min = nr(k,j,i) - MIN( nr(k+1,j,i), nr(k,j,i), nr(k-1,j,i) ) |
---|
1591 | d_max = MAX( nr(k+1,j,i), nr(k,j,i), nr(k-1,j,i) ) - nr(k,j,i) |
---|
1592 | |
---|
1593 | nr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
1594 | 2.0_wp * d_max, & |
---|
1595 | ABS( d_mean ) ) |
---|
1596 | ENDDO |
---|
1597 | |
---|
1598 | ELSE |
---|
1599 | |
---|
1600 | nr_slope = 0.0_wp |
---|
1601 | qr_slope = 0.0_wp |
---|
1602 | |
---|
1603 | ENDIF |
---|
1604 | |
---|
1605 | sed_nr(nzt+1) = 0.0_wp |
---|
1606 | sed_qr(nzt+1) = 0.0_wp |
---|
1607 | ! |
---|
1608 | !-- Compute sedimentation flux |
---|
1609 | DO k = nzt, nzb+1, -1 |
---|
1610 | ! |
---|
1611 | !-- Predetermine flag to mask topography |
---|
1612 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1613 | ! |
---|
1614 | !-- Sum up all rain drop number densities which contribute to the flux |
---|
1615 | !-- through k-1/2 |
---|
1616 | flux = 0.0_wp |
---|
1617 | z_run = 0.0_wp ! height above z(k) |
---|
1618 | k_run = k |
---|
1619 | c_run = MIN( 1.0_wp, c_nr(k) ) |
---|
1620 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
1621 | flux = flux + hyrho(k_run) * & |
---|
1622 | ( nr(k_run,j,i) + nr_slope(k_run) * & |
---|
1623 | ( 1.0_wp - c_run ) * 0.5_wp ) * c_run * dzu(k_run) & |
---|
1624 | * flag |
---|
1625 | z_run = z_run + dzu(k_run) * flag |
---|
1626 | k_run = k_run + 1 * flag |
---|
1627 | c_run = MIN( 1.0_wp, c_nr(k_run) - z_run * ddzu(k_run) ) & |
---|
1628 | * flag |
---|
1629 | ENDDO |
---|
1630 | ! |
---|
1631 | !-- It is not allowed to sediment more rain drop number density than |
---|
1632 | !-- available |
---|
1633 | flux = MIN( flux, & |
---|
1634 | hyrho(k) * dzu(k+1) * nr(k,j,i) + sed_nr(k+1) * & |
---|
1635 | dt_micro & |
---|
1636 | ) |
---|
1637 | |
---|
1638 | sed_nr(k) = flux / dt_micro * flag |
---|
1639 | nr(k,j,i) = nr(k,j,i) + ( sed_nr(k+1) - sed_nr(k) ) * & |
---|
1640 | ddzu(k+1) / hyrho(k) * dt_micro * flag |
---|
1641 | ! |
---|
1642 | !-- Sum up all rain water content which contributes to the flux |
---|
1643 | !-- through k-1/2 |
---|
1644 | flux = 0.0_wp |
---|
1645 | z_run = 0.0_wp ! height above z(k) |
---|
1646 | k_run = k |
---|
1647 | c_run = MIN( 1.0_wp, c_qr(k) ) |
---|
1648 | |
---|
1649 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
1650 | |
---|
1651 | flux = flux + hyrho(k_run) * ( qr(k_run,j,i) + & |
---|
1652 | qr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
1653 | 0.5_wp ) * c_run * dzu(k_run) * flag |
---|
1654 | z_run = z_run + dzu(k_run) * flag |
---|
1655 | k_run = k_run + 1 * flag |
---|
1656 | c_run = MIN( 1.0_wp, c_qr(k_run) - z_run * ddzu(k_run) ) & |
---|
1657 | * flag |
---|
1658 | |
---|
1659 | ENDDO |
---|
1660 | ! |
---|
1661 | !-- It is not allowed to sediment more rain water content than |
---|
1662 | !-- available |
---|
1663 | flux = MIN( flux, & |
---|
1664 | hyrho(k) * dzu(k) * qr(k,j,i) + sed_qr(k+1) * & |
---|
1665 | dt_micro & |
---|
1666 | ) |
---|
1667 | |
---|
1668 | sed_qr(k) = flux / dt_micro * flag |
---|
1669 | |
---|
1670 | qr(k,j,i) = qr(k,j,i) + ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
1671 | ddzu(k+1) / hyrho(k) * dt_micro * flag |
---|
1672 | q(k,j,i) = q(k,j,i) + ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
1673 | ddzu(k+1) / hyrho(k) * dt_micro * flag |
---|
1674 | pt(k,j,i) = pt(k,j,i) - ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
1675 | ddzu(k+1) / hyrho(k) * l_d_cp * & |
---|
1676 | pt_d_t(k) * dt_micro * flag |
---|
1677 | ! |
---|
1678 | !-- Compute the rain rate |
---|
1679 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
1680 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) & |
---|
1681 | * weight_substep(intermediate_timestep_count) & |
---|
1682 | * flag |
---|
1683 | ELSE |
---|
1684 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) * flag |
---|
1685 | ENDIF |
---|
1686 | |
---|
1687 | ENDDO |
---|
1688 | ENDDO |
---|
1689 | ENDDO |
---|
1690 | |
---|
1691 | CALL cpu_log( log_point_s(60), 'sed_rain', 'stop' ) |
---|
1692 | |
---|
1693 | END SUBROUTINE sedimentation_rain |
---|
1694 | |
---|
1695 | |
---|
1696 | !------------------------------------------------------------------------------! |
---|
1697 | ! Description: |
---|
1698 | ! ------------ |
---|
1699 | !> Computation of the precipitation amount due to gravitational settling of |
---|
1700 | !> rain and cloud (fog) droplets |
---|
1701 | !------------------------------------------------------------------------------! |
---|
1702 | SUBROUTINE calc_precipitation_amount |
---|
1703 | |
---|
1704 | USE arrays_3d, & |
---|
1705 | ONLY: precipitation_amount, prr |
---|
1706 | |
---|
1707 | USE cloud_parameters, & |
---|
1708 | ONLY: hyrho |
---|
1709 | |
---|
1710 | USE control_parameters, & |
---|
1711 | ONLY: call_microphysics_at_all_substeps, dt_do2d_xy, dt_3d, & |
---|
1712 | intermediate_timestep_count, intermediate_timestep_count_max,& |
---|
1713 | precipitation_amount_interval, time_do2d_xy |
---|
1714 | |
---|
1715 | USE indices, & |
---|
1716 | ONLY: nxl, nxr, nys, nyn, nzb, nzt, wall_flags_0 |
---|
1717 | |
---|
1718 | USE kinds |
---|
1719 | |
---|
1720 | USE surface_mod, & |
---|
1721 | ONLY : bc_h |
---|
1722 | |
---|
1723 | IMPLICIT NONE |
---|
1724 | |
---|
1725 | INTEGER(iwp) :: i !< running index x direction |
---|
1726 | INTEGER(iwp) :: j !< running index y direction |
---|
1727 | INTEGER(iwp) :: k !< running index y direction |
---|
1728 | INTEGER(iwp) :: m !< running index surface elements |
---|
1729 | INTEGER(iwp) :: surf_e !< End index of surface elements at (j,i)-gridpoint |
---|
1730 | INTEGER(iwp) :: surf_s !< Start index of surface elements at (j,i)-gridpoint |
---|
1731 | |
---|
1732 | IF ( ( dt_do2d_xy - time_do2d_xy ) < precipitation_amount_interval .AND.& |
---|
1733 | ( .NOT. call_microphysics_at_all_substeps .OR. & |
---|
1734 | intermediate_timestep_count == intermediate_timestep_count_max ) ) & |
---|
1735 | THEN |
---|
1736 | ! |
---|
1737 | !-- Run over all upward-facing surface elements, i.e. non-natural, |
---|
1738 | !-- natural and urban |
---|
1739 | DO m = 1, bc_h(0)%ns |
---|
1740 | i = bc_h(0)%i(m) |
---|
1741 | j = bc_h(0)%j(m) |
---|
1742 | k = bc_h(0)%k(m) |
---|
1743 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
1744 | prr(k,j,i) * hyrho(k) * dt_3d |
---|
1745 | ENDDO |
---|
1746 | |
---|
1747 | ENDIF |
---|
1748 | |
---|
1749 | END SUBROUTINE calc_precipitation_amount |
---|
1750 | |
---|
1751 | |
---|
1752 | !------------------------------------------------------------------------------! |
---|
1753 | ! Description: |
---|
1754 | ! ------------ |
---|
1755 | !> Control of microphysics for grid points i,j |
---|
1756 | !------------------------------------------------------------------------------! |
---|
1757 | |
---|
1758 | SUBROUTINE microphysics_control_ij( i, j ) |
---|
1759 | |
---|
1760 | USE arrays_3d, & |
---|
1761 | ONLY: hyp, nc, nr, pt, pt_init, prr, q, qc, qr, zu |
---|
1762 | |
---|
1763 | USE cloud_parameters, & |
---|
1764 | ONLY: cp, hyrho, pt_d_t, r_d, t_d_pt |
---|
1765 | |
---|
1766 | USE control_parameters, & |
---|
1767 | ONLY: call_microphysics_at_all_substeps, dt_3d, g, & |
---|
1768 | intermediate_timestep_count, large_scale_forcing, & |
---|
1769 | lsf_surf, microphysics_morrison, microphysics_seifert, & |
---|
1770 | microphysics_kessler, pt_surface, rho_surface, & |
---|
1771 | surface_pressure |
---|
1772 | |
---|
1773 | USE indices, & |
---|
1774 | ONLY: nzb, nzt |
---|
1775 | |
---|
1776 | USE kinds |
---|
1777 | |
---|
1778 | USE statistics, & |
---|
1779 | ONLY: weight_pres |
---|
1780 | |
---|
1781 | IMPLICIT NONE |
---|
1782 | |
---|
1783 | INTEGER(iwp) :: i !< |
---|
1784 | INTEGER(iwp) :: j !< |
---|
1785 | INTEGER(iwp) :: k !< |
---|
1786 | |
---|
1787 | REAL(wp) :: t_surface !< |
---|
1788 | |
---|
1789 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
1790 | ! |
---|
1791 | !-- Calculate: |
---|
1792 | !-- pt / t : ratio of potential and actual temperature (pt_d_t) |
---|
1793 | !-- t / pt : ratio of actual and potential temperature (t_d_pt) |
---|
1794 | !-- p_0(z) : vertical profile of the hydrostatic pressure (hyp) |
---|
1795 | t_surface = pt_surface * ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
1796 | DO k = nzb, nzt+1 |
---|
1797 | hyp(k) = surface_pressure * 100.0_wp * & |
---|
1798 | ( ( t_surface - g / cp * zu(k) ) / t_surface )**(1.0_wp / 0.286_wp) |
---|
1799 | pt_d_t(k) = ( 100000.0_wp / hyp(k) )**0.286_wp |
---|
1800 | t_d_pt(k) = 1.0_wp / pt_d_t(k) |
---|
1801 | hyrho(k) = hyp(k) / ( r_d * t_d_pt(k) * pt_init(k) ) |
---|
1802 | ENDDO |
---|
1803 | ! |
---|
1804 | !-- Compute reference density |
---|
1805 | rho_surface = surface_pressure * 100.0_wp / ( r_d * t_surface ) |
---|
1806 | ENDIF |
---|
1807 | |
---|
1808 | ! |
---|
1809 | !-- Compute length of time step |
---|
1810 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
1811 | dt_micro = dt_3d * weight_pres(intermediate_timestep_count) |
---|
1812 | ELSE |
---|
1813 | dt_micro = dt_3d |
---|
1814 | ENDIF |
---|
1815 | |
---|
1816 | ! |
---|
1817 | !-- Use 1d arrays |
---|
1818 | q_1d(:) = q(:,j,i) |
---|
1819 | pt_1d(:) = pt(:,j,i) |
---|
1820 | qc_1d(:) = qc(:,j,i) |
---|
1821 | IF ( microphysics_seifert ) THEN |
---|
1822 | qr_1d(:) = qr(:,j,i) |
---|
1823 | nr_1d(:) = nr(:,j,i) |
---|
1824 | ENDIF |
---|
1825 | IF ( microphysics_morrison ) THEN |
---|
1826 | nc_1d(:) = nc(:,j,i) |
---|
1827 | ENDIF |
---|
1828 | |
---|
1829 | |
---|
1830 | ! |
---|
1831 | !-- Reset precipitation rate |
---|
1832 | IF ( intermediate_timestep_count == 1 ) prr(:,j,i) = 0.0_wp |
---|
1833 | |
---|
1834 | ! |
---|
1835 | !-- Compute cloud physics |
---|
1836 | IF( microphysics_kessler ) THEN |
---|
1837 | |
---|
1838 | CALL autoconversion_kessler( i,j ) |
---|
1839 | IF ( cloud_water_sedimentation ) CALL sedimentation_cloud( i,j ) |
---|
1840 | |
---|
1841 | ELSEIF ( microphysics_seifert ) THEN |
---|
1842 | |
---|
1843 | CALL adjust_cloud( i,j ) |
---|
1844 | IF ( microphysics_morrison ) CALL activation( i,j ) |
---|
1845 | IF ( microphysics_morrison ) CALL condensation( i,j ) |
---|
1846 | CALL autoconversion( i,j ) |
---|
1847 | CALL accretion( i,j ) |
---|
1848 | CALL selfcollection_breakup( i,j ) |
---|
1849 | CALL evaporation_rain( i,j ) |
---|
1850 | CALL sedimentation_rain( i,j ) |
---|
1851 | IF ( cloud_water_sedimentation ) CALL sedimentation_cloud( i,j ) |
---|
1852 | |
---|
1853 | ENDIF |
---|
1854 | |
---|
1855 | CALL calc_precipitation_amount( i,j ) |
---|
1856 | |
---|
1857 | ! |
---|
1858 | !-- Store results on the 3d arrays |
---|
1859 | q(:,j,i) = q_1d(:) |
---|
1860 | pt(:,j,i) = pt_1d(:) |
---|
1861 | IF ( microphysics_morrison ) THEN |
---|
1862 | qc(:,j,i) = qc_1d(:) |
---|
1863 | nc(:,j,i) = nc_1d(:) |
---|
1864 | ENDIF |
---|
1865 | IF ( microphysics_seifert ) THEN |
---|
1866 | qr(:,j,i) = qr_1d(:) |
---|
1867 | nr(:,j,i) = nr_1d(:) |
---|
1868 | ENDIF |
---|
1869 | |
---|
1870 | END SUBROUTINE microphysics_control_ij |
---|
1871 | |
---|
1872 | !------------------------------------------------------------------------------! |
---|
1873 | ! Description: |
---|
1874 | ! ------------ |
---|
1875 | !> Adjust number of raindrops to avoid nonlinear effects in |
---|
1876 | !> sedimentation and evaporation of rain drops due to too small or |
---|
1877 | !> too big weights of rain drops (Stevens and Seifert, 2008). |
---|
1878 | !> The same procedure is applied to cloud droplets if they are determined |
---|
1879 | !> prognostically. Call for grid point i,j |
---|
1880 | !------------------------------------------------------------------------------! |
---|
1881 | SUBROUTINE adjust_cloud_ij( i, j ) |
---|
1882 | |
---|
1883 | USE cloud_parameters, & |
---|
1884 | ONLY: hyrho |
---|
1885 | |
---|
1886 | USE control_parameters, & |
---|
1887 | ONLY: microphysics_morrison |
---|
1888 | |
---|
1889 | USE indices, & |
---|
1890 | ONLY: nzb, nzt, wall_flags_0 |
---|
1891 | |
---|
1892 | USE kinds |
---|
1893 | |
---|
1894 | IMPLICIT NONE |
---|
1895 | |
---|
1896 | INTEGER(iwp) :: i !< |
---|
1897 | INTEGER(iwp) :: j !< |
---|
1898 | INTEGER(iwp) :: k !< |
---|
1899 | |
---|
1900 | REAL(wp) :: flag !< flag to indicate first grid level above surface |
---|
1901 | |
---|
1902 | DO k = nzb+1, nzt |
---|
1903 | ! |
---|
1904 | !-- Predetermine flag to mask topography |
---|
1905 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1906 | |
---|
1907 | IF ( qr_1d(k) <= eps_sb ) THEN |
---|
1908 | qr_1d(k) = 0.0_wp |
---|
1909 | nr_1d(k) = 0.0_wp |
---|
1910 | ELSE |
---|
1911 | ! |
---|
1912 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
1913 | !-- sedimentation and evaporation of rain drops due to too small or |
---|
1914 | !-- too big weights of rain drops (Stevens and Seifert, 2008). |
---|
1915 | IF ( nr_1d(k) * xrmin > qr_1d(k) * hyrho(k) ) THEN |
---|
1916 | nr_1d(k) = qr_1d(k) * hyrho(k) / xrmin * flag |
---|
1917 | ELSEIF ( nr_1d(k) * xrmax < qr_1d(k) * hyrho(k) ) THEN |
---|
1918 | nr_1d(k) = qr_1d(k) * hyrho(k) / xrmax * flag |
---|
1919 | ENDIF |
---|
1920 | |
---|
1921 | ENDIF |
---|
1922 | |
---|
1923 | IF ( microphysics_morrison ) THEN |
---|
1924 | IF ( qc_1d(k) <= eps_sb ) THEN |
---|
1925 | qc_1d(k) = 0.0_wp |
---|
1926 | nc_1d(k) = 0.0_wp |
---|
1927 | ELSE |
---|
1928 | IF ( nc_1d(k) * xcmin > qc_1d(k) * hyrho(k) ) THEN |
---|
1929 | nc_1d(k) = qc_1d(k) * hyrho(k) / xamin * flag |
---|
1930 | ENDIF |
---|
1931 | ENDIF |
---|
1932 | ENDIF |
---|
1933 | |
---|
1934 | ENDDO |
---|
1935 | |
---|
1936 | END SUBROUTINE adjust_cloud_ij |
---|
1937 | |
---|
1938 | !------------------------------------------------------------------------------! |
---|
1939 | ! Description: |
---|
1940 | ! ------------ |
---|
1941 | !> Calculate number of activated condensation nucleii after simple activation |
---|
1942 | !> scheme of Twomey, 1959. |
---|
1943 | !------------------------------------------------------------------------------! |
---|
1944 | SUBROUTINE activation_ij( i, j ) |
---|
1945 | |
---|
1946 | USE arrays_3d, & |
---|
1947 | ONLY: hyp, nr, pt, q, qc, qr, nc |
---|
1948 | |
---|
1949 | USE cloud_parameters, & |
---|
1950 | ONLY: hyrho, l_d_cp, l_d_r, l_v, rho_l, r_v, t_d_pt |
---|
1951 | |
---|
1952 | USE constants, & |
---|
1953 | ONLY: pi |
---|
1954 | |
---|
1955 | USE cpulog, & |
---|
1956 | ONLY: cpu_log, log_point_s |
---|
1957 | |
---|
1958 | USE indices, & |
---|
1959 | ONLY: nxlg, nxrg, nysg, nyng, nzb, nzt |
---|
1960 | |
---|
1961 | USE kinds |
---|
1962 | |
---|
1963 | USE control_parameters, & |
---|
1964 | ONLY: simulated_time |
---|
1965 | |
---|
1966 | USE particle_attributes, & |
---|
1967 | ONLY: molecular_weight_of_solute, molecular_weight_of_water, rho_s, & |
---|
1968 | log_sigma, vanthoff |
---|
1969 | |
---|
1970 | IMPLICIT NONE |
---|
1971 | |
---|
1972 | INTEGER(iwp) :: i !< |
---|
1973 | INTEGER(iwp) :: j !< |
---|
1974 | INTEGER(iwp) :: k !< |
---|
1975 | |
---|
1976 | REAL(wp) :: activ !< |
---|
1977 | REAL(wp) :: afactor !< |
---|
1978 | REAL(wp) :: alpha !< |
---|
1979 | REAL(wp) :: beta_act !< |
---|
1980 | REAL(wp) :: bfactor !< |
---|
1981 | REAL(wp) :: e_s !< |
---|
1982 | REAL(wp) :: k_act !< |
---|
1983 | REAL(wp) :: n_act !< |
---|
1984 | REAL(wp) :: n_ccn !< |
---|
1985 | REAL(wp) :: q_s !< |
---|
1986 | REAL(wp) :: rd0 !< |
---|
1987 | REAL(wp) :: s_0 !< |
---|
1988 | REAL(wp) :: sat !< |
---|
1989 | REAL(wp) :: sat_max !< |
---|
1990 | REAL(wp) :: sigma !< |
---|
1991 | REAL(wp) :: t_int !< |
---|
1992 | REAL(wp) :: t_l !< |
---|
1993 | |
---|
1994 | DO k = nzb+1, nzt |
---|
1995 | ! |
---|
1996 | !-- Actual liquid water temperature: |
---|
1997 | t_l = t_d_pt(k) * pt_1d(k) |
---|
1998 | |
---|
1999 | ! |
---|
2000 | !-- Calculate actual temperature |
---|
2001 | t_int = pt_1d(k) * ( hyp(k) / 100000.0_wp )**0.286_wp |
---|
2002 | ! |
---|
2003 | !-- Saturation vapor pressure at t_l: |
---|
2004 | e_s = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
2005 | ( t_l - 35.86_wp ) & |
---|
2006 | ) |
---|
2007 | ! |
---|
2008 | !-- Computation of saturation humidity: |
---|
2009 | q_s = 0.622_wp * e_s / ( hyp(k) - 0.378_wp * e_s ) |
---|
2010 | alpha = 0.622_wp * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
2011 | q_s = q_s * ( 1.0_wp + alpha * q_1d(k) ) / & |
---|
2012 | ( 1.0_wp + alpha * q_s ) |
---|
2013 | |
---|
2014 | !-- Supersaturation: |
---|
2015 | sat = ( q_1d(k) - qr_1d(k) - qc_1d(k) ) / q_s - 1.0_wp |
---|
2016 | |
---|
2017 | ! |
---|
2018 | !-- Prescribe parameters for activation |
---|
2019 | !-- (see: Bott + Trautmann, 2002, Atm. Res., 64) |
---|
2020 | k_act = 0.7_wp |
---|
2021 | |
---|
2022 | IF ( sat >= 0.0 .AND. .NOT. curvature_solution_effects_bulk ) THEN |
---|
2023 | ! |
---|
2024 | !-- Compute the number of activated Aerosols |
---|
2025 | !-- (see: Twomey, 1959, Pure and applied Geophysics, 43) |
---|
2026 | n_act = na_init * sat**k_act |
---|
2027 | ! |
---|
2028 | !-- Compute the number of cloud droplets |
---|
2029 | !-- (see: Morrison + Grabowski, 2007, JAS, 64) |
---|
2030 | ! activ = MAX( n_act - nc_d1(k), 0.0_wp) / dt_micro |
---|
2031 | |
---|
2032 | ! |
---|
2033 | !-- Compute activation rate after Khairoutdinov and Kogan |
---|
2034 | !-- (see: Khairoutdinov + Kogan, 2000, Mon. Wea. Rev., 128) |
---|
2035 | sat_max = 0.8_wp / 100.0_wp |
---|
2036 | activ = MAX( 0.0_wp, ( (na_init + nc_1d(k) ) * MIN & |
---|
2037 | ( 1.0_wp, ( sat / sat_max )**k_act) - nc_1d(k) ) ) / & |
---|
2038 | dt_micro |
---|
2039 | |
---|
2040 | nc_1d(k) = MIN( (nc_1d(k) + activ * dt_micro), na_init) |
---|
2041 | ELSEIF ( sat >= 0.0 .AND. curvature_solution_effects_bulk ) THEN |
---|
2042 | ! |
---|
2043 | !-- Curvature effect (afactor) with surface tension |
---|
2044 | !-- parameterization by Straka (2009) |
---|
2045 | sigma = 0.0761_wp - 0.000155_wp * ( t_int - 273.15_wp ) |
---|
2046 | afactor = 2.0_wp * sigma / ( rho_l * r_v * t_int ) |
---|
2047 | ! |
---|
2048 | !-- Solute effect (bfactor) |
---|
2049 | bfactor = vanthoff * molecular_weight_of_water * & |
---|
2050 | rho_s / ( molecular_weight_of_solute * rho_l ) |
---|
2051 | |
---|
2052 | ! |
---|
2053 | !-- Prescribe power index that describes the soluble fraction |
---|
2054 | !-- of an aerosol particle (beta) and mean geometric radius of |
---|
2055 | !-- dry aerosol spectrum |
---|
2056 | !-- (see: Morrison + Grabowski, 2007, JAS, 64) |
---|
2057 | beta_act = 0.5_wp |
---|
2058 | rd0 = 0.05E-6_wp |
---|
2059 | ! |
---|
2060 | !-- Calculate mean geometric supersaturation (s_0) with |
---|
2061 | !-- parameterization by Khvorostyanov and Curry (2006) |
---|
2062 | s_0 = rd0 **(- ( 1.0_wp + beta_act ) ) * & |
---|
2063 | ( 4.0_wp * afactor**3 / ( 27.0_wp * bfactor ) )**0.5_wp |
---|
2064 | |
---|
2065 | ! |
---|
2066 | !-- Calculate number of activated CCN as a function of |
---|
2067 | !-- supersaturation and taking Koehler theory into account |
---|
2068 | !-- (see: Khvorostyanov + Curry, 2006, J. Geo. Res., 111) |
---|
2069 | n_ccn = ( na_init / 2.0_wp ) * ( 1.0_wp - ERF( & |
---|
2070 | LOG( s_0 / sat ) / ( SQRT(2.0_wp) * log_sigma(1) ) ) ) |
---|
2071 | activ = MAX( ( n_ccn ) / dt_micro, 0.0_wp ) |
---|
2072 | |
---|
2073 | nc_1d(k) = MIN( (nc_1d(k) + activ * dt_micro), na_init) |
---|
2074 | ENDIF |
---|
2075 | |
---|
2076 | ENDDO |
---|
2077 | |
---|
2078 | END SUBROUTINE activation_ij |
---|
2079 | |
---|
2080 | !------------------------------------------------------------------------------! |
---|
2081 | ! Description: |
---|
2082 | ! ------------ |
---|
2083 | !> Calculate condensation rate for cloud water content (after Khairoutdinov and |
---|
2084 | !> Kogan, 2000). |
---|
2085 | !------------------------------------------------------------------------------! |
---|
2086 | SUBROUTINE condensation_ij( i, j ) |
---|
2087 | |
---|
2088 | USE arrays_3d, & |
---|
2089 | ONLY: hyp, nr, pt, q, qc, qr, nc |
---|
2090 | |
---|
2091 | USE cloud_parameters, & |
---|
2092 | ONLY: hyrho, l_d_cp, l_d_r, l_v, r_v, t_d_pt |
---|
2093 | |
---|
2094 | USE constants, & |
---|
2095 | ONLY: pi |
---|
2096 | |
---|
2097 | USE cpulog, & |
---|
2098 | ONLY: cpu_log, log_point_s |
---|
2099 | |
---|
2100 | USE indices, & |
---|
2101 | ONLY: nxlg, nxrg, nysg, nyng, nzb, nzt |
---|
2102 | |
---|
2103 | USE kinds |
---|
2104 | |
---|
2105 | USE control_parameters, & |
---|
2106 | ONLY: simulated_time |
---|
2107 | |
---|
2108 | IMPLICIT NONE |
---|
2109 | |
---|
2110 | INTEGER(iwp) :: i !< |
---|
2111 | INTEGER(iwp) :: j !< |
---|
2112 | INTEGER(iwp) :: k !< |
---|
2113 | |
---|
2114 | REAL(wp) :: alpha !< |
---|
2115 | REAL(wp) :: cond !< |
---|
2116 | REAL(wp) :: cond_max !< |
---|
2117 | REAL(wp) :: dc !< |
---|
2118 | REAL(wp) :: e_s !< |
---|
2119 | REAL(wp) :: evap !< |
---|
2120 | REAL(wp) :: evap_nc !< |
---|
2121 | REAL(wp) :: g_fac !< |
---|
2122 | REAL(wp) :: nc_0 !< |
---|
2123 | REAL(wp) :: q_s !< |
---|
2124 | REAL(wp) :: sat !< |
---|
2125 | REAL(wp) :: t_l !< |
---|
2126 | REAL(wp) :: temp !< |
---|
2127 | REAL(wp) :: xc !< |
---|
2128 | |
---|
2129 | |
---|
2130 | DO k = nzb+1, nzt |
---|
2131 | ! |
---|
2132 | !-- Actual liquid water temperature: |
---|
2133 | t_l = t_d_pt(k) * pt_1d(k) |
---|
2134 | ! |
---|
2135 | !-- Saturation vapor pressure at t_l: |
---|
2136 | e_s = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
2137 | ( t_l - 35.86_wp ) & |
---|
2138 | ) |
---|
2139 | ! |
---|
2140 | !-- Computation of saturation humidity: |
---|
2141 | q_s = 0.622_wp * e_s / ( hyp(k) - 0.378_wp * e_s ) |
---|
2142 | alpha = 0.622_wp * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
2143 | q_s = q_s * ( 1.0_wp + alpha * q_1d(k) ) / & |
---|
2144 | ( 1.0_wp + alpha * q_s ) |
---|
2145 | |
---|
2146 | !-- Supersaturation: |
---|
2147 | sat = ( q_1d(k) - qr_1d(k) - qc_1d(k) ) / q_s - 1.0_wp |
---|
2148 | |
---|
2149 | |
---|
2150 | ! |
---|
2151 | !-- Actual temperature: |
---|
2152 | temp = t_l + l_d_cp * ( qc_1d(k) + qr_1d(k) ) |
---|
2153 | |
---|
2154 | g_fac = 1.0_wp / ( ( l_v / ( r_v * temp ) - 1.0_wp ) * & |
---|
2155 | l_v / ( thermal_conductivity_l * temp ) & |
---|
2156 | + r_v * temp / ( diff_coeff_l * e_s ) & |
---|
2157 | ) |
---|
2158 | ! |
---|
2159 | !-- Mean weight of cloud drops |
---|
2160 | IF ( nc_1d(k) <= 0.0_wp) CYCLE |
---|
2161 | xc = MAX( (hyrho(k) * qc_1d(k) / nc_1d(k)), xcmin) |
---|
2162 | ! |
---|
2163 | !-- Weight averaged diameter of cloud drops: |
---|
2164 | dc = ( xc * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
2165 | ! |
---|
2166 | !-- Integral diameter of cloud drops |
---|
2167 | nc_0 = nc_1d(k) * dc |
---|
2168 | ! |
---|
2169 | !-- Condensation needs only to be calculated in supersaturated regions |
---|
2170 | IF ( sat > 0.0_wp ) THEN |
---|
2171 | ! |
---|
2172 | !-- Condensation rate of cloud water content |
---|
2173 | !-- after KK scheme. |
---|
2174 | !-- (see: Khairoutdinov + Kogan, 2000, Mon. Wea. Rev.,128) |
---|
2175 | cond = 2.0_wp * pi * nc_0 * g_fac * sat / hyrho(k) |
---|
2176 | cond_max = q_1d(k) - q_s - qc_1d(k) - qr_1d(k) |
---|
2177 | cond = MIN( cond, cond_max / dt_micro ) |
---|
2178 | |
---|
2179 | qc_1d(k) = qc_1d(k) + cond * dt_micro |
---|
2180 | ELSEIF ( sat < 0.0_wp ) THEN |
---|
2181 | evap = 2.0_wp * pi * nc_0 * g_fac * sat / hyrho(k) |
---|
2182 | evap = MAX( evap, -qc_1d(k) / dt_micro ) |
---|
2183 | |
---|
2184 | qc_1d(k) = qc_1d(k) + evap * dt_micro |
---|
2185 | ENDIF |
---|
2186 | ENDDO |
---|
2187 | |
---|
2188 | END SUBROUTINE condensation_ij |
---|
2189 | |
---|
2190 | |
---|
2191 | !------------------------------------------------------------------------------! |
---|
2192 | ! Description: |
---|
2193 | ! ------------ |
---|
2194 | !> Autoconversion rate (Seifert and Beheng, 2006). Call for grid point i,j |
---|
2195 | !------------------------------------------------------------------------------! |
---|
2196 | SUBROUTINE autoconversion_ij( i, j ) |
---|
2197 | |
---|
2198 | USE arrays_3d, & |
---|
2199 | ONLY: diss, dzu |
---|
2200 | |
---|
2201 | USE cloud_parameters, & |
---|
2202 | ONLY: hyrho |
---|
2203 | |
---|
2204 | USE control_parameters, & |
---|
2205 | ONLY: microphysics_morrison, rho_surface |
---|
2206 | |
---|
2207 | USE grid_variables, & |
---|
2208 | ONLY: dx, dy |
---|
2209 | |
---|
2210 | USE indices, & |
---|
2211 | ONLY: nzb, nzt, wall_flags_0 |
---|
2212 | |
---|
2213 | USE kinds |
---|
2214 | |
---|
2215 | IMPLICIT NONE |
---|
2216 | |
---|
2217 | INTEGER(iwp) :: i !< |
---|
2218 | INTEGER(iwp) :: j !< |
---|
2219 | INTEGER(iwp) :: k !< |
---|
2220 | |
---|
2221 | REAL(wp) :: alpha_cc !< |
---|
2222 | REAL(wp) :: autocon !< |
---|
2223 | REAL(wp) :: dissipation !< |
---|
2224 | REAL(wp) :: flag !< flag to indicate first grid level above surface |
---|
2225 | REAL(wp) :: k_au !< |
---|
2226 | REAL(wp) :: l_mix !< |
---|
2227 | REAL(wp) :: nc_auto !< |
---|
2228 | REAL(wp) :: nu_c !< |
---|
2229 | REAL(wp) :: phi_au !< |
---|
2230 | REAL(wp) :: r_cc !< |
---|
2231 | REAL(wp) :: rc !< |
---|
2232 | REAL(wp) :: re_lambda !< |
---|
2233 | REAL(wp) :: sigma_cc !< |
---|
2234 | REAL(wp) :: tau_cloud !< |
---|
2235 | REAL(wp) :: xc !< |
---|
2236 | |
---|
2237 | DO k = nzb+1, nzt |
---|
2238 | ! |
---|
2239 | !-- Predetermine flag to mask topography |
---|
2240 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
2241 | nc_auto = MERGE ( nc_1d(k), nc_const, microphysics_morrison ) |
---|
2242 | |
---|
2243 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
2244 | |
---|
2245 | k_au = k_cc / ( 20.0_wp * x0 ) |
---|
2246 | ! |
---|
2247 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
2248 | !-- (1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr_1d(k) )) |
---|
2249 | tau_cloud = 1.0_wp - qc_1d(k) / ( qr_1d(k) + qc_1d(k) ) |
---|
2250 | ! |
---|
2251 | !-- Universal function for autoconversion process |
---|
2252 | !-- (Seifert and Beheng, 2006): |
---|
2253 | phi_au = 600.0_wp * tau_cloud**0.68_wp * ( 1.0_wp - tau_cloud**0.68_wp )**3 |
---|
2254 | ! |
---|
2255 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
2256 | !-- (Use constant nu_c = 1.0_wp instead?) |
---|
2257 | nu_c = 1.0_wp !MAX( 0.0_wp, 1580.0_wp * hyrho(k) * qc_1d(k) - 0.28_wp ) |
---|
2258 | ! |
---|
2259 | !-- Mean weight of cloud droplets: |
---|
2260 | xc = hyrho(k) * qc_1d(k) / nc_auto |
---|
2261 | ! |
---|
2262 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
2263 | !-- Nuijens and Stevens, 2010) |
---|
2264 | IF ( collision_turbulence ) THEN |
---|
2265 | ! |
---|
2266 | !-- Weight averaged radius of cloud droplets: |
---|
2267 | rc = 0.5_wp * ( xc * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
2268 | |
---|
2269 | alpha_cc = ( a_1 + a_2 * nu_c ) / ( 1.0_wp + a_3 * nu_c ) |
---|
2270 | r_cc = ( b_1 + b_2 * nu_c ) / ( 1.0_wp + b_3 * nu_c ) |
---|
2271 | sigma_cc = ( c_1 + c_2 * nu_c ) / ( 1.0_wp + c_3 * nu_c ) |
---|
2272 | ! |
---|
2273 | !-- Mixing length (neglecting distance to ground and stratification) |
---|
2274 | l_mix = ( dx * dy * dzu(k) )**( 1.0_wp / 3.0_wp ) |
---|
2275 | ! |
---|
2276 | !-- Limit dissipation rate according to Seifert, Nuijens and |
---|
2277 | !-- Stevens (2010) |
---|
2278 | dissipation = MIN( 0.06_wp, diss(k,j,i) ) |
---|
2279 | ! |
---|
2280 | !-- Compute Taylor-microscale Reynolds number: |
---|
2281 | re_lambda = 6.0_wp / 11.0_wp * & |
---|
2282 | ( l_mix / c_const )**( 2.0_wp / 3.0_wp ) * & |
---|
2283 | SQRT( 15.0_wp / kin_vis_air ) * & |
---|
2284 | dissipation**( 1.0_wp / 6.0_wp ) |
---|
2285 | ! |
---|
2286 | !-- The factor of 1.0E4 is needed to convert the dissipation rate |
---|
2287 | !-- from m2 s-3 to cm2 s-3. |
---|
2288 | k_au = k_au * ( 1.0_wp + & |
---|
2289 | dissipation * 1.0E4_wp * & |
---|
2290 | ( re_lambda * 1.0E-3_wp )**0.25_wp * & |
---|
2291 | ( alpha_cc * EXP( -1.0_wp * ( ( rc - r_cc ) / & |
---|
2292 | sigma_cc )**2 & |
---|
2293 | ) + beta_cc & |
---|
2294 | ) & |
---|
2295 | ) |
---|
2296 | ENDIF |
---|
2297 | ! |
---|
2298 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
2299 | autocon = k_au * ( nu_c + 2.0_wp ) * ( nu_c + 4.0_wp ) / & |
---|
2300 | ( nu_c + 1.0_wp )**2 * qc_1d(k)**2 * xc**2 * & |
---|
2301 | ( 1.0_wp + phi_au / ( 1.0_wp - tau_cloud )**2 ) * & |
---|
2302 | rho_surface |
---|
2303 | autocon = MIN( autocon, qc_1d(k) / dt_micro ) |
---|
2304 | |
---|
2305 | qr_1d(k) = qr_1d(k) + autocon * dt_micro * flag |
---|
2306 | qc_1d(k) = qc_1d(k) - autocon * dt_micro * flag |
---|
2307 | nr_1d(k) = nr_1d(k) + autocon / x0 * hyrho(k) * dt_micro * flag |
---|
2308 | IF ( microphysics_morrison ) THEN |
---|
2309 | nc_1d(k) = nc_1d(k) - MIN( nc_1d(k), 2.0_wp * & |
---|
2310 | autocon / x0 * hyrho(k) * dt_micro * flag ) |
---|
2311 | ENDIF |
---|
2312 | |
---|
2313 | ENDIF |
---|
2314 | |
---|
2315 | ENDDO |
---|
2316 | |
---|
2317 | END SUBROUTINE autoconversion_ij |
---|
2318 | |
---|
2319 | !------------------------------------------------------------------------------! |
---|
2320 | ! Description: |
---|
2321 | ! ------------ |
---|
2322 | !> Autoconversion process (Kessler, 1969). |
---|
2323 | !------------------------------------------------------------------------------! |
---|
2324 | SUBROUTINE autoconversion_kessler_ij( i, j ) |
---|
2325 | |
---|
2326 | USE arrays_3d, & |
---|
2327 | ONLY: dzw, prr |
---|
2328 | |
---|
2329 | USE cloud_parameters, & |
---|
2330 | ONLY: l_d_cp, pt_d_t |
---|
2331 | |
---|
2332 | USE indices, & |
---|
2333 | ONLY: nzb, nzt, wall_flags_0 |
---|
2334 | |
---|
2335 | USE kinds |
---|
2336 | |
---|
2337 | USE surface_mod, & |
---|
2338 | ONLY: get_topography_top_index |
---|
2339 | |
---|
2340 | |
---|
2341 | IMPLICIT NONE |
---|
2342 | |
---|
2343 | INTEGER(iwp) :: i !< |
---|
2344 | INTEGER(iwp) :: j !< |
---|
2345 | INTEGER(iwp) :: k !< |
---|
2346 | INTEGER(iwp) :: k_wall !< topography top index |
---|
2347 | |
---|
2348 | REAL(wp) :: dqdt_precip !< |
---|
2349 | REAL(wp) :: flag !< flag to indicate first grid level above surface |
---|
2350 | |
---|
2351 | ! |
---|
2352 | !-- Determine vertical index of topography top |
---|
2353 | k_wall = get_topography_top_index( j, i, 's' ) |
---|
2354 | DO k = nzb+1, nzt |
---|
2355 | ! |
---|
2356 | !-- Predetermine flag to mask topography |
---|
2357 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
2358 | |
---|
2359 | IF ( qc_1d(k) > ql_crit ) THEN |
---|
2360 | dqdt_precip = prec_time_const * ( qc_1d(k) - ql_crit ) |
---|
2361 | ELSE |
---|
2362 | dqdt_precip = 0.0_wp |
---|
2363 | ENDIF |
---|
2364 | |
---|
2365 | qc_1d(k) = qc_1d(k) - dqdt_precip * dt_micro * flag |
---|
2366 | q_1d(k) = q_1d(k) - dqdt_precip * dt_micro * flag |
---|
2367 | pt_1d(k) = pt_1d(k) + dqdt_precip * dt_micro * l_d_cp * pt_d_t(k) * flag |
---|
2368 | |
---|
2369 | ! |
---|
2370 | !-- Compute the rain rate (stored on surface grid point) |
---|
2371 | prr(k_wall,j,i) = prr(k_wall,j,i) + dqdt_precip * dzw(k) * flag |
---|
2372 | |
---|
2373 | ENDDO |
---|
2374 | |
---|
2375 | END SUBROUTINE autoconversion_kessler_ij |
---|
2376 | |
---|
2377 | !------------------------------------------------------------------------------! |
---|
2378 | ! Description: |
---|
2379 | ! ------------ |
---|
2380 | !> Accretion rate (Seifert and Beheng, 2006). Call for grid point i,j |
---|
2381 | !------------------------------------------------------------------------------! |
---|
2382 | SUBROUTINE accretion_ij( i, j ) |
---|
2383 | |
---|
2384 | USE arrays_3d, & |
---|
2385 | ONLY: diss |
---|
2386 | |
---|
2387 | USE cloud_parameters, & |
---|
2388 | ONLY: hyrho |
---|
2389 | |
---|
2390 | USE control_parameters, & |
---|
2391 | ONLY: microphysics_morrison, rho_surface |
---|
2392 | |
---|
2393 | USE indices, & |
---|
2394 | ONLY: nzb, nzt, wall_flags_0 |
---|
2395 | |
---|
2396 | USE kinds |
---|
2397 | |
---|
2398 | IMPLICIT NONE |
---|
2399 | |
---|
2400 | INTEGER(iwp) :: i !< |
---|
2401 | INTEGER(iwp) :: j !< |
---|
2402 | INTEGER(iwp) :: k !< |
---|
2403 | |
---|
2404 | REAL(wp) :: accr !< |
---|
2405 | REAL(wp) :: flag !< flag to indicate first grid level above surface |
---|
2406 | REAL(wp) :: k_cr !< |
---|
2407 | REAL(wp) :: nc_accr !< |
---|
2408 | REAL(wp) :: phi_ac !< |
---|
2409 | REAL(wp) :: tau_cloud !< |
---|
2410 | REAL(wp) :: xc !< |
---|
2411 | |
---|
2412 | |
---|
2413 | DO k = nzb+1, nzt |
---|
2414 | ! |
---|
2415 | !-- Predetermine flag to mask topography |
---|
2416 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
2417 | nc_accr = MERGE ( nc_1d(k), nc_const, microphysics_morrison ) |
---|
2418 | |
---|
2419 | IF ( ( qc_1d(k) > eps_sb ) .AND. ( qr_1d(k) > eps_sb ) .AND. & |
---|
2420 | ( nc_accr > eps_mr ) ) THEN |
---|
2421 | ! |
---|
2422 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
2423 | tau_cloud = 1.0_wp - qc_1d(k) / ( qc_1d(k) + qr_1d(k) ) |
---|
2424 | ! |
---|
2425 | !-- Universal function for accretion process |
---|
2426 | !-- (Seifert and Beheng, 2001): |
---|
2427 | phi_ac = ( tau_cloud / ( tau_cloud + 5.0E-5_wp ) )**4 |
---|
2428 | |
---|
2429 | ! |
---|
2430 | !-- Mean weight of cloud drops |
---|
2431 | xc = MAX( (hyrho(k) * qc_1d(k) / nc_accr), xcmin) |
---|
2432 | ! |
---|
2433 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
2434 | !-- Nuijens and Stevens, 2010). The factor of 1.0E4 is needed to |
---|
2435 | !-- convert the dissipation rate (diss) from m2 s-3 to cm2 s-3. |
---|
2436 | IF ( collision_turbulence ) THEN |
---|
2437 | k_cr = k_cr0 * ( 1.0_wp + 0.05_wp * & |
---|
2438 | MIN( 600.0_wp, & |
---|
2439 | diss(k,j,i) * 1.0E4_wp )**0.25_wp & |
---|
2440 | ) |
---|
2441 | ELSE |
---|
2442 | k_cr = k_cr0 |
---|
2443 | ENDIF |
---|
2444 | ! |
---|
2445 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
2446 | accr = k_cr * qc_1d(k) * qr_1d(k) * phi_ac * & |
---|
2447 | SQRT( rho_surface * hyrho(k) ) |
---|
2448 | accr = MIN( accr, qc_1d(k) / dt_micro ) |
---|
2449 | |
---|
2450 | qr_1d(k) = qr_1d(k) + accr * dt_micro * flag |
---|
2451 | qc_1d(k) = qc_1d(k) - accr * dt_micro * flag |
---|
2452 | IF ( microphysics_morrison ) THEN |
---|
2453 | nc_1d(k) = nc_1d(k) - MIN( nc_1d(k), accr / xc * & |
---|
2454 | hyrho(k) * dt_micro * flag & |
---|
2455 | ) |
---|
2456 | ENDIF |
---|
2457 | |
---|
2458 | |
---|
2459 | ENDIF |
---|
2460 | |
---|
2461 | ENDDO |
---|
2462 | |
---|
2463 | END SUBROUTINE accretion_ij |
---|
2464 | |
---|
2465 | |
---|
2466 | !------------------------------------------------------------------------------! |
---|
2467 | ! Description: |
---|
2468 | ! ------------ |
---|
2469 | !> Collisional breakup rate (Seifert, 2008). Call for grid point i,j |
---|
2470 | !------------------------------------------------------------------------------! |
---|
2471 | SUBROUTINE selfcollection_breakup_ij( i, j ) |
---|
2472 | |
---|
2473 | USE cloud_parameters, & |
---|
2474 | ONLY: hyrho |
---|
2475 | |
---|
2476 | USE control_parameters, & |
---|
2477 | ONLY: rho_surface |
---|
2478 | |
---|
2479 | USE indices, & |
---|
2480 | ONLY: nzb, nzt, wall_flags_0 |
---|
2481 | |
---|
2482 | USE kinds |
---|
2483 | |
---|
2484 | IMPLICIT NONE |
---|
2485 | |
---|
2486 | INTEGER(iwp) :: i !< |
---|
2487 | INTEGER(iwp) :: j !< |
---|
2488 | INTEGER(iwp) :: k !< |
---|
2489 | |
---|
2490 | REAL(wp) :: breakup !< |
---|
2491 | REAL(wp) :: dr !< |
---|
2492 | REAL(wp) :: flag !< flag to indicate first grid level above surface |
---|
2493 | REAL(wp) :: phi_br !< |
---|
2494 | REAL(wp) :: selfcoll !< |
---|
2495 | |
---|
2496 | DO k = nzb+1, nzt |
---|
2497 | ! |
---|
2498 | !-- Predetermine flag to mask topography |
---|
2499 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
2500 | |
---|
2501 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
2502 | ! |
---|
2503 | !-- Selfcollection rate (Seifert and Beheng, 2001): |
---|
2504 | selfcoll = k_rr * nr_1d(k) * qr_1d(k) * SQRT( hyrho(k) * rho_surface ) |
---|
2505 | ! |
---|
2506 | !-- Weight averaged diameter of rain drops: |
---|
2507 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
2508 | ! |
---|
2509 | !-- Collisional breakup rate (Seifert, 2008): |
---|
2510 | IF ( dr >= 0.3E-3_wp ) THEN |
---|
2511 | phi_br = k_br * ( dr - 1.1E-3_wp ) |
---|
2512 | breakup = selfcoll * ( phi_br + 1.0_wp ) |
---|
2513 | ELSE |
---|
2514 | breakup = 0.0_wp |
---|
2515 | ENDIF |
---|
2516 | |
---|
2517 | selfcoll = MAX( breakup - selfcoll, -nr_1d(k) / dt_micro ) |
---|
2518 | nr_1d(k) = nr_1d(k) + selfcoll * dt_micro * flag |
---|
2519 | |
---|
2520 | ENDIF |
---|
2521 | ENDDO |
---|
2522 | |
---|
2523 | END SUBROUTINE selfcollection_breakup_ij |
---|
2524 | |
---|
2525 | |
---|
2526 | !------------------------------------------------------------------------------! |
---|
2527 | ! Description: |
---|
2528 | ! ------------ |
---|
2529 | !> Evaporation of precipitable water. Condensation is neglected for |
---|
2530 | !> precipitable water. Call for grid point i,j |
---|
2531 | !------------------------------------------------------------------------------! |
---|
2532 | SUBROUTINE evaporation_rain_ij( i, j ) |
---|
2533 | |
---|
2534 | USE arrays_3d, & |
---|
2535 | ONLY: hyp |
---|
2536 | |
---|
2537 | USE cloud_parameters, & |
---|
2538 | ONLY: hyrho, l_d_cp, l_d_r, l_v, r_v, t_d_pt |
---|
2539 | |
---|
2540 | USE constants, & |
---|
2541 | ONLY: pi |
---|
2542 | |
---|
2543 | USE indices, & |
---|
2544 | ONLY: nzb, nzt, wall_flags_0 |
---|
2545 | |
---|
2546 | USE kinds |
---|
2547 | |
---|
2548 | IMPLICIT NONE |
---|
2549 | |
---|
2550 | INTEGER(iwp) :: i !< |
---|
2551 | INTEGER(iwp) :: j !< |
---|
2552 | INTEGER(iwp) :: k !< |
---|
2553 | |
---|
2554 | REAL(wp) :: alpha !< |
---|
2555 | REAL(wp) :: dr !< |
---|
2556 | REAL(wp) :: e_s !< |
---|
2557 | REAL(wp) :: evap !< |
---|
2558 | REAL(wp) :: evap_nr !< |
---|
2559 | REAL(wp) :: f_vent !< |
---|
2560 | REAL(wp) :: flag !< flag to indicate first grid level above surface |
---|
2561 | REAL(wp) :: g_evap !< |
---|
2562 | REAL(wp) :: lambda_r !< |
---|
2563 | REAL(wp) :: mu_r !< |
---|
2564 | REAL(wp) :: mu_r_2 !< |
---|
2565 | REAL(wp) :: mu_r_5d2 !< |
---|
2566 | REAL(wp) :: nr_0 !< |
---|
2567 | REAL(wp) :: q_s !< |
---|
2568 | REAL(wp) :: sat !< |
---|
2569 | REAL(wp) :: t_l !< |
---|
2570 | REAL(wp) :: temp !< |
---|
2571 | REAL(wp) :: xr !< |
---|
2572 | |
---|
2573 | DO k = nzb+1, nzt |
---|
2574 | ! |
---|
2575 | !-- Predetermine flag to mask topography |
---|
2576 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
2577 | |
---|
2578 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
2579 | ! |
---|
2580 | !-- Actual liquid water temperature: |
---|
2581 | t_l = t_d_pt(k) * pt_1d(k) |
---|
2582 | ! |
---|
2583 | !-- Saturation vapor pressure at t_l: |
---|
2584 | e_s = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
2585 | ( t_l - 35.86_wp ) & |
---|
2586 | ) |
---|
2587 | ! |
---|
2588 | !-- Computation of saturation humidity: |
---|
2589 | q_s = 0.622_wp * e_s / ( hyp(k) - 0.378_wp * e_s ) |
---|
2590 | alpha = 0.622_wp * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
2591 | q_s = q_s * ( 1.0_wp + alpha * q_1d(k) ) / ( 1.0_wp + alpha * q_s ) |
---|
2592 | ! |
---|
2593 | !-- Supersaturation: |
---|
2594 | sat = ( q_1d(k) - qr_1d(k) - qc_1d(k) ) / q_s - 1.0_wp |
---|
2595 | ! |
---|
2596 | !-- Evaporation needs only to be calculated in subsaturated regions |
---|
2597 | IF ( sat < 0.0_wp ) THEN |
---|
2598 | ! |
---|
2599 | !-- Actual temperature: |
---|
2600 | temp = t_l + l_d_cp * ( qc_1d(k) + qr_1d(k) ) |
---|
2601 | |
---|
2602 | g_evap = 1.0_wp / ( ( l_v / ( r_v * temp ) - 1.0_wp ) * l_v / & |
---|
2603 | ( thermal_conductivity_l * temp ) + & |
---|
2604 | r_v * temp / ( diff_coeff_l * e_s ) & |
---|
2605 | ) |
---|
2606 | ! |
---|
2607 | !-- Mean weight of rain drops |
---|
2608 | xr = hyrho(k) * qr_1d(k) / nr_1d(k) |
---|
2609 | ! |
---|
2610 | !-- Weight averaged diameter of rain drops: |
---|
2611 | dr = ( xr * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
2612 | ! |
---|
2613 | !-- Compute ventilation factor and intercept parameter |
---|
2614 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
2615 | IF ( ventilation_effect ) THEN |
---|
2616 | ! |
---|
2617 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
2618 | !-- Stevens and Seifert, 2008): |
---|
2619 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * ( dr - 1.4E-3_wp ) ) ) |
---|
2620 | ! |
---|
2621 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
2622 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
2623 | ( mu_r + 1.0_wp ) & |
---|
2624 | )**( 1.0_wp / 3.0_wp ) / dr |
---|
2625 | |
---|
2626 | mu_r_2 = mu_r + 2.0_wp |
---|
2627 | mu_r_5d2 = mu_r + 2.5_wp |
---|
2628 | |
---|
2629 | f_vent = a_vent * gamm( mu_r_2 ) * lambda_r**( -mu_r_2 ) + & |
---|
2630 | b_vent * schmidt_p_1d3 * & |
---|
2631 | SQRT( a_term / kin_vis_air ) * gamm( mu_r_5d2 ) * & |
---|
2632 | lambda_r**( -mu_r_5d2 ) * & |
---|
2633 | ( 1.0_wp - & |
---|
2634 | 0.5_wp * ( b_term / a_term ) * & |
---|
2635 | ( lambda_r / ( c_term + lambda_r ) & |
---|
2636 | )**mu_r_5d2 - & |
---|
2637 | 0.125_wp * ( b_term / a_term )**2 * & |
---|
2638 | ( lambda_r / ( 2.0_wp * c_term + lambda_r ) & |
---|
2639 | )**mu_r_5d2 - & |
---|
2640 | 0.0625_wp * ( b_term / a_term )**3 * & |
---|
2641 | ( lambda_r / ( 3.0_wp * c_term + lambda_r ) & |
---|
2642 | )**mu_r_5d2 - & |
---|
2643 | 0.0390625_wp * ( b_term / a_term )**4 * & |
---|
2644 | ( lambda_r / ( 4.0_wp * c_term + lambda_r ) & |
---|
2645 | )**mu_r_5d2 & |
---|
2646 | ) |
---|
2647 | |
---|
2648 | nr_0 = nr_1d(k) * lambda_r**( mu_r + 1.0_wp ) / & |
---|
2649 | gamm( mu_r + 1.0_wp ) |
---|
2650 | ELSE |
---|
2651 | f_vent = 1.0_wp |
---|
2652 | nr_0 = nr_1d(k) * dr |
---|
2653 | ENDIF |
---|
2654 | ! |
---|
2655 | !-- Evaporation rate of rain water content (Seifert and Beheng, 2006): |
---|
2656 | evap = 2.0_wp * pi * nr_0 * g_evap * f_vent * sat / hyrho(k) |
---|
2657 | evap = MAX( evap, -qr_1d(k) / dt_micro ) |
---|
2658 | evap_nr = MAX( c_evap * evap / xr * hyrho(k), & |
---|
2659 | -nr_1d(k) / dt_micro ) |
---|
2660 | |
---|
2661 | qr_1d(k) = qr_1d(k) + evap * dt_micro * flag |
---|
2662 | nr_1d(k) = nr_1d(k) + evap_nr * dt_micro * flag |
---|
2663 | |
---|
2664 | ENDIF |
---|
2665 | ENDIF |
---|
2666 | |
---|
2667 | ENDDO |
---|
2668 | |
---|
2669 | END SUBROUTINE evaporation_rain_ij |
---|
2670 | |
---|
2671 | |
---|
2672 | !------------------------------------------------------------------------------! |
---|
2673 | ! Description: |
---|
2674 | ! ------------ |
---|
2675 | !> Sedimentation of cloud droplets (Ackermann et al., 2009, MWR). |
---|
2676 | !> Call for grid point i,j |
---|
2677 | !------------------------------------------------------------------------------! |
---|
2678 | SUBROUTINE sedimentation_cloud_ij( i, j ) |
---|
2679 | |
---|
2680 | USE arrays_3d, & |
---|
2681 | ONLY: ddzu, dzu, prr |
---|
2682 | |
---|
2683 | USE cloud_parameters, & |
---|
2684 | ONLY: hyrho, l_d_cp, pt_d_t |
---|
2685 | |
---|
2686 | USE control_parameters, & |
---|
2687 | ONLY: call_microphysics_at_all_substeps, & |
---|
2688 | intermediate_timestep_count, microphysics_morrison |
---|
2689 | |
---|
2690 | USE indices, & |
---|
2691 | ONLY: nzb, nzb, nzt, wall_flags_0 |
---|
2692 | |
---|
2693 | USE kinds |
---|
2694 | |
---|
2695 | USE statistics, & |
---|
2696 | ONLY: weight_substep |
---|
2697 | |
---|
2698 | IMPLICIT NONE |
---|
2699 | |
---|
2700 | INTEGER(iwp) :: i !< |
---|
2701 | INTEGER(iwp) :: j !< |
---|
2702 | INTEGER(iwp) :: k !< |
---|
2703 | |
---|
2704 | REAL(wp) :: flag !< flag to indicate first grid level above surface |
---|
2705 | REAL(wp) :: nc_sedi !< |
---|
2706 | |
---|
2707 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_nc !< |
---|
2708 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qc !< |
---|
2709 | |
---|
2710 | sed_qc(nzt+1) = 0.0_wp |
---|
2711 | |
---|
2712 | DO k = nzt, nzb+1, -1 |
---|
2713 | ! |
---|
2714 | !-- Predetermine flag to mask topography |
---|
2715 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
2716 | nc_sedi = MERGE( nc_1d(k), nc_const, microphysics_morrison ) |
---|
2717 | ! |
---|
2718 | !-- Sedimentation fluxes for number concentration are only calculated |
---|
2719 | !-- for cloud_scheme = 'morrison' |
---|
2720 | IF ( microphysics_morrison ) THEN |
---|
2721 | IF ( qc_1d(k) > eps_sb .AND. nc_1d(k) > eps_mr ) THEN |
---|
2722 | sed_nc(k) = sed_qc_const * & |
---|
2723 | ( qc_1d(k) * hyrho(k) )**( 2.0_wp / 3.0_wp ) * & |
---|
2724 | ( nc_1d(k) )**( 1.0_wp / 3.0_wp ) |
---|
2725 | ELSE |
---|
2726 | sed_nc(k) = 0.0_wp |
---|
2727 | ENDIF |
---|
2728 | |
---|
2729 | sed_nc(k) = MIN( sed_nc(k), hyrho(k) * dzu(k+1) * & |
---|
2730 | nc_1d(k) / dt_micro + sed_nc(k+1) & |
---|
2731 | ) * flag |
---|
2732 | |
---|
2733 | nc_1d(k) = nc_1d(k) + ( sed_nc(k+1) - sed_nc(k) ) * & |
---|
2734 | ddzu(k+1) / hyrho(k) * dt_micro * flag |
---|
2735 | ENDIF |
---|
2736 | |
---|
2737 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
2738 | sed_qc(k) = sed_qc_const * nc_sedi**( -2.0_wp / 3.0_wp ) * & |
---|
2739 | ( qc_1d(k) * hyrho(k) )**( 5.0_wp / 3.0_wp ) * flag |
---|
2740 | ELSE |
---|
2741 | sed_qc(k) = 0.0_wp |
---|
2742 | ENDIF |
---|
2743 | |
---|
2744 | sed_qc(k) = MIN( sed_qc(k), hyrho(k) * dzu(k+1) * q_1d(k) / & |
---|
2745 | dt_micro + sed_qc(k+1) & |
---|
2746 | ) * flag |
---|
2747 | |
---|
2748 | q_1d(k) = q_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
2749 | hyrho(k) * dt_micro * flag |
---|
2750 | qc_1d(k) = qc_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
2751 | hyrho(k) * dt_micro * flag |
---|
2752 | pt_1d(k) = pt_1d(k) - ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
2753 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro * flag |
---|
2754 | |
---|
2755 | ! |
---|
2756 | !-- Compute the precipitation rate of cloud (fog) droplets |
---|
2757 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
2758 | prr(k,j,i) = prr(k,j,i) + sed_qc(k) / hyrho(k) * & |
---|
2759 | weight_substep(intermediate_timestep_count) * flag |
---|
2760 | ELSE |
---|
2761 | prr(k,j,i) = prr(k,j,i) + sed_qc(k) / hyrho(k) * flag |
---|
2762 | ENDIF |
---|
2763 | |
---|
2764 | ENDDO |
---|
2765 | |
---|
2766 | END SUBROUTINE sedimentation_cloud_ij |
---|
2767 | |
---|
2768 | |
---|
2769 | !------------------------------------------------------------------------------! |
---|
2770 | ! Description: |
---|
2771 | ! ------------ |
---|
2772 | !> Computation of sedimentation flux. Implementation according to Stevens |
---|
2773 | !> and Seifert (2008). Code is based on UCLA-LES. Call for grid point i,j |
---|
2774 | !------------------------------------------------------------------------------! |
---|
2775 | SUBROUTINE sedimentation_rain_ij( i, j ) |
---|
2776 | |
---|
2777 | USE arrays_3d, & |
---|
2778 | ONLY: ddzu, dzu, prr |
---|
2779 | |
---|
2780 | USE cloud_parameters, & |
---|
2781 | ONLY: hyrho, l_d_cp, pt_d_t |
---|
2782 | |
---|
2783 | USE control_parameters, & |
---|
2784 | ONLY: call_microphysics_at_all_substeps, intermediate_timestep_count |
---|
2785 | |
---|
2786 | USE indices, & |
---|
2787 | ONLY: nzb, nzb, nzt, wall_flags_0 |
---|
2788 | |
---|
2789 | USE kinds |
---|
2790 | |
---|
2791 | USE statistics, & |
---|
2792 | ONLY: weight_substep |
---|
2793 | |
---|
2794 | USE surface_mod, & |
---|
2795 | ONLY : bc_h |
---|
2796 | |
---|
2797 | IMPLICIT NONE |
---|
2798 | |
---|
2799 | INTEGER(iwp) :: i !< running index x direction |
---|
2800 | INTEGER(iwp) :: j !< running index y direction |
---|
2801 | INTEGER(iwp) :: k !< running index z direction |
---|
2802 | INTEGER(iwp) :: k_run !< |
---|
2803 | INTEGER(iwp) :: m !< running index surface elements |
---|
2804 | INTEGER(iwp) :: surf_e !< End index of surface elements at (j,i)-gridpoint |
---|
2805 | INTEGER(iwp) :: surf_s !< Start index of surface elements at (j,i)-gridpoint |
---|
2806 | |
---|
2807 | REAL(wp) :: c_run !< |
---|
2808 | REAL(wp) :: d_max !< |
---|
2809 | REAL(wp) :: d_mean !< |
---|
2810 | REAL(wp) :: d_min !< |
---|
2811 | REAL(wp) :: dr !< |
---|
2812 | REAL(wp) :: flux !< |
---|
2813 | REAL(wp) :: flag !< flag to indicate first grid level above surface |
---|
2814 | REAL(wp) :: lambda_r !< |
---|
2815 | REAL(wp) :: mu_r !< |
---|
2816 | REAL(wp) :: z_run !< |
---|
2817 | |
---|
2818 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_nr !< |
---|
2819 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_qr !< |
---|
2820 | REAL(wp), DIMENSION(nzb:nzt+1) :: nr_slope !< |
---|
2821 | REAL(wp), DIMENSION(nzb:nzt+1) :: qr_slope !< |
---|
2822 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_nr !< |
---|
2823 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qr !< |
---|
2824 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_nr !< |
---|
2825 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_qr !< |
---|
2826 | |
---|
2827 | ! |
---|
2828 | !-- Compute velocities |
---|
2829 | DO k = nzb+1, nzt |
---|
2830 | ! |
---|
2831 | !-- Predetermine flag to mask topography |
---|
2832 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
2833 | |
---|
2834 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
2835 | ! |
---|
2836 | !-- Weight averaged diameter of rain drops: |
---|
2837 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
2838 | ! |
---|
2839 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
2840 | !-- Stevens and Seifert, 2008): |
---|
2841 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * ( dr - 1.4E-3_wp ) ) ) |
---|
2842 | ! |
---|
2843 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
2844 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
2845 | ( mu_r + 1.0_wp ) )**( 1.0_wp / 3.0_wp ) / dr |
---|
2846 | |
---|
2847 | w_nr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
2848 | a_term - b_term * ( 1.0_wp + & |
---|
2849 | c_term / lambda_r )**( -1.0_wp * & |
---|
2850 | ( mu_r + 1.0_wp ) ) & |
---|
2851 | ) & |
---|
2852 | ) * flag |
---|
2853 | w_qr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
2854 | a_term - b_term * ( 1.0_wp + & |
---|
2855 | c_term / lambda_r )**( -1.0_wp * & |
---|
2856 | ( mu_r + 4.0_wp ) ) & |
---|
2857 | ) & |
---|
2858 | ) * flag |
---|
2859 | ELSE |
---|
2860 | w_nr(k) = 0.0_wp |
---|
2861 | w_qr(k) = 0.0_wp |
---|
2862 | ENDIF |
---|
2863 | ENDDO |
---|
2864 | ! |
---|
2865 | !-- Adjust boundary values using surface data type. |
---|
2866 | !-- Upward facing non-natural |
---|
2867 | surf_s = bc_h(0)%start_index(j,i) |
---|
2868 | surf_e = bc_h(0)%end_index(j,i) |
---|
2869 | DO m = surf_s, surf_e |
---|
2870 | k = bc_h(0)%k(m) |
---|
2871 | w_nr(k-1) = w_nr(k) |
---|
2872 | w_qr(k-1) = w_qr(k) |
---|
2873 | ENDDO |
---|
2874 | ! |
---|
2875 | !-- Downward facing non-natural |
---|
2876 | surf_s = bc_h(1)%start_index(j,i) |
---|
2877 | surf_e = bc_h(1)%end_index(j,i) |
---|
2878 | DO m = surf_s, surf_e |
---|
2879 | k = bc_h(1)%k(m) |
---|
2880 | w_nr(k+1) = w_nr(k) |
---|
2881 | w_qr(k+1) = w_qr(k) |
---|
2882 | ENDDO |
---|
2883 | ! |
---|
2884 | !-- Neumann boundary condition at model top |
---|
2885 | w_nr(nzt+1) = 0.0_wp |
---|
2886 | w_qr(nzt+1) = 0.0_wp |
---|
2887 | ! |
---|
2888 | !-- Compute Courant number |
---|
2889 | DO k = nzb+1, nzt |
---|
2890 | ! |
---|
2891 | !-- Predetermine flag to mask topography |
---|
2892 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
2893 | |
---|
2894 | c_nr(k) = 0.25_wp * ( w_nr(k-1) + 2.0_wp * w_nr(k) + w_nr(k+1) ) * & |
---|
2895 | dt_micro * ddzu(k) * flag |
---|
2896 | c_qr(k) = 0.25_wp * ( w_qr(k-1) + 2.0_wp * w_qr(k) + w_qr(k+1) ) * & |
---|
2897 | dt_micro * ddzu(k) * flag |
---|
2898 | ENDDO |
---|
2899 | ! |
---|
2900 | !-- Limit slopes with monotonized centered (MC) limiter (van Leer, 1977): |
---|
2901 | IF ( limiter_sedimentation ) THEN |
---|
2902 | |
---|
2903 | DO k = nzb+1, nzt |
---|
2904 | ! |
---|
2905 | !-- Predetermine flag to mask topography |
---|
2906 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
2907 | |
---|
2908 | d_mean = 0.5_wp * ( qr_1d(k+1) - qr_1d(k-1) ) |
---|
2909 | d_min = qr_1d(k) - MIN( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) |
---|
2910 | d_max = MAX( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) - qr_1d(k) |
---|
2911 | |
---|
2912 | qr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
2913 | 2.0_wp * d_max, & |
---|
2914 | ABS( d_mean ) ) * flag |
---|
2915 | |
---|
2916 | d_mean = 0.5_wp * ( nr_1d(k+1) - nr_1d(k-1) ) |
---|
2917 | d_min = nr_1d(k) - MIN( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) |
---|
2918 | d_max = MAX( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) - nr_1d(k) |
---|
2919 | |
---|
2920 | nr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
2921 | 2.0_wp * d_max, & |
---|
2922 | ABS( d_mean ) ) * flag |
---|
2923 | ENDDO |
---|
2924 | |
---|
2925 | ELSE |
---|
2926 | |
---|
2927 | nr_slope = 0.0_wp |
---|
2928 | qr_slope = 0.0_wp |
---|
2929 | |
---|
2930 | ENDIF |
---|
2931 | |
---|
2932 | sed_nr(nzt+1) = 0.0_wp |
---|
2933 | sed_qr(nzt+1) = 0.0_wp |
---|
2934 | ! |
---|
2935 | !-- Compute sedimentation flux |
---|
2936 | DO k = nzt, nzb+1, -1 |
---|
2937 | ! |
---|
2938 | !-- Predetermine flag to mask topography |
---|
2939 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
2940 | ! |
---|
2941 | !-- Sum up all rain drop number densities which contribute to the flux |
---|
2942 | !-- through k-1/2 |
---|
2943 | flux = 0.0_wp |
---|
2944 | z_run = 0.0_wp ! height above z(k) |
---|
2945 | k_run = k |
---|
2946 | c_run = MIN( 1.0_wp, c_nr(k) ) |
---|
2947 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
2948 | flux = flux + hyrho(k_run) * & |
---|
2949 | ( nr_1d(k_run) + nr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
2950 | 0.5_wp ) * c_run * dzu(k_run) * flag |
---|
2951 | z_run = z_run + dzu(k_run) * flag |
---|
2952 | k_run = k_run + 1 * flag |
---|
2953 | c_run = MIN( 1.0_wp, c_nr(k_run) - z_run * ddzu(k_run) ) * flag |
---|
2954 | ENDDO |
---|
2955 | ! |
---|
2956 | !-- It is not allowed to sediment more rain drop number density than |
---|
2957 | !-- available |
---|
2958 | flux = MIN( flux, & |
---|
2959 | hyrho(k) * dzu(k+1) * nr_1d(k) + sed_nr(k+1) * dt_micro ) |
---|
2960 | |
---|
2961 | sed_nr(k) = flux / dt_micro * flag |
---|
2962 | nr_1d(k) = nr_1d(k) + ( sed_nr(k+1) - sed_nr(k) ) * ddzu(k+1) / & |
---|
2963 | hyrho(k) * dt_micro * flag |
---|
2964 | ! |
---|
2965 | !-- Sum up all rain water content which contributes to the flux |
---|
2966 | !-- through k-1/2 |
---|
2967 | flux = 0.0_wp |
---|
2968 | z_run = 0.0_wp ! height above z(k) |
---|
2969 | k_run = k |
---|
2970 | c_run = MIN( 1.0_wp, c_qr(k) ) |
---|
2971 | |
---|
2972 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
2973 | |
---|
2974 | flux = flux + hyrho(k_run) * & |
---|
2975 | ( qr_1d(k_run) + qr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
2976 | 0.5_wp ) * c_run * dzu(k_run) * flag |
---|
2977 | z_run = z_run + dzu(k_run) * flag |
---|
2978 | k_run = k_run + 1 * flag |
---|
2979 | c_run = MIN( 1.0_wp, c_qr(k_run) - z_run * ddzu(k_run) ) * flag |
---|
2980 | |
---|
2981 | ENDDO |
---|
2982 | ! |
---|
2983 | !-- It is not allowed to sediment more rain water content than available |
---|
2984 | flux = MIN( flux, & |
---|
2985 | hyrho(k) * dzu(k) * qr_1d(k) + sed_qr(k+1) * dt_micro ) |
---|
2986 | |
---|
2987 | sed_qr(k) = flux / dt_micro * flag |
---|
2988 | |
---|
2989 | qr_1d(k) = qr_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
2990 | hyrho(k) * dt_micro * flag |
---|
2991 | q_1d(k) = q_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
2992 | hyrho(k) * dt_micro * flag |
---|
2993 | pt_1d(k) = pt_1d(k) - ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
2994 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro * flag |
---|
2995 | ! |
---|
2996 | !-- Compute the rain rate |
---|
2997 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
2998 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) & |
---|
2999 | * weight_substep(intermediate_timestep_count) * flag |
---|
3000 | ELSE |
---|
3001 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) * flag |
---|
3002 | ENDIF |
---|
3003 | |
---|
3004 | ENDDO |
---|
3005 | |
---|
3006 | END SUBROUTINE sedimentation_rain_ij |
---|
3007 | |
---|
3008 | |
---|
3009 | !------------------------------------------------------------------------------! |
---|
3010 | ! Description: |
---|
3011 | ! ------------ |
---|
3012 | !> This subroutine computes the precipitation amount due to gravitational |
---|
3013 | !> settling of rain and cloud (fog) droplets |
---|
3014 | !------------------------------------------------------------------------------! |
---|
3015 | SUBROUTINE calc_precipitation_amount_ij( i, j ) |
---|
3016 | |
---|
3017 | USE arrays_3d, & |
---|
3018 | ONLY: precipitation_amount, prr |
---|
3019 | |
---|
3020 | USE cloud_parameters, & |
---|
3021 | ONLY: hyrho |
---|
3022 | |
---|
3023 | USE control_parameters, & |
---|
3024 | ONLY: call_microphysics_at_all_substeps, dt_do2d_xy, dt_3d, & |
---|
3025 | intermediate_timestep_count, intermediate_timestep_count_max,& |
---|
3026 | precipitation_amount_interval, time_do2d_xy |
---|
3027 | |
---|
3028 | USE indices, & |
---|
3029 | ONLY: nzb, nzt, wall_flags_0 |
---|
3030 | |
---|
3031 | USE kinds |
---|
3032 | |
---|
3033 | USE surface_mod, & |
---|
3034 | ONLY : bc_h |
---|
3035 | |
---|
3036 | IMPLICIT NONE |
---|
3037 | |
---|
3038 | INTEGER(iwp) :: i !< running index x direction |
---|
3039 | INTEGER(iwp) :: j !< running index y direction |
---|
3040 | INTEGER(iwp) :: k !< running index z direction |
---|
3041 | INTEGER(iwp) :: m !< running index surface elements |
---|
3042 | INTEGER(iwp) :: surf_e !< End index of surface elements at (j,i)-gridpoint |
---|
3043 | INTEGER(iwp) :: surf_s !< Start index of surface elements at (j,i)-gridpoint |
---|
3044 | |
---|
3045 | IF ( ( dt_do2d_xy - time_do2d_xy ) < precipitation_amount_interval .AND.& |
---|
3046 | ( .NOT. call_microphysics_at_all_substeps .OR. & |
---|
3047 | intermediate_timestep_count == intermediate_timestep_count_max ) ) & |
---|
3048 | THEN |
---|
3049 | |
---|
3050 | surf_s = bc_h(0)%start_index(j,i) |
---|
3051 | surf_e = bc_h(0)%end_index(j,i) |
---|
3052 | DO m = surf_s, surf_e |
---|
3053 | k = bc_h(0)%k(m) |
---|
3054 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
3055 | prr(k,j,i) * hyrho(k) * dt_3d |
---|
3056 | ENDDO |
---|
3057 | |
---|
3058 | ENDIF |
---|
3059 | |
---|
3060 | END SUBROUTINE calc_precipitation_amount_ij |
---|
3061 | |
---|
3062 | !------------------------------------------------------------------------------! |
---|
3063 | ! Description: |
---|
3064 | ! ------------ |
---|
3065 | !> This function computes the gamma function (Press et al., 1992). |
---|
3066 | !> The gamma function is needed for the calculation of the evaporation |
---|
3067 | !> of rain drops. |
---|
3068 | !------------------------------------------------------------------------------! |
---|
3069 | FUNCTION gamm( xx ) |
---|
3070 | |
---|
3071 | USE kinds |
---|
3072 | |
---|
3073 | IMPLICIT NONE |
---|
3074 | |
---|
3075 | INTEGER(iwp) :: j !< |
---|
3076 | |
---|
3077 | REAL(wp) :: gamm !< |
---|
3078 | REAL(wp) :: ser !< |
---|
3079 | REAL(wp) :: tmp !< |
---|
3080 | REAL(wp) :: x_gamm !< |
---|
3081 | REAL(wp) :: xx !< |
---|
3082 | REAL(wp) :: y_gamm !< |
---|
3083 | |
---|
3084 | |
---|
3085 | REAL(wp), PARAMETER :: stp = 2.5066282746310005_wp !< |
---|
3086 | REAL(wp), PARAMETER :: cof(6) = (/ 76.18009172947146_wp, & |
---|
3087 | -86.50532032941677_wp, & |
---|
3088 | 24.01409824083091_wp, & |
---|
3089 | -1.231739572450155_wp, & |
---|
3090 | 0.1208650973866179E-2_wp, & |
---|
3091 | -0.5395239384953E-5_wp /) !< |
---|
3092 | |
---|
3093 | x_gamm = xx |
---|
3094 | y_gamm = x_gamm |
---|
3095 | tmp = x_gamm + 5.5_wp |
---|
3096 | tmp = ( x_gamm + 0.5_wp ) * LOG( tmp ) - tmp |
---|
3097 | ser = 1.000000000190015_wp |
---|
3098 | |
---|
3099 | DO j = 1, 6 |
---|
3100 | y_gamm = y_gamm + 1.0_wp |
---|
3101 | ser = ser + cof( j ) / y_gamm |
---|
3102 | ENDDO |
---|
3103 | |
---|
3104 | ! |
---|
3105 | !-- Until this point the algorithm computes the logarithm of the gamma |
---|
3106 | !-- function. Hence, the exponential function is used. |
---|
3107 | ! gamm = EXP( tmp + LOG( stp * ser / x_gamm ) ) |
---|
3108 | gamm = EXP( tmp ) * stp * ser / x_gamm |
---|
3109 | |
---|
3110 | RETURN |
---|
3111 | |
---|
3112 | END FUNCTION gamm |
---|
3113 | |
---|
3114 | END MODULE microphysics_mod |
---|